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I2 HPDA Tensor Project 0

Develop production quality library software to perform CP
factorization for Poisson Regression Problems for HPC
platforms

Tensor Tool Box (http://www.tensortoolbox.org)
Matlab only!

Support several HPC platforms
Node parallelism (Multicore, Manycore and GPUs)

Major Questions
°Software Design
0 Performance Tuning

This talk
We are interested in two major variants
Multiplicative Updates
Projected Damped Newton for Row-subproblems



3 CP Tensor Decomposition

CANDECOMP/PARAFAC (CP) Model

Express the important feature of data using a small number of vector outer products
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Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)



I4 Poisson for Sparse Count Data

Gaussian (typical)

The random variable x is a
continuous real-valued number.
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I5 Poisson for Sparse Count Data

Gaussian (typical)

The random variable x is a
continuous real-valued number.
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6 Sparse Poisson Tensor Factorization

^J Poisson
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Model: Poisson distribution (nonnegative factorization)

Xijk "-) Poisson(miik) where Tnijk = : Ar air bjr Ckr
r

, -1

aR

• Nonconvex problem!

• Assume R is given

• Minimization problem with constraint

• The decomposed vectors must be non-negative

• Alternating Poisson Regression (Chi and Kolda, 2011)

• Assume (d-1) factor matrices are known and solve for the remaining one

o

}



7 Alternating Poisson Regression (CP-APR)

Repeat until converged...

1 . arg min mijk — xijk log rnijk
A>0

ijk

2. eTA; A A • diag(10t)

3. n arg min mijk — xijk log rnijk
B>0 .

4. eTB, B B • diag(10)

s.t. M =

s.t. M =

5. arg min -k — xijk log Mijk s.t. M =
c>o .

6. eTC; C C • diag(10)

_
o b, 0 Cr

ob, o cr

ar o br o Cr
Fix A,B;

Convergence
Theory

Theorem: The CP-APR algorithm will converge to a constrained stationary point
if the subproblems are strictly convex and solved exactly at each iteration. (Chi
and Kolda, 2011)



8 Accuracy is High For Very Sparse Data

Data: 1000 x 800 x 600 Tensor with R=10 Components
CP-APR: Max Iterations = 200, Max Inner Iterations = 30 (10 per mode), Tol = le-4

(KKT)
CP-ALS: Max Iterations = 200, Tol = le-8 (change in fit)

Nonzeros Poisson
Regression FMS

Gaussian Regression
FMS

480,000 (.100%) 0.99 0.57

240,000 (.050%) 0.81 0.49

48,000 (.010%) 0.77 0.47

24,000 (.005%) 0.74 0.46

T. G. KOLDA - UMN DTC SET INNOVATOR SERIES

o

1



9 I CP-APR

Algorithm 1: CPAPR, Alternating Block Framework

i CPAPR (X, M);
Input : Sparse N-mode Tensor X of size /1 x 12 x . . . I N and the

number of components R
Output: Kruskal Tensor M = Pt; A(1)... A(N)]

2 Initialize
3 repeat
4 for 71 = 1 1 . . . 1 N do
5 

Let 11(n) _ (A(N) 0 . . . 0 A(n+1) A(n-1) 0 ... A(1))7'

6 Compute A(n) that minimize f (24(n)) s.t. A(n) > o

7 A(n) A(n)

8 end
9 until all mode subproblems converged;

Minimization problem is expressed as:

minzi(n) >0 f (161(n)) = eT [A(n)I1(n) — X(n) * log(A(n)II(n))]e

o



10  CP-APR 0 is called Khatori-Rao product

 II 
(Column wise Kronecker product)

D = [D1ID2ID3]

C = [C11C21C31

Algorithm 1: CPAPF COD = [C10 D1 I C20 D21C3® D3]

i CPAPR (X, M ) ; = MI- -MI- --i 

Input : Sparse N-mode Tensor X of size /1 x 12 x . . . I N and the
number of components R

Output: Kruskal Tensor M = Pt; A(1) ... A(N)]
2 Initialize
3 repeat
4 for 71 = 1 1 . . . 1 N do
5 

Let 11(n) _ (A(N) 0 . . . 0 A(n+1) A(n-1) 0 ... A(1))7'

6 Compute A(n) that minimize f (24(n)) s.t. A(n) > 0

7 A(n) A(n)

8 end
9 until all mode subproblems converged;

Minimization problem is expressed as:

minzi(n) >0 f (161(n)) = eT [A(n)I1(n) — X(n) * log(A(n)II(n))]e

o



11  CP-APR

11!

0 is called Khatori-Rao product

 II 
(Column wise Kronecker product)

D = [D1ID2ID3]

C = [C11C21C31

Algorithm 1: CPAPk COD = [C1® D1 l C20 D21C30 D3]
ii CPAPR (X, M);

Input : Sparse N-
number of ii,

Output: Kruskal Tensor M = À; A(1)... A(N)]
2 Initialize
3 repeat
4 for 71 = 1 1 . . . 1 N do
5 

Let 11(n) _ (A(N) 0 ... c) A(n+1) O A(n-1) cp ... A(1))7'

6 Compute A(n) that minimize f (24(n) ) s.t. A(n) > 0

7 A(n) A(n)

8 end
9 until all mode subproblems converged;

o

II is ex ressed in sparse matrix (indices and values).1

Minimization problem is expressed as:

minzi(n) >0 f (161(n)) = eT [A(n)I1(n) — X(n) * log(A(n)I1(n))]e



1 2 CP-APR

 L
Algorithm 1: CPAPF,

i CPAPR (X, M);
Input : Sparse N-n

number of

0 is called Khatori-Rao product
(Column wise Kronecker product)

C = [C11C21C31
D = [D1ID2ID3]

COD = [C10 C20 D21C30 D3]

0

II is expressed in sparse matrix (indices and values).1
lUil b 11,

Outp
2 Initia
3 repe
4 fo
5

6

7
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9 until

Minimiz

2 major approaches
• Multiplicative Updates like Lee Et Seung (2000) for

matrices but extended b
Kolda. On Tensors, Sp ity, and Nonnegative
Factorizations, SIAM Journal on Matrix Analysis and
Applications 33(4):1272- 299, Decemb- 2012.

subpblems by
ro ea

Hans- T. Plan nga and T. G.
ewton-Based Optimization for Kullback-

Leibler Nonnegative Tensor Factorizations, to
appear in Optimization Methods and Software, 2015.



1 3 Key Elements of MU and PDNR methods

Multiplicative Update (MU)

Key computations
O Khatri-Rao Product ll(n)

o Multiplicative Update Modifier
(10+ iterations)

Key features
O Factor matrix is updated all at
once

O Exploits the convexity of row
subproblems for global
convergence

Projected Damped Newton for Row-
subproblems (PDNR)

Key computations
Khatri-Rao Product Hero

Constrained Non-linear
Newton-based optimization
for each row

Key features
O Factor matrix can be updated by

rows
O Exploits the convexity of row-

subproblems

o

1
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14  CP-APR-MU

Algorithm 1: CP-APR-MU, Multiplicative Update

i CP-APR-MU (X, M);
Input : Sparse N-mode Tensor X of size /1 x /2 x /N and the

number of components R
Output: Kruskal Tensor M = [A; A(N)]
Initialize
repeat

for n = 1, , N do
B (A(n) S)A (S is used to remove inadmissible zeros)

et = (Am A(n+1) (n-1)

for = 1, . . . , 10 do
431(n)jkit12(04,041ilax(B11(n), E)) (11(n)

9 B B * (1)(n)

io end

11 a = eT B

12 A(n) BA-1, where A = diag(A)

13 end

14 until all rnode subproblems converged;

T

Key Computations



1 5  CP-APR-PDNR

Algorithm 1: CPAPR-PDNR algorithm

CPAPR_PDNR (X, M);
Input : Sparse N-mode Tensor X of size /1 x /2 x /N and the

number of components R
Output: Kruskal Tensor M = [A, A(1) ... A(N)]

2 Initialize
3

4

5

6

7

8

9

10

11

repeat
for n = 1

Let
for i =

AT do• • • • - •
II(n) = (A(N) 0 • • • A(n+l) —1) . . . A(1))71

, In do

Find bin s.t. min frow(bi(n), xi(n), II(n))

(n) >0

end

— eTB(n) where B(n) = [b(171) . . . b(inn)F

A(n) B(n)A-1, where A = diag(A)

end

12 until all rnode subproblems converged;

Key Computations



1 6  Parallelizing CP-APR

Focus on on-node parallelism for multiple architectures
Multiple choices for programming
• OpenMP, OpenACC, CUDA, Pthread

O Manage different low-level hardware features (cache, device memory, NUMA...)

Our Solution: Use Kokkos for productivity and performance portability
Abstraction of parallel loops

O Abstraction Data layout (row-major, column major, programmable memory)

O Same code to support multiple architectures

Kokkos

Parallel Execution Runtime (Pthread, OpenMP, CUDA etc.)

Intel Intel
Man core

intef

Intel' Xeon• Processor

NVIDIA GPU AMD Multicore/APU ARM

THUNDEIPC

CAVM" 1



17 What is Kokkos?

Templated C++ Library by Sandia National Labs (Edwards, et al)
Serve as substrate layer of sparse matrix and vector kernels

Support any machine precisions
Float, Double, etc

Kokkos: :View() accommodates performa nce-awa re
multidimensional array data objects
Light-weight C++ class to accommodate abstractions for platform specific
features (host, device, GPU's shared memory, data access pattern, etc.)

Parallelizing loops using C++ language standard
Lambda

Functors

Extensive support of atomics

o

1



18  Parallel Programing with Kokkos

ce)
o

o

for (size_t i = 0; i < N; ++i)

{
/* loop body */

}

#pragma omp parallel for

for (size t i = 0; i < N; ++i)

{

/* loop body */

}

parallel for (( N, [=], (const size t i)

{
/* loop body */

1);

Kokkos information courtesy of Carter Edwards

Provide parallel loop operations using C++ language features

Conceptually, the usage is no more difficult than OpenMP. The annotations just go in
different places.

Support for task parallel computing is ongoing (Task Parallel Kokkos and UINTHA)



19  Parallel CP-APR-MU

Algorithm 1: CP-APR-MU in source

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CP-APR-MU X, M, R;
Input : Sparse N-mode Tensor X of size /1 x 12 x IN and the

number of components R
Output: Kruskal Tensor M = Pk; A(1) ... A(N)]
initializeBuffer(X,R)
E computeIndexMap(X)
repeat

for ri -= ,, N do
M offset(ff,n) (Remove inadmissible zeros)
M distribute(M, n) (Scale the elements of An by À)

11(n) computePi(M, EN)
for i _ 1, , 10 do

11 ,(in) computePhi (A , ri) II(n) 7 EN)

ACn) A(n) 4:13(n), 2+1 i i

end
M normalize(M, A, n),

end

until all rnode subproblems converged;

Data Parallel



20  Parallel CP-APR-PDNR

Algorithm 1: CP-APR-PDNR in source

i CP-APR-PDNR X,M,R;
Input : Sparse N-mode Tensor X of size /1 x 12

number of components R
Output: Kruskal Tensor M = Pk; A(1) .. A(N)]

2 initializeBuffer(X, R)
3 E computeIndexMap(X)
4 repeat
5 for n = 1 AT dn

6

7

8

9

10

11

12

x ... IN and the

M distribute(M, n) (Scale the elements of An by A )

ll(n) computePi(A, E(n))
parallellor i = 1, ... , In do

arii rowSolvePDNR(ari', Xn, Iln, E n))

enda, normalix(M, A, n)
end

13 until all rnode subproblems converged;

Data Parallel II

Task Parallel

aii



21  Notes on Data Structure and implementation

Use Kokkos::View for all data strcutures

Sparse Tensor
Similar to the Coordinate (COO) Format in Sparse Matrix representation

Atomics
Expensive for CPUs and Manycore
Data Rows of Factor Matrices

Efficient for the latest GPUs

CP-APR-PDN R
Nested Parallelism
. Top Level: Individual Newton Solve

. Second Level: Vectorized operations

INDICES
(_indices)

Mode-1

Mode-2

Mode-3

Nonzero
Entries (_data)

o

77771111
IIEEMEDIMIll

I



22  Notes on Implementation of CP-APR-MU

Modifier Computation is the major part of CP-APR-MU. •

Two ways to parallelize, which affects the way
to access the output factor matrices

Partition with respect to the mode

No atomics to access the output vectors by
partition

Extra indexing is required to access nonzero
entries by partition (reordering)

Partition COO sparse tensor storage format

• No extra indexing is required

O Need efficient hardware supported atomics

The output vector elements are updated by
multiple threads concurrently

Large outermost loop irrespective of the mode
sizes

Recent work by Smith and Karypis, and Li and Vuduc
suggest more efficient data format than COO

Mode-1

Mode-2
INDICES
(_indices)

Mode-3OLE

'FE

-TT-
Nonzero 

111111 Entries (_data,

ETA
0.4 0.5 0.1 0.4 0.6 0.1



23  Performance Test

Strong Scalability

Problem size is fixed

Random Tensor

3K x 4K x 5K, 10M nonzero entries

100 outer iterations

Realistic Problems

Count Data (Non-negative)

Available at http://frostt.io/ 

10 outer iterations

Data Dimensions Nonzeros Rank (*)

LBNL 2Kx 4Kx 2Kx 4Kx 866K 1.7M 10

NELL-2 12K x 9K x 29K 77M 10

NELL-1 3M x 2M x 25M 144M 10

Delicious 500K x 17M x 3M x 1K 140M 10

(*) if not indicated.



24 Scalability of CPAPR-MU on CPU (Random)

2000

1800

1600

1400

1200

1000

800

600

400

200

0

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core) CPUs

per node, HyperThreading disabled

1

-

0

illillom a_
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

• Pi • Phi+ Update



CP-APR-MU: Performance on GPUs (10 inner, 10 outer
iterations, 10 components)

Data
Haswell CPU

1-cor

2 Haswell
CPUs

14-cores

2 Haswell
CPUs
8-cor

Random

Time(s) Speedup Time(s) Speedup Time(s) Speedup

185 1 22 8.4 13 14.11

LBNL

NELL-2

39 1 19 2.05 13 3.0

1157 1 137 8.44 87 13.29

NELL-1

Delicious

3365 1 397 16.62 258

4170 1 2183 1.91 1872

20.9

2.23

Intel KNL
(Cache
Mode)

68-core
CPU

Time(s) Speedup

8.4 22.01

33 1.18

100 11.02

257 10.86

3463 1.41

NVIDIA
P100 GPU

o

NVIDIA
V100 GPU

Time(s) Speedup Time(0 Speedup

4.47 41.31 3.01 61.53

2.99 13.04 2.09 18.66

47.17 24.52 28.80 40.17

OOM OOM

OOM OOM

1



26 1 Performance Comparison: Atomic vs Non-Atomic

700

600

500

400

300

200

Performance of CP-APR-MU on
Haswell CPUs

3Kx4Kx5K Random Sparse Tensor

11 1
R=10 R=16

i

700

600

500

400

300

200

100

Performance of CP-APR-MU on
V100

3Kx4Kx5K Random Sparse Tensor

1
R=10 R=16 R=32

• No Atomic • Ato mic • No Atomic Ato mic

Intel CPUs: Software-based atomic operations

NVIDIA GPUs: Hardware-based atomic operations



27 Performance of CPU-APR-MU with respect to different rank size

4000

3500

3000

2500

2000

1500

1000

500

0

CP-APR-MU (Random tensor 3Kx4Kx5K, 100 outer iterations)

0 1.6 64 8o 96 t12

Volta —0— Pascal Haswell

128 .t44 160 .t76 1.92



Performance of CP-APR-MU (LBNL-Network) with respect to different
28  rank sizes

300

250

200

100

50

0
0.00

CP-APR-MU (LBNL-NETWORK, 10 outer iterations)

32.00 64.00 96.00 128.00

Number of Ranks

160.00

—a—Volta —0—Pascal —Haswell

192.00 224.00 256.00

o

I

1

1



29  CPAPR-PDNR on CPU(Random)

2500

2000

1500

1000

500

0

CpAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,
2 Haswell (14 core) CPUs per node, HyperThreading disabled

1

M - i 1 1 l l l 1 1 1 N •
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

• Pi • RowSub



30 Results: CPAPR-PDNR Scalability

Data
Haswell CPU

1 core

Time(s)

Random 238

LBNL 1049

NELL-2 2154

NELL-1 17212

Delicious 28053

2 Haswell CPUs
14 cores

2 Haswell CPUs
28 cores

Speedup Time(s) Speedup Time(s)

1 23.7 10.03 14.6

1 187 2.35 191

1 326 6.63 319

1 4241 4.05 3974

1 3684 5.15 3138

Speedup

16.28

2.30

6.77

4.33

6.05

o

KNL
(Cache Mode)
68-core CPU

Time(s)

17.8

761

655

Speedup

13.36

1.381

3.29

i

1



31  Performance Issues 0

Our implementation exhibits very good scalability with
the random tensor.
°Similar mode sizes

Regular distribution of nonzero entries
Some cache effects

Kokkos is NUMA-aware for contiguous memory access (first-touch)

Some scalability issues with the realistic tensor
problems.
Irregular nonzero distribution and disparity in mode sizes

PDNR needs some improvement to handle row subproblems

Preprocessing could improve the locality
Explicit Data partitioning (Smith and Karypis)

1



32 Conclusion

Development of Portable on-node Parallel CP-APR
Solvers
Data parallelism for MU method
Mixed Data/Task parallelism for PDNR method

0 Multiple Architecture Support using Kokkos

0 Performance on CPU, Manycore and GPUs

Scalable Performance for random sparse tensor

Future Work
Projected Quasi-Newton for Row-subproblems (PQNR)

GPU and Manycore support for PDNR and PQNR

Performance tuning to handle irregular nonzero distributions
and disparity in mode sizes



Difference between P100 and V100
33  (300W)

GPU PERFORMANCE COMPARISON

DL Training 10 TFLOPS 120 TFLOPS

DL lnferencing 21 TFLOPS 120 TFLOPS

12x

6x

FP64/FP32 5/10 TFLOPS 7.5/15 TFLOPS 1.5x

HBM2 Bandwidth 720 GB/s 900 GB/s

STREAM Triad Perf 557 GB/s

1.2x

855 GB/s 1.5x

NVLink Bandwidth 160 GB/s 300 GB/s

L2 Cache 4 MB 6 MB

L1 Caches 1.3 MB 10 MB

Courtesy: NVIDIA

1.9x

1.5x

7.7x

o

1


