This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-XXXXX SAND2019- 2243C

Performance portable parallel sparse
CP-APR tensor decompositions

SIAM CSE19, 03/01/2019 e o

PRESENTED BY

Keita Teranishi

Sandia National Laboratorit multimission

" " labor: trymangd dp tdbyNtlcnal
Christopher Forster (NVIDIA), Richard Barrett, Teemolony K Enciesiing atirs of o,
Daniel Dunlavy, and Tamara Kolda e el el

uclea
Adminis ontra t DE NA0003525

2

HPDA Tensor Project

Develop production quality library software to perform CP
factorization for Poisson Regression Problems tfor HPC
platforms

Tensor Tool Box (http://www.tensortoolbox.org)
> Matlab only!

Support several HPC platforms
> Node parallelism (Multicore, Manycore and GPUs)

Major Questions
> Software Design
° Performance Tuning

This talk

°cWe are interested in two major variants

> Multiplicative Updates
° Projected Damped Newton for Row-subproblems

31 CP Tensor Decomposition

CANDECOMP/PARAFAC (CP) Model
Express the important feature of data using a small number of vector outer products

Ci1 Co
/)\1_/ b)\2_/ by

- oot

Q

\ la, ﬂaQ s, Y,

Model: M = Z A\ a,ob,oc,

Tisle B Mg = E Ap Qg Oy Chor

T

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

Poisson for Sparse Count Data

Gaussian (typical) Poisson
The random variable x is a The random variable x is a
continuous real-valued number. discrete nonnegative integer.
z ~ N(m,o?) x ~ Poisson(m)
(x—m)? -
exp(— 5 exp(—m)m
P(X = 2) = TP 207) P(X = o) = P
V2mo? !
A — m=0,02=0.2 %% 7 m
% 7 - m=0,0"=1 030 —
m=0,02=5
06 - - m=-20°=05 g 5

02 -

0.0 — —

5

Poisson for Sparse Count Data

P(X =x) =

Gaussian (typical)

The random variable x is a

continuous real-valued number.

0.8

0.6

0.2

0.0

x ~ N(m,o?)

r—m)?
eXp(_(202))

vV 2mo?

A = m=00°=02
- m=0,0°=1

m=0,02=5
- m=-20°=05

/ Poisson \

The random variable x is a
discrete nonnegative integer.

x ~ Poisson(m)

exp(—m)m

P(X =1z) =

x!

I

M

6 | Sparse Poisson Tensor Factorization

C1 Co CRr
VARV AR AR

~ Poisson = + -4

\ 4 aq =4 a9 “AR /

Model: Poisson distribution (nonnegative factorization)

mijk; ~ POiSSOH(mZ‘jk) where mijk — E)\'r‘ Qir bjfr Chr
r

= Nonconvex problem!

= Assume R is given 1
= Minimization problem with constraint I

= The decomposed vectors must be non-negative

= Alternating Poisson Regression (Chi and Kolda, 2011)

= Assume (d-1) factor matrices are known and solve for the remaining one

Alternating Poisson Regression (CP-APR)

Repeat until converged...

I A(—argmmmek T, i losiy, st Nli= Zarob ocC,

2,

4.

6.

AelA; A« A -diag(1/N)

B%argmmz:mwk T L0 iy sl Y= Zarob ©C,

A« e'B; B «+ B-diag(1/\)

C%argmmmek 1 D IR | — Zarob 6 Cr

A« e'C; C « C-diag(1/X)

A>0

i1k

B>0

17k

C>0

11k

Convergence
Theory

Theorem: The CP-APR algorithm will converge to a constrained stationary point
if the subproblems are strictly convex and solved exactly at each iteration. (Chi

and Kolda, 2011)

s‘ Accuracy is High For Very Sparse Data

Data: 1000 x 800 x 600 Tensor with R=10 Components
CP-APR: Max Iterations = 200, Max Inner Iterations = 30 (10 per mode), Tol = 1e-4
(KKT)
CP-ALS: Max lterations = 200, Tol = 1e-8 (change in fit)

Nonzeros Poisson Gaussian Regression
Regression FMS FMS

480,000 (.100%) 0.99 0.57

240,000 (.050%) 0.81 0.49

48,000 (.010%) 0.77 0.47

24,000 (.005%) 0.74 0.46

T. G. KOLDA - UMN DTC S&T INNOVATOR SERIES

9 I CP-APR

Algorithm 1: CPAPR, Alternating Block Framework

1 CPAPR (X, M);
Input : Sparse N-mode Tensor X of size I; X Iy X ... Iy and the

number of components R
Output: Kruskal Tensor M = [); A A(N)]

2 Initialize

3 repeat

4 forn=1,...,N do

5 Let TI(n) — (A(N) ® AP o Al-1) & A(U)T
6 Compute A™) that minimize f(A™) s.t. A >0

- A) . A(n)

8 end

9 until all mode subproblems converged;

Minimization problem is expressed as:

min gy 5o f(A™) = eI [AMIIM — X,y * log(AMWTI™)]e

10 I CP-APR

Algorithm 1: CPAP

1 CPAPR (X, M);
Input : Sparse N-mode Tensor X of size I; X Iy X ... Iy and the

number of components R
Output: Kruskal Tensor M = [A; A1) ... AN)]

2 Initialize

3 repeat

4 forn=1,...,N do |
5 Let TI(™) = (A(N) O - OAMTD o A1) o A(U)T

6 Compute A™) that minimize f(A™) s.t. A >0

7 A A(n)

8 end

9 until all mode subproblems converged;

Minimization problem is expressed as:

min gy 5o f(A™) = eI [AMIIM — X,y * log(AMWTI™)]e

11 I CP-APR

Algorithm 1: CPAP
1 CPAPR (X, M);

number of

Output: Kruskal Tensor M = [\; A ... AN)]

2 Initialize

3 repeat

4 forn=1,...,N do |
5 Let TI(™) = (A(N) O - OAMTD o A1) o A(U)T

6 Compute A™) that minimize f(A™) s.t. A >0

7 A A(n)

8 end

9 until all mode subproblems converged;

Minimization problem is expressed as:

min gy 5o f(A™) = eI [AMIIM — X,y * log(AMWTI™)]e

Algorithm 1: CPAP
1 CPAPR (X, M);

Input : Sparse N-
number of

E. C. Chiand T. G.
Kolda. On Tensors, Sparsity, and Nonnegative
Factorizations, SIAM Journal on Matrix Analysis and
Applications 33(4):1272-1299, December 2012.

S. Hansen, T. Plantenga and T. G.
Kolda. Newton-Based Optimization for Kullback-
Leibler Nonnegative Tensor Factorizations, to
appear in Optimization Methods and Software, 2015.

13

Multiplicative Update (MU)

KeY1 computations
o Khatri-Rao Product 7(n)

o Multiplicative Update Modifier
(10+ iterations)

Key features

o Factor matrix is updated all at
once

o Exploits the convexity of row
subproblems for global
convergence

Key Elements of MU and PDNR methods

Projected Damped Newton for Row-
subproblems (PDNR)

Key computations
o Khatri-Rao Product H("’)

> Constrained Non-linear
Newton-based optimization
for each row

Key features

o Factor matrix can be updated by
rows

o Exploits the convexity of row-
subproblems

CP-APR-MU

Algorithm 1: CP-APR-MU, Multiplicative Update |

1 CP-APR-MU (X, M);
Input : Sparse N-mode Tensor X of size I1 X Iy X ...Ix and the

number of components R
Output: Kruskal Tensor M = [A\; A1) .. AN)]

2 Initialize

3 repeat

4 forn=1,...,N do

5 B+ (A™ + 8)A (S is used to remove inadmissible zeros)
6

7

8

9

10

11

12 A « BA~1 where A = diag()\)

13 end Key Computations
14 until all mode subproblems converged;

15 I CP-APR-PDNR

Algorithm 1: CPAPR-PDNR algorithm

1 CPAPR_PDNR (X, M);
Input : Sparse N-mode Tensor X of size I; X Iy X ...In and the

number of components R
Output: Kruskal Tensor M = [\; AN . AN)]

2 Initialize

3 repeat

4 for n =

6 for:=1,...,1, do I
g

8 end

9 A= eTB™ where BM) = [0 ... b} g
10 A« BMWATL where A = diag(\) —

11 end

12 until all mode subproblems converged;

16 I Parallelizing CP-APR

Focus on on-node parallelism for multiple architectures

> Multiple choices for programming
> OpenMP, OpenACC, CUDA, Pthread ...
> Manage different low-level hardware features (cache, device memory, NUMA...)

> Qur Solution: Use Kokkos for productivity and performance portability
> Abstraction of parallel loops
> Abstraction Data layout (row-major, column major, programmable memory)
° Same code to support multiple architectures

NVIDIA GPU AMD Mult1core/APU IBM Power ARM

Z cavium

THUNDER)!

TEHE HEEEEAA42 0 S0 I

17

What is Kokkos?

Templated C++ Library by Sandia National Labs (Edwards, et al)
> Serve as substrate layer of sparse matrix and vector kernels

> Support any machine precisions
° Float, Double, etc

Kokkos::View() accommodates performance-aware
multidimensional array data objects

o Light-weight C++ class to accommodate abstractions for platform specific
features (host, device, GPU’s shared memory, data access pattern, etc.)

Parallelizing loops using C++ language standard
° Lambda

> Functors

Extensive support of atomics

18 | Parallel Programing with Kokkos

for (size t i = 0; i < N; ++1i)
— {
.g /* loop body */
x }
wn
#pragma omp parallel for
for (size t i = 0; i < N; ++i)
o {
E /* loop body */
y }
a
@)
parallel for ((N, [=], (const size t 1)
{
3 /* loop body */
= 0
" })r
o
x

Kokkos information courtesy of Carter Edwards

Provide parallel loop operations using C++ language features

Conceptually, the usage is no more difficult than OpenMP. The annotations just go in
different places.

Support for task parallel computing is ongoing (Task Parallel Kokkos and UINTHA)

19 I Parallel CP-APR-MU

Algorithm 1: CP-APR-MU in source

1 CP-APR-MU X, M, R;
Input : Sparse N-mode Tensor X of size I; X Is X ...In and the
number of components R
Output: Kruskal Tensor M = [\; A ... ANV)]
initializeBuffer(X, R)
& < computelndexMap(X)

repeat
forn=1.....N do

2
3
4
5 i
6
7
8
9 for 7 =
10
12 en
d

14 €en

15 until all mode subproblems converged;

20

Parallel CP-APR-PDNR

Algorithm 1: CP-APR-PDNR in source

1 CP-APR-PDNR X, M, R;

Input : Sparse N-mode Tensor X of size I; X I X ... Iy and the

number of components R

Output: Kruskal Tensor M = [\; A1), .. AN)]
2 initializeBuffer(X, R)
3 & + computelndexMap(X)
4 repeat
5 for p =
6
7
8
9

10
11

12 end
13 until all mode subproblems converged;

21

Notes on Data Structure and implementation

Use Kokkos::View for all data strcutures

Sparse Tensor

° Similar to the Coordinate (COO) Format in Sparse Matrix representation

Atomics

> Expensive for CPUs and Manycore

o Data Rows of Factor Matrices
o Efficient for the latest GPUs

CP-APR-PDNR

> Nested Parallelism
> Top Level: Individual Newton Solve
> Second Level: Vectorized operations

Mode-2

INDICES
(_indices)

Mode-3

I
e SN I]!

22 I Notes on Implementation of CP-APR-MU

Modifier Computation is the major part of CP-APR-MU.

> Two ways to parallelize, which affects the way
to access the output factor matrices

1. Partition with respect to the mode

> No atomics to access the output vectors by
partition

> Extra indexing is required to access nonzero
entries by partition (reordering)

2. Partition COO sparse tensor storage format
> No extra indexing is required

> Need efficient hardware supported atomics Mode_1m:
> The output vector elements are updated by
multiple threads concurrently Mode_zm
> Large outermost loop irrespective of the mode { ndices)
o Recent work by Smith and Karypis, and Li and Vuduc Nonzero m:
Entries (_data

suggest more efficient data format than COO

23 I Performance Test

Strong Scalability
> Problem size is fixed

Random Tensor
° 3K x 4K x 5K, 10M nonzero entries
© 100 outer iterations

Realistic Problems

° Count Data (Non-negative)
> Available at http://frostt.io/
> 10 outer iterations

O S M G

LBNL 2K x 4K x 2K x 4K x 866K 1.7M
NELL-2 12K x 9K x 29K 77TM
NELL-1 3M x 2M x 25M 144M
Delicious 500K x 17M x 3M x 1K 140M

(*) if not indicated.

TEHE HEEEEAA42 0 S0 I

2| Scalability of CPAPR-MU on CPU (Random)

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core) CPUs
per node, HyperThreading disabled

2000

1800

1600
1400
1200
1000

800

600
400
: 111
0 BEEEREERER
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

mPi mPhi+ Update

o

CP-APR-MU: Performance on GPUs (10 inner, |10 outer
iterations, |0 components)

Intel KNL
(Cache

2 Haswell 2 Haswell Mode)
Haswell CPU CPUs CPUs 68-core NVIDIA NVIDIA
1-core 14-cores 28-cores CPU P100 GPU | V100 GPU

Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 185 1 22 8.4 13 14.11 8.4 22.01 4.47 41.31 3.01 61.53

LBNL 39 1 19 2.05 13 3.0 33 1.18 2.99 13.04 2.09 18.66

NELL-2 1157 1 137 8.44 87 13.29 100 11.02 47.17 24.52 28.80 40.17

NELL- 3365 1 397 16.62 258 20.9 257 10.86 OOM OOM

Delicios 4170 1 2183 1.91 1872 2.23 3463 1.41 OOM OOM

26

Performance Comparison: Atomic vs Non-Atomic

700

600

500

400

300

200

10

o

o

Intel CPUs: Software-based atomic operations

Performance of CP-APR-MU on
Haswell CPUs
3Kx4Kx5K Random Sparse Tensor

R=10 R=16 R=32

m No Atomic m Atomic

700

600

500

400

300

200

100

Performance of CP-APR-MU on

V100

3Kx4Kx5K Random Sparse Tensor

R=10

NVIDIA GPUs: Hardware-based atomic operations

R=16

m No Atomic mAtomic

R=32

27 I Performance of CPU-APR-MU with respect to different rank size

CP-APR-MU (Random tensor 3Kx4Kx5K, 100 outer iterations)
4000

3500

3000

2500
2000
1500

1000

500 /

0 16 32 48 64 80 96 112 128 144 160 176 192

—8—\Volta —#—Pascal —*—Haswell

Performance of CP-APR-MU (LBNL-Network) with respect to different
28 | rank sizes

CP-APR-MU (LBNL-NETWORK, 10 outer iterations)

300 |

250 |

200 |

Seconds
o
[}

100 |

50

0.00 32.00 64.00 96.00 128.00 160.00 192.00 224.00 256.00
Number of Ranks

—e—\olta —e—Pascal —=—Haswell

» | CPAPR-PDNR on CPU(Random)

CpAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,

2 Haswell (14 core) CPUs per node, HyperThreading disabled
2500

2000

1500

1000
500 I
0 ||I||||---..

28

mPi mRowSub

30 I Results: CPAPR-PDNR Scalability

Random

LBNL

NELL-2

NELL-1

Delicious

Haswell CPU
1 core

Time(s) Speedup Time(s)

238 1
1049 1
2154 1
17212 1
28053 1

2 Haswell CPUs

14 cores

23.7

187

326

4241

3684

Speedup Time(s)

10.03

2.35

6.63

4.05

5.15

2 Haswell CPUs

28 cores

14.6

191

319

3974

3138

16.28

2.30

6.77

4.33

6.05

KNL

(Cache Mode)
68-core CPU

Speedup Time(s) Speedup

17.8

761

655

®

®

13.36

1.38

3.29

L B

31

Performance Issues

Our implementation exhibits very good scalability with
the random tensor.
°Similar mode sizes

°Regular distribution of nonzero entries

° Some cache effects
> Kokkos is NUMA-aware for contiguous memory access (first-touch)

Some scalability issues with the realistic tensor
problems.

°|rregular nonzero distribution and disparity in mode sizes
°PDNR needs some improvement to handle row subproblems

°Preprocessing could improve the locality
o Explicit Data partitioning (Smith and Karypis)

32

Conclusion

Development of Portable on-node Parallel CP-APR
Solvers

> Data parallelism for MU method

> Mixed Data/Task parallelism for PDNR method

> Multiple Architecture Support using Kokkos

> Performance on CPU, Manycore and GPUs

Scalable Performance for random sparse tensor

Future Work
> Projected Quasi-Newton for Row-subproblems (PQNR)
°GPU and Manycore support for PDNR and PQNR

> Performance tuning to handle irregular nonzero distributions
and disparity in mode sizes

Difference between P100 and V100

331 (300W)

GPU PERFORMANCE COMPARISON
P100 V100 Ratio

DL Training 10 TFLOPS 120 TFLOPS 12X

DL Inferencing 21 TFLOPS 120 TFLOPS 6Xx

FP64/FP32 5/10 TFLOPS 7.5/15 TFLOPS 1.5x
HBM2 Bandwidth 720 GB/s 900 GB/s 1.2x
STREAM Triad Perf 557 GB/s 855 GB/s 1.9X
NVLink Bandwidth 160 GB/s 300 GB/s 1.9
L2 Cache 4 MB 6 MB 1.5x

L1 Caches 1.3 MB 10 MB 7.7x

Courtesy: NVIDIA

