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• Substantial progress in resilience and asynchronous many-task (AMT)

programming models, separately.

• AMT offer:
• More flexible and efficient failure mitigation compared to conventional (e.g.

checkpoint) strategies.

■ Ability to quantify the effects of failures and benefits of various resilience strategies.

• Complex tradeoffs of multiple AMT resilience techniques with dynamic
failure behavior need to be understood/documented.

• Need ability to extrapolate tradeoffs to extreme(exa)-scale.



Objectives

■ An analysis of the scalability, performance and costs for
multiple AMT resilience options.

■ Prototype implementation of resilience schemes in actual
asynchronous many-task programming model:

■ task replication.

■ task replay.

■ algorithm-based fault tolerance.

■ task-level checkpointing.

■ An analysis of accuracy-cost tradeoffs of application-specific
failure detection and mitigation schemes.

■ Use representative mini-apps as basis for study.
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Current Scope: On-Node AMT

■ MPI+(on-node) AMT an anticipated programming model for
future complex node architecture.

■ First comprehensive study with on-node AMT. Extend
concepts to distributed AMT in future.

■ Analyzing Failure/Error mitigation by On Node AMT is
essential:

■ Hard failure of cores and accelerators, silent errors, performance
degradation.

■ Failure can be manifested as task failure: non-finishing tasks, data
corruption or very slow execution.

■ We still need better understanding of failure-free AMT as a
baseline, production-ready distributed AMT is scant.
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Abstract Model of AMT Program

Graph representing 10 stencil Computation
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Graph representing dense Cholesky Factorization
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• AMT program execution can be
graph and traverse it from the root.

• We started to investigate any analytical model to derive
the performance and reliability.
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Survey of DAG Analytical modelling Sandia
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Analytical modelling intractable even for simple scientific task
graphs like stencil 1D

■ Conducted a survey on analytical modelling of

directed acyclic graphs.

■ Several papers addressed series parallel graphs
(SPG) or their variants to derive the execution

cost and reliability analytically

■ Requirements for being SPG specifically forbids
an N-shaped subgraph. Unfortunately, even for

the simplest 1D-stencil task-DAG, this is

violated, and the N-subgraph occurs repeatedly.

■ If a graph is not SPG, the model has high

complexity (#P) to compute.

Task-DAG for 1D-stencil

Program

[1] R.A. Sahner, K.S. Trivedi, 1987, IEEE Transactions on Software Engineering, vol. SE-13, no. 10, pp: 1105-1114.
[2] J. Valdes, R.E. Tarjan, E.L. Lawler, 1982, SIAM J. Comput., vol. 11, no. 2, pp: 298-313.



Alternate Solution: Task-DAG Simulator
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Task-DAG simulator hypothesizes the behavior of resilient AMT under
numerous system and runtime situations

• Developed a tool to traverse task dags
on multicore/multithreaded
environment

• 30+ Simulation Parameters including

# of threads

Scheduling

Task replay

Task replication

Checkpoint tasks (extra tasks inserted to
take global state of data blocks)

Overhead for replay/replication

• Emulate the scheduler of Habanero C++

Graph representing dense Cholesky

Graph representing 1 D stencil
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Workflow of the Resilient-AMT Simulatoel a5lries

Input
parameters

Create Task Graph
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Traverse based
on the simulated
Runtime/System

settings

• C++ code using Boost Graph Library

• Python for visualization and organizing data

New Task Graph
Execution Time per task
Execution per Thread

Results
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The Graph Generation Capability o
the Resilient-AMT Simulator

■ Support generation of task graphs for:
■ 1D, 2D and 3D stencil code

■ Explicit PDE solver with unstructured mesh/arbitrary graph

■ Dense Cholesky Factorization

■ User can provide any task graphs as input files.
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Simulator can predict the performance afro,:a,Laboratones
the code in faulty situations.

V&V: impact of Work-Stealing on Balanced vs lmbalanced Applications

120 -

100 -

17;— 80 -

''
60 -

To

40 -

20 -

0II

.7 Pinned

Work-Stealing

CZ:. Simulated

4

1DA 1DA lmbalanced 1DB 1DB lmbalanced
Application type

• Obtain simulation parameters just from non-resilient (no WS) 

executions. 

• Simulator runs the same task graph of the original program with

specified resilient-AMT options.

• Accurately predicts the performance of task-replay resilience.

• Needs more rigorous performance model to simulate replications.
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Simulator can explore hypothetical
distributed AMT settings

Impact of Work-Stealing on Distributed AMT

o 20 40 60 80
Workstealing overhead (%)

• Distributed AMT settings on 8 nodes. 32 core per node.

• Overdecomposed 1D Stencil Problem

• lmbalanced Case: 10x single slow task in a single time step

• X-axis indicates the work stealing overhead relative to task
execution time.
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Resilient AMT Prototype

• Resilience Extension of
Habanero C++

• AMT programming

Interface by Vivek Sarkar

• Simple extension allows
the user to introduce 3
major resilient proguram
execution patterns

• Task Replication Interface

• Task Replay Interface

• ABFT Interface
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Original Task Launch

hclib::async_await ( lambda,

hclib future_t *fl, ..,

hclib future_t *f4);

Task Launch with Replication

diamond::async_await_check<N> (

lambda, hclib::promise<int> out,

hclib future_t *fl, ..,

hclib future_t *f4);

Task Launch with Replay

replay::async_await_check<N>(

lambda, hclib::promise<int out,

std::function<int(void*)>

error_check_fn, void * params,

hclib future_t *fl, ..

hclib future_t *f4);
r
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Ha banero-C++ Overview 

■ Project led by Vivek Sarkar (GaTech/Rice U)

■ Library-based tasking runtime and API

■ Semantically derived from X10

■ Focused on: lightweight, minimal overheads; flexible
synchronization; locality control; composability with other
libraries;

■ Simplified deployment: no custom compiler, entirely library-
based, only requires C++11 compliant compiler

■ Uses runtime-managed call stacks to avoid blocking

■ https://github.com/habanero-rice/hclib 
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Habanero-C++ Overview 

HClib constructs
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Description Example

Asynchronoustaskcreation async(() -> { S1; });

Bulk task synchronization finish( () -> {

async(() -> { S1; async(() -> S2;); });

1);

Futures and promises async(() -> { prom->put(42); });

async(() -> { prom->get_future()->wait(); });

async_await(0 -> {...}, prom->get_future());

Bulk task creation forall(loop, (i, j, k) -> f S3; });

Places for locality control async_at(pl, () -> { S4; });
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Ha banero-C++ Overview Sandia
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■ Express data dependencies using promises and futures.

■ hclib::promise

■ Store a value using single assignment semantics : promise.put(value)

■ hclib::future

■ Retrieve the value stored in a promise : value = future.get()

■ Can be used as dependency for tasks

■ Relation between future and promise

■ future = promise.get_future()

■ If accessed from different threads put() and get() are synchronized
thus enabling a way for synchronization.

15



HClib extension: (1) Reference Counting 

■ Current implementation leaves it to user to manage dynamic
allocated memory (no automatic garbage collection).

■ Reference counting semantics:

■ Provide a way to perform garbage collection based on the use of future
as task dependency

■ Allows transparent handling of data access by replay/replicated tasks.

■ Implementation extends promise to have a reference count

■ Count set during object construction

■ Count decreased using release() method

■ Extend async_await to perform automatic reference counting

■ Reference count is decreased each time a future associated with the
promise is used as dependency

Sandia
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Task Replication
Replic te

Fork

Oil' Compute

+

• diamond::async_await_check<N> ( lambda,

hclib::promise<int> out, hclib_future_t *fl,

.., hclib_future_t *f4);

Join
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• Preventive failure mitigation

• N-plicates the task and checks for equality of put operations at the end of

the task

• If error checking succeeds, actual puts are done

• If error checking fails, puts are ignored and the error is reported using an

output promise
17



Replication (Continued)
diamond::async_await_check<2>(—

Fork

Compute

Detected
Join

Decide

&mho
word
Laboratories

diamond::async_await_check<3>(

Fork

Compute • •
Join

■ Duplicate (N=2) — Create two tasks and check for error in puts
■ If error checking fails, a third task is created

■ Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
■ Two out of three outputs should match for success
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Task Replay

1 Detected

Replay

Up to N times

replay::async await check<N>( lambda,
hclib::promise<int> out, std::function<int(void*)>
error _ check_ void * params, hclib_future t *fl,
.. , hclib future t *f4);

• Dynamic response to failure

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• The task is executed N times at most if there is any error
• If error checking fails, puts are ignored and the error is reported using an output

promise

Sandia
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ABFT Tasks

1
\AO ABFT
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abft::async await check ( lambda, hclib::promise<int>
out, std::function<int(void*)> error_check_fn, void *

params, hclib future t *fl, .. , hclib future t *f4,
ABFT lambda);

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• If there is error then ABFT lambda is executed and checked for error again at its
end
• If error checking fails, puts are ignored and the error is reported using an output promise
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Performance
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• On 2 Haswell CPU node (16x2 cores)

• 1D and 3D stencil code

• Conjugate Gradient with crank_1 sparse matrix

• Smith-Waterman (SW) algorithms

• Task-parallel Fault-Tolerant Cholesky Factorization
• Based on the Cao and Bosilca (IPDPS2016)

• The application data is over-decomposed.
• 4 way for stencil and CG

• 64x64 for SW and Cholesky
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Replay and replication do not double E Eres
the memory overhead

1 worker

Synthetic
vanilla

0.19 GB

Stencil 1D
vanilla

0.67 GB

Replay
1.02 GB

Replication Mix Replay

0.98 GB 1.08 GB

32 workers 6.19 GB 6.67 GB 7.02 GB 6.99 GB 1 7.08 GB

Mix Replication

1.05 GB
7.05 GB

• Synthetic benchmark just launch empty tasks iteratively

• Resilient 1D stencil code execute 128 tiles (16K points per
tile) per iteration (4 tasks per worker)

• Executed 1M iterations

• Tested on NERSC's Cori (2 Haswell CPUs, 32 cores total,
2.3GHZ) system
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Performance without faults
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• Replication is expensive for 1D stencil, CG and SW.

• Observed some cache hits with 3D stencil

• High cache hits and critical path in task-base Cholesky suffers

less re • lication overhead 23



Mixing replication and replay
• 0% • 20%

1 1
Stencil 1D Stencil 3D

• Replication doubles the execution time of 1D case.

• We observed many L3 cache hits in the 3D case.

• Less overhead for replication
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Application delay is proportional to theditaNavo,:a,
Laboratories

of failures
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Scalability of 3D stencil code (MPI+Resli

HCLIB)
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• MPI-HCLIB implementation (1D, Weak scaling, over-decomposed)
• No failure
• MPI (2-sided) calls are running on special worker (thread-funnel).

• Preliminary results indicate replication overhead are masked by MPI
overhead
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Ongoing Work: Resilient Kokkos

Kokkos::View< Data Type Execution Space, Memory Space, .... > 11

GPU Devic
Memory

• Kokkos provides abstraction of data and (on-node) parallel
program execution
• Kokkos::View provides an array with a variety of tunable parameters

through template

• Execution and Memory Space to provide performance portability

over multiple node architecture
• Exploit C++ Lambda to support parallel program execution

• Kokkos' abstraction to enable resilient parallel computation!

Sandia
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Resilient Kokkos enables resilient
data parallel computation

r--Kokkos: : View <double *, ..., ResilientSpace > A( 1000,
parallel_for ( RangePolicy0( 0, 100 ), KOKKOS_LA 

const int i )

{
A(i)=...; [Replication]

});

•

Kokkos: :View <double *, ..., ResilientSpace > A( 1000 );

parallel_for c`!loop_1", Rangepolicy<>( 0, 100 ),
KOKKOS_LAMBDA ( const inti)

{
Ao)=...;

});

Sandia
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paralle _for ( RangePolicy<>( 0, 100 ), KOKKOS_LAMBDA ( const int
i )

{
A0)=...;

1);

Pkutomatic Checkpointing
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Conclusion

■ Discussed Resilient Programming Models for:

■ Asynchronous Many Task Programming Model

Analytical model

Simulator based study

Resilience is embedded to the programming model itself.

Simple extension of tasking API to enable resilient computation patterns

■ Kokkos

Extend Memory and Execution Space concept to enable reslience in

application data and computation
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