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Hardware Evaluation Interconnect Working Group

The Hardware Evaluation Interconnect Working Group is focused on the analysis
of current and future High Performance Computing Interconnects to inform the
development and procurement of future HPC systems. This will be accomplished
by evaluating architectural advancements proposed as part of the PathForward
program and through studies of potential interconnects for future exascale-class
systems. Analysis of future systems will be done using architectural simulation
tools and informed by data collected on current HPC systems.
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Tools and Capabilities in System Level Simulation/Analysis

• CODES
— Available Open Source: https://xgitlab.cels.anl.gov/codes/codes.git and

https://github.com/carothersc/ROSS 

— Version 1.0.0

• TraceR
— Available Open Source: https://github.com/LLNL/tracer

— Version 2.1

• SST
— Available Open Source: https://github.com/sstsimulator

— Version 8.1

• coNCePTuaL
— Available Open source: http://conceptual.sourceforge.net/

— Version 1.5.1 E41)F EXRECRLE
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End Point Models
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Representing HPC Workloads in Simulations

• Trace driven simulation of HPC communication
• Support trace replay of DUMPI and OTF2 traces

• Benefits: Detailed representation of communication.

• Challenges: limited scalability and large trace sizes.

• Skeleton applications
• Language or functions to simulate communication at high level. Can be hand or auto generated

• Benefits: Scalability and lower memory overheads.

• Challenges:

• State machine representations
• Description

• Benefits:

• Challenges:

• CoNCePTuaL domain specific language

• Ties in through one of the other methods
6
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Trace-driven Simulation

• Trace-based simulation of
production parallel applications

• Support for multi-job workloads
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What-if analyses

Designing/
procuring a

supercomputer

Modifying/optimizing
algorithms, libraries, job
allocation policies etc. ,

Network models

n-dimensional
mesh/torus

dragonfly

fat-tree

Communication traces

Application l

Application 2 

Application 3

:Application 4

Parallel discrete event simulation (PDES) engine
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Example Skeleton Code: All to One

Scalable Workload Model: 

void IncastAllToOne::call()

/* processes in the range of min_source id and max source_id send messages to a specific

destination. */

if ((proc_id != dst_rank_id) && (proc_id >= min_source_id && proc_id <= max_source_id)) {

for (uint32_t iter=0; iter < iteration_cnt; iter++) {

SWM_Isend(dst_rank_id, SWM_COMM_WORLD, this_tag, reqArgl, rspArgl, NO_BUFFER,

msg_size, pkt_rsp_bytes, &(send_handles[send_count]), reqArg2,

rspArg2);

}

SWM_Waitall(send_limit, send_handles);
}

coNCePTuaL: 

Tasks {t for each t in {min_source_id, max_source_id} where t <> dst_rank_id} asynchronously send
iteration_cnt msg_size byte messages to task dst_rank_id then all tasks await completion.

Notes: 
• This is a complete CONCEPTUAL program corresponding to the same all-to-one code above
• This can compile to a C+MPI program for execution on a real system or for directly driving a network simulator.
• CONCEPTUAL implicitly converts all undeclared variables into command-line arguments, allocates memory for

messages and MPI data structures, and matches sends and receives, letting the programmer focus solely on
the communication pattern.
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Skeletonized Apps: Compiler generated source-to-source
skeletonization

-ALLVM
f-

COMPILER
INFRASTRUCTURE

Advantages
• Auto-generate flexible

lightweight models
• True co-design: no

simulation-specific models
• Realistic modeling of node

compute based on app
characteristics

Challenges
• Not totally automatic —

needs some pragma hints
• Need to build out LLVM

instrumentation for better
compute models
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Original Source Code: 
double* big = new double[N]; 1) Developer
MPI Sendrecv(big,...); adds pragmas
for (i=0; i < N; ++i){
expensive compute0;

}
MPI -Allreduce(...);

Auto-skeletonized 
Source Code: 

double* big = nullptr;
MPI Sendrecv(big,...); //modeled
modelCompute(N,...);
MPI -Allreduce(...); //modeled 

2) Clang
source-to-source

Modified Source Code: 
#pragma sim null variable
double* big = new double[N];
MPI_Sendrecv(big,...);
#pragma sim compute
for (i=0; i < N; ++i){
expensive compute0;

}
MPI Allreduce(...);

Auto-skeletonized 
Object Code: 

 ► call SIM MPI Sendrecv(....);
3) sim++ src.cpp

call modelCompute(N);
Redirect MPI calls

call SIM MPI Allreduce(...);

Simulation
Endpoint
Model

4) Link to simulator with
 ) SIM MPI X symbols

sim++ -o sim.x -lsim
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State Machine Models: Motifs

bool EmberAlltoallGenerator::generate( std::queue<EmberEvent*>& evQ) {

if ( m loopIndex == m iterations ) {

if ( 0 == rank() ) {

double latency = (double)(m stopTime-m_startTime)/(double)m_iterations;

latency /= 1000000000.0;

output( "%s: ranks %d, loop %d, bytes %d, latency %.3f us\n",

getMotifName().c str(), size(), m iterations, m bytes, latency * 1000000.0

}

return true;

}

if ( 0 == m loopIndex ) {

enQ getTime( evQ, &m_startTime

}
);

);

enQ compute( evQ, m compute );

enQ alltoall( evQ, m sendBuf, m bytes, CHAR, m_recvBuf, m bytes, CHAR, GroupWorld );

if ( ++m loopIndex == m iterations ) {

enQ getTime( evQ, &m_stopTime );

}

return false;

}

10 E41d=
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Network Models
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Range of efficient models to identify trends, quantify
uncertainties in results
Lightweight simulation using analytic model

NIC
Tx

Queue

Rx
Tsend = NhopsaHop + aRT + 131_

Packet-based with simple congestion modeling
NIC
Tx

Queue Data

RxQueue

Switch
Tx

Queue

Tx
Queue

O

Packet-based with arbitration
NIC

Data „Lilar

Switch

Blr[-]
TxBuffer

Credits

Rx
Buffer RxBuffer 

Tx

12

NIC 

ri Tx Queue

Rx
Queue

NIC
Tx

Queue

RxQueue

O

NIC
TxBuffer

Rx
Buffer

• Establishes optimistic upper-bound on
performance in absence of contention

• Useful in validating software stack models
for traffic patterns without contention

• Establish baseline performance of different
routing/congestion control strategies

• Efficient execution, agnostic to router flow
control details

• Establishes pessimistic lower-bound on
performance by tuning arbitration and
token flow-control performance

• More complex and expensive
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Range of efficient models to identify trends, quantify
uncertainties in results

MACRELS: Analytic Model
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Topology and Routing

• Multiple topologies supported:
• 1-D and 2-D dragonfly, fat tree, torus/mesh, slimfly,

dragonfly+/megafly, hyperX

• Multiple minimal and adaptive routing algorithms
supported

Max Communication Times with Varying QoS Settings

in 140

>, 120

2 100
03

c 80
O

• 60

40

O 20
u

14

0

102.1
97.0

93.6

71.3

87.9

133.1

82.3

106.9

63.6 65.6

49.0 48.5

lammps

Baseline

nekbone

Multi-No-QoS Multi-QoS-I

nn

Multi-Qos-II

Dragonfly+ architecture: 2-level
fat trees for local group
connections, many options for
spine connectivity.

• Quality of Service and Advanced
Congestion Management
• Simulated QoS traffic classes by dedicating a

set of virtual channels to each traffic class

• Used bandwidth capping and traffic
differentiation techniques to implement QoS
on HPC networks
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Insitu Analysis of Network Congestion

• Just as in computational science simulations, output can be too large to
realistically capture for post-processing.

• Couple simulation with analysis code via Damaris data management system

• Damaris forwards to analysis tools (e.g., Vislt)

Visualizations of network
congestion in two-
application runs on
candidate HPC networks.
Visualization generated in
situ would avoid excessive
I/0.
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Collaborations
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Collaborations and Users

Vendor Collaborations/Users

• Lab developed tools in use at:

Cray

Intel

IBM

HPE

Universities

• Illinois Institute of Tech
• NC State University
• Tokyo Institute of Technology
• University of Tsukuba
• Florida State University
• Kyushu University
• The University of Arizona
• University of Oregon
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National Laboratory Collaborations/Users

• Argonne National Lab
• Berkeley National Lab
• Fermi National Lab
• Livermore National Lab
• Oak Ridge National Lab
• Sandia National Labs

• Improving accuracy of network simulations
• Exploring power-aware network links
• Studying impact of quality-of-service
• Improving MPI performance
• Use compiler support to combine motifs/skeletons

with complete vendor MPI/provider software stack
• Use compiler support to leverage work from

node/memory teams to improve endpoint models
„„
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Validation/Quantifying Uncertainties Examples
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Validation Example: Network Stack (SST/Merlin)
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BG/Q PingPong Latency Measured and Ember

B6/Q
Ember

4 16 64 256 1K 4K 16K 64K 256K 1M 4N/I3M 64M

MsgSize

• Challenges:

• Validate software stack
timings

• Match protocol switch
over points

• Also validates quiet
switch/router and link
latencies
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Validation Example: System Level Validation (TraceR)
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• Fat-tree network model validated against experiments on Quartz at LLNL
using TraceR
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Validation Example: Interference Effects (CODES)

Interference effects on Dragonfly-based Theta Cray XC
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Quantifying Uncertainties Example (SST/Macro)

1 2 3 4 5 6 7 8 9 10 11 12

Buffer Size ID
13 14 15 16 17 18

Combine parameter calibration with UQ
to identify accuracy limits

0.3

0.3

0.2

u. 0.2

i2 0.1
0.1
0.0

0.

Injection Bandwidth

Post Header Delay

•—
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. 
— Prior

------ Posterior
 . ...
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—. _.
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---  1---i --- ---

Memory Bandwldth Link Bandwidth

RDMA Pin Latency

Parameter Max Likelihood3 Prior Range Type

Injection Bandwidth (GB/s) 13.04 8.0 - 16.0 Network
Link Bandwidth (GB/s) 12.47 10.0 - 15.0 Network
Memory Bandwidth (GB/s) 11.20 8.0 - 15.0 System Software
Post Header Delay (us) 0.36 0.1 - 1.5 System Software
Post RDMA Delay (us) 0.88 0.5 - 2.0 System Software
RDMA Pin Latency (us) 5.43 1.0 - 7.0 System Software
RDMA Pin Delay Per Page (ns) 50.50 1.0 - 100.0 System Software
Hop Latency4 (ns) 100 n/a n/a
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Milestone 3 (Q2FY19) Validate simulator readiness to address
full network stack design space

Goals
• Verify simulator reproduces middleware behavior
• Validate simulators can explore all relevant design features
• Check accuracy of simulator approximations

Methodology
• Controlled experiments of

increasing complexity to validate
individual pieces

• Use known minimal routing tables,
topology of large OmniPath
system to limit space of unknowns

• Microkernel benchmarks with
known traffic patterns

ldeal Outcomes
• Validate simulator readiness to

address full network stack
design space

• Identify sources of
disagreement, inaccuracy in
simulation tools

ma-
Application Middleware

• Protocols
NIC Interconnect ECP HE Challenge: Huge

• Pt-2-Pt mil • Matching • Packetization •Topology permutational design space across
• Collectives • Ordering • Matching • Routing network stack
• Compute • Collective • Ordering -Minimal

delays algorithms • Progress -Adaptive
• Progress
• MMU: Mem
management

• Memory
management

• Flow control,
contention
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Validation #1: MPI Ping Pong

ingle OmniPath
switch

To Validate
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Validation #3: Minimal Routing Microkernel Benchmarks
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To Validate
Flow control
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Serrano: OmniPath fat tree with known
minimal routing tables and topology

Validates correctness of
hardware models for...
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Protocol, MMU,
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Compute Delays Flow Control,
Topology, Routing

Progress,
MMU, Protocol

Collectives, Progress



Milestone 1: Trade-offs in Exascale
Interconnect Architectures
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Activity 1 Trade-offs in Exascale Interconnect Architectures

• Looks at the high-level trade-offs for interconnect architectures that are likely to
be available in HPC machines in the 2021-2022 timeframe.
— Machine size (8k, 16k, 32k nodes)

• All use 32k ranks (4, 2, and 1 ranks/node)

— Injection bandwidth (200, 400, 800 Gbps)

— Topology (fat-tree, hyperX, dragonfly, dragonfly+/megafly)

— Rank allocation (linear, random)

• Helps determine worst case behavior

• Uses multiple simulation models (TraceR/CODES, SST/Macro, SST/Merlin)
— Using multiple simulation environments can provide added confidence in the results, as well
as providing added information for refining, understanding and improving the models.

• Benchmark communication patterns
— Halo3D, Sweep3d, SubA2A/FFT3D
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Sweep3D SST/Macro
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Subcom All-to-all - TraceR/CODES
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Equal Injection Bandwidth/Compute Ratio
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Milestone 2: Analysis of interference
sensitivity for next generation interconnects
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Why quality of service on HPC systems?
• Emerging trend in HPC systems is that hierarchical topologies (such as dragonfly) are

exhibiting run-to-run variability

• Poses significant challenge for job schedulers and application developers

• Possible ways to address variability:

— Isolate job partitions (such as on Blue Gene systems with a torus network)

— Explore alternate topologies and job mappings (minimize interference on fat-tree, hyperX)

— Incorporate Quality of Service and traffic differentiation

Weak scaling of
different Nekbone
problem sizes on
Theta Cray XC40
system (left).
Nekbone itself is
highly scalable as
shown on right Mira
Blue Gene/Q system.
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Image credit: "Early evaluation of the Cray XC40 Xeon Phi System 'Theta' at Argonne" (Tech Report) by S. Parker et al.
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Key questions on applying QoS to HPC networks

• How effective are QoS traffic classes in
regulating performance variability?

• What are the different ways in which
applications can benefit from QoS traffic
classes?

• How to make use of multiple traffic
classes at the software (MPI, OpenMP)
levels?

• How to make the job scheduler utilize
multiple traffic classes effectively?

Virtual
time

window

Update BW
stats

1. Get BW stats,
classify TCs as
over-BW

Bandwidth Monitor for
each TC (per port)

5. Update TC
bandwidth statistics

Packet Scheduler

2. Iterate through QoS
(high priority first)

3. Packets?
Buffer Space?
TC active?

4. Schedule packet

Fig: Traffic Differentiation and bandwidth capping algorithm fo
switch/N IC scheduler (TC- Traffic Class)

Used Modeling and Simulation techniques to answer the first two questions
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Prioritizing Entire HPC Applications

• Simulated slowdown in comm. time by generating background network traffic in parallel with Nekbone
skeleton application

• Introduced QoS by assigning high priority & bandwidth to Nekbone skeleton app.

• While Nekbone doesn't utilize full bandwidth, the low priority application takes its BW share

• Takeaway: Traffic differentiation with bandwidth shaping and prioritization can mitigate variability
while causing minimal slowdown to background traffic
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Prioritizing latency-sensitive operations

• Assigned high priority and guaranteed small fraction of BW to collectives

• High bandwidth and medium/low priority to rest of the traffic

• Nekbone skeleton application heavily relies on collective operations

• Takeaway: Traffic differentiation with small bandwidth guarantee and prioritization to collectives can
bring up to 60% speed up in communication time with Nekbone skeleton app.
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Multiple applications running In parallel

Max Communication Times with Varying QoS Settings
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• Skeleton Applications in parallel: Nekbone,
Nearest Neighbor and LAMMPS (Nekbone is
BW intensive as compared to others)

• Multi-QoS-I: Prioritizing Nekbone and
guaranteeing 1/3 BW

• Multi-QoS-II: Prioritizing collectives of all the
skeleton applications

• Takeaway: adding bandwidth cap on
Nekbone helps improve the performance of
other skeleton applications as well
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