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Motivations and Background ) .

He

= Substantial progress in resilience and asynchronous many-task (AMT)
programming models, separately.

=  AMT offer:

= More flexible and efficient failure mitigation compared to conventional (e.g.
checkpoint) strategies.

= Ability to quantify the effects of failures and benefits of various resilience strategies.

= Complex tradeoffs of multiple AMT resilience techniques with dynamic
failure behavior need to be understood/documented.

= Need ability to extrapolate tradeoffs to extreme(exa)-scale.
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Objectives )=,

= An analysis of the scalability, performance and costs for
multiple AMT resilience options.

= Prototype implementation of resilience schemes in actual
asynchronous many-task programming model:
= task replication.
= task replay.
= algorithm-based fault tolerance.
= task-level checkpointing.

= An analysis of accuracy-cost tradeoffs of application-specific
failure detection and mitigation schemes.

= Use representative mini-apps as basis for study.




Current Scope: On-Node AMT ) .

= MPI+(on-node) AMT an anticipated programming model for
future complex node architecture.

= First comprehensive study with on-node AMT. Extend
concepts to distributed AMT in future.

= Analyzing Failure/Error mitigation by On Node AMT is
essential:

= Hard failure of cores and accelerators, silent errors, performance
degradation.

= Failure can be manifested as task failure: non-finishing tasks, data
corruption or very slow execution.

= We still need better understanding of failure-free AMT as a
baseline, production-ready distributed AMT is scant.
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Abstract Model of AMT Program (i

Graph representing 1D stencil Computation Graph representing dense Cholesky Factorization
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= AMT program execution can be
graph and traverse it from the root.

= We started to investigate any analytical model to derive

the performance and reliability.
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Survey of DAG Analytical modelling ) s,

Laboratories

Analytical modelling intractable even for simple scientific task
graphs like stencil 1D

= Conducted a survey on analytical modelling of
directed acyclic graphs.

= Several papers addressed series parallel graphs Task-DAG for 1D-stencil
(SPG) or their variants to derive the execution Program
cost and reliability analytically

= Requirements for being SPG specifically forbids
an N-shaped subgraph. Unfortunately, even for
the simplest 1D-stencil task-DAG, this is
violated, and the N-subgraph occurs repeatedly.

= |f a graph is not SPG, the model has high
complexity (#P) to compute.

[11 R.A. Sahner, K.S. Trivedi, 1987, IEEE Transactions on Software Engineering, vol. SE-13, no. 10, pp: 1105-1114.
[2] J. Valdes, R.E. Tarjan, E.L. Lawler, 1982, SIAM J. Comput., vol. 11, no. 2, pp: 298-313.
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Alternate Solution: Task-DAG Simulator

Task-DAG simulator hypothesizes the behavior of resilient AMT under
numerous system and runtime situations

Graph representing dense Cholesky

= Developed a tool to traverse task dags
on multicore/multithreaded
environment

= 30+ Simulation Parameters including
= # of threads
= Scheduling

= Task replay Graph representing 1D stencil

= Task replication e T
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= Checkpoint tasks (extra tasks inserted to
take global state of data blocks)
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= Qverhead for replay/replication
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= Emulate the scheduler of Habanero C++
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Workflow of the Resilient-AMT Simulatof? .

New Task Graph
Execution Time per task

Execution per Thread
(@ Create Task Graph
Input - Traverse based -
parameters g ;, on the simulated ‘
G -
—& Bl e Runtime/System
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= C++ code using Boost Graph Library
= Python for visualization and organizing data




The Graph Generation Capability of @
the Resilient-AMT Simulator

= Support generation of task graphs for:
= 1D, 2D and 3D stencil code
= Explicit PDE solver with unstructured mesh/arbitrary graph

= Dense Cholesky Factorization

= User can provide any task graphs as input files.




Simulator can predict the performance @fsﬂ;.naa
the code in faulty situations.

Laboratories
V&V: Impact of Work-Stealing on Balanced vs Imbalanced Applications

| &l Pinned
W& Work-Stealing
L _ 2 Simulated

120 -

100 +

Y 8o V‘
s, .

1DA 1DA Imbalanced 1DB 1DB Imbalanced
Application type

= QObtain simulation parameters just from non-resilient (no WS)
executions.

= Simulator runs the same task graph of the original program with
specified resilient-AMT options.

= Accurately predicts the performance of task-replay resilience.

= Needs more rigorous performance model to simulate replications.
10




Simulator can explore hypothetical B
distributed AMT settings

Impact of Work-Stealing on Distributed AMT

—e— Balanced
1.37 _¢— Imbalanced

2R WS is better Don't steal

1.1

1.0+ . @

0.9 +

0.8 -

Walltime relative to locale-fixed equivalent

0 20 40 60 80 100
Workstealing overhead (%)

= Distributed AMT settings on 8 nodes. 32 core per node.
= QOverdecomposed 1D Stencil Problem
= |mbalanced Case: 10x single slow task in a single time step

= X-axis indicates the work stealing overhead relative to task
execution time. 1




Resilient AMT Prototype LU

= Resilience Extension of
Habanero C++
= AMT programming
Interface by Vivek Sarkar
= Simple extension allows
the user to introduce 3
major resilient proguram
execution patterns
= Task Replication Interface
= Task Replay Interface
= ABFT Interface

Original Task Launch
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hclib::async await ( lambda,
hclib future t *f1, ..,
hclib future t *f4);

Task Launch with Replication

diamond: :async await check<N> (
lambda, hclib::promise<int> out,

hclib future t *f1, ..,
hclib future t *f4);

Task Launch with Replay

replay::async_await_check<N>(
lambda, hclib::promise<int> out,

std::function<int (void*)>

error_check fn, void * params,

hclib future t *f1, .. ,
hclib future t *f4);

12



Habanero-C++ Overview ) e,
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* Project led by Vivek Sarkar (GaTech/Rice U)
= Library-based tasking runtime and API

= Semantically derived from X10

= Focused on: lightweight, minimal overheads; flexible
synchronization; locality control; composability with other
libraries;

= Simplified deployment: no custom compiler, entirely library-
based, only requires C++11 compliant compiler

= Uses runtime-managed call stacks to avoid blocking

= https://github.com/habanero-rice/hclib

13



Habanero-C++ Overview ) e,
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HClib constructs

Description Example

Asynchronous task creation | async(() -> { S1; });

Bulk task synchronization finish(() -> {
async(() -> { S1; async(() -> S2;5); });
1)

Futures and promises async(() -> { prom->put(42); });
async(() -> { prom->get future()->wait(); });
async_await(() -»> {..}, prom->get future());

Bulk task creation forall(loop, (i, j, k) -> { S3; });

Places for locality control async_at(pl, () -> { S4; });

14



Habanero-C++ Overview ) e,
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= Express data dependencies using promises and futures.
= hclib::promise
= Store a value using single assignment semantics : promise.put(value)

= hclib::future

= Retrieve the value stored in a promise : value = future.get()
= Can be used as dependency for tasks
= Relation between future and promise

= future = promise.get_ future()

= |f accessed from different threads put() and get() are synchronized
thus enabling a way for synchronization.

15



HClib extension: (1) Reference Counting A i,
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= Current implementation leaves it to user to manage dynamic
allocated memory (no automatic garbage collection).

= Reference counting semantics:

= Provide a way to perform garbage collection based on the use of future
as task dependency

= Allows transparent handling of data access by replay/replicated tasks.
= |mplementation extends promise to have a reference count

= Count set during object construction

= Count decreased using release() method
= Extend async_await to perform automatic reference counting

= Reference count is decreased each time a future associated with the
promise is used as dependency

16
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Task Replication

’ Replicite

Fork

Compute

Join

" diamond::async_await check<N> ( lambda,
hclib: :promise<int> out, hclib future t *f£1,
.., hclib future t *£4);

= Preventive failure mitigation

= N-plicates the task and checks for equality of put operations at the end of
the task

= |f error checking succeeds, actual puts are done

= |f error checking fails, puts are ignored and the error is reported using an

output promise
17



Replication (Continued) i
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diamond::async_await check<2> (... diamond::async_await check<3>( ..

Fork

Fork

Compute

ol ~ Detected .
Decide

Compute

= Duplicate (N=2) — Create two tasks and check for error in puts
= |f error checking fails, a third task is created

= Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
= Two out of three outputs should match for success

18



Task Replay ) .

Detected Up to N times

(TN
- sy N/

Replay

replay::async _await check<N>( lambda,

hclib: :promise<int> out, std::function<int(void*)>
error_check fn, void * params, hclib future t *f£f1,
.. , hclib future t *£f4);

=  Dynamic response to failure
= Executes the task and checks for error using the error checking function
= error_check _fn(params) returns true if there is no error

= The taskis executed N times at most if there is any error

= |f error checking fails, puts are ignored and the error is reported using an output
promise

19



ABFT Tasks L

Detected

ABFT

abft::async await check ( lambda, hclib::promise<int>
out, std::function<int(void*)> error check fn, void *
params, hclib future t *f1l, .. , hclib future t *£f4,
ABFT lambda);

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= |fthere is error then ABFT lambda is executed and checked for error again at its
end
= |f error checking fails, puts are ignored and the error is reported using an output promise




Performance ) .
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= On 2 Haswell CPU node (16x2 cores)
= 1D and 3D stencil code
= Conjugate Gradient with crank_1 sparse matrix
= Smith-Waterman (SW) algorithms

= Task-parallel Fault-Tolerant Cholesky Factorization
= Based on the Cao and Bosilca (IPDPS2016)
= The application data is over-decomposed.

= 4 way for stencil and CG
= 64x64 for SW and Cholesky

o
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Replay and replication do not double(®)::.
the memory overhead

Synthetic | Stencil 1D

vanilla vanilla | Replay | Replication | Mix Replay | Mix Replication
1 worker 0.19GB | 0.67GB | 1.02GB | 0.98 GB 1.08 GB 1.05 GB

32 workers | 6.19 GB | 6.67 GB | 7.02 GB | 6.99 GB || 7.08 GB 7.05 GB

= Synthetic benchmark just launch empty tasks iteratively

= Resilient 1D stencil code execute 128 tiles (16K points per
tile) per iteration (4 tasks per worker)

= Executed 1M iterations

= Tested on NERSC’s Cori (2 Haswell CPUs, 32 cores total,
2.3GHZ) system

22




Performance without faults

W Baseline B Replay Replication ® ABFT
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i\
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Execution Time (Seconds)

Stencﬂ Stencﬂ C SW

= Replication is expensive for 1D stencil, CG and SW.

= Observed some cache hits with 3D stencil

Cholesky

Sandia
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= High cache hits and critical path in task-base Cholesky suffers

less reEIication overhead 23




Mixing replication and replay ) 2.
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Stencil 1D Stencil 3D

= Replication doubles the execution time of 1D case.
= We observed many L3 cache hits in the 3D case.

= Less overhead for replication

24




Application delay is proportional to the@m
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Scalability of 3D stencil code (MPI+ResI|r@ b
HCLIB)

Laboratories

B Baseline B Replay = Replication
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Number of Nodes

= MPI-HCLIB implementation (1D, Weak scaling, over-decomposed)
= No failure
= MPI (2-sided) calls are running on special worker (thread-funnel).

= Preliminary results indicate replication overhead are masked by MPI

overhead
26




Ongoing Work: Resilient Kokkos [

Data
GPU Device Staging IO/'\l"_IF[’)'FS C++10
Memory System

* Kokkos provides abstraction of data and (on-node) parallel
program execution

» Kokkos::View provides an array with a variety of tunable parameters
through template

* Execution and Memory Space to provide performance portability
over multiple node architecture

* Exploit C++ Lambda to support parallel program execution

* Kokkos’ abstraction to enable resilient parallel computation!




Resilient Kokkos enables resilient e
data parallel computation

Replication

Checkpoint
"loop_1,A”

Automatic Checkpointing




Conclusion )
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= Discussed Resilient Programming Models for:

= Asynchronous Many Task Programming Model
= Analytical model

= Simulator based study
= Resilience is embedded to the programming model itself.

= Simple extension of tasking API to enable resilient computation patterns
= Kokkos

= Extend Memory and Execution Space concept to enable reslience in
application data and computation
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