
Structured Modeling and
Decomposition Methods
in Pyomo

Bethany Nicholson

Carl Laird

John D. Siirola

Center for Computing Research

Sandia National Laboratories

Albuquerque, NM

U.B. DEPARTMENT OF

SIAM CSE February 25 — March 1, 2019

I.V /C&Cio,
ENERGY is vkv4P--4

mason mar socad
-"CCR
Center tor Computing Research

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
international, inc., for the U.S. Department of EnergYs National Nuclear Security Administration under contract DE-NA-0003525.

SAND2019-2244C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Landscape of Computing Hardware

10

•

•
• i 2 • •

0.01 •

1980 1985 1990 1995 2000 2005 2010

Year

• Improvements in computing clock rates have slowed

• •
*IP

o
f

12

fe SO •• -1 0

• 8

0
-6 C.)

-4
o

•• -4

- 2

0

• Increased focus on parallel computing architectures

cRf

Sandia
National
Laboratories

[Steven Edwards, Columbia University]

Exploiting Problem Structure

■ Optimization Under Uncertainty

■ two-stage stochastic programming formulation

■ block structure because of coupled scenarios

■ common structure of many applications
(parameter estimation, spatial decomposition)

■ Dynamic Optimization

■ Simultaneous approach (discretization using OCFE)

■ block structure because of finite element discretization

■ pass-on variables couple neighboring blocks

•~CCR

■

■■

■■

Sandia
National
Laboratories

■■

[Laird, 2018]

Overview of Decomposition Algorithms

■ Decomposition approaches allow for parallel/distributed computing

■ External decomposition

Progressive Hedging (PH)

Alternating direction method of multipliers (ADMM)

Benders decomposition, dual decomposition

■ Internal decomposition

Schur-complement decomposition

Block cyclic reduction

Reduced-space decomposition

External Decomposition Internal Decomposition

Break full NLP into subproblems and
coordinate solutions

Build full NLP and decompose at linear
algebra level of host algorithm

Highly flexible and easier to implement Harder to implement

Typically linear convergence Convergence rates of host algorithm

Convergence not well understood for general
nonconvex NLPs

Convergence properties host algorithm

•~CCR

Sandia
National
Laboratories

[Rodriguez, AIChE 2018]

The Unspoken Implementation Challenge
Sandia
National
Laboratories

• Despite having well-established decomposition
methods for exploiting common problem structures,

there are very few general implementations of these
approaches interfaced with popular algebraic
modeling languages

• Why?

• Few algebraic modeling languages are capable of
capturing the high-level model structure that can
be exploited by these algorithms

CCR

Software platform
Sandia
National
Laboratories

• Pyomo: Python Optimization Modeling Objects
• Formulate optimization models within Python 1 PYOMO

from pyomo . environ import

m = ConcreteModel ()

m. xl = ()

*

m. x2 = Var (bounds= (-1,1))

m. x3 = Vai (bounds= (1, 2))

m. obj = Objective (sense = minimize ,

expr = m. xl**2 + (m.x2*m. x3) **4 + m. xl*m . x3

+ m. x2 + m.x2*sin (m. xl+m. x3))

• Utilize high-level programming language to write scripts and
manipulate model objects
• Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas
cRfc

Pyomo at a Glance

'PYOMO
Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Solver Interfaces _1

Core Optimization
Objects

Core Modeling
Objects

Model
Transformations

tztoccR

Sandia
National
Laboratories

BARON

CBC

CPLEX

GLPK

Gurobi

NEOS

AMPL Solver Library

— Ipopt

KNITRO

Bonmin

Couenne

—1 DAKOTA

• • •

GAMS Solver Library

DICOPT

—1 ANTIGONE

• • •

7

Pyomo at a Glance

r
w* PYO MO

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Solver Interfaces _1

1

1
Core Optimization

Objects

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations

I_
Equilibrium constraints

Core Modeling
Objects

1
Model

Transformations

c forcc.cR

Sandia
National
Laboratories

BARON

CBC

CPLEX

GLPK

Gurobi

NEOS

AMPL Solver Library

—1 lpopt

—1 KNITRO

—71

Bonmin

Couenne

—1 DAKOTA

—1 • • •

GAMS Solver Library

—1 DICOPT

—1 ANTIGONE

• • •

 DAE
• Extend Pyomo syntax to represent:

• Continuous domains

• Ordinary or partial differential equations

• Systems of differential algebraic equations (DAEs)

• Available discretization schemes:

• Finite difference methods (Backward/Forward/Central)

• Collocation (Lagrange polynomials with Radau or Legendre roots)

• Extensible framework

• Write general implementations of custom discretization schemes

• Build frameworks/meta-algorithms including dynamic optimization

• Interface with numerical simulators

• Scipy for simulating ODEs

• CasADi for simulating ODEs and DAEs

CCR

Sandia
National
Laboratories

Simple Example

from pyomo.environ import *
from pyomo.dae import *

model = m = ConcreteModel()
m.t = ContinuousSet(bounds=(0, 1))

m.z = Var(m.t)
m.dzdt = DerivativeVar(m.z, wrt=m.t)

def _zdot(m, t):
neturh m.dzdt[t] == m.z[t]**2 - 2*m.z[t] + 1

m.zdot = Constraint(m.t, rule=_zdot)

def _init_con(m):
return m.z[0] == -3

m.init con = Constra (rule= init con)

Sandia
National
Laboratories

dz

dt
= z2 — 2z + 1

z(0) ==

Discretize model using backward finite difference
discretizer = TransformationFactory('dae.finite_difference 1)
discretizer.apply_to(m,nfe=10,scheme='BACKWARD')

ci?

PySP

• Framework for representing stochastic programming models,
only requiring:

• deterministic base model

• scenario tree defining the problem stages and uncertain parameters

• PySP provides two primary solution strategies

• build and solve the deterministic equivalent (extensive form)

• Progressive Hedging

• (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)

• Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

cf cR

Sandia
National
Laboratories

Progressive Hedging

• Scenario-based decomposition algorithm

• Iteratively converge coupling constraints (non-anticipativity
constraints) by penalizing deviation from consensus

2

cf cR

o=
xa
aa
-
0
 0

•
o

>0 >0
>0 >0

>a >6
>0 >0
>6 >o
>6 >6

>❑ >5
>0 >0

lo

Progressive Hedging

optimize
optimize

optimize
optimize
optimize

Sandia
National
Laboratories

12

Bubbling Fluidized Bed (BFB) Model

• Gas-solid, 3 region model

• Steady state model with 1-D spatial variation

Heat Transfer Solid lnlet

c

CCCR

•

:j

C
•••,..., ' • • •
.",t; • .0 -,..1.4.0

ir,,ig , Y Ar.•„ILL.,, 4 • O./ 1, A

• irg:
1401ae-C • ”

4.41.0•Ute :NI%

Hydrodynamics

Gas Outlet

Sandia
National
Laboratories

a.)
tr)

Bubble

000 Oo

cu ASO.
o Cloud-wake 0° \°8000.00

.00.800gg

408.
 0 5%

8)°871:',1.4ect*?8:17,,,e6o.)
iz

Emulsion 0;780;

Surface Reaction
5 • • •

• •
•
•
•
•I F F F F

•
a

•
• 1 • * •
• • . ..

• • ••
•

Solid Outlet

Gas inlet

[Lee and Miller, Ind. Eng. Chem. Res., 2013]
Centerforampudng Research

BFB Parameter Estimation

Experiment 2 Experiment 30

L

1101INCIPI

Heat Exchanger Model Parameters

C. Average correction factor for tube model

ah Empirical factor for tube model

hw Heat transfer coefficient of tube walls

CCCR

a)
CZ

C

a)
cy)
ca

Sandia
National
Laboratories

min (errormeas)2
Cnah,hw}

exp.

S. t. BFB model equations

1
Cr, ah
hw

*.• • • • • •

••

Centerforampudng Research

14

Stochastic structure implementation in PySP

CCCR

def pysp_scenario_tree_model_callback():
from pyomo.pysp.scenariotree.tree_structure_model \

import CreateConcreteTwoStageScenarioTreeModel

st model = CreateConcreteTwoStageScenarioTreeModel(scenarios)

first stage = st_model.Stages.first()
second stage = st_model.Stages.last()
First Stage
st model.StageCost[first_stage] = 'FirstStageCosti
st model.Stagevariables[first_stage].add(`cri)
st model.Stagevariables[first_stage].add('ah')
st model.Stagevariables[first_stage].add(qm 1)
Second Stage
st model.StageCost[second stage] = 1 Second5tageCosti

return st model

def pysp_instance_creation_callback(scenario_name, node_names):
experiment = int(scenario_name.replace('Scenario'1"))
explist = [1,2,3] # Different data sets

experiment = explist[experiment-1]
instance = generate_model_paramest(experiment)

return instance

Sandia
National
Laboratories

Centerforampudng Research

BFB Parameter Estimation

• Create and solve extensive form

Sandia
NAmM
Wborataies

runef --solve --solver ipopt --output-solver-log -m bfb_param.py

• Solve using progressive hedging
runph --solver ipopt --output-solver-log -m bfb_param.py --default-rho=.25

• Solve using progressive hedging in parallel
mpirun -np 1 pyomo_ns : -np 1 dispatch_srvr : -np 30 phsolverserver : \

-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_param.py --solver=ipopt --default-rho=0.25

Cr ah h, Solve Time (s)

Actual 1.0 0.8 1500.0

Extensive Form 1.016 0.51 1450.35 604.45

Progressive Hedging (15 processors) 0.9824 0.7850 1501.74 610.98

Progressive Hedging (30 processors) 0.9824 0.7850 1501.74 459.10

CCR
Coa, lmpudrigResearch

Extensive form problem size -400,000 variables and constraints
PH subproblem size -13,000 variables and constraints

Pyomo at a Glance

'PYOMO
Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Solver Interfaces _1

Core Optimization
Objects

Core Modeling
Objects

Model
Transformations

tztoccR

Sandia
National
Laboratories

BARON

CBC

CPLEX

GLPK

Gurobi

NEOS

AMPL Solver Library

— Ipopt

KNITRO

Bonmin

Couenne

—1 DAKOTA

• • •

GAMS Solver Library

DICOPT

—1 ANTIGONE

• • •

17

Pyomo at a Glance

"PYOMO
Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Solver Interfaces _1

Core Optimization
Objects

Core Modeling
Objects

Model
Transformations

tztoccR

Sandia
National
Laboratories

BARON

CBC

CPLEX

GLPK

Gurobi

NEOS

PyNumero

AMPL Solver Library

lpopt

KNITRO

Bonmin

Couenne

—1 DAKOTA

• • •

GAMS Solver Library

DICOPT

—1 ANTIGONE

• • •

18

Purpose of PyNumero

■ High-level Python framework for rapid development of
nonlinear and parallel decomposition algorithms without
large sacrifices in computational performance

■ Dramatically reduce time required to prototype new
algorithms while minimizing the performance penalty

■ Develop a framework for the low-level numerical treatment
of Pyomo models that can be used to:

■ Calculate efficient numerical derivatives

■ Implement algorithms that are natively aware of Pyomo model
structure

•~CCR

Sandia
National
Laboratories

[Rodriguez, AIChE 2018]

PyNumero

• Python C/C++ extension for nonlinear programming

• Provides first and second derivatives via ASL

• Interfaces with Numpy/Scipy for all array-operations

• Supports python calls to HSL linear solver (MA27)

• Computationally expensive operations performed in C/C++

• Distributed with Pyomo and conda-forge

frok pyomo.contrib.pynumero.interfaces PyomoNLP
import pyomo.environ aml

m = aml.ConcreteModel()
m.x = aml.Var([i, 2, 3], bounds=(0.0,))
m.phys = aml.Constraint(expr=m.x[3]** + m.x[1] == 25)
m.rsrc = aml.Constraint(expr=m.x[2]** + m.x[1] <= 18.e)
m.obj = aml.Objective(expr=m.x[1]**4-m.x[]*m.x[2]**3)

my_algorithm(model):
nlp = PyomoNLP(model)
x = nlp.create_vector_x()
c = nlp.evaluate_c(x)
Jc = nlp.jacobian_c(x)

CCCR

Sandia
National
Laboratories

*-PYOMO
ASL

r_
••,' ?yNumero NumPy

CwWWCompWrigliesmmh

PyNumero Performance

• Equality Constrained Problem with 100K variables

tf
ftominimize 0(yA,1 Yref)2 0(tt — Uref)2dt

subject to
dx A,o

c alon V (Y11,1
XA,O)

dt A
dx A,i 1

— XA,i) — V(yA,i — YA,i+1)1dt Atray

dXA,FT =
 A 1

Adt
[FXA feed + L2XA,FT V(YA,FT —

tray

c/xii,i 1

dt Atray

dxA,NT-F1 _ 1 r
 LL2XA,NT (F — D)XA,NT+1 — VYA,NT+1]

dt Areboiler

X A,i — XOA,i

[L2(YA,i-1 — X V (Y A,i YA,i+1)1

V = + D

L2 = L1 + F

L1
u = D

XA)
CtA,B XA(1 yA)

V i E {1, ..., FT — 1}

YA,FT+1)]

V i E {FT + 1, ..., NT}

V i E {0, ..., NT + 1}

:CCR
:ter forampudng Research

Sandia
National
Laboratories

Basic SQP
-10% slower
than IPOPT

21

Alternating Direction Method of Multipliers

Algorithm 2: Alternating Direction Method of Multipliers

Given barrier parameter p > 0, tolerances Er > 0, Es > 0, and estimates y°, z°

2 for k = 0,1,2,... do

3 update partition variables:

4

5

6

7

8

9

10

11

12

13

14

15

foreach i c P do
k+1 L\T

Xi = arg min fi (xi) + (Aix, + Biz.) yk + + Bizk 112
xiEXi

update coupling variables:

zic+1 = arg min fp(xk+1, z, yk)

compute primal residual:

rk+1 = Axk+l Bzk+1

compute dual residual:

sk+1 = pAT B . (zk+1 zk)

update dual variables:

y k +1 = yk p rk+1

if Mrk+111 < Er and Ilsk+l ll < Es then

stop

CCCR

Sandia
National
Laboratories

from pyomo.contrib.pynumero.interfaces.nlp_transformations
import AdmmNLP
#
for k in range(max_iter):

Step 3. Update partition variables
for bid, nlp in enumerate(nlps):

xs[bid] = basic_sqp(nlp, tee=False)

Step 6. Compute coupling variables
z = [None] * len(nlps)

bid nlp in enumerate(nlps):
zi[bid] = xs[bid][nlp.zid_to_xid]

z = np.mean(z, axis=0)

Step 8/10. Compute residuals
r = [None] * len(nlps)
• bid, nlp in enumerate(nlps):
ri[bid] = xs[bid][nlp.zid_to_xid] - z

s = z - old_z_estimates

Update estimates
for bid, nlp in enumerate(nlps):

nlp.z_estimates = z
nlp.w_estimates = nlp.w_estimates + nlp.rho * r[bid]
nlp.init_x = xs[bid]
nlp.init_y = ys[bid]

old_z_estimates = z

Step 14. Compute infeasibility norms
r_norm = np.linalg.norm(np.concatenate(r))
s_norm = np.linalg.norm(s)

r_norm < rtol
break

s_norm < stol:

ce.wwawww.rd, [J. S. Rodriguez, B. Nicholson, C. D. Laird, V. M. Zavala, "Benchmarking ADMM in nonconvex NLPs", Computers & Chemical Engineering, 2018.]

Summary

■ Explicitly capturing high-level structure leads to significantly
easier, faster, and more flexible implementations

■ Pyomo provides high-level modeling constructs for capturing
exploitable structure (www.pyomo.org)

■ PyNumero is a promising tool for prototyping general
implementations of decomposition algorithms

On-going work:

■ Implementations of several internal decomposition methods
using PyNumero (Schur-complement, cyclic reduction, etc.)

■ Interface to the Rapid Optimization Library (ROL) to access
several parallel-in-time algorithms under development

CCR

Sandia
National
Laboratories

