This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 2242C

Sandia

Exceptional service in the national interest @ National
Laboratories

Scalable, Efficient Fault Tolerance in Asynchronous Many
Task (AMT) Programming Models

SriRaj Paul, Akihiro Hayashi, Seonmyeong Bak, and Vivek Sarker
Georgia Institute of Technology
Keita Teranishi, Hemanth Kolla, Nicole Slattengren, Matthew Whitlock, and Jackson Mayo
Sandia National Laboratories, California, USA

f‘:‘"’«‘ U.S. DEPARTMENT OF V YU ARA T <3

; A o . . e " « ’ " .

EN ERGY TN A ,D"-Vﬂ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
Vo Wational Nuclear Security Administration

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Motivations and Background) .

He

= Substantial progress in resilience and asynchronous many-task (AMT)
programming models, separately.

= AMT offer:

= More flexible and efficient failure mitigation compared to conventional (e.g.
checkpoint) strategies.

= Ability to quantify the effects of failures and benefits of various resilience strategies.

= Complex tradeoffs of multiple AMT resilience techniques with dynamic
failure behavior need to be understood/documented.

= Need ability to extrapolate tradeoffs to extreme(exa)-scale.

|

Sandia

Objectives)=,

= An analysis of the scalability, performance and costs for
multiple AMT resilience options.

= Prototype implementation of resilience schemes in actual
asynchronous many-task programming model:
= task replication.
= task replay.
= algorithm-based fault tolerance.
= task-level checkpointing.

= An analysis of accuracy-cost tradeoffs of application-specific
failure detection and mitigation schemes.

= Use representative mini-apps as basis for study.

Current Scope: On-Node AMT) .

= MPI+(on-node) AMT an anticipated programming model for
future complex node architecture.

= First comprehensive study with on-node AMT. Extend
concepts to distributed AMT in future.

= Analyzing Failure/Error mitigation by On Node AMT is
essential:

= Hard failure of cores and accelerators, silent errors, performance
degradation.

= Failure can be manifested as task failure: non-finishing tasks, data
corruption or very slow execution.

= We still need better understanding of failure-free AMT as a
baseline, production-ready distributed AMT is scant.

4

Abstract Model of AMT Program (i

Graph representing 1D stencil Computation Graph representing dense Cholesky Factorization

ojofolalatototololololofofofal olo

A

T e W W T
o ST S SIS S S
OSOSOSO.

5)
-.@
S
©: :ae,
< > P P e DR P A

ﬁ

= AMT program execution can be
graph and traverse it from the root.

= We started to investigate any analytical model to derive

the performance and reliability.
5

Survey of DAG Analytical modelling) s,

Laboratories

Analytical modelling intractable even for simple scientific task
graphs like stencil 1D

= Conducted a survey on analytical modelling of
directed acyclic graphs.

= Several papers addressed series parallel graphs Task-DAG for 1D-stencil
(SPG) or their variants to derive the execution Program
cost and reliability analytically

= Requirements for being SPG specifically forbids
an N-shaped subgraph. Unfortunately, even for
the simplest 1D-stencil task-DAG, this is
violated, and the N-subgraph occurs repeatedly.

= |f a graph is not SPG, the model has high
complexity (#P) to compute.

[11 R.A. Sahner, K.S. Trivedi, 1987, IEEE Transactions on Software Engineering, vol. SE-13, no. 10, pp: 1105-1114.
[2] J. Valdes, R.E. Tarjan, E.L. Lawler, 1982, SIAM J. Comput., vol. 11, no. 2, pp: 298-313.

Sandia
II1 National
Laboratories

Alternate Solution: Task-DAG Simulator

Task-DAG simulator hypothesizes the behavior of resilient AMT under
numerous system and runtime situations

Graph representing dense Cholesky

= Developed a tool to traverse task dags
on multicore/multithreaded
environment

= 30+ Simulation Parameters including
= # of threads
= Scheduling

= Task replay Graph representing 1D stencil

= Task replication e T

ﬁ MNNW‘
i i“ i««zemo
°3

) 0
ol

%;4

p—
o
yaT:

“‘“‘““
0.
D!
-0
=
0.
EXT
a0:
EXeT
o~
=
£
=
= :
SO
Yy
D!
-0

A=At
(EEIELEY

‘-‘.‘-‘.
O
=0
L A=t
.

-
.o-‘“o-
-

R
c-o.“
-

GG

s
._".._.
-0 -.
Lt
-0

- -
rataey:
.-‘..“"“

0-0..
0-‘.'
-
._“.
o 0:
=

=
Ik J=n
OO
00.“

= Checkpoint tasks (extra tasks inserted to
take global state of data blocks)

o-“z“

‘.
Y
o
‘-’E‘.‘;
."‘.
- o
L IEE LY
et TeT
“Q-Q:o-t"z“
- -
SCELE
EEE R et
o-.‘;o-oz
o L0
SRR
- '
Y -
o -
- -
0-00-&:0-‘:
- '
R
-
‘

<

-
o‘z““

-
“.

EXEY

t
glole

=0
SO
ey
."‘.
$OSO:
e
“o-o.'o-o.'
3 SO
o-o‘eo-oe“
0-%0-0.“
aSes
0SSOSO
CEGEX
e R
‘-&50-0':
— ‘.-
0SSOSO
ey
SO
A e
S=os
CELELE
GETRE et
‘ o
(EEIEEY
GEGES
OO
e
SO
e TRE ot
OSSOSO
SOSO
S

e D

03

o-o.
o-“.'o-o.
‘.“
SO
"‘ GEYEE
OO
A
£
£
"‘..
(EE X
-
EXET
e
=0

o-o.““
"o-o“

Qe N“ M””&‘o&

olo
««»‘»{»{ mwp%«%?i‘tqwo;g;:‘;:gf:“:':ggzg
o%f«»«»«»«&@‘wpgw

= Qverhead for replay/replication

‘
-
‘
'
-
'.
i
-
RN
"‘.'
0-0‘:

<%

CEL) S o)

(3 O: © >
““““““““‘H
W et et e e e .-.\

= Emulate the scheduler of Habanero C++

Sandia

Workflow of the Resilient-AMT Simulatof? .

New Task Graph
Execution Time per task

Execution per Thread
(@ Create Task Graph
Input - Traverse based -
parameters g ;, on the simulated ‘
G -
—& Bl e Runtime/System

R IS IIBIAISIBISI8181S S - f
GRS, settings e
IS BIISIBI01818I31B¢ //f LRI
G ol
olojolololololololojololeiolo SaQIciaIe 'l TR

= C++ code using Boost Graph Library
= Python for visualization and organizing data

The Graph Generation Capability of @
the Resilient-AMT Simulator

= Support generation of task graphs for:
= 1D, 2D and 3D stencil code
= Explicit PDE solver with unstructured mesh/arbitrary graph

= Dense Cholesky Factorization

= User can provide any task graphs as input files.

Simulator can predict the performance @fsﬂ;.naa
the code in faulty situations.

Laboratories
V&V: Impact of Work-Stealing on Balanced vs Imbalanced Applications

| &l Pinned
W& Work-Stealing
L _ 2 Simulated

120 -

100 +

Y 8o V‘
s, .

1DA 1DA Imbalanced 1DB 1DB Imbalanced
Application type

= QObtain simulation parameters just from non-resilient (no WS)
executions.

= Simulator runs the same task graph of the original program with
specified resilient-AMT options.

= Accurately predicts the performance of task-replay resilience.

= Needs more rigorous performance model to simulate replications.
10

Simulator can explore hypothetical B
distributed AMT settings

Impact of Work-Stealing on Distributed AMT

—e— Balanced
1.37 _¢— Imbalanced

2R WS is better Don't steal

1.1

1.0+ . @

0.9 +

0.8 -

Walltime relative to locale-fixed equivalent

0 20 40 60 80 100
Workstealing overhead (%)

= Distributed AMT settings on 8 nodes. 32 core per node.
= QOverdecomposed 1D Stencil Problem
= |mbalanced Case: 10x single slow task in a single time step

= X-axis indicates the work stealing overhead relative to task
execution time. 1

Resilient AMT Prototype LU

= Resilience Extension of
Habanero C++
= AMT programming
Interface by Vivek Sarkar
= Simple extension allows
the user to introduce 3
major resilient proguram
execution patterns
= Task Replication Interface
= Task Replay Interface
= ABFT Interface

Original Task Launch

Sandia
National
Laboratories

hclib::async await (lambda,
hclib future t *f1, ..,
hclib future t *f4);

Task Launch with Replication

diamond: :async await check<N> (
lambda, hclib::promise<int> out,

hclib future t *f1, ..,
hclib future t *f4);

Task Launch with Replay

replay::async_await_check<N>(
lambda, hclib::promise<int> out,

std::function<int (void*)>

error_check fn, void * params,

hclib future t *f1, .. ,
hclib future t *f4);

12

Habanero-C++ Overview) e,

Laboratories

* Project led by Vivek Sarkar (GaTech/Rice U)
= Library-based tasking runtime and API

= Semantically derived from X10

= Focused on: lightweight, minimal overheads; flexible
synchronization; locality control; composability with other
libraries;

= Simplified deployment: no custom compiler, entirely library-
based, only requires C++11 compliant compiler

= Uses runtime-managed call stacks to avoid blocking

= https://github.com/habanero-rice/hclib

13

Habanero-C++ Overview) e,

Laboratories

HClib constructs

Description Example

Asynchronous task creation | async(() -> { S1; });

Bulk task synchronization finish(() -> {
async(() -> { S1; async(() -> S2;5); });
1)

Futures and promises async(() -> { prom->put(42); });
async(() -> { prom->get future()->wait(); });
async_await(() -»> {..}, prom->get future());

Bulk task creation forall(loop, (i, j, k) -> { S3; });

Places for locality control async_at(pl, () -> { S4; });

14

Habanero-C++ Overview) e,

Laboratories

= Express data dependencies using promises and futures.
= hclib::promise
= Store a value using single assignment semantics : promise.put(value)

= hclib::future

= Retrieve the value stored in a promise : value = future.get()
= Can be used as dependency for tasks
= Relation between future and promise

= future = promise.get_ future()

= |f accessed from different threads put() and get() are synchronized
thus enabling a way for synchronization.

15

HClib extension: (1) Reference Counting A i,

Laboratories

= Current implementation leaves it to user to manage dynamic
allocated memory (no automatic garbage collection).

= Reference counting semantics:

= Provide a way to perform garbage collection based on the use of future
as task dependency

= Allows transparent handling of data access by replay/replicated tasks.
= |mplementation extends promise to have a reference count

= Count set during object construction

= Count decreased using release() method
= Extend async_await to perform automatic reference counting

= Reference count is decreased each time a future associated with the
promise is used as dependency

16

Sandia
'11 National
Laboratories

Task Replication

’ Replicite

Fork

Compute

Join

" diamond::async_await check<N> (lambda,
hclib: :promise<int> out, hclib future t *f£1,
.., hclib future t *£4);

= Preventive failure mitigation

= N-plicates the task and checks for equality of put operations at the end of
the task

= |f error checking succeeds, actual puts are done

= |f error checking fails, puts are ignored and the error is reported using an

output promise
17

Replication (Continued) i

Sandia
National
Laboratories

diamond::async_await check<2> (... diamond::async_await check<3>(..

Fork

Fork

Compute

ol ~ Detected .
Decide

Compute

= Duplicate (N=2) — Create two tasks and check for error in puts
= |f error checking fails, a third task is created

= Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
= Two out of three outputs should match for success

18

Task Replay) .

Detected Up to N times

(TN
- sy N/

Replay

replay::async _await check<N>(lambda,

hclib: :promise<int> out, std::function<int(void*)>
error_check fn, void * params, hclib future t *f£f1,
.. , hclib future t *£f4);

= Dynamic response to failure
= Executes the task and checks for error using the error checking function
= error_check _fn(params) returns true if there is no error

= The taskis executed N times at most if there is any error

= |f error checking fails, puts are ignored and the error is reported using an output
promise

19

ABFT Tasks L

Detected

ABFT

abft::async await check (lambda, hclib::promise<int>
out, std::function<int(void*)> error check fn, void *
params, hclib future t *f1l, .. , hclib future t *£f4,
ABFT lambda);

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= |fthere is error then ABFT lambda is executed and checked for error again at its
end
= |f error checking fails, puts are ignored and the error is reported using an output promise

Performance) .

[=IN)]
(= |

w
[

i

i«
r€Ew w o O

i

oclo|c |+
NELE W O O

i«
w
€W
L2 B
-
Ky
IO OO |-
L2
NN]|Oo|>»
v
Qoo |o |

K! ¥
i
rE

¢y
Ky

T ey
e

N o€xn€s
=
ey
0

€ d
B

"4
o€

&

NELEN
i

"4
r€Ew o O Rr€Ew
©

L2
-
wéEn | rEw
i«

"4
NED wEenéEwEuv

> - 0O > O A - O O
oo oo |jOo]|]Oo|Oo|jO|OC

Ej NG
= On 2 Haswell CPU node (16x2 cores)
= 1D and 3D stencil code
= Conjugate Gradient with crank_1 sparse matrix
= Smith-Waterman (SW) algorithms

= Task-parallel Fault-Tolerant Cholesky Factorization
= Based on the Cao and Bosilca (IPDPS2016)
= The application data is over-decomposed.

= 4 way for stencil and CG
= 64x64 for SW and Cholesky

o

21

Replay and replication do not double(®)::.
the memory overhead

Synthetic | Stencil 1D

vanilla vanilla | Replay | Replication | Mix Replay | Mix Replication
1 worker 0.19GB | 0.67GB | 1.02GB | 0.98 GB 1.08 GB 1.05 GB

32 workers | 6.19 GB | 6.67 GB | 7.02 GB | 6.99 GB || 7.08 GB 7.05 GB

= Synthetic benchmark just launch empty tasks iteratively

= Resilient 1D stencil code execute 128 tiles (16K points per
tile) per iteration (4 tasks per worker)

= Executed 1M iterations

= Tested on NERSC’s Cori (2 Haswell CPUs, 32 cores total,
2.3GHZ) system

22

Performance without faults

W Baseline B Replay Replication ® ABFT

100

75

i\

II II-_-_

Execution Time (Seconds)

Stencﬂ Stencﬂ C SW

= Replication is expensive for 1D stencil, CG and SW.

= Observed some cache hits with 3D stencil

Cholesky

Sandia
National
Laboratories

= High cache hits and critical path in task-base Cholesky suffers

less reEIication overhead 23

Mixing replication and replay) 2.

B0% W20% W 40% W 60% W 80% W 100%

100
)
=
= 75
[«B)
2,
(b}
= 50
|_
=
2 25
=3
O
@
><
w 0

Stencil 1D Stencil 3D

= Replication doubles the execution time of 1D case.
= We observed many L3 cache hits in the 3D case.

= Less overhead for replication

24

Application delay is proportional to the@m

National
Laboratories

ol ,;\o“\ Q\a‘l\ \0‘\\ Qa‘\\ o“\ ol \o“\ Qa‘l\ ,(\o“\ 6{:‘\

of failures
= 1% = 10%
40
(e b
>
£ 30
3
(e §)
& 20
v
S
=
E 0
'.—
5
= -10
2
33

eV (R eV GAY _ («® A (@ (A te c? 2
A0 “0 “eQ\\ 20 \‘0 \‘e,?\\ co \6 e o™ \X*\ :‘ «® Q\\ ‘-’\\ e ‘A\
g <

Scalability of 3D stencil code (MPI+ResI|r@ b
HCLIB)

Laboratories

B Baseline B Replay = Replication

o 100
o
=
O Fis
@
s
@
£ 50
|—
§ 2
=
O
L 0
(]

8 16

Number of Nodes

= MPI-HCLIB implementation (1D, Weak scaling, over-decomposed)
= No failure
= MPI (2-sided) calls are running on special worker (thread-funnel).

= Preliminary results indicate replication overhead are masked by MPI

overhead
26

Ongoing Work: Resilient Kokkos [

Data
GPU Device Staging IO/'\l"_IF[’)'FS C++10
Memory System

* Kokkos provides abstraction of data and (on-node) parallel
program execution

» Kokkos::View provides an array with a variety of tunable parameters
through template

* Execution and Memory Space to provide performance portability
over multiple node architecture

* Exploit C++ Lambda to support parallel program execution

* Kokkos’ abstraction to enable resilient parallel computation!

Resilient Kokkos enables resilient e
data parallel computation

Replication

Checkpoint
"loop_1,A”

Automatic Checkpointing

Conclusion)

Laboratories

= Discussed Resilient Programming Models for:

= Asynchronous Many Task Programming Model
= Analytical model

= Simulator based study
= Resilience is embedded to the programming model itself.

= Simple extension of tasking API to enable resilient computation patterns
= Kokkos

= Extend Memory and Execution Space concept to enable reslience in
application data and computation

Sandia
m National
Laboratories

