

Enabling a Culture of Developer Productivity and Software Sustainability

Elaine M. Raybourn
Sandia National Laboratories
emraybo@sandia.gov, [@elaineraybourn](https://twitter.com/elaineraybourn)

SIAM CSE March 1, 2019

exascaleproject.org

ideas-productivity.org

I help organizations tell their stories.

- I am a social scientist who deepens understanding by being embedded in different cultures.
- Cultures: DARPA, DoD (Army, SOF, USMC, OSD, Team Orlando), BT Research, FhG FIT, INRIA, DOE Office of Science, Academia, National Labs
- Research: innovation and productivity, immersive learning environments, design of transmedia learning ecosystems, cultural awareness
- Focus on ECP productivity since 2017, transmedia learning since 2010, games, immersive virtual environments, social simulations, and intelligent community systems since 2000
- Passion: ***Seize opportunities that allow us to learn about ourselves and others***
- Favorite question: ***Why not?***

IDEAS productivity IDEAS-ECP team

Michael Heroux (SNL), **Co-Lead PI, Director, Software Technology**

Lois Curfman McInnes (ANL), **Co-Lead PI**

David Bernholdt (ORNL), **Institutional PI, Outreach Lead**

Elsa Gonsiorowski (LLNL), **Institutional PI**

Osni Marques (LBNL), **Institutional PI, Webinars Lead**

David Moulton (LANL), **Institutional PI**

Boyana Norris (Univ of Oregon), **Institutional PI**

Elaine Raybourn (SNL) **Institutional PI, PSIP Lead**

Satish Balay (ANL)

Roscoe Bartlett (SNL)

Anshu Dubey (ANL)

<https://www.ideas-productivity.org>

Patricia Grubel (LANL)

Rinku Gupta (ANL), **BSSw Editor-in-Chief**

Stephen Hudson (ANL)

Reed Milewicz (SNL)

Mark Miller (LLNL)

Jared O'Neal (ANL)

Barry Smith (ANL)

Greg Watson (ORNL)

Jim Willenbring (SNL), **SDK Lead**

Paul Wolfenbarger (SNL)

Lisa Childers (ALCF)

Rebecca Hartman-Baker (NERSC)

Judy Hill (OLCF)

Hai Ah Nam (LANL), **BSSw Fellows**

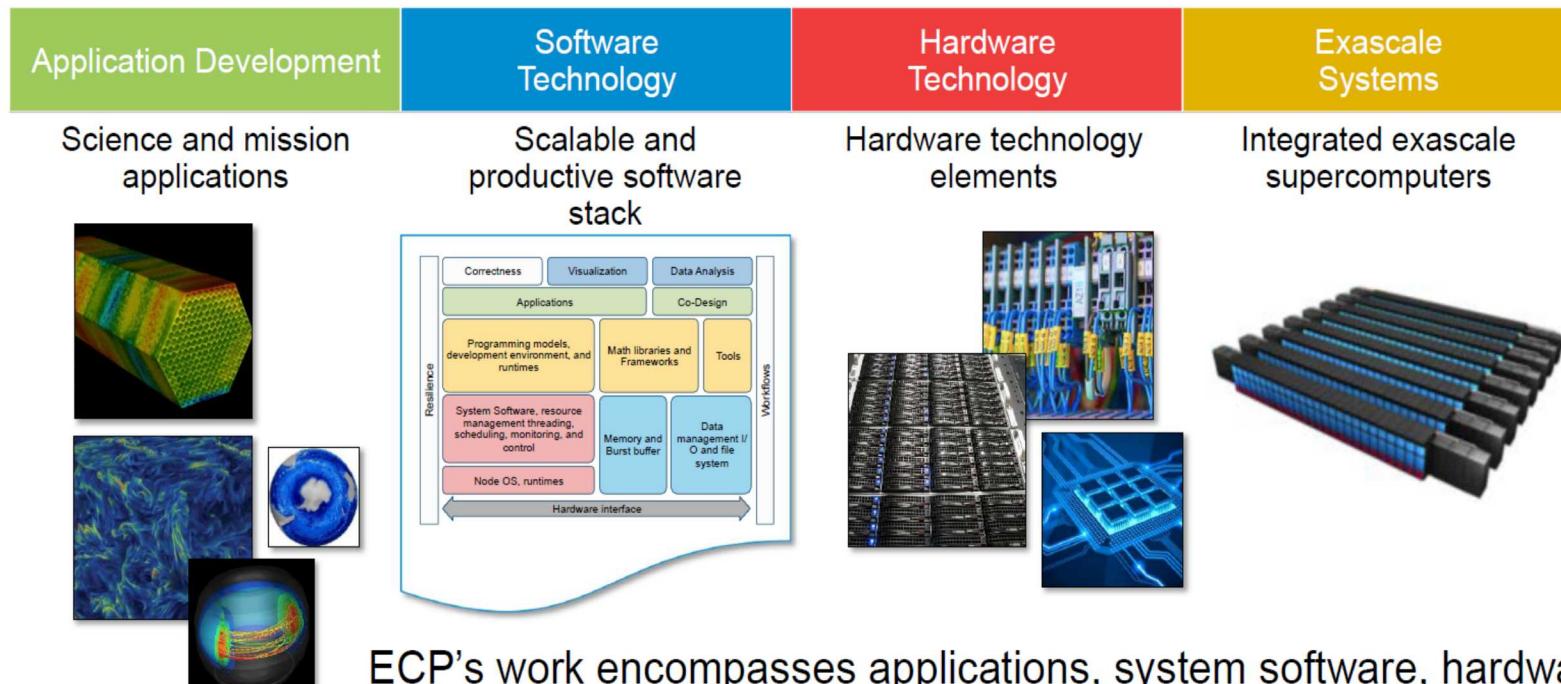
Jean Shuler (LLNL)

Computing Facilities Liaisons

Lawrence Livermore National Laboratory

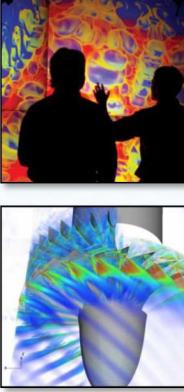
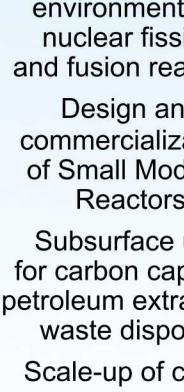
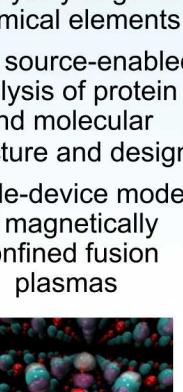
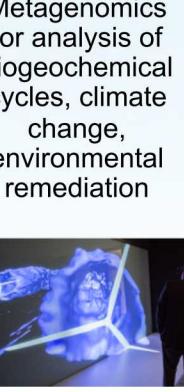
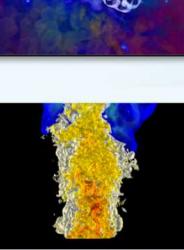
Los Alamos
NATIONAL LABORATORY
EST. 1943

OAK RIDGE
National Laboratory


Sandia
National
Laboratories

O UNIVERSITY OF
OREGON

What is the Exascale Computing Project?






- As part of the National Strategic Computing initiative, ECP was established to accelerate delivery of a **capable exascale computing system** that integrates hardware and software capability to deliver approximately 50 to 100 times more performance than today's petaflop machines.
- ECP's work encompasses applications, system software, hardware technologies and architectures, and workforce development to meet the scientific and national security mission needs of DOE.

To achieve capable exascale requires a holistic approach

ECP's work encompasses applications, system software, hardware technologies and architectures, and workforce development

ECP applications target six strategic areas

National security	Energy security	Economic security	Scientific discovery	Earth system	Health care
<p>Stockpile stewardship</p> <p>Next-generation electromagnetics simulation of hostile environment and virtual flight testing for hypersonic re-entry vehicles</p>	<p>Turbine wind plant efficiency</p> <p>High-efficiency, low-emission combustion engine and gas turbine design</p> <p>Materials design for extreme environments of nuclear fission and fusion reactors</p> <p>Design and commercialization of Small Modular Reactors</p> <p>Subsurface use for carbon capture, petroleum extraction, waste disposal</p> <p>Scale-up of clean fossil fuel combustion</p> <p>Biofuel catalyst design</p>	<p>Additive manufacturing of qualifiable metal parts</p> <p>Reliable and efficient planning of the power grid</p> <p>Seismic hazard risk assessment</p> <p>Urban planning</p>	<p>Find, predict, and control materials and properties</p> <p>Cosmological probe of the standard model of particle physics</p> <p>Validate fundamental laws of nature</p> <p>Demystify origin of chemical elements</p> <p>Light source-enabled analysis of protein and molecular structure and design</p> <p>Whole-device model of magnetically confined fusion plasmas</p>	<p>Accurate regional impact assessments in Earth system models</p> <p>Stress-resistant crop analysis and catalytic conversion of biomass-derived alcohols</p> <p>Metagenomics for analysis of biogeochemical cycles, climate change, environmental remediation</p>	<p>Accelerate and translate cancer research</p>

ECP Goals

- **Application Development:** Deliver a broad array of comprehensive science-based computational [applications](#) that effectively utilize exascale HPC technology to provide breakthrough simulation and data analytic solutions for scientific discovery, energy assurance, economic competitiveness, health enhancement, and national security
- **Ease of Use:** Create software that makes exascale systems usable by a wide variety of scientists and engineers across a range of applications
- **Diverse Architectures:** Enable by 2023 \geq two diverse computing platforms with up to 50 \times more computational capability than today's 20 PF systems, within a similar size, cost, and power footprint
- **US HPC Leadership:** Help ensure continued American leadership in architecture, software and applications to support scientific discovery, energy assurance, stockpile stewardship, and nonproliferation programs and policies

ECP by the Numbers

7
YEARS
\$1.7B

A seven-year, \$1.7 B R&D effort that launched in 2016

6
CORE DOE
LABS

Six core DOE National Laboratories: Argonne, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Sandia

- Staff from most of the 17 DOE national laboratories take part in the project

3
TECHNICAL
FOCUS
AREAS

Three technical focus areas (Application Development, Software Technology, Hardware and Integration)

100
R&D TEAMS
1000
RESEARCHERS

More than 100 top-notch R&D teams

- Hundreds of consequential milestones delivered on schedule and within budget since project inception

Many ECP ST products are available (many github)

For example...

Development Tools (19)

- SICM
- QUO
- Kitsune
- SCR
- Caliper
- mpiFileUtils
- Gotcha
- TriBITS
- Exascale Code Generation Toolkit
- PAPI
- CHILL Autotuning Compiler
- Search using Random Forest
- HDT

Programming Models and Runtimes Products (16)

- Legion
- ROSE
- Kokkos
- DARMA
- Global Arrays
- RAJA
- CHAI
- Umpire
- MPICH
- PaRSEC
- Open MPI
- Intel GEOPM
- LLVM OpenMP compiler
- OpenMP V&V Suite
- BOLT
- UPC++
- GASNet-EX
- Qthreads
- xSDK
- hypre
- FleCSI
- MFEM
- Kokkoskernels
- Trilinos
- SUNDIALS
- PETSc/TAO
- libEnsemble
- STRUMPACK
- SuperLU
- ForTrilinos
- SLATE
- MAGMA-sparse
- DTK
- Tasmanian

etc...

<http://legion.stanford.edu>
<https://github.com/rose-compiler>
<https://github.com/kokkos>
<https://github.com/darma-tasking>
<http://hpc.pnl.gov/globalarrays/>
<https://github.com/LLNL/RAJA>
<https://github.com/LLNL/CHAI>
<https://confluence.exascaleproject.org/display/STSS07>
<https://github.com/lanl/libquo>
<https://github.com/lanl/kitsune>
<https://github.com/llnl/scr>
<https://github.com/llnl/caliper>
<https://github.com/hpc/mpiFileUtils>
<http://github.com/llnl/gotcha>
<https://tribits.org>
<http://icl.utk.edu/exa-papi/>
<http://hpc toolkit.org>
<http://www.paradvn.org>
<http://www.cs.uoregon.edu/research/tau>
<http://ft.ornl.gov/research/papyrus>
<http://ft.ornl.gov/research/openarc>
<http://www.cs.uoregon.edu/research/pdt/home.php>

Challenges of CSE for ECP – *so many stories!*

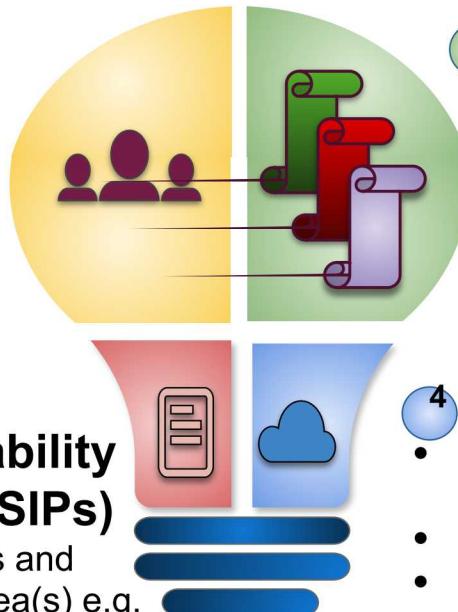
Technical

- All parts of the ecosystem can be under research
- Requirements change throughout the lifecycle as knowledge grows
- Importance of reproducibility, sustainability
- Verification is complicated
- Real world is messy, so is the software

Social

- Competing priorities and incentives
- Limited resources
- Perception of “invisible work” with deferred or no benefit
- Need for interdisciplinary interactions
- Boutique operations must scale!

Science through computing is only as good as the software that produces it.


IDEAS-ECP enables a culture of developer productivity

- Deliver value to ECP application teams and software technologies. This overarching goal drives all of our work.
- Engagement with the broader software community -- adapting and adopting approaches, and raising awareness of the particular needs of extreme-scale computational science.
- Development and dissemination of better scientific software practices
- Incorporation of informed strategies for human systems: focusing on changing the way scientific teams and individuals work.
- Engagement with leadership computing facilities: direct liaison roles for project leaders at all major DOE computing facilities.
- Web-based content development and delivery: expanding the development and usability of the Better Scientific Software web portal (<https://bssw.io>) as a go-to site for content on developer productivity and software sustainability.

Goal: Improve Exascale Computing Project (ECP) developer productivity and software sustainability while ensuring continued scientific success.

1 Interviews with Exascale Computing teams

- Applications & Software Technology
- Understand crosscutting productivity challenges, priorities, and opportunities

2 Productivity and Sustainability Improvement Planning (PSIPs)

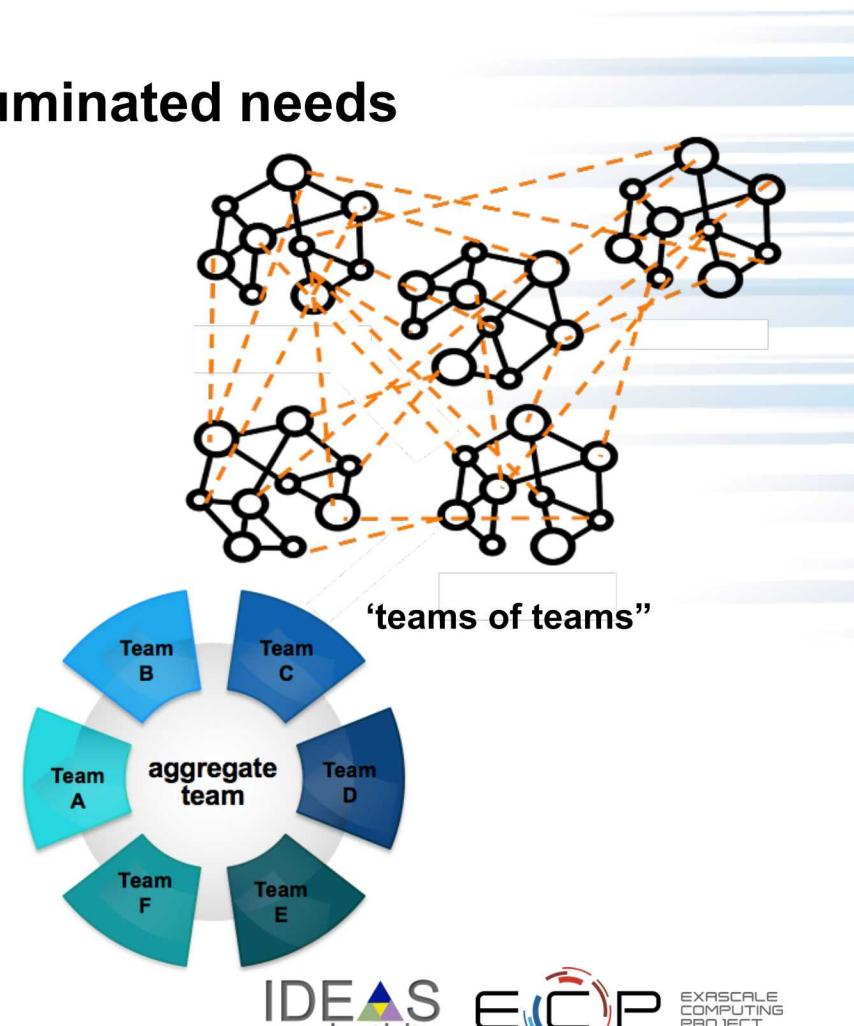
- Work with team to define focus and track progress on particular area(s) e.g. research software engineering

3 Customize, create, and curate methodologies

- Targeting application productivity and sustainability
- Create user stories to convey requirements from interview & PSIPs to determine priorities, plans for work

4 Outreach and training

- In partnership with US Department of Energy facilities
- Documents: WhatIs, HowTo, PSIP policies
- Webinar series and tutorials
- Better Scientific Software site (<https://bssw.io>)


Interactions with ECP teams have illuminated needs

- Testing/verification of scientific software
- Team onboarding and team member transitions
- Intermediate/advanced Git (especially for aggregate teams)
- Agile team management
- Agile workflows for scientific software
- Use of (interoperable) scientific libraries

Process for interviews, synthesis, outreach

ECP Application, Co-Design, and Software Teams:

CANDLE, ExaGraph, Exascale MPI, ExaStar, E3SM-MMF, EXAALT, MARBL, NWChemEx, UnifyCR, QMCPack, and WDMAApp

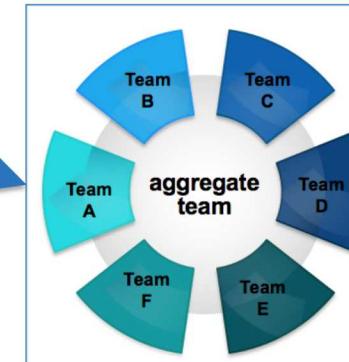
HI Training and Productivity: Integration with ST and AD

Members of the ECP Productivity Project

(i.e., IDEAS-ECP) work with ST teams to:

- **Understand** current software practices
- **Identify** crosscutting, high-priority needs for training and outreach
- **Collaborate** on Productivity and Sustainability Improvement Planning (PSIP)
- **Improve** software practices while maintaining scientific productivity; share best practices experiences

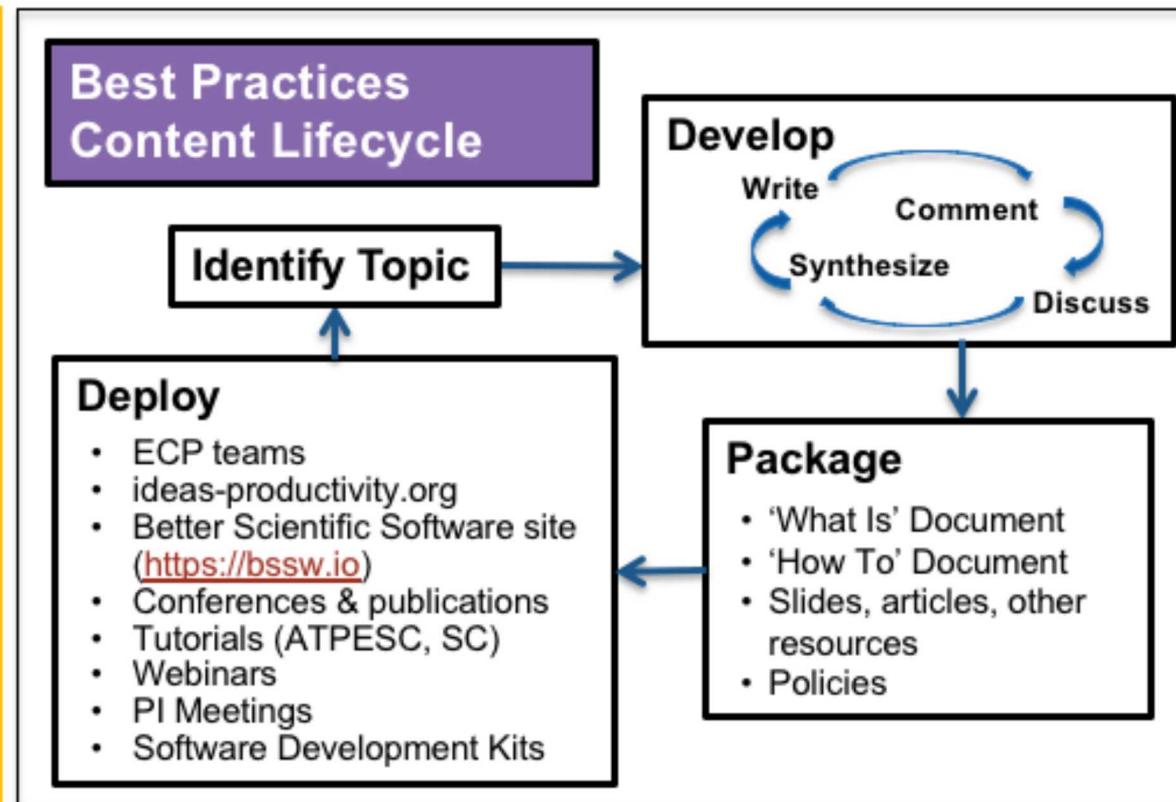
High-priority needs for ECP teams:


Tools that foster productive and sustainable collaboration (through software) for **aggregate** ECP science teams

- testing/verification of scientific software
- team onboarding and team member transitions
- intermediate/advanced Git (especially for aggregate teams)
- code reviews for identifying defects
- agile team management,
- agile workflows for scientific software
- use of (interoperable) scientific libraries

Process for interviews, synthesis, outreach

ECP Application, Co-Design, and Software Teams:


CANDLE, ExaGraph, Exascale MPI, ExaStar, E3SM-MMF, EXAALT, MARBL, NWChemEx, UnifyCR, QMCPack, and WDMApp

Many ECP projects are **aggregate** teams, composed of multiple successful previously existing teams, where software is a primary vehicle of collaboration.

Workflow for Best Practices Content Development

Modern learning theory:
Build from knowledge base: Elaboration and models
Vast body of SE content from broad community
Learn, adapt, adopt, assimilate

Productivity and Sustainability Improvement Planning (PSIP)

Examples: EXAALT & MPICH

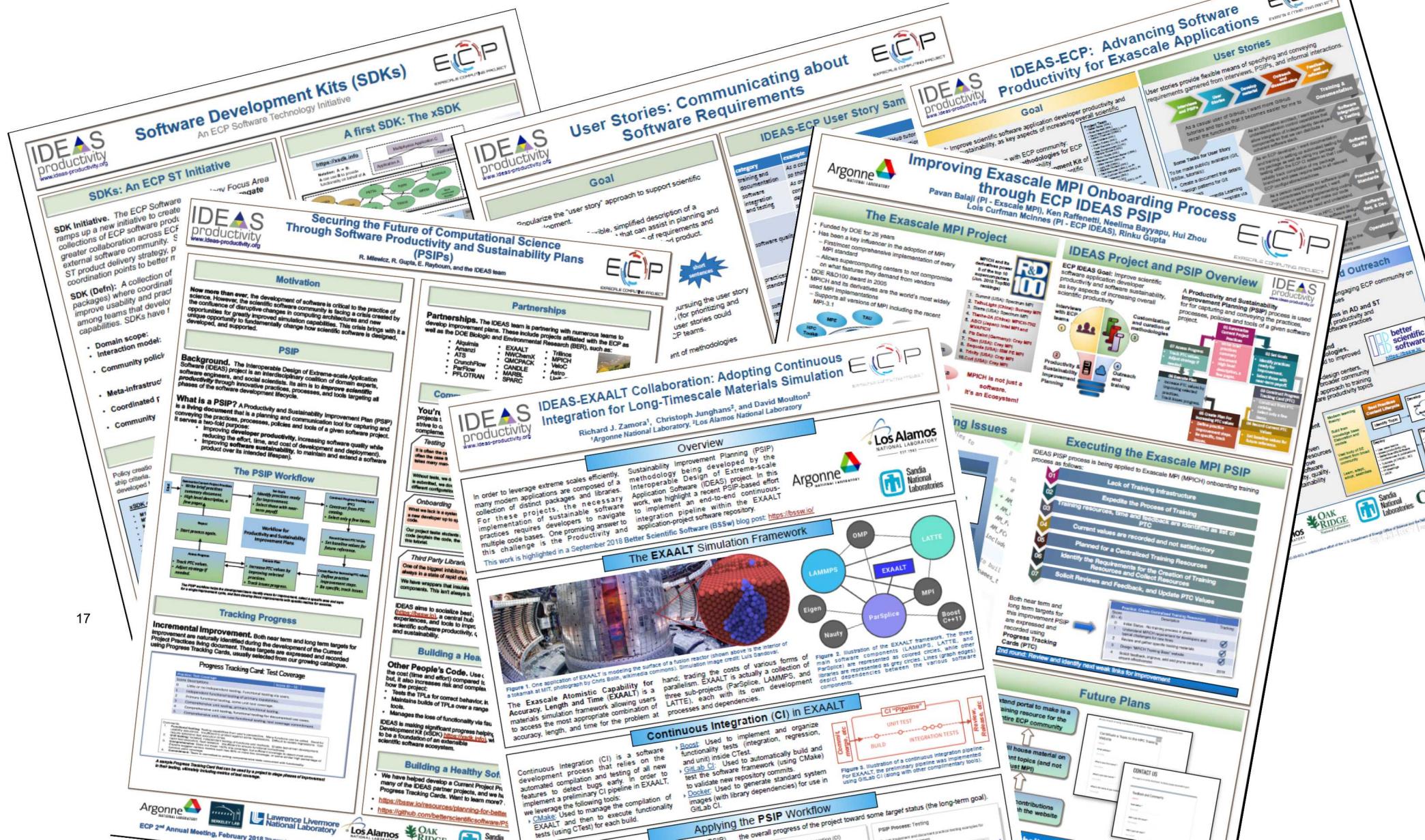
MPICH PSIP: Onboarding new team members

Practice: Create Centralized Training Resources		Tracking
Score (0 - 4)	Description	
0	Initial Status : No training process in place.	<input type="checkbox"/>
1	Understand MPICH requirement for developers and typical challenges for new hires	<input checked="" type="checkbox"/>
2	Review and gather specific training materials	<input checked="" type="checkbox"/>
3	Design "MPICH Training Base" website	<input checked="" type="checkbox"/>
4	Solicit feedback, improve, add and prune content to ensure effectiveness	<input checked="" type="checkbox"/>

PSIP workflow helps a team create user stories, identify areas for improvement, select a specific area and topic for a single improvement cycle, and then develop those improvements with specific metrics for success.

EXAALT PSIP: Continuous integration (CI) testing

BSSw blog article:


[Adopting Continuous Integration for Long Timescale Materials Simulation](#), Rick Zamora (Sept 2018)


PSIP Process: Continuous Integration (CI)	
Target: Implement and document a basic CI pipeline to act as the foundation for automated build and functionality testing.	
0. Initial Status.	<input checked="" type="checkbox"/>
1. Develop a minimal docker image, with EXAALT dependencies.	<input checked="" type="checkbox"/>
2. Implement a minimal 'yaml' script for the CI pipeline.	<input checked="" type="checkbox"/>
3. Update EXAALT docker image to leverage CMake, and create a ParSplice-specific image for build testing.	<input checked="" type="checkbox"/>
4. Generate step-by-step 'how-to' Docker-image documentation.	<input checked="" type="checkbox"/>
5. Extend CI to automate build and functionality testing with both CMake and Boost.	<input checked="" type="checkbox"/>
Score (0-5):	4

PSIP Process: Testing	
Target: Implement and document practical testing examples for ongoing EXAALT development.	
0. Initial Status.	<input type="checkbox"/>
1. Add 1-2 example tests using the existing CMake infrastructure (CTest)	<input checked="" type="checkbox"/>
2. Add 1-3 example tests using the 'Boost Test' library	<input checked="" type="checkbox"/>
3. Integrate the CTest infrastructure with the new Boost tests	<input checked="" type="checkbox"/>
4. Integrate the Boost-enabled CTest framework into the CI pipeline	<input checked="" type="checkbox"/>
5. Bonus: Work with EXAALT team to add more advanced tests to improve code coverage	<input type="checkbox"/>
Score (0-5):	3

Enabling culture change by involving others

The screenshot shows the homepage of the Better Scientific Software (BSSw) website. The header is dark blue with white text. It includes a logo for "better scientific software", navigation links for "Information For", "Contribute To BSSw", "Receive Our Email Digest", "Find Resources", "Blog", "Events", "About", and a search icon. A yellow banner at the top has a link to "BSSw Site Launch At SC17 ... Contribute To Better Scientific Software!" with a close button. The main content area has a dark blue background with a faint white grid pattern. It features a large white box with the URL <https://bssw.io>. Below the URL, a box contains the text: "Collaborative content development on general topics related to developer productivity and software sustainability for CSE". Another box contains the text: "We want and *need* contributions from the community ... Join us!". At the bottom, there are five blue buttons with white text: "GET ORIENTED", "Communities Overview", "Site Overview", "Intro To CSE", and "Intro To HPC".

Information For ▾ Contribute To BSSw Receive Our Email Digest

Find Resources ▾ Blog Events About

BSSw Site Launch At SC17 ... Contribute To Better Scientific Software! ×

Better Scientific Software (BSSw)

Scientific software has emerged as an essential discipline in its own right. Because computational models, computer architectures, and scientific software projects have become extremely complex, the Computational Science & Engineering (CSE) community now has a unique opportunity—and an implicit mandate—to address pressing challenges in scientific software productivity, quality, and sustainability.

<https://bssw.io>

Collaborative content development on general topics related to developer productivity and software sustainability for CSE

We want and *need* contributions from the community ... Join us!

GET ORIENTED [Communities Overview](#) [Site Overview](#) [Intro To CSE](#) [Intro To HPC](#)

What is BSSw?

Community-based resource for sharing information on practices, techniques, and tools to improve developer productivity and software sustainability for computational science and engineering.

We want and *need* contributions from the community ... Join us!

- **Types of content**
 - Informative articles
 - Curated links
 - Highlight other web-based content
 - Events
 - WhatIs, HowTo docs
 - Blog articles

Receive our email digest
Many ECP contributors

Information For **Contribute To BSSw** **Receive Our Email Digest**

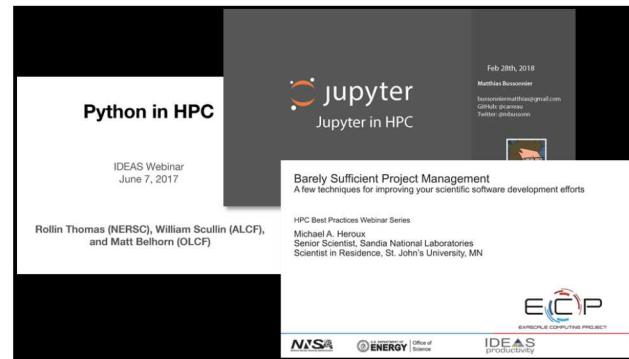
Find Resources **Blog** **Events** **About** **Information For**

<https://bssw.io>

New blog article ... Better Scientific Software: 2018 Highlights

Better Scientific Software: 2018 Highlights

Share f t in %


Vol. 2018

- [Better Science through Software Testing](#), Tom Evans
- [SuperLU: How Advances in Software Practices Are Increasing Sustainability and Collaboration](#), Xiaoye Li
- [Building Connections and Community within an Institution](#), Greg Watson and Elsa Gonsiorowski
- [Can You Teach an Old Code New Tricks?](#), Charles Ferenbaugh
- [Adopting Continuous Integration for Long-Timescale Materials](#), Rick Zamora
- [Porting Code to New Architectures](#), Bronson Messer

And many more!

HPC Best Practices Webinar Series

- 2017-06-07 Python in HPC, Rollin Thomas (NERSC), William Scullin (ALCF) and Matt Belhorn (OLCF)
- 2017-09-13 Barely Sufficient Project Management: A few techniques for improving your scientific software development, Mike Heroux (SNL)
- 2017-11-01 Managing Defects in HPC Software Development, Tom Evans (ORNL)
- 2018-01-17 Bringing Best Practices to a Long-Lived Production Code Charles Ferenbaugh (LANL)
- 2018-04-18 Software Citation Today and Tomorrow, Daniel Katz (NCSA and UIUC)
- 2018-06-13 Popper: Creating Reproducible Computational and Data Science Experimentation Pipelines, Ivo Jimenez (UCSC)
- 2018-07-18 How Open Source Software Supports the Largest Computers on the Planet, Ian Lee (LLNL)
- 2018-08-21 Software Sustainability: Lessons learned from different disciplines, Neil Chue Hong (Software Sustainability Institute, UK)
- 2018-09-19 Modern CMake, Bill Hoffman (Kitware)

Class of 2019

Class of 2018

We will begin accepting applications for the 2020
BSSw Fellowship Program in September, 2019

21

<https://bssw.io>

So your code will see the future

Subscribe to BSSw mailing list to be notified about BSSw Fellowship for 2020

BSSw Fellowship Program

Recognition & funding to leaders and advocates of
high-quality scientific software

We are looking for people who are:

- Passionate about scientific software.
- Interested in contributing powerful ideas, tools, methodologies, and more that improve the quality of scientific software.
- Able to use the fellowship to broadly benefit the scientific software community.
- Willing to participate as an alum in subsequent years to guide selection of future fellows and promote better scientific software in their community.

License, citation and acknowledgements

License and Citation

- This work is licensed under a [Creative Commons Attribution 4.0 International License](#) (CC BY 4.0).
- Requested citation: Raybourn, E.M. Enabling a Culture of Developer Productivity and Software Sustainability. 2019 SIAM Conference on Computational Science and Engineering, Spokane, WA, 2019. March 1, 2019. SAND2019-XXXX C. DOI: <https://doi.org/XXXXXX>.

Acknowledgements

- Special thanks to the members of IDEAS-ECP.
- This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. Images used by permission.