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Abstract

We have previously shown that compression algorithms can be extended in a variety of ways for useful
application in machine learning and data analytics, including deception detection in text, boundary
detection in audio, and anomaly detection in network traffic. Compression-based analytics rely on the data
to occur locally and sequentially in order to identify patterns, which can be applied towards effective
decision making. Although genomic data is nominally read as a sequence of nucleotides, the information
content is neither local nor sequential; long-range interactions and regulations of genes with similar
biochemical functions exist.

We study how the dependencies among single nucleotide variants (SNVs) revealed from pairwise linkage
disequilibrium calculations can be used to re-order the genomic sequence and improve the ability of a
compression-based analytic to identify patterns and make inferences. In particular, we apply Louvain
community detection, a graph-based algorithm, to reorder the SNVs into sections of highly dependent
SNVs. We use prediction by partial matching (PPM), an adaptive statistical data compression technique, to
train local and global models on the re-ordered sequences. We demonstrate that the re-ordering by
Louvain can improve a compression-based classifier's ability to infer a population attribute. Our results are
compared to standard machine learning classifiers such as Random Forests. Ultimately, understanding how
to improve inference can be used to understand how to improve genomic privacy.

Dataset: 1000 Genomes Project

Human DNA is made up of 3.2 billion bps; most are identical across the population.
Variations occur at specific positions in the genome known as single nucleotide
variations (SNVs), or 0.3% of the genome (10 million base pairs (bps)).
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I. Linkage disequilibrium (LD)
The non-random association of SNVs
can be quantified, to first order, by LD:
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SNVs are not 'optimally' ordered, in the
sense that highly correlated SNVs may be
far apart in the genome.

Identifying long-ranged and non-random association of SNVs
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Square of normalized linkage disequilibria between all SNVs
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I I. Re-ordering
Objective: Order the sequence so that highly-dependent
SNVs appear consecutively in the list.

Two approaches: Assemble array of pairwise LD values
I . Minimize the bandwidth (reverse Cuthill-McKee

algorithm)
2. Community-detection on associated graph

(Louvain,---ajgorithm)

SNV community graph
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Prediction by partial matching (PPM)
with arithmetic coding (AC)

Statistical data compression techniques are
based on Markov models of different contexts,
i.e. a SNV (x) is predicted based on the
previous n SNVs, referred to as a context (c 1c2
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We build a PPM model for each
Training population of observed contexts.>

Testi ng
 >

AC encodes an unknown sequence in
such a way that higher probabilities are
encoded in fewer bits. We exploit this
property to use PPM-AC as a classifier.

Compression-based classifOrion
I. Model-based compression

Classification is determined by comparing the
compression score for an unknown population to
models for known populations. The model that
compresses the unknown population the best
determines the classification.
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I I . Slice compression (SC)

With slice compression we aim to find local
structure through a sequence of windowed
compression scores.

For classification, a threshold function is
calculated by modeling the SC sequence
of scores from the trained model as a
random process. An unknown population
is compressed slice by slice with respect
to the trained model. Classification is
determined by the threshold exceedances
of the unknown population.

Threshold function:
t(k; w) = pt(k; w) + (k; w)F (p)

score:

z(k; w)
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Results
I . Slice compression with threshold modeling

2.0 -

1.5 -

u 1 0 -
z

0.5 -

0.0 -

v) =100

GBR

- upper thresholdFunction forGBR

- lower thresholdFunction forGBR

0 200 400 600
SNV position j

800 1000

w =100

PEL

- upper thresholdFunction forPEL

- lower thresholdFunction forPEL

200 400 600

SNV position j

800 1000

2 (

1 0 -
z

0.5 -

0.0 -

w =100

YRI

- upper thresholdFunction forYRI

- lower thresholdFunction forYRl

200 400 600

SNV position j

800 1000

SC scores on reordered
sequences for each respective
population, together with upper
and lower threshold functions,

I I. Model-Based compression

Precision-Recall Curve, SC window =100
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Conclusions
We apply different reordering schemes to the genomic sequence
to localize predictable structure. This reordering improves a
compression classifier's ability to identify population attributes of
an unknown sequence.

I . Using model-based compression, we find that the accuracy
improves as we move from native ordering to reordering by
Louvain communities, to finally reordering by Louvain
communities followed by selecting significant communities.

2. When compared to a Random Forest classifier, it can be seen
that model-based compression classifier, even on the native
sequence, out performs Random Forest.

3. Slice compression and threshold modeling on the reordered
sequence further identifies deviations from expected local
structure to classify an unknown population with high precision
and recall rates.

4. Future work will involve understanding when transformations
of the SNV sequence yield optimal improvements in accuracy.

GBR LD matrix reordering Accuracy comparison between different reordering methods for Model-based Compression and Random Forest classification.
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