This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 2244C

Structured Modeling and
Decomposition Methods
In Pyomo

Bethany Nicholson

Carl Laird
John D. Siirola

Center for Computing Research
Sandia National Laboratories
Albuquerque, NM

SIAM CSE February 25 - March 1, 2019

@ENERGY ANISZ #CCR

Centerfor Computing Research

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

. Sandia
Landscape of Computing Hardware L=
10 12 7
/o’. .o'-m
5" ¢ "
§ .' m |6 §
3 & I3
8 0.1 4 C I 4
o ®
(] L 2
| .' : H N BN
0.01 —& —L0
1980 1985 1990 1995 2000 2005 2010
Year

= |Improvementsin computing clock rates have slowed
= |ncreased focus on parallel computing architectures

ﬁCCR [Steven Edwards, Columbia University]

Center for Compuring Research

Exploiting Problem Structure

= Optimization Under Uncertainty

= two-stage stochastic programming formulation
= block structure because of coupled scenarios

= common structure of many applications
(parameter estimation, spatial decomposition)

= Dynamic Optimization '-
= Simultaneous approach (discretization using OCFE) --
= block structure because of finite element discretization --
= pass-on variables couple neighboring blocks -.-
#CCR [Laird, 2018]

Center for Compuring Research

Overview of Decomposition Algorithms) e,

= Decomposition approaches allow for parallel/distributed computing

= External decomposition
" Progressive Hedging (PH)
= Alternating direction method of multipliers (ADMM)
= Benders decomposition, dual decomposition
® |nternal decomposition
= Schur-complement decomposition
= Block cyclic reduction
= Reduced-space decomposition

External Decomposition Internal Decomposition

Break full NLP into subproblems and Build full NLP and decompose at linear
coordinate solutions algebra level of host algorithm

Highly flexible and easier to implement Harder to implement

Typically linear convergence Convergence rates of host algorithm

Convergence not well understood for general ~ Convergence properties host algorithm
nonconvex NLPs

:‘ﬁCCR [Rodriguez, AIChE 2018]

Center for Compuring Research

The Unspoken Implementation Challenge @&,

= Despite having well-established decomposition
methods for exploiting common problem structures,

there are very few general implementations of these
approaches interfaced with popular algebraic
modeling languages

= Why?

= Few algebraic modeling languages are capable of
capturing the high-level model structure that can
be exploited by these algorithms

#CCR

Center for Compuring Research

7| Netora

Software platform

= Pyomo: Python Optimization Modeling Objects ‘
= Formulate optimization models within Python)PYOMD

from pyomo.environ import *
ConcreteModel ()

Var ()
.x2 Var (bounds=(-1,1))
.x3 Var (bounds=(1,2))

.0obj = Objective (sense = minimize,
expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3
+ m.x2 + m.x2*sin(m.x1+m.x3))

m

.x1

8 838 8

= Utilize high-level programming language to write scripts and
manipulate model objects
= Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas
#CCR

Center for Compuring Research

Pyomo at a Glance =

P \ BARON
" CBC

‘/ pYOMO Solver Interfaces CPLEX

Meta-Solvers =

* Generalized Benders
» Progressive Hedging
* Linear bilevel

e Linear MPEC

Core Optimization Gurobi
ObjECtS NEOS

AMPL Solver Library

Core Modeling [lpopt |

Objects KNITRO

: - Bonmin
Moc.iglmg.Extenswns. | ™ Cowenne |
 Disjunctive programming " DAKOTA |
« Stochastic programming Model | |

« Bilevel programming Transformations .
- Differential equations GAMS Solver Library
« Equilibrium constraints |___DICOPT |

_ . ANTIGONE

HCCR

Center for Compuring Research

Pyomo at a Glance

th

p

.

3”pyomo

BARON

Solver Interfaces

CBC

Meta-Solvers

» Generalized Benders
* Progressive Hedging
* Linear bilevel

* Linear MPEC

CPLEX

Core Optimization
Objects

GLPK

Gurobi

NEOS

Modeling Extensions

» Disjunctive programming
 Stochastic programming
» Bilevel programming
 Differential equations

» Equilibrium constraints

Core Modeling
Objects

AMPL Solver Library

Model
Transformations

Ipopt

KNITRO

Bonmin

Couenne

DAKOTA

NN

GAM

Solver Library

#CCR

Center for Compuring Research

—| &

DICOPT

ANTIGONE

= Extend Pyomo syntax to represent:
= Continuous domains
= QOrdinary or partial differential equations
= Systems of differential algebraic equations (DAEs)

= Available discretization schemes:

= Finite difference methods (Backward/Forward/Central)

= Collocation (Lagrange polynomials with Radau or Legendre roots)
= Extensible framework

= Write general implementations of custom discretization schemes

= Build frameworks/meta-algorithms including dynamic optimization
" |nterface with numerical simulators

= Scipy for simulating ODEs
= CasADi for simulating ODEs and DAEs

#CCR

Center for Compuring Research

Simple Example ()}

from pyomo.environ import *

from pyomo.dae import * dz
—=z*-2z+1

model = m = ConcreteModel() dt

m.t = ContinuousSet(bounds=(0, 1

m.z = Var(m.t)

m.dzdt = DerivativeVar(m.z, wrt=m.t)

def _zdot(m, t):
return m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1
m.zdot = Constraint(m.t, rule= zdot)

def _init _con(m):
return m.z[@] == -3
m.init _con = Constraint(rule= init con)

Discretize model using backward finite difference
discretizer = TransformationFactory('dae.finite_difference')
discretizer.apply to(m,nfe=10,scheme=°“BACKWARD")

#CCR

Center for Compuring Research

<7 PySP -

= Framework for representing stochastic programming models,
only requiring:

= deterministic base model

= scenario tree defining the problem stages and uncertain parameters

= PySP provides two primary solution strategies
= build and solve the deterministic equivalent (extensive form)
= Progressive Hedging
= (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)
= Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

#CCR

Center for Compuring Research

Progressive Hedging) e,

= Scenario-based decomposition algorithm

= |teratively converge coupling constraints (non-anticipativity
constraints) by penalizing deviation from consensus

O >0 >0 optimize N
O >0 >0 optimize
o, >0 >0 optimize
O >0 >0 optimize
O >0 >0 i optimize
° >0 >0 > [optmze] "
& %)5 optimize
O ﬂm)L:) optimize
>
t=0 t=1 t=2

Progressive Hedging

Bubbling Fluidized Bed (BFB) Model

. . 4 = Bubble

= Gas-solid, 3 region model — 1 N
= Steady state model with 1-D spatial variation 9+ | cloud-wake—
’ §880’ NI EEEELN ‘.::gg
R g <+ g Emulsion —— gg:g%;igggio".o%;o%@g

Gas Outlet
Heat Transfer Solid Inlet _
(‘ j , Surface Reaction
Hydrodynamlcs
zt Gas Inlet
ﬁﬁ’CCR [Lee and Miller, Ind. Eng. Chem. Res., 2013]

13

) ot

BFB Parameter Estimation

- E 2
min (errotimeqs)
{CT‘rahth}
exp.

s.t. BFB model equations

Heat Exchanger Model Parameters
C, Average correction factor for tube model ~ .
Empirical factor for tube model % ‘ . ‘ ‘

Heat transfer coefficient of tube walls n -

ap
hy

#CCR

Center for Compuring Research

Stochastic structure implementation in PySP @ =

def pysp_scenario_tree_model_callback():
from pyomo.pysp.scenariotree.tree_structure_model \
import CreateConcreteTwoStageScenarioTreeModel

st_model = CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()

second_stage = st_model.Stages.last()

First Stage

st_model.StageCost[first_stage] = 'FirstStageCost’
st_model.StageVariables[first_stage].add(‘cr')
st_model.StageVariables[first_stage].add(ah”’)
st_model.StageVariables[first_stage].add(‘hw')

Second Stage

st_model.StageCost[second_stage] = 'SecondStageCost’

return st_model

def pysp_instance_creation_callback(scenario_name, node_names):
experiment = int(scenario_name.replace('Scenario’,"'"))
explist = [1,2,3] # Different data sets

experiment = explist[experiment-1]
instance = generate_model_paramest(experiment)

FCCR return instance

Center for Compuring Research

BFB Parameter Estimation i) i

= Create and solve extensive form

runef --solve --solver ipopt --output-solver-log -m bfb_param.py

= Solve using progressive hedging

runph --solver ipopt --output-solver-log -m bfb _param.py --default-rho=.25

= Solve using progressive hedging in parallel

mpirun -np 1 pyomo ns : -np 1 dispatch _srvr : -np 30 phsolverserver : \

-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_param.py --solver=ipopt --default-rho=0.25

C, a, h,, Solve Time (s)
Actual 1.0 0.8 1500.0 -
Extensive Form 1.016 0.51 1450.35 604.45
Progressive Hedging (15 processors) 0.9824 0.7850 1501.74 610.98
Progressive Hedging (30 processors) 0.9824 0.7850 1501.74 459.10

- Extensive form problem size ~400,000 variables and constraints
CCR PH subproblem size ~13,000 variables and constraints

Pyomo at a Glance =

P \ BARON
" CBC

‘/ pYOMO Solver Interfaces CPLEX

Meta-Solvers =

* Generalized Benders
» Progressive Hedging
* Linear bilevel

e Linear MPEC

Core Optimization Gurobi
ObjECtS NEOS

AMPL Solver Library

Core Modeling [lpopt |

Objects KNITRO

: - Bonmin
Moc.iglmg.Extenswns. | ™ Cowenne |
 Disjunctive programming " DAKOTA |
« Stochastic programming Model | |

« Bilevel programming Transformations .
- Differential equations GAMS Solver Library
« Equilibrium constraints |___DICOPT |

_ . ANTIGONE

HCCR

Center for Compuring Research

Pyomo at a Glance) e

p ™\ BARON
» CBC
‘/ PYOMO Solver Interfaces
CPLEX
Meta-Solvers GLPK
» Generalized Benders Core Optimization Girobi
* Progressive Hedging Obiects
« Linear bilevel) NEOS
» Linear MPEC PyNumero
Core Modeling AMPL Solver Library
Objects T popt |
Modeling Extensions KNITRO
* Disjunctive programming Bonmin
« Stochastic programming Model Couenne
* Bilevel programming Transformations DAKOTA
 Differential equations — |
» Equilibrium constraints GAMS Solver Library
N J —— DICOPT |
ANTIGONE
HCCR

Center for Compuring Research

Purpose of PyNumero

= High-level Python framework for rapid development of
nonlinear and parallel decomposition algorithms without
large sacrifices in computational performance

= Dramatically reduce time required to prototype new
algorithms while minimizing the performance penalty

= Develop a framework for the low-level numerical treatment
of Pyomo models that can be used to:
= Calculate efficient numerical derivatives

= |Implement algorithms that are natively aware of Pyomo model
structure

:‘ngCR [Rodriguez, AIChE 2018]

Center for Compuring Research

PyNumero ()}

= Python C/C++ extension for nonlinear programming
= Provides first and second derivatives via ASL
= |nterfaces with Numpy/Scipy for all array-operations
= Supports python calls to HSL linear solver (MA27)
= Computationally expensive operations performed in C/C++
= Distributed with Pyomo and conda-forge

from pyomo.contrib.pynumero.interfaces import PyomoNLP
import pyomo.environ as aml

= aml.ConcreteModel() ‘ u

.x = aml.var([1, 2, 3], bounds=(8.0, None)) ‘/ PYDMD
.phys = aml.Constraint(expr=m.x[3]**2 + m.x[1] == 25)

.rsrc = aml.Constraint(expr=m.x[2]**2 + m.x[1] <= 18.0)

.obj = aml.Objective(expr=m.x[1]**4-m.x[3]*m.x[2]**3) <zg§;fséi;;>

def my_algorithm(model):

nlp = PyomoNLP(model) pr—
x = nlp.create_vector_x() -
¢ = nlp.evaluate_c(x))

Jc = nlp.jacobian_c(x)

53 3 3 3

#CCR

Center for Compuring Research

PyNumero Performance i)t

= Equality Constrained Problem with 100K variables

tf
minimize / a(ya1 — Yret)® + B(u — Ureg) 2t
to

dx AD0 1
dt Acond

dz g, 1 .
244 L1(ya,i-1 —Ta:) — V(ya; — Yai+1)] Vie{l,.., ,FT -1}

dt Agay
[Fz 4 feed + L1%4,Fr-1 — Loz A Fr — V(ya,Fr — ya,rre1)] B asic S Q P

dearr 1
dt Ay
deg; 1 _
Zf’ = A [La(ya,i-1 — za3) — V(yai — Yai+1)] Vie{FT+1,..,NT} ~1 00/0 Slower
ay

dmA;ZTH = ! [LoxanT — (F — D)z A NT+1 — VYANT+1] th an I PO PT
reboiler

TAi =20y, vV ie{0,..,NT +1}

V=Li+D

L2=1,+F

— Ll

subject to V(ya1 —z40)

U

#CCR

Center for Compuring Research

7| Netora

Alternating Direction Method of Multipliers

from pyomo.contrib.pynumero.interfaces.nlp_transformations
import AdmmNLP

.

for k in range(max_iter):

Algorithm 2: Alternating Direction Method of Multipliers

Step 3. Update partition variables

1 Given barrier parameter p > 0, tolerances €, > 0, €5 > 0, and estimates °, 2° for bid, nlp in enumerate(nlps):
2 for k=0,1,2,...do xs[bid] = basic_sqp(nlp, tee=False)
3 | update partition variables: # Step 6. Compute coupling variables

z = [None] * len(nlps)
for bid, nlp in enumerate(nlps):
k . Vi
5 it = argmin f; (@) + (Aizi + Biz®)” yf + 8| Aii + Bid|? 2i[bid] = xs[bid][nlp.zid_to_xid]
BeG z = np.mean(z, axis=0)

4 foreach i € P do

6 | update coupling variables:
Step 8/10. Compute residuals

k41 _ : k1, ok
) a —4ug?nnﬁp@:+,z,y) r = [None] * len(nlps)
. . for bid, nlp in enumerate(nlps):
8 | compute primal residual: ri[bid] = xs[bid][nlp.zid_to_xid] - z
9 phtl = Agktl 4 Bkl s = z - old_z_estimates
10 | compute dual residual: # Update estimates
- sk+1:pATB-(zk+1—zk) for bid, nlp %n enumerate(nlps):
nlp.z_estimates = z
12 update dual variables: nlp.w_estimates = nlp.w_estimates + nlp.rho * r[bid]
k1 _ ok okt nlp.init_x = xs[bid]
1 y yrper nlp.init_y = ys[bid]
u | if |rFH| < e and ||s¥1]) < ¢, then 0ld_z_estimates = z

15 ‘ stop 5 i
Step 14. Compute infeasibility norms

r_norm = np.linalg.norm(np.concatenate(r))
s_norm = np.linalg.norm(s)

if r_norm < rtol and s_norm < stol:
break

HCCR
m‘wmcmwm : [J. S. Rodriguez, B. Nicholson, C. D. Laird, V. M. Zavala, “Benchmarking ADMM in nonconvex NLPs”, Computers & Chemical Engineering, 2018.]

Summary ()}

= Explicitly capturing high-level structure leads to significantly
easier, faster, and more flexible implementations

= Pyomo provides high-level modeling constructs for capturing
exploitable structure (www.pyomo.org)

= PyNumero is a promising tool for prototyping general
implementations of decomposition algorithms

On-going work:
= |mplementations of several internal decomposition methods
using PyNumero (Schur-complement, cyclic reduction, etc.)

= |nterface to the Rapid Optimization Library (ROL) to access
several parallel-in-time algorithms under development

#CCR

Center for Compuring Research

