

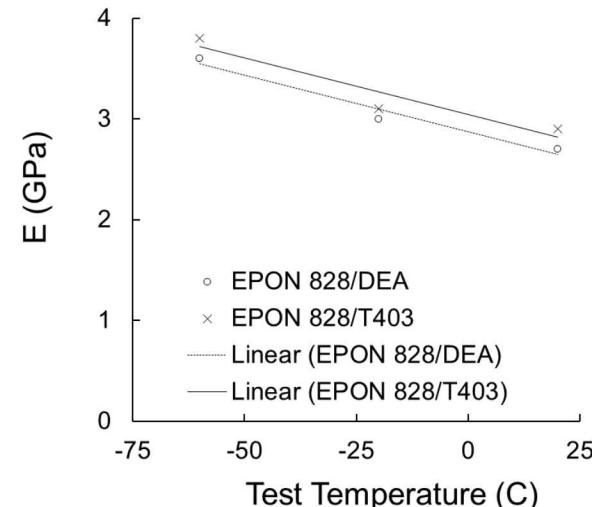
Interfacial Toughness: Variation with Surface Roughness and Test Temperature

Dave Reedy and Mark Stavig
edreedy@sandia.gov

Sandia National Laboratories
Albuquerque, NM

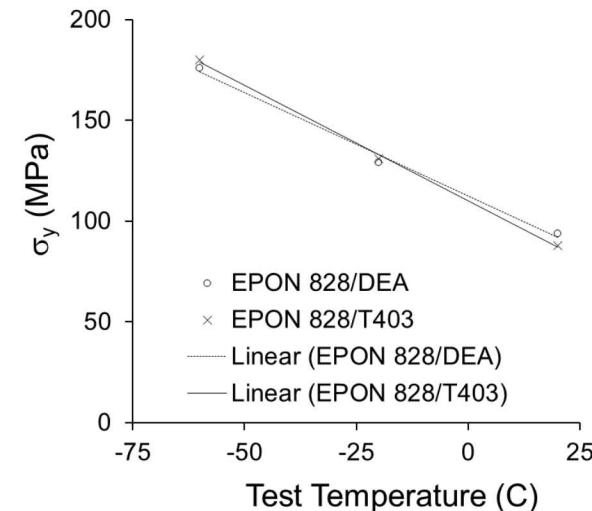
2/19/19

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

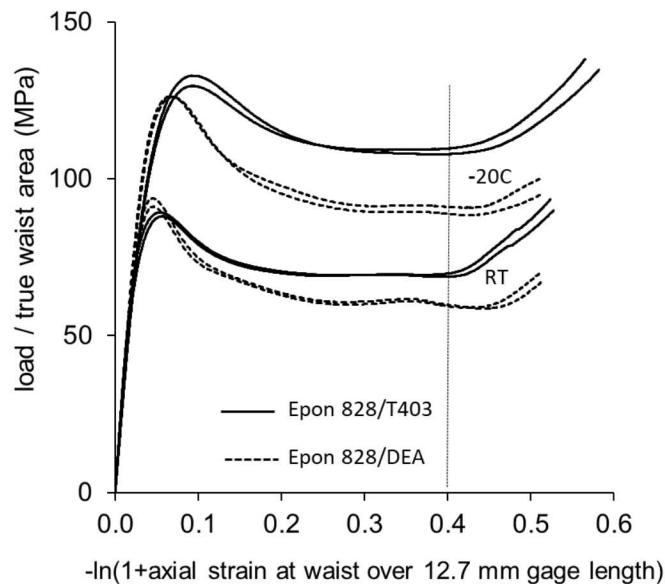

Tested two epoxy materials

EPON® Resin 828 cured with DEA (diethanolamine)

- 100:12 pbw mix ratio.
- Cure cycle: 24hr at 45°C, ramp to 71°C in 6 $\frac{1}{3}$ hr, hold at 71°C for 5 hr, cool down to RT.

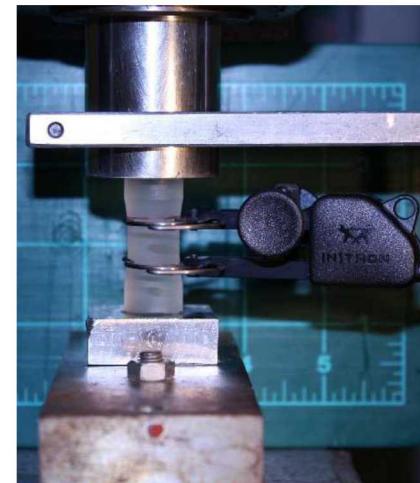

EPON® Resin 828 cured with Jeffamine® T-403 (polyetheramine)

- 100:43 pbw mix ratio.
- Cure cycle: 24hr at 23°C, followed by 3hr at 50°C, followed by 15hr at 80°C, cool down to RT.

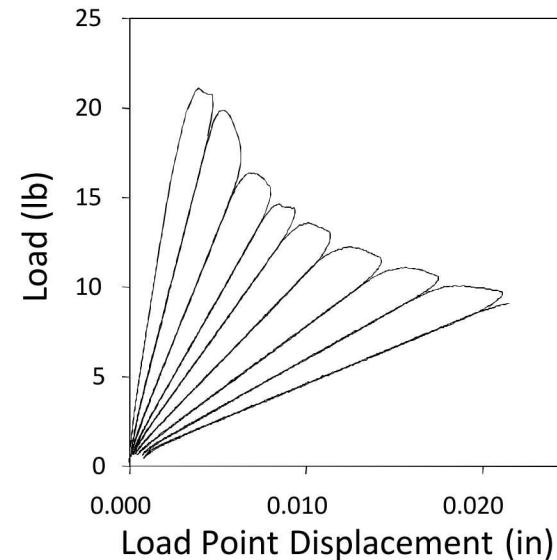


Compression plug stress-strain data (nominal strain rate = 0.001/s)

	EPON 828/DEA $T_g=70\text{ }^{\circ}\text{C}$		EPON 828/T403 $T_g=85\text{ }^{\circ}\text{C}$	
T (C)	E (GPa)	σ_y (MPa)	E (GPa)	σ_y (MPa)
RT	2.7	94	2.9	88
-20	3.0	129	3.1	131
-60	3.6	176	3.8	180


Large strain compressive response

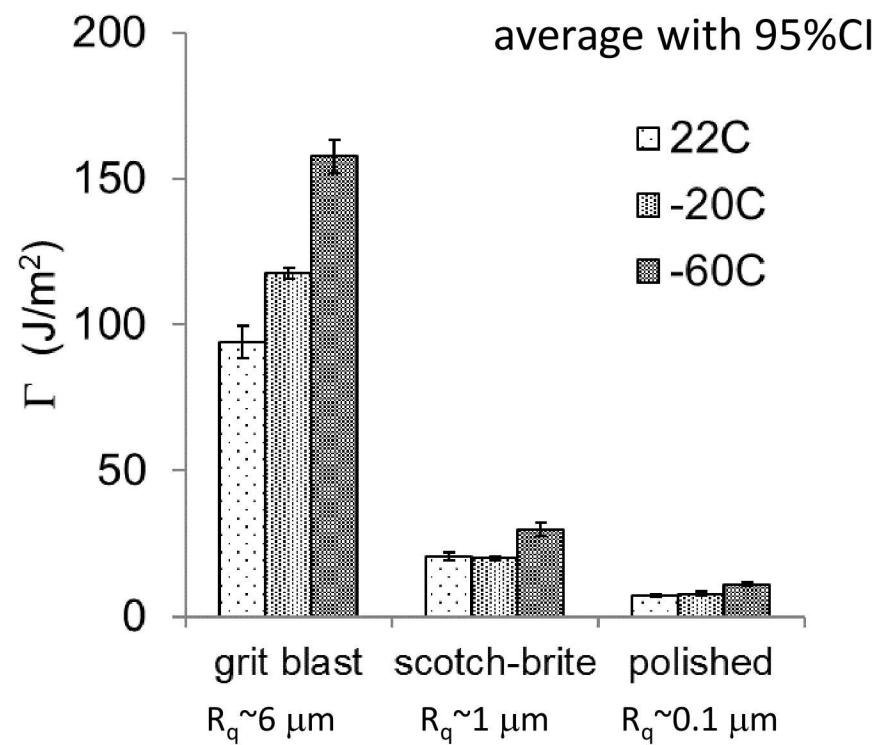
waisted specimen
min radius 7.2 mm

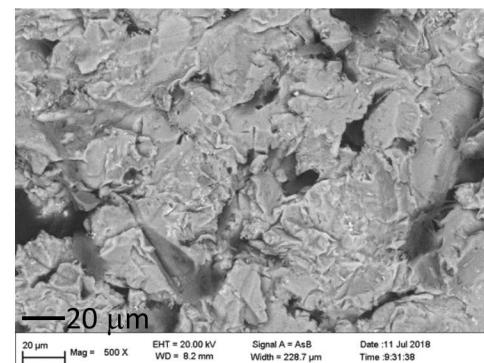
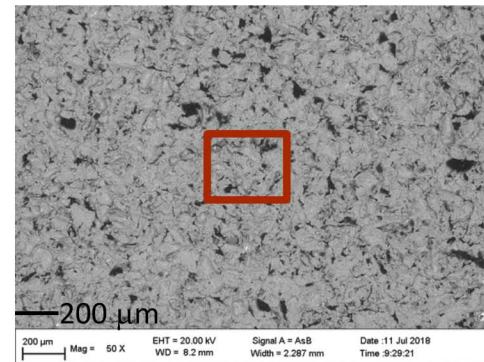
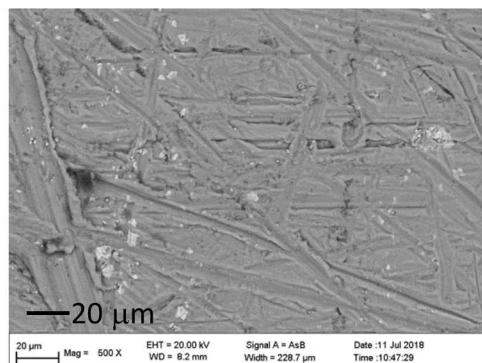
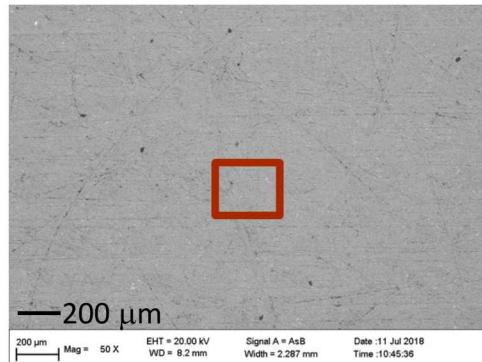
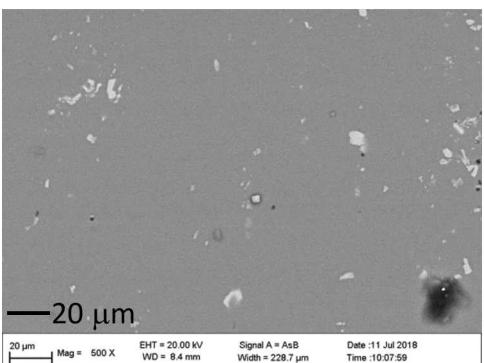
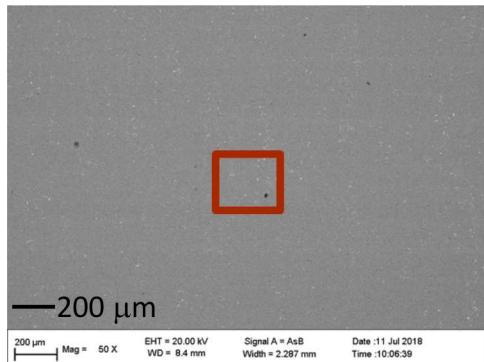


measured
change in
diameter

measured axial
displacement over a
12.7 mm gage
length

- Initial yield, strain-softening, a lower stress plateau, and finally hardening at large strain (tests terminated when strain ~ 0.5).
 - strain hardening begins at $\sim \varepsilon = \varepsilon_h > 0.4$, and is not strongly dependent on σ_y .
- softening generates localized deformation, so results depend on specimen geometry and loading.
 - nevertheless, overall shape should reflect yield strength, the post yield stress plateau, and the strain at which final strain hardening occurs.


Asymmetric Double Cantilevered Beam Sandwich specimen







- Can make multiple Γ measurements per specimen (crack propagates stably).
- Use unloading compliance to determine crack length.
- Produces a predominantly Mode I crack-tip loading with a slight tendency to push the crack towards the interface ($\Psi_{l=10\mu m} = -15^\circ$ for a 0.5 mm bond).

Γ for EPON 828/DEA epoxy-to-6061 aluminum interface

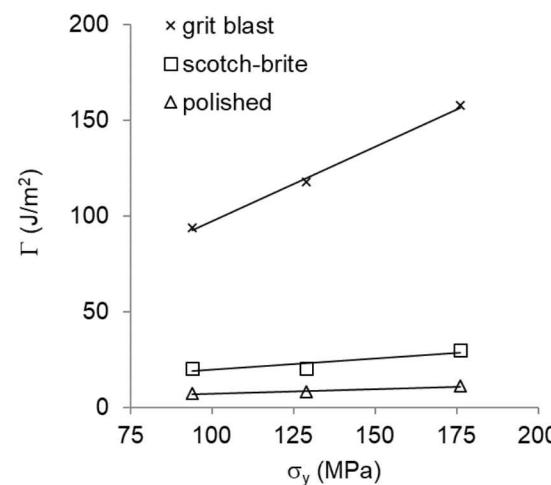
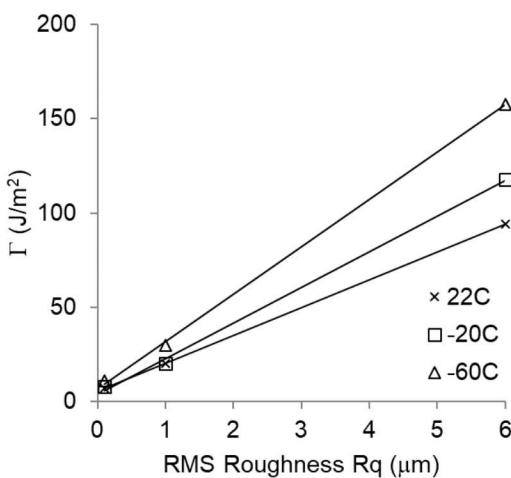
- Tested an epoxy/aluminum interface.
 - Epon828/DEA epoxy (100:12 pbw mix ratio 71°C cure).
 - 6061-T6 aluminum surfaces sonicated and cleaned with isopropyl alcohol prior to bonding.
- Both temperature and surface roughness have a strong impact on Γ .
 - Γ increases as test temperature decreases.

EPON 828/DEA epoxy-to-6061 aluminum fracture surfaces

Note: backscatter SEM images. Used EDS to identify al/epoxy regions. Then image thresholding where black=> carbon

Polished

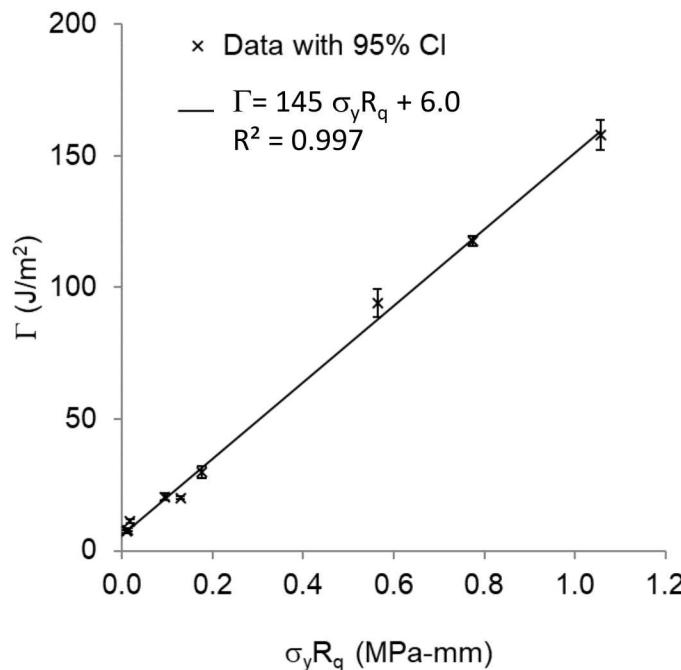
- $R_q < 0.1 \mu\text{m}$
- <1% carbon on aluminum fracture surface (4 specimens, analyzed - 3 regions/specimen)



Hand roughened using a Scotch-Brite™ pad

- $R_q \sim 1.0 \mu\text{m}$
- ~2-6% carbon on aluminum fracture surface (2 specimens analyzed - 3 regions/specimen)

Grit blasted

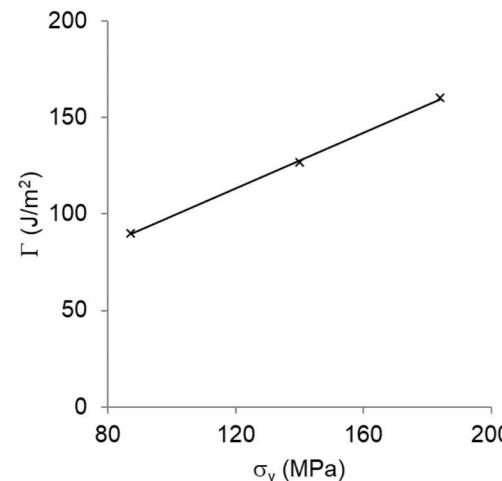
- $R_q \sim 6.0 \mu\text{m}$
- ~7-8% carbon on aluminum fracture surface (2 specimens analyzed - 3 regions/specimen)


Γ for EPON 828/DEA epoxy-to-6061 aluminum interface depends on surface roughness and test temperature

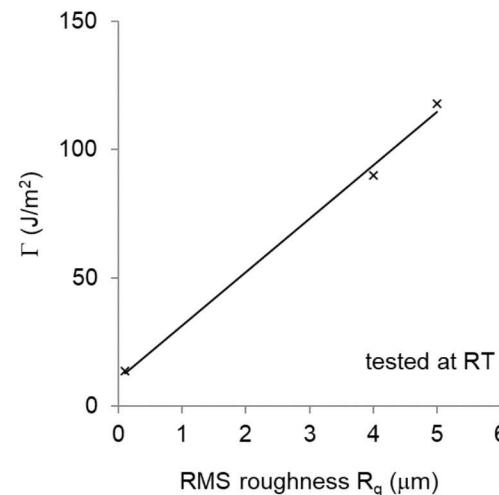
T ($^{\circ}\text{C}$)	σ_y (MPa)	$\frac{\Gamma_{\text{grit blast}}}{\Gamma_{\text{polished}}}$	R_q (μm)	$\frac{\Gamma_{-60^{\circ}\text{C}}}{\Gamma_{22^{\circ}\text{C}}}$
22	94	12.9	0.1	1.52
-20	129	14.9	1.0	1.45
-60	176	14.2	6.0	1.68
average		14.0		1.55

- Converted test temperature to yield strength (linear relationship between σ_y and T)
- Γ varies \sim linearly with σ_y when R_q is fixed and $\Gamma \sim$ linearly with R_q when σ_y is fixed.
- \sim factor of 14 increase in Γ when R_q is increased from 0.1 μm to 6 μm (\sim independent of test temperature)
- \sim 55 % increase in Γ when test temperature is decreased from 22 $^{\circ}\text{C}$ to -60 $^{\circ}\text{C}$ (\sim independent of roughness level).
- Simplest relationship consistent with observation: $\Gamma = \Gamma_0 + C\sigma_y R_q$ where Γ_0 is the toughness of a smooth interface and C is a proportionality constant.

Dependence on surface roughness and test temperature EPON 828/DEA epoxy-to-6061 aluminum interface

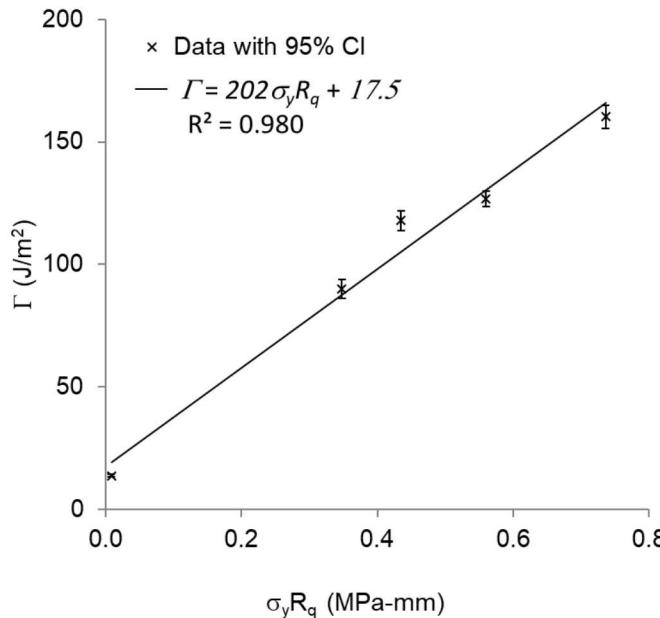


T (°C)	σ_y (MPa)	R_q (μm)	$\sigma_y R_q$ (N/mm)	Γ (J/m ²)	St Dev Γ (J/m ²)	# data pts
23	94	0.1	0.01	7.3	0.6	7
23	94	1	0.09	20.5	1.4	7
23	94	6	0.56	94	4.3	5
-20	129	0.1	0.01	7.9	0.7	8
-20	129	1	0.13	20.1	1.0	10
-20	129	6	0.77	117.6	1.4	5
-60	176	0.1	0.02	11.1	1.3	14
-60	176	1	0.18	29.8	3.1	10
-60	176	6	1.06	157.7	10.3	15


Plot mean with 95% confidence interval

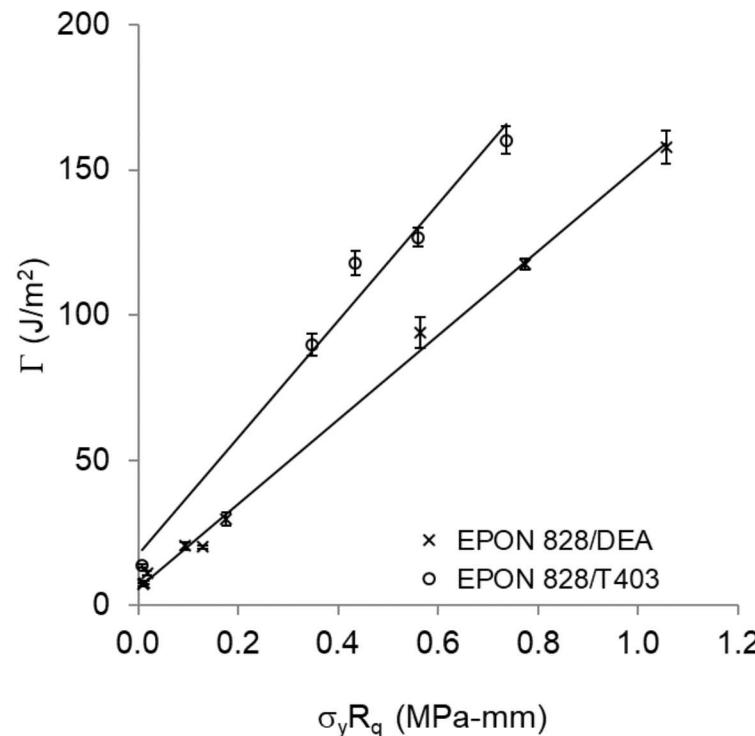
Γ for EPON 828/T403 epoxy-to-6061 aluminum interface

- In previous work, tested an EPON 828/T403 epoxy (100:43 pbw mix ratio)-to-6061 aluminum interface¹ (i.e., cured with a different hardening agent).
 - less comprehensive data set.
 - 6061-T6 aluminum surfaces sonicated and cleaned with isopropyl alcohol prior to bonding (i.e., same clean) .
- Dependence similar to that measured for the EPON 828/DEA epoxy to 6061 aluminum interface

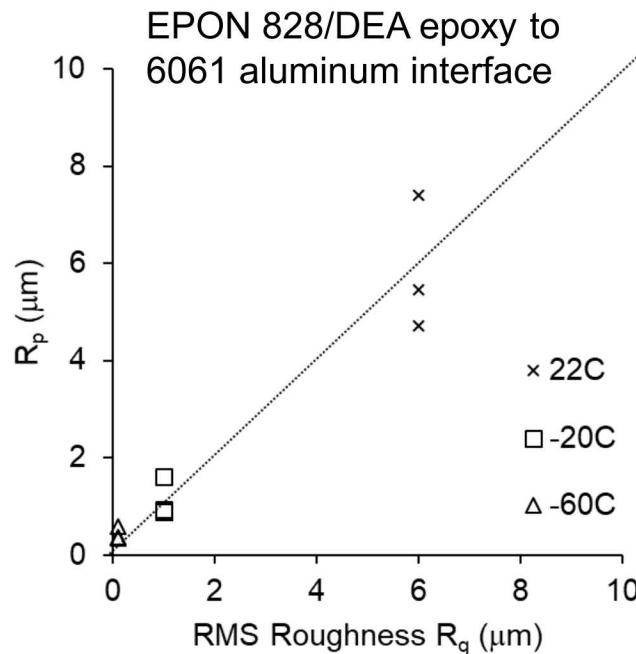

~80 % increase in Γ when test temperature is decreased from 22°C to -65°C ($R_q = 4 \mu\text{m}$)

> factor of 9 increase in Γ when R_q is increased from 0.1 μm to 5 μm (tested at 22°C)

¹ See Unlimited Release Report for further details: Reedy, E.D., Jr., et al., A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces, SAND2015-8066. 2015, Sandia National Laboratories: Albuquerque, NM.


Dependence on surface roughness and test temperature EPON 828/T403 epoxy-to-6061 aluminum interface

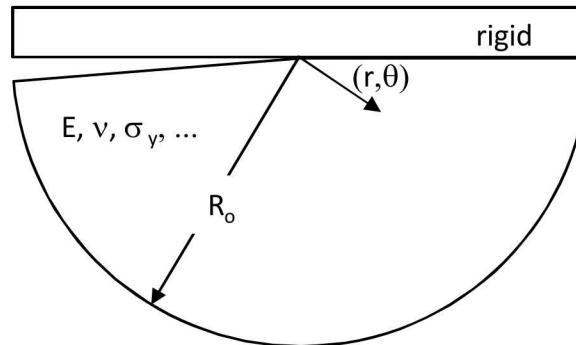
T (°C)	σ_y (MPa)	R_q (μm)	$\sigma_y R_q$ (N/mm)	Γ (J/m ²)	St Dev Γ (J/m ²)	# data pts
23	87	0.1	0.01	13.7	0.9	13
23	87	4.0	0.35	89.9	4.6	8
23	87	5.0	0.44	117.9	7.3	15
-25	140	4.0	0.56	126.8	4.4	10
-65	184	4.0	0.74	160.3	7.6	12


Plot mean with 95% confidence interval

Comparison of aluminum interfaces with either an EPON828/DEA or EPON828/T403 epoxy

- Slope of the Γ vs. $\sigma_y R_q$ line differs with the choice of epoxy adhesive.

- Is there a basis for observed Γ , R_q , and σ_y scaling?


- Estimated plane strain crack-tip plastic zone size R_p for case of a rigid adherend

$$R_p = \frac{1}{3\pi} \left[\frac{2\bar{E}\Gamma}{(1-\beta^2)\sigma_y^2} \right] \quad \text{where} \quad \beta = \frac{(1-2\nu)}{2(1-\nu)} \quad \text{and} \quad \bar{E} = \frac{E}{(1-\nu^2)}$$

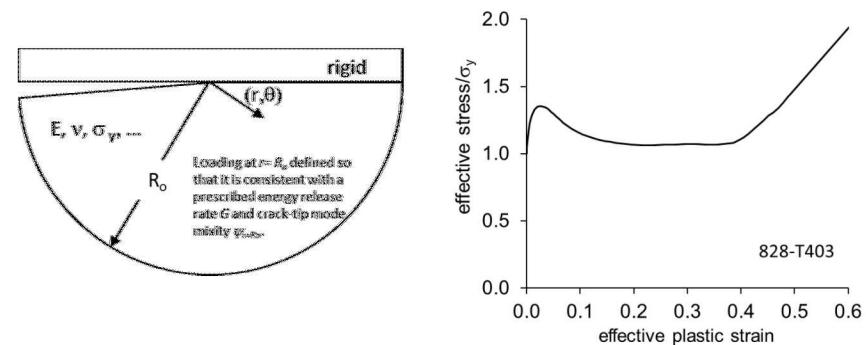
- R_p is roughly commensurate with surface roughness R_q and much smaller than the 500 μm ADCB bond thickness, etc. (i.e., SCY applies).

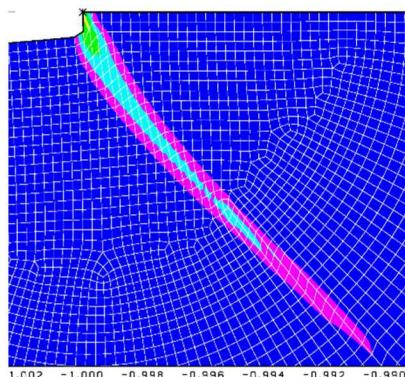
Is there a basis for observed Γ , R_q , and σ_y scaling?

- Consider the plane strain, elastic-plastic small scale yielding problem.
- Upper material is rigid while lower material is elastic-plastic.
 - plastic yielding will depend on the yield strength σ_y and other nondimensionalized properties (depends on the plasticity model and assume they are independent of σ_y).
- Desire a solution that determines ε at position r and θ .

Loading at $r = R_o$ defined by known linear elastic asymptotic crack tip fields so that it is consistent with a prescribed energy release rate G and crack-tip mode mixity $\psi_{r=R_o}$.

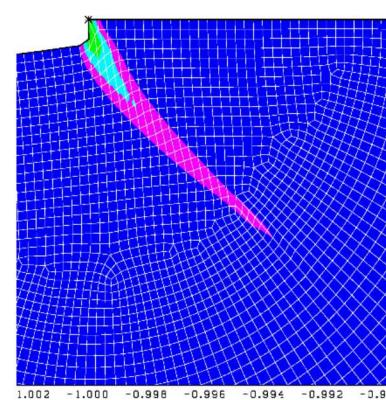
- Based on dimensional considerations, strain can be expressed as $\varepsilon = f \left(\frac{G}{Er}, \frac{G}{\sigma_y r} \psi_{r=R_o}, \nu, \dots \right)$
- $\sqrt{\frac{G}{Er}} = \frac{1}{E} \sqrt{\frac{GE}{r}} = \frac{|K|}{E} \sqrt{\frac{1}{r}}$ is consistent with a LEFM prediction for crack-tip strain.
- $\frac{G}{\sigma_y r}$ is consistent with the PP limit of the power-law-hardening plasticity prediction for crack-tip strain.


Is there a basis for observed Γ , R_q , and σ_y scaling?


- Hypothesize interfacial separation initiates at the tip of an arrested interfacial crack when the localized strain at the crack tip exceeds ε_h over some characteristic distance that scales with R_q .
 - recall epoxy shows strain-softening followed by rapid hardening at large strains ($\varepsilon = \varepsilon_h \sim 0.4$).
- If applied loading, and material parameters are fixed, then within the zone of very large plastic strains: $\varepsilon = f\left(\frac{G}{\sigma_y r}\right)$
 - the proposed criterion is $G = \Gamma$ and the crack propagates when $\varepsilon = \varepsilon_h$ at $r = R_q$
 - since ε_h is a constant (does not depend on σ_y) this implies that $\frac{\Gamma}{\sigma_y R_q} = a \text{ constant} \Rightarrow \Gamma \sim \sigma_y R_q$
 - this result is consistent with the observed scaling of $\Gamma - \Gamma_0 = C \sigma_y R_q$
- Also note that for SCY in a homogeneous, perfectly plastic material, COD $\delta_t \sim G/\sigma_y$.
 - the same scaling as above if the crack propagates at a critical δ_t that is commensurate with R_q .

Is there a basis for observed Γ , R_q , and σ_y scaling?

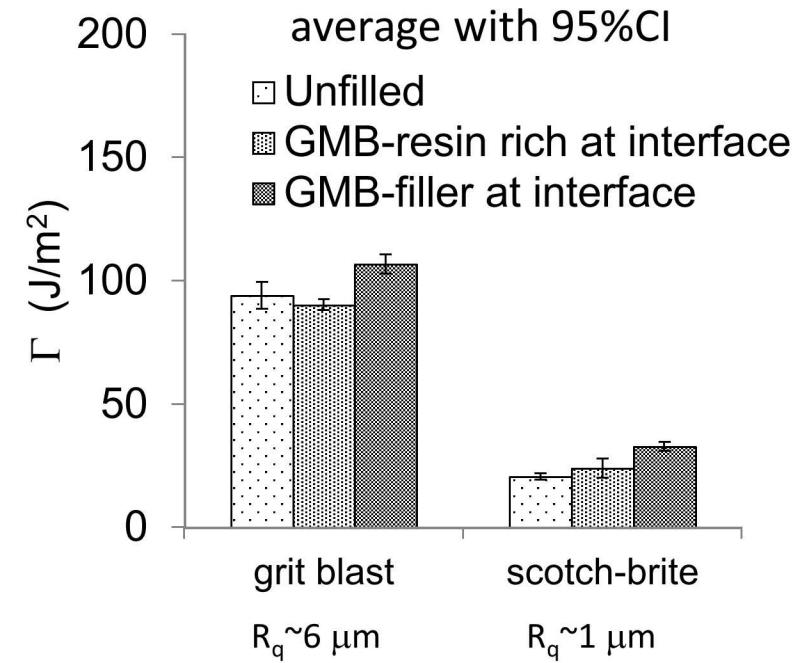
- Performed a plane strain FEA of the small-scale yielding problem using a J2-plasticity model whose effective stress-strain relationship is based on the experimentally measured Epon 828/T403 epoxy data.
- Note: analysis does not include pressure-dependent yield (believed to be important).



Crack tip $\varepsilon_e = 0.39$, COD = 0.64 μm
 $\sigma_e = 85 \text{ MPa}$, $p = 185 \text{ MPa}$,

$$\sigma_y = 65 \text{ MPa}, \Gamma = 0.1 \text{ J/m}^2$$

Crack tip $\varepsilon_e = 0.38$, COD = 0.67 μm
 $\sigma_e = 165 \text{ MPa}$, $p = 353 \text{ MPa}$


$$\sigma_y = 130 \text{ MPa}, \Gamma = 0.2 \text{ J/m}^2$$

- FEA results that include softening are consistent with the previous scaling-based prediction that the plastic strain at the crack-tip is unchanged when Γ/σ_y is held fixed.

- Anticipate the observed dependence of interface toughness on test temperature can be related to its dependence on loading rate.
- Does this approach extend to epoxy that do not display post-yield softening followed by rapid hardening at large strains?

Effect of adding GMB filler to the EPON 828/DEA epoxy

- Measured Γ for a GMB-filled EPON 828/DEA epoxy-to -6061 aluminum interface.
- Aluminum interface either grit blasted or roughened with scotch-brite.
- Epoxy either unfilled or with ~30% by weight glass microballoons (GMB).
 - during cure sample oriented so that GMB either floats to the interface or away from the interface (resin rich).
- Tested at RT
- GMB filler has a modest effect on Γ when the GMB floats to the interface.

