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Introduction



Hardware Evaluation Interconnect Working Group

The Hardware Evaluation Interconnect Working Group is focused on the analysis
of current and future High Performance Computing Interconnects to inform the
development and procurement of future HPC systems. This will be accomplished
by evaluating architectural advancements proposed as part of the PathForward
program and through studies of potential interconnects for future exascale-class
systems. Analysis of future systems will be done using architectural simulation
tools and informed by data collected on current HPC systems.



Tools and Capabilities in System Level Simulation/Analysis

« CODES

— Available Open Source: https://xqitlab.cels.anl.gov/codes/codes.qgit and
https://github.com/carothersc/ROSS

— Version 1.0.0

 TraceR

— Available Open Source: https://github.com/LLNL/tracer
— Version 2.1

« SST

— Available Open Source: https://github.com/sstsimulator
— Version 8.1

« coNCePTualL

— Available Open source: http://conceptual.sourceforge.net/

~ . \ — cxmecn e
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End Point Models



Representing HPC Workloads in Simulations

» Trace driven simulation of HPC communication
» Support trace replay of DUMPI and OTF2 traces
» Benefits: Detailed representation of communication.
« Challenges: limited scalability and large trace sizes.

» Skeleton applications
« Language or functions to simulate communication at high level. Can be hand or auto generated
+ Benefits: Scalability and lower memory overheads.
« Challenges:

« State machine representations
* Description
* Benefits:
« Challenges:

« CoNCePTual domain specific language
« Ties in through one of the other methods
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Trace-driven Simulation

» Trace-based simulation of ' What-if analyses |
pI’OdUCtIOn para”el appllcatlons Designing/ Modifying/optimizing l
. procuring a algorithms, libraries, job
° Support for mUIt|-JOb Workloads supercomputer allocation policies etc.

Network models Communication traces

n-dimensional dragonfly
mesh/torus [W]

[ Parallel discrete event simulation (PDES) engine ]
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Example Skeleton Code: All to One

Scalable Workload Model:

void IncastAllToOne::call() {

if ((proc_id != dst rank id) && (proc_id >= min source id && proc_id <= max source id)) {
for (uint32 t iter=0; iter < iteration cnt; iter++) {
SWM_Isend(dst_rank id, SWM COMM WORLD, this_ tag, reqArgl, rspArgl, NO BUFFER,
msg _size, pkt rsp bytes, &(send handles[send count]), regqArg2,
rspArgl);

}

SWM _Waitall(send limit, send handles);
}
coNCePTual.:

Tasks {t for each t in {min_source_id, ..., max_source_id} where t <> dst_rank_id} asynchronously send
iteration_cnt msg_size byte messages to task dst_rank_id then all tasks await completion.

Notes:
* This is a complete CONCEPTUAL program corresponding to the same all-to-one code above
» This can compile to a C+MPI program for execution on a real system or for directly driving a network simulator.

» CONCEPTUAL implicitly converts all undeclared variables into command-line arguments, allocates memory for
messages and MPI data structures, and matches sends and receives, letting the programmer focus solely on
the communication pattern.
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Skeletonized Apps: Compiler generated source-to-source

skeletonization

2ALLVM
V‘/ —C O M P I LER
INFRASTRUCTURE

Advantages

» Auto-generate flexible
lightweight models

* True co-design: no
simulation-specific models

» Realistic modeling of node
compute based on app
characteristics

Challenges

* Not totally automatic —
needs some pragma hints

* Need to build out LLVM
instrumentation for better
compute models

Original Source Code:
double* big = new double[N];
MPI_Sendrecv(big,...);
for (i=0; i < N; ++i){

1) Developer

adds pragmas

Modified Source Code: |

#pragma sim null_variable
double* big = new double[N];
MPI_Sendrecv(big,...);

expensive_compute();
}

(MPI_Allreduce(...);

Auto-skeletonized
Source Code:
double* big = nullptr;

modelCompute(N,...);

(MPI_Allreduce(...); /modeled

MPI_Sendrecv(big,...); /modeled

2) Clang
source-to-source

#pragma sim compute
for (i=0; i < N; ++i){

expensive_compute();
}

(MP|_Allreduce(...); )

Auto-skeletonized
Object Code:

.

(

3) sim++ src.cpp
Redirect MPI calls

=] call SIM_MPI_Sendrecv(....);
call modelCompute(N);
call SIM_MPI_Allreduce(...);

4) Link to simulator with

Simulation
Endpoint
Model

SIM_MPI_X symbols
sim++ -0 sim.x -Isim

)
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State Machine Models: Motifs

bool EmberAlltoallGenerator::generate( std::queue<EmberEvent*>& evQ) {

10

if ( m_loopIndex == m_iterations ) {
if ( 0 == rank() ) {
double latency = (double)(m stopTime-m startTime)/(double)m iterations;
latency /= 1000000000.0;
output( "%s: ranks %d, loop %d, bytes %d, latency %.3f us\n",
getMotifName().c_str(), size(), m_iterations, m bytes, latency * 1000000.0 );
}
return true;
}
if ( 0 == m_loopIndex ) {
enQ getTime( evQ, &m_startTime );

¥

enQ compute( evQ, m_compute );
enQ alltoall( evQ, m_sendBuf, m bytes, CHAR, m recvBuf, m bytes, CHAR, GroupWorld );

if ( ++m_loopIndex == m_iterations ) {
enQ getTime( evQ, &m_stopTime );

k

return false;

Hades/Hermes

Firefly

ECP

(App Model)

(MPI)

(NIC)

(Network)
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Network Models



Range of efficient models to identify trends, quantify

uncertainties in results
Lightweight simulation using analytic model

NIC
Tx

S

NIC
Tx

Queue _M
Rx ||
—N Tsend = Nhops®Hop * ®RT * BL

Packet-based with simple congestion modeling
P

NIC Switch i Sswitch (® NIC
Ghisie i Data . quewe[] | 0 Gtisel [ ueu
0] !
Rx Tx H Tx Rx
Queue _1 E:I Queue '1 —_ — [ Queue '-l Queue
l
® w ®
Packet-based with arbitration
NIC Switch | Switch NIC
Ble)f(er B Eaia_ N Bff)f(er BJf)f(er “I H r_ Bt?f)f( Buffer '—}\ r BJf)f(er
Credits J I > \
H B 10 G I i O B B N
Buf)f(er __] r_ Buf)f(er \\ Buf)f(er '—I _— | _—b__r_ Buf)f(er Buffer “] 4_ Buf)f(e
“ —J
l
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Establishes optimistic upper-bound on
performance in absence of contention
Useful in validating software stack models
for traffic patterns without contention

Establish baseline performance of different
routing/congestion control strategies
Efficient execution, agnostic to router flow
control details

Establishes pessimistic lower-bound on
performance by tuning arbitration and
token flow-control performance

More complex and expensive -

ECP &=



Range of efficient models to identify trends, quantify
uncertainties in results

MACRELS: Analytic Model SCULPIN: Efficient contention modeling PISCES: Highest accuracy

Tsend = Nhops®Hop + RT + BL

Halo3D Xval random

Nodes: 8192 Nodes: 16384 Nodes: 32768

0.0020 topo-routing
Dragonfly minimal
Dragonfly par
Dragonfly ugal
Dragonfly valiant
Dragonfly+ minimal
Dragonfly+ par
Fattree fat_tree
HyperX minimal

HyperX par

0.0015

g
= 0.0010
0.0005

LogP SCULPIN PISCES PISCES LogP SCULPIN PISCES PISCES LogP SCULPIN PISCES PISCES
Expected  Pessimistic Expected  Pessimistic Expected  Pessimistic
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Topology and Routing

« Multiple topologies supported:

* 1-D and 2-D dragonfly, fat tree, torus/mesh, slimfly,
dragonfly+/megafly, hyperX

* Multiple minimal and adaptive routing algorithms
supported

Dragonfly+ architecture: 2-level
fat trees for local group
connections, many options for
spine connectivity.

Max Communication Times with Varying QoS Settings

W 1404 133.1

£ : x

1201  Quality of Service and Advanced

£ 1001 Congestion Management

5 & + Simulated QoS traffic classes by dedicating a
g 601 set of virtual channels to each traffic class

é 401 » Used bandwidth capping and traffic

€ 201 differentiation techniques to implement QoS
© on HPC networks

0 j
lammps nekbone nn

Il Baseline W Multi-No-QoS B Multi-QoS-I B Multi-Qos-Il
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Insitu Analysis of Network Congestion

« Just as in computational science simulations, output can be too large to
realistically capture for post-processing.

» Couple simulation with analysis code via Damaris data management system
« Damaris forwards to analysis tools (e.g., Vislt)

Visualizations of network
congestion in two-
application runs on
candidate HPC networks.
Visualization generated in
situ would avoid excessive
I/0.

m-l'" 3 B Tt |
1.0e+00 10 100 1000 100000 4.1e+05 . 5 T 'L 5 h

5 UV
Congestion 1.0e+00 10 100 1000
Congestion

Slimfly - AMG 1728 and MNIST 1234 Fat-Tree - AMG 1728 and MNIST 1234

15 https://project.inria.fr/damaris/ E\(l P S
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Collaborations



Collaborations and Users

Vendor Collaborations/Users National Laboratory Collaborations/Users
« Lab developed tools in use at: * Argonne National Lab ,
— Cray » Berkeley National Lab
« Fermi National Lab

— Intel
|;|\e/| « Livermore National Lab
B « Oak Ridge National Lab
— HPE « Sandia National Labs
* lllinois Institute of Tech  Improving accuracy of network simulations
* NC State University » Exploring power-aware network links

Tokyo Institute of Technology
University of Tsukuba
Florida State University

Studying impact of quality-of-service
Improving MPI performance
Use compiler support to combine motifs/skeletons

* Kyushu University with complete vendor MPI/provider software stack
« The University of Arizona » Use compiler support to leverage work from
« University of Oregon node/memory teams to improve endpoint models
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Validation/Quantifying Uncertainties Examples



Validation Example: Network Stack (SST/Merlin)

BG/Q PingPong Latency Measured and Ember

100000 : 'BG'|/Q' ......................... .
o g « Challenges:
10000 | // | - Validate software stack
[ “ timings
1000 | , i * Match protocol switch
. [ - ] over points
e P i « Also validates quiet
- 3 - switch/router and link
1@k /// ] latencies
N S A S S A S A S S S S S

4 16 64 256 1K 4K 16K 64K 256K 1M 4MBM 64M
MsgSize
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Validation Example: System Level Validation (TraceR)

» Fat-tree network model validated against experiments on Quartz at LLNL

using TraceR

n
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Validation Example: Interference Effects (CODES)

Interference effects on Dragonfly-based Theta Cray XC

Avg time to complete messages (us)
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ECP

Need to account
for any
interference
effects on the
system.

Validation against
a quiet Cray XC
system
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Quantifying Uncertainties Example (SST/Macro)
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Milestone 3 (Q2FY19) — Validate simulator readiness to address
full network stack design space

Goals

» Verify simulator reproduces middleware behavior
» Validate simulators can explore all relevant design features
» Check accuracy of simulator approximations

Methodology

» Controlled experiments of
increasing complexity to validate
individual pieces

* Use known minimal routing tables,
topology of large OmniPath
system to limit space of unknowns

* Microkernel benchmarks with
known traffic patterns

Middleware NIC Interconnect

* Protocols

» Matching

+ Ordering

« Collective
algorithms

* Progress

*MMU: Mem

management

Application

« Topology
* Routing
-Minimal

* Packetization

* Matching

» Ordering

* Progress

* Memory
management

- Pt-2-Pt
« Collectives
» Compute

-Adaptive
« Flow control,
contention

delays

Ideal Outcomes
Validate simulator readiness to
address full network stack
design space
Identify sources of
disagreement, inaccuracy in
simulation tools

ECP HE Challenge: Huge
permutational design space across
network stack

Future Work: Hardware Design Space

Known Correct
Pt-2-Pt, Compute,
Matching, Order,
Protocol, MMU,
Flow Control,
Collectives, Progress

Validation #1: MPI Ping Pong

Not Stressed
Flow control,
Topology,
Routing,
Collectives

To Validate
Matching, Order,
Progress, Protocol,
MMU

Known Correct
Pt-2-Pt, Compute

Single OmniPath
switch

Validates correctness of
matching, MMU for...

Validation #2: Minimal Routing Collective Benchmark

Not Stressed
Flow control

To Validate
Collective
algorithms

Known Correct
Pt-2-Pt, Compute,
Matching, Order,
Protocol, MMU,
Topology, Routing Serrano: OmniPath fat tree with known

minimal routing tables and topology

Validates correctness of
collectives for...

Validation #3: Minimal Routing Microkernel Benchmarks

To Validate Not Stressed

Flow control

Known Correct
Pt-2-Pt, Compute,
Matching, Order,
Protocol, Progress,
Topology, Routing,
Collectives, MMU

Serrano: OmniPath fat tree with known
minimal routing tables and topology

Validates correctness of
hardware models for...

Known Correct
Pt-2-Pt, Compute,
Matching, Order,
Flow Control,
g Topology, Routing
1

To Explore
Topology, Routing
Compute Delays

Future Work: Middleware Design Space

Collectives,

MMU, Protocol
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Milestone 1: Trade-offs in Exascale
Interconnect Architectures
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Activity 1 — Trade-offs in Exascale Interconnect Architectures

* Looks at the high-level trade-offs for interconnect architectures that are likely to

be available in HPC machines in the 2021-2022 timeframe.
— Machine size (8k, 16k, 32k nodes)
» All use 32k ranks (4, 2, and 1 ranks/node)
— Injection bandwidth (200, 400, 800 Gbps)
— Topology (fat-tree, hyperX, dragonfly, dragonfly+/megafly)
— Rank allocation (linear, random)
» Helps determine worst case behavior

« Uses multiple simulation models (TraceR/CODES, SST/Macro, SST/Merlin)

— Using multiple simulation environments can provide added confidence in the results, as well
as providing added information for refining, understanding and improving the models.

 Benchmark communication patterns
— Halo3D, Sweep3d, SubA2A/FFT3D

EEEEEEEE
CCCCCCCCC
PPPPPPP



26

Halo3D26 — SST/Merlin

Runtime per iteration

Runtime per iteration

3.5

25

1.8

1.6

14
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Halo-3d - random
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200 Gbps
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8192 nodes

400 Gbps
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800G bps

M Fat-tree

800Gbps

200 Gbps

Halo-3d - linear

400 Gbps
16384 nodes

H HyperX

200 Gbps

400 Gbps
16384 nodes

800G bps

m Dfly

800Gbps

= Dplus

200 Gbps -- 400 Gbps -- 800Gbps
32768 nodes

® Dplus

200 Gbps -- 400 Gbps -- 800Gbps
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Sweep3D — SST/Macro

1.50 |
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Subcom All-to-all - TraceR/CODES

Subcom-alltoall - randomized placement

Normalized runtime

Normalized runtime

o
n

o

200 Gbps

200 Gbps

400 Gbps
8192 nodes

400 Gbps
8192 nodes

M Fat-tree

M HyperX

m Dfly

800Gbps 200 Gbps 400 Gbps — 800Gbps 200 Gbps
16384 nodes
Subcome-alltoall - linear placement
M Fat-tree m HyperX m Dfly

800Gbps

200 Gbps

400 Gbps
16384 nodes

800Gbps

200 Gbps

™ Dplus

400 Gbps
32768 nodes

= Dplus

400 Gbps
32768 nodes

800Gbps

800Gbps

ECP
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Equal Injection Bandwidth/Compute Ratio
SST-Merlin

Equal Injection - linear

SST-Macro
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Milestone 2: Analysis of interference
sensitivity for next generation interconnects
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Why quality of service on HPC systems?

« Emerging trend in HPC systems is that hierarchical topologies (such as dragonfly) are
exhibiting run-to-run variability

» Poses significant challenge for job schedulers and application developers

» Possible ways to address variability:
— |solate job partitions (such as on Blue Gene systems with a torus network)
— Explore alternate topologies and job mappings (minimize interference on fat-tree, hyperX)
— Incorporate Quality of Service and traffic differentiation

" Weak scaling of

a9 A‘_I - : L different Nekbone ; G -
A\ N = DN problem sizes on o
: T | NS0l | Theta cray xcao ; '
£ ™ Nz | system (left). 5 ..
g os k\‘\\ Nekbone itself is -
g os = = highly scalableas § ..
| [ shown on right Mira
nE-E= Blue Gene/Q system. oz

LI L L B R 512 1024 2048 4096 8192 16384 32768 65536

Nodes Nodes ISCALE
TPUTING
PROJECT

Image credit: “Early evaluation of the Cray XC40 Xeon Phi System ‘Theta’ at Argonne” (Tech Report)‘b_y S Parker et al.



Key questions on applying QoS to HPC networks

» How effective are QoS traffic classes in
regulating performance variability?

» What are the different ways in which
applications can benefit from QoS traffic
classes?

Virtual
time
window

» How to make use of multiple traffic
classes at the software (MPI, OpenMP)
levels?

» How to make the job scheduler utilize
multiple traffic classes effectively?

Update BW

stats

|. Get BWV stats,
classify TCs as
over-BW

Bandwidth Monitor for
each TC (per port)

Fig: Traffic Differentiation and bandwidth capping algorithm fo

5.Update TC
bandwidth statistics

Packet Scheduler

2. Iterate through QoS
(high priority first)

1

3. Packets?
Buffer Space?
TC active?

4. Schedule packet

switch/NIC scheduler (TC- Traffic Class)

Used Modeling and Simulation techniques to answer the first two questions

PROJECT

ECP
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Prioritizing Entire HPC Applications

» Simulated slowdown in comm. time by generating background network traffic in parallel with Nekbone
skeleton application

» Introduced QoS by assigning high priority & bandwidth to Nekbone skeleton app.
» WWhile Nekbone doesn't utilize full bandwidth, the low priority application takes its BW share

» Takeaway: Traffic differentiation with bandwidth shaping and prioritization can mitigate variability
while causing minimal slowdown to background traffic

Communication Latency (ms)

350 1

300

250 1

200 +

150 1

100 A

50

325.9

2 4 7.5 15 36.25

Percentage of Max Link Bandwidth ™= gOSQIOS
o -

Figure: Two traffic
classes on Megafly
Network. High priority
to Nekbone (left) and
low priority to
background traffic
(right)

Mean Message Time (ns)
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-
—
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-
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QoS-I =
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Prioritizing latency-sensitive operations

» Assigned high priority and guaranteed small fraction of BW to collectives
» High bandwidth and medium/low priority to rest of the traffic
» Nekbone skeleton application heavily relies on collective operations

» Takeaway: Traffic differentiation with small bandwidth guarantee and prioritization to collectives can
bring up to 60% speed up in communication time with Nekbone skeleton app.

350 - 107 4 T

m
§ 300 - Figure: High priority, E
- small BW cap to o 10°7
= collective operations E
= 2001 in Nekbone (left). Low &
o . . N © E
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=] . c =
£ 1001 (right) © 104 == T
g : T
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Multiple applications running In parallel

ms)

Communication Latency (

Max Communication Times with Varying QoS Settings

=
o
o

=
N
o

=
o
o

(o]
o
1

60 1

40 1

20 1

133.1

lammps nekbone nn

» Skeleton Applications in parallel: Nekbone,
Nearest Neighbor and LAMMPS (Nekbone is
BW intensive as compared to others)

» Multi-QoS-I: Prioritizing Nekbone and
guaranteeing 1/3 BW

» Multi-QoS-II: Prioritizing collectives of all the
skeleton applications

» Takeaway: adding bandwidth cap on
Nekbone helps improve the performance of
other skeleton applications as well
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