
tional service in the national interest

Scalable, Efficient Fault Tolerance in Asynchronous Many
Task (AMT) Programming Models

SriRaj Paul, Akihiro Hayashi, Seonmyeong Bak, and Vivek Sarker

Georgia lnstitute of Technology

Keita Teranishi, Hemanth Kolla, Nicole Slattengren, Matthew Whitlock, and Jackson Mayo

Sandia National Laboratories, California, USA

e
U.S. DEPARTMENT OF IIIA 1 .V Ar'qhcil

ENERGY ifoltY..., Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned

subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-2242C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Motivations and Background
7' INN NM ME MN MN MI

unto NE

Pen.ing unning Done

Sandia
National
Laboratories

• Substantial progress in resilience and asynchronous many-task (AMT)

programming models, separately.

• AMT offer:
• More flexible and efficient failure mitigation compared to conventional (e.g.

checkpoint) strategies.

■ Ability to quantify the effects of failures and benefits of various resilience strategies.

• Complex tradeoffs of multiple AMT resilience techniques with dynamic
failure behavior need to be understood/documented.

• Need ability to extrapolate tradeoffs to extreme(exa)-scale.

Objectives

■ An analysis of the scalability, performance and costs for
multiple AMT resilience options.

■ Prototype implementation of resilience schemes in actual
asynchronous many-task programming model:

■ task replication.

■ task replay.

■ algorithm-based fault tolerance.

■ task-level checkpointing.

■ An analysis of accuracy-cost tradeoffs of application-specific
failure detection and mitigation schemes.

■ Use representative mini-apps as basis for study.

Sandia
National
Laboratories

3

Current Scope: On-Node AMT

■ MPI+(on-node) AMT an anticipated programming model for
future complex node architecture.

■ First comprehensive study with on-node AMT. Extend
concepts to distributed AMT in future.

■ Analyzing Failure/Error mitigation by On Node AMT is
essential:

■ Hard failure of cores and accelerators, silent errors, performance
degradation.

■ Failure can be manifested as task failure: non-finishing tasks, data
corruption or very slow execution.

■ We still need better understanding of failure-free AMT as a
baseline, production-ready distributed AMT is scant.

Sandia
National
Laboratories

4

Abstract Model of AMT Program

Graph representing 10 stencil Computation

Sandia
National
Laboratories

Graph representing dense Cholesky Factorization

0 0-0-000-0

1114116 - -

olo

118rolls-Torit

1114Plinve,o1

• AMT program execution can be
graph and traverse it from the root.

• We started to investigate any analytical model to derive
the performance and reliability.

5

Survey of DAG Analytical modelling Sandia
National
Laboratories

Analytical modelling intractable even for simple scientific task
graphs like stencil 1D

■ Conducted a survey on analytical modelling of

directed acyclic graphs.

■ Several papers addressed series parallel graphs
(SPG) or their variants to derive the execution

cost and reliability analytically

■ Requirements for being SPG specifically forbids
an N-shaped subgraph. Unfortunately, even for

the simplest 1D-stencil task-DAG, this is

violated, and the N-subgraph occurs repeatedly.

■ If a graph is not SPG, the model has high

complexity (#P) to compute.

Task-DAG for 1D-stencil

Program

[1] R.A. Sahner, K.S. Trivedi, 1987, IEEE Transactions on Software Engineering, vol. SE-13, no. 10, pp: 1105-1114.
[2] J. Valdes, R.E. Tarjan, E.L. Lawler, 1982, SIAM J. Comput., vol. 11, no. 2, pp: 298-313.

Alternate Solution: Task-DAG Simulator
Sandia
National
Laboratories

Task-DAG simulator hypothesizes the behavior of resilient AMT under
numerous system and runtime situations

• Developed a tool to traverse task dags
on multicore/multithreaded
environment

• 30+ Simulation Parameters including

of threads

Scheduling

Task replay

Task replication

Checkpoint tasks (extra tasks inserted to
take global state of data blocks)

Overhead for replay/replication

• Emulate the scheduler of Habanero C++

Graph representing dense Cholesky

Graph representing 1 D stencil

40404 4 4 r41404040M40 04440 0 04040A04040404o4040040-414141101110414141414141414141414141414141414104141414141414
10101 I 10
0114141111141104141411410414111141411410414141411411114100414114
10101 1010101010100101010101010101010101010101010101010
4141***00414141414141414141410000414141000041414
14°1 14444444444°144444401440140140041114/1110414141414141410414141414104141414141414,41414
144 I I 10144444444444444444444444°414141140411•41414141414141414141411414141041414114141414141414
144 1 1444444444444444444444444°041411411110414114141414141414141410414141411414141410041414
14°1 1 1 14444444444°1444444444444°I°041414111141100414141414141111414114100414141411414141041414
14°1 1 1444444444444444444444444°4141411411000041414111410414141011004141410110041414
144 1444444444444444444444444°041114/40411414041414141414141414141414141414141414104,4101114
kt00 00000000000$000000000

Workflow of the Resilient-AMT Simulatoel a5lries

Input
parameters

Create Task Graph

04040404040 • 0 0 0 0 040404040
041411140419 00 0 040 *OA

000000000000000
41111040404111411111411104111411141114111411141

00:0010:010:01000:010:40
040404.404041941004040,04904

0:0101010101010:01010101010:010
111140411414111141111,111141004,401,4114
400:0 40:010:00:01010:40

41904040410404190 04194941941104
0:00401011010:010010:010040
0004141114041,0041904,41,041

otojoioleloteMolotoMololoto
00419404041940041041904940041

efolotelotolastolotololoteletolo
040040411404904111040404000,41

400000:4000009000
4941114041•414111 41110 0404111411141

001041:00000 40000000

Traverse based
on the simulated
Runtime/System

settings

• C++ code using Boost Graph Library

• Python for visualization and organizing data

New Task Graph
Execution Time per task
Execution per Thread

Results

1 1144516 . "1191919

tit0 0 0 0 0 0 0 kiirraitittO

0%0%0%0%0%0%010
11110114•41•401141,11. WWI"

V 4111,41••••••••••ta 1' • • • ii
ototo%o%o%ototo4o Aoko\o‘p
io 40•0 op yonomomo ft OP ''... *ok
440:010:440:0140 o oVko
•4•4•4•4•4•4•4•4•4Ik *IA
0101010$0$01010101010 000 4It

11,4•4•4•4•4•4•4•4•4•0
040401010101010101010t0
1,41,41,411,41•41•4•4•411,411,4•41•4►

I Cotolob4401olajojojototojc
11,41,40,411,4111,41,411,411,411,411,411.4114040
ototo$0$40b4cSojejojejojcfc
ik4o4oicack4o404o4o4ocktockdo
c#440$40tatetotobtojajoicja
ik4o4oicack40404,0,40,4,4,4,4,4
a octa:120 0 ov4912). . c,..t.,

lttr.

The Graph Generation Capability o
the Resilient-AMT Simulator

■ Support generation of task graphs for:
■ 1D, 2D and 3D stencil code

■ Explicit PDE solver with unstructured mesh/arbitrary graph

■ Dense Cholesky Factorization

■ User can provide any task graphs as input files.

Sandia
National
Laboratories

9

Simulator can predict the performance afro,:a,Laboratones
the code in faulty situations.

V&V: impact of Work-Stealing on Balanced vs lmbalanced Applications

120 -

100 -

17;— 80 -

''
60 -

To

40 -

20 -

0II

.7 Pinned

Work-Stealing

CZ:. Simulated

4

1DA 1DA lmbalanced 1DB 1DB lmbalanced
Application type

• Obtain simulation parameters just from non-resilient (no WS)

executions.

• Simulator runs the same task graph of the original program with

specified resilient-AMT options.

• Accurately predicts the performance of task-replay resilience.

• Needs more rigorous performance model to simulate replications.
10

Simulator can explore hypothetical
distributed AMT settings

Impact of Work-Stealing on Distributed AMT

o 20 40 60 80
Workstealing overhead (%)

• Distributed AMT settings on 8 nodes. 32 core per node.

• Overdecomposed 1D Stencil Problem

• lmbalanced Case: 10x single slow task in a single time step

• X-axis indicates the work stealing overhead relative to task
execution time.

Sandia
National
Laboratories

11

Resilient AMT Prototype

• Resilience Extension of
Habanero C++

• AMT programming

Interface by Vivek Sarkar

• Simple extension allows
the user to introduce 3
major resilient proguram
execution patterns

• Task Replication Interface

• Task Replay Interface

• ABFT Interface

Sandia
National
Laboratories

Original Task Launch

hclib::async_await (lambda,

hclib future_t *fl, ..,

hclib future_t *f4);

Task Launch with Replication

diamond::async_await_check<N> (

lambda, hclib::promise<int> out,

hclib future_t *fl, ..,

hclib future_t *f4);

Task Launch with Replay

replay::async_await_check<N>(

lambda, hclib::promise<int out,

std::function<int(void*)>

error_check_fn, void * params,

hclib future_t *fl, ..

hclib future_t *f4);
r

12

Ha banero-C++ Overview

■ Project led by Vivek Sarkar (GaTech/Rice U)

■ Library-based tasking runtime and API

■ Semantically derived from X10

■ Focused on: lightweight, minimal overheads; flexible
synchronization; locality control; composability with other
libraries;

■ Simplified deployment: no custom compiler, entirely library-
based, only requires C++11 compliant compiler

■ Uses runtime-managed call stacks to avoid blocking

■ https://github.com/habanero-rice/hclib

Sandia
National
Laboratories

13

Habanero-C++ Overview

HClib constructs

Sandia
National
Laboratories

Description Example

Asynchronoustaskcreation async(() -> { S1; });

Bulk task synchronization finish(() -> {

async(() -> { S1; async(() -> S2;); });

1);

Futures and promises async(() -> { prom->put(42); });

async(() -> { prom->get_future()->wait(); });

async_await(0 -> {...}, prom->get_future());

Bulk task creation forall(loop, (i, j, k) -> f S3; });

Places for locality control async_at(pl, () -> { S4; });

14

Ha banero-C++ Overview Sandia
National
Laboratories

■ Express data dependencies using promises and futures.

■ hclib::promise

■ Store a value using single assignment semantics : promise.put(value)

■ hclib::future

■ Retrieve the value stored in a promise : value = future.get()

■ Can be used as dependency for tasks

■ Relation between future and promise

■ future = promise.get_future()

■ If accessed from different threads put() and get() are synchronized
thus enabling a way for synchronization.

15

HClib extension: (1) Reference Counting

■ Current implementation leaves it to user to manage dynamic
allocated memory (no automatic garbage collection).

■ Reference counting semantics:

■ Provide a way to perform garbage collection based on the use of future
as task dependency

■ Allows transparent handling of data access by replay/replicated tasks.

■ Implementation extends promise to have a reference count

■ Count set during object construction

■ Count decreased using release() method

■ Extend async_await to perform automatic reference counting

■ Reference count is decreased each time a future associated with the
promise is used as dependency

Sandia
National
Laboratories

16

Task Replication
Replic te

Fork

Oil' Compute

+

• diamond::async_await_check<N> (lambda,

hclib::promise<int> out, hclib_future_t *fl,

.., hclib_future_t *f4);

Join

Sandia
National
Laboratories

• Preventive failure mitigation

• N-plicates the task and checks for equality of put operations at the end of

the task

• If error checking succeeds, actual puts are done

• If error checking fails, puts are ignored and the error is reported using an

output promise
17

Replication (Continued)
diamond::async_await_check<2>(—

Fork

Compute

Detected
Join

Decide

&mho
word
Laboratories

diamond::async_await_check<3>(

Fork

Compute • •
Join

■ Duplicate (N=2) — Create two tasks and check for error in puts
■ If error checking fails, a third task is created

■ Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
■ Two out of three outputs should match for success

18

Task Replay

1 Detected

Replay

Up to N times

replay::async await check<N>(lambda,
hclib::promise<int> out, std::function<int(void*)>
error _ check_ void * params, hclib_future t *fl,
.. , hclib future t *f4);

• Dynamic response to failure

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• The task is executed N times at most if there is any error
• If error checking fails, puts are ignored and the error is reported using an output

promise

Sandia
National
Laboratories

19

ABFT Tasks

1
\AO ABFT

Sandia
National
Laboratories

abft::async await check (lambda, hclib::promise<int>
out, std::function<int(void*)> error_check_fn, void *

params, hclib future t *fl, .. , hclib future t *f4,
ABFT lambda);

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• If there is error then ABFT lambda is executed and checked for error again at its
end
• If error checking fails, puts are ignored and the error is reported using an output promise

20

Performance

G

G

T

T

G

A

C

T

A

T G T T A C G G

0 0000 00 0 0

0 0 3 10

i

00
31
3 3

0 0 3 10

6

00 3 6

0;341U 1442 014
114011

0 3414 947 543 2
+ 431 21

0 1 644 7 6 4 846
'4 yy

0 0 4i 3 14? 846 5

0 0 2 13

,t
811 1:1

li

11 k
0 3415 4 6 11 1048
+ 4u+s I +ti+u

o 1 0 3 2 7 918 1 7

• On 2 Haswell CPU node (16x2 cores)

• 1D and 3D stencil code

• Conjugate Gradient with crank_1 sparse matrix

• Smith-Waterman (SW) algorithms

• Task-parallel Fault-Tolerant Cholesky Factorization
• Based on the Cao and Bosilca (IPDPS2016)

• The application data is over-decomposed.
• 4 way for stencil and CG

• 64x64 for SW and Cholesky

Sandia
National
Laboratories

21

Replay and replication do not double E Eres
the memory overhead

1 worker

Synthetic
vanilla

0.19 GB

Stencil 1D
vanilla

0.67 GB

Replay
1.02 GB

Replication Mix Replay

0.98 GB 1.08 GB

32 workers 6.19 GB 6.67 GB 7.02 GB 6.99 GB 1 7.08 GB

Mix Replication

1.05 GB
7.05 GB

• Synthetic benchmark just launch empty tasks iteratively

• Resilient 1D stencil code execute 128 tiles (16K points per
tile) per iteration (4 tasks per worker)

• Executed 1M iterations

• Tested on NERSC's Cori (2 Haswell CPUs, 32 cores total,
2.3GHZ) system

22

Performance without faults

Ex
ec
ut
io
n
Ti
me
 (
Se

co
nd

s)

• Baseline • Replay Replication • ABFT

100

75

50

25

0 11 NEI ill mol •

Stencil Stencil CG SW Cholesky
1D 3D

Sandia
National
Laboratories

• Replication is expensive for 1D stencil, CG and SW.

• Observed some cache hits with 3D stencil

• High cache hits and critical path in task-base Cholesky suffers

less re • lication overhead 23

Mixing replication and replay
• 0% • 20%

1 1
Stencil 1D Stencil 3D

• Replication doubles the execution time of 1D case.

• We observed many L3 cache hits in the 3D case.

• Less overhead for replication

Sandia
National
Laboratories

24

Application delay is proportional to theditaNavo,:a,
Laboratories

of failures
Ex
ec
ut
io
n
Ti

me
 I
nc
re
as
e
(P

er
ce

nt
ag

e)
 40

30

20

10

0

-10

1 (:%_, 1 0

tec ee 403 VA \Ci (ZS/ I 4.0 . pp.') Nil 'NI

VA') CiCk
1L‘'

ite0‘ 3'0 ,z#G21 C vteV ciP eel '‘c)‘ 1!)1:°

544 e0` ,c‘V.k e.0‘02' y1/40'

NV/ GC" 544 G*P-

Scalability of 3D stencil code (MPI+Resli

HCLIB)
Ex

ec
rt

io
n
Ti
me
 (
se
co
nd
s)

100

75

50

25

■ Baseline ■ Replay le Replication

4 8

Number of Nodes

t ndia
National
Laboratories

• MPI-HCLIB implementation (1D, Weak scaling, over-decomposed)
• No failure
• MPI (2-sided) calls are running on special worker (thread-funnel).

• Preliminary results indicate replication overhead are masked by MPI
overhead

26

Ongoing Work: Resilient Kokkos

Kokkos::View< Data Type Execution Space, Memory Space, > 11

GPU Devic
Memory

• Kokkos provides abstraction of data and (on-node) parallel
program execution
• Kokkos::View provides an array with a variety of tunable parameters

through template

• Execution and Memory Space to provide performance portability

over multiple node architecture
• Exploit C++ Lambda to support parallel program execution

• Kokkos' abstraction to enable resilient parallel computation!

Sandia
National
Laboratories

27

Resilient Kokkos enables resilient
data parallel computation

r--Kokkos: : View <double *, ..., ResilientSpace > A(1000,
parallel_for (RangePolicy0(0, 100), KOKKOS_LA

const int i)

{
A(i)=...; [Replication]

});

•

Kokkos: :View <double *, ..., ResilientSpace > A(1000);

parallel_for c`!loop_1", Rangepolicy<>(0, 100),
KOKKOS_LAMBDA (const inti)

{
Ao)=...;

});

Sandia
National
Laboratories

paralle _for (RangePolicy<>(0, 100), KOKKOS_LAMBDA (const int
i)

{
A0)=...;

1);

Pkutomatic Checkpointing

28

Conclusion

■ Discussed Resilient Programming Models for:

■ Asynchronous Many Task Programming Model

Analytical model

Simulator based study

Resilience is embedded to the programming model itself.

Simple extension of tasking API to enable resilient computation patterns

■ Kokkos

Extend Memory and Execution Space concept to enable reslience in

application data and computation

Sandia
National
Laboratories

29

Q&A
Sandia
National
Laboratories

30

