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1 Previous work, presented at QCPR 2018
3 "From zero to charge sensor"
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41 Goals for analysis, ML, and automation

Highest level goal:

• Find the capacitance matrix for gate to dot

• Find the dot-dot mutual capacitance matrix

- Create virtual gates automatically

- Navigate charge stability space by indicating spin
filling/chemical potential, rather than voltages
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51 Goals for analysis, ML, and automation

Per-scan goals:

• What features are in this image?

- Charge offsets, anti-crossings, latching

• What are the parameters that define the features?

- Slopes, triple points, charge occupation regions
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6 Auto-tune n-quantum dots
Abstract procedure:

Step 1: Measure

pysweep
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machine image
learning analysis

Model

Step 2

Goals:

• Start from zero knowledge of device, find establish
virtual gates for device operation.

• Note: Stochastic donors make this problem somewhat
harder



71 Machine learning - Convolutional Neural Net 4c...iM
Convolutional Neural Network - How does it work?
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81 Machine learning - CNN
How might a CNN train to identify anticrossing: Binary classification
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91 Machine learning - CNN

Trained CNN 1800 plots with offsets, anitcrossings or nothing

Labeled by (has offset, has anticrossing)

(True, True) (True, False) (False, False)

Each set of two layers has a pooling and a convolutional layer

Charge offset accuracy Anticrossing Accuracy
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101Image analysis techniques
Peak finding/
edge detection
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11I Finding line segments: Hough transform
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Results: Get line equation of each segment, i.e capacitance ratios

*Similar line recognition techniques developed at U. Sherbrooke Lapointe-Major, Thesis (2017)



12IFinding AC: Generalized Hough transform

Instead of using a line, use templates.
We chose ray templates defined by two angles
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13 1 Device simulator example 'measurement'

cb object is a n-quantum dot object that has
capacitance matrix information, custom or randomly
generated

1 6ccJp
runinfc = ps.uninfoCfast

rurliLfc.swe,..? = f lot gate 1.: ps.drange(-0.1, C.002, 0.1)i
runinfe.step - { 2': ?s.dranje(-0.1, 5-102, 0.1))
* MmIgi:rp

expt - gct_otatillty_=lagran(runinto, cp)

; elnt

6 qp1t.charge abuse plot(expt:

D
o
t
 g
at
e 
2
 (
V
)
 

VS

0 OSO

0 025

• 000

-0 025

-0 050

0 075

-0 100
-0 100-) on 050 -D D2S 0 CCO 0 NS OM 0 C/ S 01M

Simplifications 

Tunnel rates are just right

Fixed tunnel coupling

No stochastic donors

No charge sensor background
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141 Auto tune procedure for n-quantum dots CD

O. Fix voltages for 0 electron occupation in each dot

1.1 Increase dot gate 1 until charge transition is found (CNN)

1.2 Get capacitance matrix for dot 1 vs all other gates (IA)

1.3 Find next charge transition for dot 1 (CNN)

1.4 Get charging voltage for dot 1 (IA)

1.5 Virtualize all gates relative to dot 1

1.6 Fix chemical potential of dot 1, so dot 2 can be filled

IA - image analysis
CNN - Convolutional
Neural Network

2.1 Increase dot gate 2 until charge transition is found (CNN)

2.2 Cap matrix (IA)

2.3 Next transition (CNN) 2.4 Charging V (IA)

2.4 Virtualize relative to dot 1 and dot 2

2.5 Go to (1, 0) <-> (0, 1) crossing and get Cm

2.6 Fix chemical potential of dot 1 and 2 so that dot 3 can be filled

3. to n. Repeat all steps in 2 for all other quantum dots



151 Auto tune procedure for n-quantum dots

• Successfully implemented on simulated device with two
quantum dots.

Automation, CNN, & IA

0 - electrons in QDs Desired Configuration
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• Generalizing for step 3 and beyond

• Can likely restrict virtualization to NN and NNN



161 Conclusions

Image analysis, using hough transforms give
quantitative information about stability diagrams

Machine learning, (convolutional neural network) gives
qualitative information

Combination of techniques builds into automation
routine for auto-tuning n-quantum dots.

Future steps: 

Add dynamic component binary classifiers, i.e. latching
and tunnel broadening

Sprinkle random donors

Add model learning routines for self correcting device
model, corrections of drift or miss-predictions

Use model information for pulse design


