
EXRSCRLE COMPUTING PROJECT

SYSTEM-LEVEL ARCHITECTURE SIMULATION
FOR EXASCALE: CHALLENGES AND
OPPORTUNITIES

ECP All-Hands Meeting

Hardware Evaluation Interconnect Working Group

Houston, Texas
17 January 2019

exascaleproject.org
National Nuclear Security Administration

SAND2019-1533C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Introduction

2

EXRSCRLE
COMPUTING
PROJECT

Hardware Evaluation Interconnect Working Group

The Hardware Evaluation Interconnect Working Group is focused on the analysis
of current and future High Performance Computing Interconnects to inform the
development and procurement of future HPC systems. This will be accomplished
by evaluating architectural advancements proposed as part of the PathForward
program and through studies of potential interconnects for future exascale-class
systems. Analysis of future systems will be done using architectural simulation
tools and informed by data collected on current HPC systems.

E41)F EXRECRLE
COMPUTING
PROJECT

Tools and Capabilities in System Level Simulation/Analysis

• CODES
— Available Open Source: https://xgitlab.cels.anl.gov/codes/codes.git and

https://github.com/carothersc/ROSS

— Version 1.0.0

• TraceR
— Available Open Source: https://github.com/LLNL/tracer

— Version 2.1

• SST
— Available Open Source: https://github.com/sstsimulator

— Version 8.1

• coNCePTuaL
— Available Open source: http://conceptual.sourceforge.net/

— Version 1.5.1 E41)F EXRECRLE
COMPUTING
PROJECT

End Point Models

5

EXRSCRLE
COMPUTING
PROJECT

Representing HPC Workloads in Simulations

• Trace driven simulation of HPC communication
• Support trace replay of DUMPI and OTF2 traces

• Benefits: Detailed representation of communication.

• Challenges: limited scalability and large trace sizes.

• Skeleton applications
• Language or functions to simulate communication at high level. Can be hand or auto generated

• Benefits: Scalability and lower memory overheads.

• Challenges:

• State machine representations
• Description

• Benefits:

• Challenges:

• CoNCePTuaL domain specific language

• Ties in through one of the other methods
6

EXRECRLE
COMPUTING
PROJECT

Trace-driven Simulation

• Trace-based simulation of
production parallel applications

• Support for multi-job workloads

7

What-if analyses

Designing/
procuring a

supercomputer

Modifying/optimizing
algorithms, libraries, job
allocation policies etc. ,

Network models

n-dimensional
mesh/torus

dragonfly

fat-tree

Communication traces

Application l

Application 2

Application 3

:Application 4

Parallel discrete event simulation (PDES) engine

EXRSCRLE
COMPUTING
PROJECT

Example Skeleton Code: All to One

Scalable Workload Model:

void IncastAllToOne::call()

/* processes in the range of min_source id and max source_id send messages to a specific

destination. */

if ((proc_id != dst_rank_id) && (proc_id >= min_source_id && proc_id <= max_source_id)) {

for (uint32_t iter=0; iter < iteration_cnt; iter++) {

SWM_Isend(dst_rank_id, SWM_COMM_WORLD, this_tag, reqArgl, rspArgl, NO_BUFFER,

msg_size, pkt_rsp_bytes, &(send_handles[send_count]), reqArg2,

rspArg2);

}

SWM_Waitall(send_limit, send_handles);
}

coNCePTuaL:

Tasks {t for each t in {min_source_id, max_source_id} where t <> dst_rank_id} asynchronously send
iteration_cnt msg_size byte messages to task dst_rank_id then all tasks await completion.

Notes:
• This is a complete CONCEPTUAL program corresponding to the same all-to-one code above
• This can compile to a C+MPI program for execution on a real system or for directly driving a network simulator.
• CONCEPTUAL implicitly converts all undeclared variables into command-line arguments, allocates memory for

messages and MPI data structures, and matches sends and receives, letting the programmer focus solely on
the communication pattern.

8

EXRSCRLE
COMPUTING
PROJECT

Skeletonized Apps: Compiler generated source-to-source
skeletonization

-ALLVM
f-

COMPILER
INFRASTRUCTURE

Advantages
• Auto-generate flexible

lightweight models
• True co-design: no

simulation-specific models
• Realistic modeling of node

compute based on app
characteristics

Challenges
• Not totally automatic —

needs some pragma hints
• Need to build out LLVM

instrumentation for better
compute models

9

Original Source Code:
double* big = new double[N]; 1) Developer
MPI Sendrecv(big,...); adds pragmas
for (i=0; i < N; ++i){
expensive compute0;

}
MPI -Allreduce(...);

Auto-skeletonized
Source Code:

double* big = nullptr;
MPI Sendrecv(big,...); //modeled
modelCompute(N,...);
MPI -Allreduce(...); //modeled

2) Clang
source-to-source

Modified Source Code:
#pragma sim null variable
double* big = new double[N];
MPI_Sendrecv(big,...);
#pragma sim compute
for (i=0; i < N; ++i){
expensive compute0;

}
MPI Allreduce(...);

Auto-skeletonized
Object Code:

 ► call SIM MPI Sendrecv(....);
3) sim++ src.cpp

call modelCompute(N);
Redirect MPI calls

call SIM MPI Allreduce(...);

Simulation
Endpoint
Model

4) Link to simulator with
) SIM MPI X symbols

sim++ -o sim.x -lsim

U_N nNIPUTING
PROJECT

State Machine Models: Motifs

bool EmberAlltoallGenerator::generate(std::queue<EmberEvent*>& evQ) {

if (m loopIndex == m iterations) {

if (0 == rank()) {

double latency = (double)(m stopTime-m_startTime)/(double)m_iterations;

latency /= 1000000000.0;

output("%s: ranks %d, loop %d, bytes %d, latency %.3f us\n",

getMotifName().c str(), size(), m iterations, m bytes, latency * 1000000.0

}

return true;

}

if (0 == m loopIndex) {

enQ getTime(evQ, &m_startTime

}
);

);

enQ compute(evQ, m compute);

enQ alltoall(evQ, m sendBuf, m bytes, CHAR, m_recvBuf, m bytes, CHAR, GroupWorld);

if (++m loopIndex == m iterations) {

enQ getTime(evQ, &m_stopTime);

}

return false;

}

10 E41d=

(App Model)

(MPI)

(NIC)

(Network)

EXRSCRLE
COMPUTING
PROJECT

Network Models

11

EXRSCRLE
COMPUTING
PROJECT

Range of efficient models to identify trends, quantify
uncertainties in results
Lightweight simulation using analytic model

NIC
Tx

Queue

Rx
Tsend = NhopsaHop + aRT + 131_

Packet-based with simple congestion modeling
NIC
Tx

Queue Data

RxQueue

Switch
Tx

Queue

Tx
Queue

O

Packet-based with arbitration
NIC

Data „Lilar

Switch

Blr[-]
TxBuffer

Credits

Rx
Buffer RxBuffer

Tx

12

NIC

ri Tx Queue

Rx
Queue

NIC
Tx

Queue

RxQueue

O

NIC
TxBuffer

Rx
Buffer

• Establishes optimistic upper-bound on
performance in absence of contention

• Useful in validating software stack models
for traffic patterns without contention

• Establish baseline performance of different
routing/congestion control strategies

• Efficient execution, agnostic to router flow
control details

• Establishes pessimistic lower-bound on
performance by tuning arbitration and
token flow-control performance

• More complex and expensive
EXRSCRLEE ".E)[= COMPUTINGPROJECT

Range of efficient models to identify trends, quantify
uncertainties in results

MACRELS: Analytic Model
NIC
Oueue

Queue

0.0020

0.0015

E 0.0010

0.0005

0.0000

1 3

Tsend Nhopsc(Hop aRT 0-

Nodes: 8192

NIC

F

SCULPIN: Efficient contention modeling
NIC

Queue

O

oueue

Halo3D Xval random

Nodes: 16384

NIC
OLT:ue

Oueue

NIC

PISCES: Highest accuracy

—I...Data 4—

Credits

04,

Switch

7

Nodes: 32768

IVI

_

LogP SCULPIN PISCES PISCES LogP SCULPIN PISCES PISCES LogP SCULPIN PISCES PISCES
Expected Pessimistic Expected Pessimistic Expected Pessimistic

topo-routing

Dragonfly minimal

- Dragonfly par

- Dragonfly ugal

- Dragonfly valiant

- Dragonfly+ minimal

- Dragonfly+ par

- Fattree fat_tree

HyperX minimal

- HyperX par

EXRSCRLE

COMPUTING

PROJECT

Topology and Routing

• Multiple topologies supported:
• 1-D and 2-D dragonfly, fat tree, torus/mesh, slimfly,

dragonfly+/megafly, hyperX

• Multiple minimal and adaptive routing algorithms
supported

Max Communication Times with Varying QoS Settings

in 140

>, 120

2 100
03

c 80
O

• 60

40

O 20
u

14

0

102.1
97.0

93.6

71.3

87.9

133.1

82.3

106.9

63.6 65.6

49.0 48.5

lammps

Baseline

nekbone

Multi-No-QoS Multi-QoS-I

nn

Multi-Qos-II

Dragonfly+ architecture: 2-level
fat trees for local group
connections, many options for
spine connectivity.

• Quality of Service and Advanced
Congestion Management
• Simulated QoS traffic classes by dedicating a

set of virtual channels to each traffic class

• Used bandwidth capping and traffic
differentiation techniques to implement QoS
on HPC networks

E EXRSCRLE
COMPUTING
PROJECT

Insitu Analysis of Network Congestion

• Just as in computational science simulations, output can be too large to
realistically capture for post-processing.

• Couple simulation with analysis code via Damaris data management system

• Damaris forwards to analysis tools (e.g., Vislt)

Visualizations of network
congestion in two-
application runs on
candidate HPC networks.
Visualization generated in
situ would avoid excessive
I/0.

ii,-7.• 1F-::-* iscz--4._ .C.::"Z.1!‘• • • • - • • iic...:.-ic,......„. - - - ic.:7-7..,/,
0"• .• -or 41C.7...
ft. •:..---...;:..-.....,-44...."› 7,......,..- -r -ft,........z,,„-> - ,. -: • . . • • .1s.

• Az::::›• z,z,
--

„I 1 1 1 1 1 1111 1 1
1 0.

„
00 10 100 1000 10000 100000 4.1.05

Congestion

Slimfly - AMG 1728 and MNIST 1234

. . • ' 0
UUUUOOOOOOOn00 00
OOO" 0 0 0 0 0 0

GG

1111
8e 1 Oe+00 10 100 1000 11%1100

1 1 I
100000 6 +05

Congestion

Fat-Tree - AMG 1728 and MNIST 1234

15 https://project.inria.fr/damaris/ EC1F EXRECIRLE
COMPUTING
PROJECT

Collaborations

16

EXRSCRLE
COMPUTING
PROJECT

Collaborations and Users

Vendor Collaborations/Users

• Lab developed tools in use at:

Cray

Intel

IBM

HPE

Universities

• Illinois Institute of Tech
• NC State University
• Tokyo Institute of Technology
• University of Tsukuba
• Florida State University
• Kyushu University
• The University of Arizona
• University of Oregon

17

National Laboratory Collaborations/Users

• Argonne National Lab
• Berkeley National Lab
• Fermi National Lab
• Livermore National Lab
• Oak Ridge National Lab
• Sandia National Labs

• Improving accuracy of network simulations
• Exploring power-aware network links
• Studying impact of quality-of-service
• Improving MPI performance
• Use compiler support to combine motifs/skeletons

with complete vendor MPI/provider software stack
• Use compiler support to leverage work from

node/memory teams to improve endpoint models
„„

:E1P EXRSCRLE
COMPUTING
PROJECT

18

Validation/Quantifying Uncertainties Examples

EXRSCRLE
COMPUTING
PROJECT

Validation Example: Network Stack (SST/Merlin)

1 00000

10000

1000

100

10

19

BG/Q PingPong Latency Measured and Ember

B6/Q
Ember

4 16 64 256 1K 4K 16K 64K 256K 1M 4N/I3M 64M

MsgSize

• Challenges:

• Validate software stack
timings

• Match protocol switch
over points

• Also validates quiet
switch/router and link
latencies

E41d= EXRSCRLE
COMPUTING
PROJECT

Validation Example: System Level Validation (TraceR)

T
i
m
e
 (
mi

cr
os

ec
on

ds
)

20

• Fat-tree network model validated against experiments on Quartz at LLNL
using TraceR

MPI
100 PSM2 - .*..

Predicted - - • - -

10

4 32 256 2K I 6K I 28K 1 M
Message size

0.3

..._...
'-0g

09..--

0.2

Observed -
Predicted - • • • -
Comm-O • lc • .
Co mm-P - • x-", =

„it
J'
,/

•--,- -I/

..._...0,
-D
s

CD0......,

100

? 0.1 .r...

I.= .41,,,,„-* f=

- .. - , 100

It,,- % ,
°A *IL

.‘111.
- 1.9°70-o 8%,...•

—..., -, L.0/...,-.L.u.c. clo/
Observed - -A- - ' li,.., . - - '

•ili
Predicted - • • • -

i i i 1 1'

128 256 5 I 2 IK 2K 32 64 128 256 512 1024

Core count Core count

(a) Ping-pong (b) 3D Stencil (c) Atratus

E41)[= EXRSCRLE
COMPUTING
PROJECT

Validation Example: Interference Effects (CODES)

Interference effects on Dragonfly-based Theta Cray XC
"J.;
-E. 100000

a)
ca 10000

a)

1000
(1.)

8 100

0
0

>
0

- mppteSt

A
v
g
 t
im
e
to
 c
om

pl
et

e
m
e
s
s
a
g
e
s
 (
us
)

21

10000 20000 30000 40000 50000 60000

Message size (bytes)

(a) With interfering jobs
A
v
g
 t
im
e
to
 c
o
m
p
l
e
t
e
 m
e
s
s
a
g
e
s
 (
u

100000

10000

1000

100

10

codes
mpptest

10000 20000 30000 40000 50000

Message size (bytes)

(b) without interfering jobs

Dragonfly network model validated against experiments on Theta Cray XC

30

25

20

15

10

5

0
0 10000 20000 30000 40000 50000 60000

Message size (bytes)

(a) 64 nodes

A
v
g
 t
im
e
to
 c
om
pl
et
e
m
e
s
s
a
g
e
s
 (
us
)

25

20

15

10

codes
mpptest

1 1 1 1

10000 20000 30000 40000

Message size (bytes)

(b) 2048 nodes

Need to account
for any
interference
effects on the
system.

Validation against
a quiet Cray XC
system

50000

E CL-.)F EXRSCRLE
COMPUTING
PROJECT

22

Quantifying Uncertainties Example (SST/Macro)

1 2 3 4 5 6 7 8 9 10 11 12

Buffer Size ID
13 14 15 16 17 18

Combine parameter calibration with UQ
to identify accuracy limits

0.3

0.3

0.2

u. 0.2

i2 0.1
0.1
0.0

0.

Injection Bandwidth

Post Header Delay

•—
- —

.
— Prior

------ Posterior

.....

—. _.

—.—..

--- 1---i --- ---

Memory Bandwldth Link Bandwidth

RDMA Pin Latency

Parameter Max Likelihood3 Prior Range Type

Injection Bandwidth (GB/s) 13.04 8.0 - 16.0 Network
Link Bandwidth (GB/s) 12.47 10.0 - 15.0 Network
Memory Bandwidth (GB/s) 11.20 8.0 - 15.0 System Software
Post Header Delay (us) 0.36 0.1 - 1.5 System Software
Post RDMA Delay (us) 0.88 0.5 - 2.0 System Software
RDMA Pin Latency (us) 5.43 1.0 - 7.0 System Software
RDMA Pin Delay Per Page (ns) 50.50 1.0 - 100.0 System Software
Hop Latency4 (ns) 100 n/a n/a

Ë (Cid= EXRSCRLE
COMPUTING
PROJECT

Milestone 3 (Q2FY19) Validate simulator readiness to address
full network stack design space

Goals
• Verify simulator reproduces middleware behavior
• Validate simulators can explore all relevant design features
• Check accuracy of simulator approximations

Methodology
• Controlled experiments of

increasing complexity to validate
individual pieces

• Use known minimal routing tables,
topology of large OmniPath
system to limit space of unknowns

• Microkernel benchmarks with
known traffic patterns

ldeal Outcomes
• Validate simulator readiness to

address full network stack
design space

• Identify sources of
disagreement, inaccuracy in
simulation tools

ma-
Application Middleware

• Protocols
NIC Interconnect ECP HE Challenge: Huge

• Pt-2-Pt mil • Matching • Packetization •Topology permutational design space across
• Collectives • Ordering • Matching • Routing network stack
• Compute • Collective • Ordering -Minimal

delays algorithms • Progress -Adaptive
• Progress
• MMU: Mem
management

• Memory
management

• Flow control,
contention

23

Validation #1: MPI Ping Pong

ingle OmniPath
switch

To Validate
Matching, Order,
rogress, Protocol,

MMU

Validates correctness of

matching, MMU for...

Not Stressed
Flow control,
Topology,
Routing,

Collectives

own corre
-2-Pt, Compi
atching, Ord
rotocol, MM

gy, Ro

ing ollective Benchmark

t tree with known
minimal routing tables and topology

Validates correctness of
collectives for...

Validation #3: Minimal Routing Microkernel Benchmarks

Known Correct
-2-Pt, Compute,
atching, Order,
otocol, Progres
pology, Routin
ollectives, MM

To Validate
Flow control

Not Stressed

Serrano: OmniPath fat tree with known
minimal routing tables and topology

Validates correctness of
hardware models for...

uture Work: Hardware Design Space011 4.1111Mgrk: Middleware Design Space

nown Correct Known Correct
To Explore

Topology, Routing

To Explore
Collectives,

-2-Pt, Compute,
atching, Order,

Pt-2-Pt, Compute,
Matching, Order,

Protocol, MMU,
Flow Control,

Compute Delays Flow Control,
Topology, Routing

Progress,
MMU, Protocol

Collectives, Progress

Milestone 1: Trade-offs in Exascale
Interconnect Architectures

24

EXRSCRLE
COMPUTING
PROJECT

Activity 1 Trade-offs in Exascale Interconnect Architectures

• Looks at the high-level trade-offs for interconnect architectures that are likely to
be available in HPC machines in the 2021-2022 timeframe.
— Machine size (8k, 16k, 32k nodes)

• All use 32k ranks (4, 2, and 1 ranks/node)

— Injection bandwidth (200, 400, 800 Gbps)

— Topology (fat-tree, hyperX, dragonfly, dragonfly+/megafly)

— Rank allocation (linear, random)

• Helps determine worst case behavior

• Uses multiple simulation models (TraceR/CODES, SST/Macro, SST/Merlin)
— Using multiple simulation environments can provide added confidence in the results, as well
as providing added information for refining, understanding and improving the models.

• Benchmark communication patterns
— Halo3D, Sweep3d, SubA2A/FFT3D

E41)F EXRECRLE
COMPUTING
PROJECT

Halo3D26 SST/Merlin

0
1.= 2 5

4-)
2

Z1J
C2-
cu 1 5

c
cc

0.5

2

1.8

C 1.6 -
0

1.4

1.2

n.
0.8

0.6

CC 0.4

02

26

■ Fat-tree

Halo-3d - random

HyperX Dfly Dplus

111 111 NEN_ 111_
200 G bps -- 400 G bps 800Gbps 200 G bps -- 400 Gbps 800Gbps 200 Gbps -- 400 Gbps 800G bps

8192 nodes 16384 nodes 32768 nodes

Halo-3d - linear

■ Fat-tree HyperX Dfly Dplus_

200 G bps -- 400 G bps -- 800Gbps

8192 nodes

III shi III .h J.
200 Gbps -- 400 Gbps 800Gbps 200 Gbps -- 400 G bps -- 800G bps

16384 nodes 32768 nodes Et)1= EXRSCRLE
COMPUTING
PROJECT

Sweep3D SST/Macro

1.50

a) 1.25

.E
I— 1.00
-0
a)
0.75

2 0.50

0.25

0.00

1.50

a) 1.25

.E
I= 1.00

0 75

E
6- 0 50
z

0.25

0.00
200 Gbps 400 Gbps 800 Gbps

Bandwidth Per Node

Nodes: 8192

Sweep3D SST-Macro Adaptive Routing

Nodes: 16384 Nodes: 32768

III
27

iir
Fat-tree Hy erX Dfly Dplus —

1111111111111 11111111101

200 Gbps 400 Gbps 800 Gbps 200 Gbps 400 Gbps 800 Gbps
Bandwidth Per Node Bandwidth Per Node

L
L
I
O
p
L
I
2
H
 l
u
a
w
a
o
e
l
d

E EXRSCRLE
COMPUTING
PROJECT

Subcom All-to-all - TraceR/CODES
No
rm
al
iz
ed
 r
un
ti
me

No
rm
al
iz
ed
 r
un
ti
me

28

1.4

1.2

0.8

0.6

0.4

0.2

Subcom-alltoall - randomized placement

■ Fat-tree ■ HyperX • Dfly Dplus

1 1114111 11 1111
5 —

45

4

3.5

3

2.5

2

1.5

0.5

200 Gbps -- 400 Gbps — 800Gbps

8192 nodes

200 G bps -- 400 Gbps — 800Gbps 200 Gbps -- 400 Gbps — 800Gbps

16384 nodes 32768 nodes

Subcom-alltoall - linear placement

200 Gbps 400 Gbps 800Gb ps

8192 nodes

■ Fat-tree ■ HyperX

200 G bps -- 400 G bps — 800Gbps

16384 nodes 32768 nodes

• Dfly ■ Dplus

▪ .1 •
200 G bps -- 400 G bps — 800Gb ps

E
EXRSCRLE
COMPUTING
PROJECT

Equal Injection Bandwidth/Compute Ratio

7

6

5
-0
2, 4

3
o
z 2

o

7

6

5

2 4

E 3
o
Z 2

o

29

App: Halo3D

SST-Macro

Equal Injection SST-Macro Adaptive Routing

App: Sweep3D App: Subcom-alltoall

1111-1111-1111

in1-1111-1

1111-1111-1111
Fat-tree HyperX Dfly Dplus -

I
8192 16384 32768 8192 16384 32768 8192 16384 32768

Nodes Nodes Nodes

O
U
r
l
 :
1
U
O
W
O
O
O
l
d

8192 — Quad rail (800 Gbps total)
16384 — Dual rail (400 Gbps total)
32768 — Single rail (200 Gbps total)

SST-Merlin

Equal Injection - linear
• Fat-tree • HyperX • Dfly

8192 -- 16384 -- 32768

Flalo3D

• Dplus

111 Ilrohd4
8192 -- 16384 -- 32768 8192 -- 16384 -- 32768

Sweep3D FFT3D

TraceR/CODES

Equal Injection - linear placement
0-Fat-tree • HyperX • Dfly • Dplu

norm millos rum n-N
limiliclimillm

8192 -- 16384 -- 32768

Halo3D

8192 -- 16384 -- 32768

Sweep3D

8192 -- 16384 -- 32768

Subcom-alltoall

EXRSCRLE
COMPUTING
PROJECT

Milestone 2: Analysis of interference
sensitivity for next generation interconnects

E 6F EXRSCRLE
COMPUTING
PROJECT

Why quality of service on HPC systems?
• Emerging trend in HPC systems is that hierarchical topologies (such as dragonfly) are

exhibiting run-to-run variability

• Poses significant challenge for job schedulers and application developers

• Possible ways to address variability:

— Isolate job partitions (such as on Blue Gene systems with a torus network)

— Explore alternate topologies and job mappings (minimize interference on fat-tree, hyperX)

— Incorporate Quality of Service and traffic differentiation

Weak scaling of
different Nekbone
problem sizes on
Theta Cray XC40
system (left).
Nekbone itself is
highly scalable as
shown on right Mira
Blue Gene/Q system.

Pa
ra
ll
el
 E
t
I
c
l
e
n
e
y

0.7

0.6

0.5

128 —4—
(14 — 256

512
1024 —0-
2048
4096 •
8192
16384 -4,-

a 2
1 2 4

0.3

128 256 512 1024 2048 4096 512 1024 2048 4096 8192 1411111 WO OM
iSCRLE
IPUTING

31 l PROJECT

Image credit: "Early evaluation of the Cray XC40 Xeon Phi System 'Theta' at Argonne" (Tech Report) by S. Parker et al.

8 16 32 68

NcOe s Nodes

Key questions on applying QoS to HPC networks

• How effective are QoS traffic classes in
regulating performance variability?

• What are the different ways in which
applications can benefit from QoS traffic
classes?

• How to make use of multiple traffic
classes at the software (MPI, OpenMP)
levels?

• How to make the job scheduler utilize
multiple traffic classes effectively?

Virtual
time

window

Update BW
stats

1. Get BW stats,
classify TCs as
over-BW

Bandwidth Monitor for
each TC (per port)

5. Update TC
bandwidth statistics

Packet Scheduler

2. Iterate through QoS
(high priority first)

3. Packets?
Buffer Space?
TC active?

4. Schedule packet

Fig: Traffic Differentiation and bandwidth capping algorithm fo
switch/N IC scheduler (TC- Traffic Class)

Used Modeling and Simulation techniques to answer the first two questions

32

EXRECRLE
COMPUTING
PROJECT

Prioritizing Entire HPC Applications

• Simulated slowdown in comm. time by generating background network traffic in parallel with Nekbone
skeleton application

• Introduced QoS by assigning high priority & bandwidth to Nekbone skeleton app.

• While Nekbone doesn't utilize full bandwidth, the low priority application takes its BW share

• Takeaway: Traffic differentiation with bandwidth shaping and prioritization can mitigate variability
while causing minimal slowdown to background traffic

C
o
m
m
u
n
i
c
a
t
i
o
n
 L
a
t
e
n
c
y
 (
m
s
)

33

350 -

300 -

250 -

200 -

150 -

100 -

50 -

0

148.8

103.6

325.9

90.5

1

82.7
92.5

82.3 82.5 ■ 82.4 83.0

2 4 7.5 15 36.25

Percentage of Max Link Bandwidth No QoS

QoS-I

Figure: Two traffic
classes on Megafly
Network. High priority i=
to Nekbone (left) and °,4
low priority to
background traffic
(right)

M
e
a
n
 M
e
s

io7 -

106 -

io5 -

I
_L

2 4 7.5 15 36.25

Percentage of Max Link Bandwidth No QoS

QoS-I

Prioritizing latency-sensitive operations

• Assigned high priority and guaranteed small fraction of BW to collectives

• High bandwidth and medium/low priority to rest of the traffic

• Nekbone skeleton application heavily relies on collective operations

• Takeaway: Traffic differentiation with small bandwidth guarantee and prioritization to collectives can
bring up to 60% speed up in communication time with Nekbone skeleton app.

C
o
m
m
u
n
i
c
a
t
i
o
n
 L
a
t
e
n
c
y
 (
m
s
)

34

350

300

250

200

150

100

50

0

325.9

205.9

90.5
82.4

92.5
82.4

103 6
Mil 84.4

148.8

90.7

2 4 7.5 15 36.25

Percentage of Max Link Bandwidth No QoS

QoS-II

io7

Figure: High priority,
small BW cap to 106

collective operations
in Nekbone (left). Low (6,)
priority and high BW los

background traffic z
(right) rc,cu 104

io3

1
_L

_L

2 4 7.5 15 36.25

Percentage of Max Link Bandwidth No QoS
QoS-I I

Multiple applications running In parallel

Max Communication Times with Varying QoS Settings

140 -
E
>, 120 -
u

100 -
co

80 -
O
167)

60 -u

40 -
E

0 20 -
U

102.1
97.0

93.6

71.3

87.9

133.1

82.3

106.9

63.6 65.6

49.0 48.5

35

0
lamrnps nekbone nn

• Skeleton Applications in parallel: Nekbone,
Nearest Neighbor and LAMMPS (Nekbone is
BW intensive as compared to others)

• Multi-QoS-I: Prioritizing Nekbone and
guaranteeing 1/3 BW

• Multi-QoS-II: Prioritizing collectives of all the
skeleton applications

• Takeaway: adding bandwidth cap on
Nekbone helps improve the performance of
other skeleton applications as well

Baseline Multi-No-QoS Multi-QoS-1 Multi-Qos-ll

EXRSCRLE
COMPUTING
PROJECT

