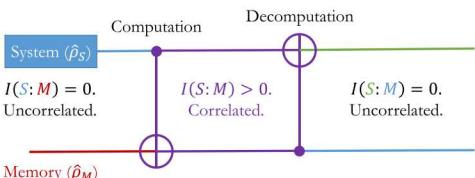
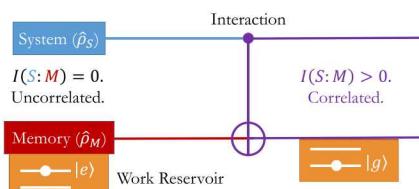

I. Motivation

- *Landauer limit*^[1]: $k_B T \ln 2$ of free energy lost to heat in certain computational processes.
 - Fundamental lower bound of energy dissipated due to loss of information stored in bits to environment.
- *Reversible computing* paradigm developed as a means to improve energy efficiency of logical circuits.
 - Avoids Landauer cost: Avoids information ejection to environment.
- **Question 1:** *Can we reconcile apparently-differing viewpoints on Landauer erasure, and extend this to the resource theory of information in nonequilibrium thermodynamics?*
- **Question 2:** *Is there a quantum computational framework in which loss of physical information can be avoided via the underlying hardware throughout the computation process?*

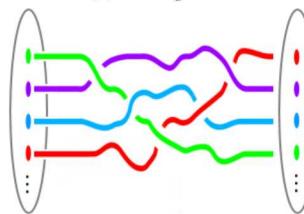


II. Information Flow and Correlations

- Apparent disagreements^[2-5] on the underlying nature of the Landauer bound.
 - Anderson^[2]: comes from unconditional application of erasure protocols to reset state of a system coupled to environment.
 - Sagawa^[3]: feedback control provides thermodynamic reversibility for “information engines” (e.g. Szilárd) overall.
- Which view is accurate? Both!
 - Landauer: Specifically focused on ejection of *correlated* bits from a controlled to an uncontrolled environment.

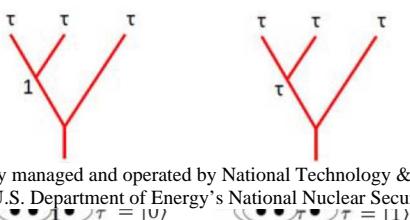

- Can now *define* a computation as any process setting up new correlations (new mutual information) on system.
 - Decomputation: *Reversibly* removing said correlations
 - Decoherence = environment computations on a system.

- To demonstrate the role that tracking correlations plays in calculating the work cost of computation and decomputation, we consider a modified form of the Szilárd engine.

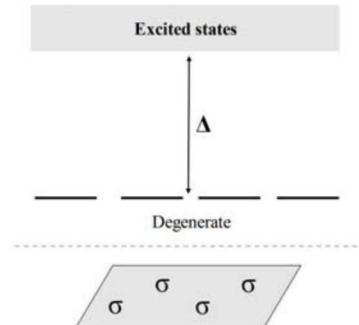

III. Correlations Out of Equilibrium

- Information is a free energy resource^[6-8] in thermo, giving rise to family of “ α -free energies”:

$$F_\alpha(\hat{\rho}) := -k_B T \ln Z + k_B T S_\alpha(\hat{\rho} \parallel \hat{\rho}_G)$$
 - $S_\alpha(\hat{\rho} \parallel \hat{\rho}_G)$ is α -relative Rényi entropy between state $\hat{\rho}$ and thermal (Gibbs) state $\hat{\rho}_G$.
- Müller^[9]: $\hat{\rho}_S \otimes \hat{\rho}_M \otimes |e\rangle\langle e|_W \rightarrow \hat{\rho}_{AM} \otimes |g\rangle\langle g|_W$ with $\text{Tr}_M \hat{\rho}_{AM} =: \hat{f}_S$ has free energy cost ΔF arbitrarily close to free energy cost of pure $\hat{\rho}_S \rightarrow \hat{f}_S$.
 - In other words, keeping correlations lets work cost be arbitrarily minimal (but nonzero): Avoids Landauer!



IV. Topological Quantum Computation


- Quantum computer, system described by topological effective theory. Realised by (2+1)D particles: anyons.
 - Computations $\in \text{SU}(2)$: Braiding them around each other.

- Fusion: basis states given by possible fusion channels.

- Advantage: States are topologically protected from local perturbations.
- Easiest way to enforce: Large energy gap between highly degenerate ground state and rest of the spectrum.

V. Noneq. Holographic Entanglement

- Anyons arise^[10] from (rational) conformal field theories.
 - Each distinct anyonic theory is characterised by a given Virasoro central charge / $\text{SU}(2)$ level.
- Nonequilibrium aspects of 2D CFTs encoded in holographic entanglement entropy ($\text{AdS}_3/\text{CFT}_2$ correspondence).
- By analogy to second laws, Bernamonti^[11] *et al.* have calculated α -RREs and work distribution functions for quenched excited state:

$$D_\alpha(\hat{\rho}_{\beta_E} \parallel \hat{\rho}_\beta) = \frac{\pi c L}{6\alpha - 6} \left(\frac{1}{\alpha\beta_E + (1-\alpha)\beta_E} - \frac{\alpha}{\beta_E} - \frac{1-\alpha}{\beta} \right)$$
 - β_E is equilibrium temperature; L is thermal cylinder length.
- A similar technique is currently being investigated for ground states of adiabatically switched-on $\text{SU}(2)_k$ non-Abelian Chern-Simons actions.
- Of interest: Viable in the dynamics of topological Fibonacci superconductors^[12]?
 - Hope is to drive braiding operations using fluxons, in analogy to previous work on asynchronous ballistic reversible computing with conventional long Josephson junctions^[13].

VII. Conclusions

- Tracking and managing correlations is essential for avoiding unnecessary entropy increase due to Landauer’s principle
- Work currently underway on examining nonequilibrium entropy flow for CFTs that support topological quantum computation.

References

- [1] – M. P. Frank, arXiv:1901.10327
- [2] – N. Anderson, Eur. Phys. J. B **91**, 156 (2018)
- [3] – T. Sagawa, in *Energy Limits in Computation*, edited by C. S. Lent *et al.* (Springer Nature, Cham [Switzerland], 2019)
- [4] – W. Porod, in *Energy Limits in Computation*, edited by C. S. Lent *et al.* (Springer Nature, Cham [Switzerland], 2019)
- [5] – J. D. Norton, *Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. Med. Phys.* **42**, 184 (2011)
- [6] – P. Strasberg *et al.*, Phys. Rev. X **7**, 021003 (2017)
- [7] – M. Müller, Phys. Rev. X **8**, 041051 (2018)
- [8] – M. Müller, [arXiv:1804.05161](https://arxiv.org/abs/1804.05161)
- [9] – M. P. Frank *et al.* (in preparation), IEEE Applied Superconductivity Conference 2018 poster available at: <https://cfwchpprod.sandia.gov/cfdocs/CompResearch/docs/ASC-poster.pdf>