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6. Auto-tune n-quantum dots




Previous work, presented at QCPR 2018
3| “From zero to charge sensor”

3. Symmetrize left and right sides
1. Start (unknown 2. Find Symmetric
device configuration) Turn-on )

100 2

" Turn-on

4. Symmetrically
increase reservoirs
while depleting QD

(sym-x, sym-y)

5. Find optimal charge sensing region
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.1 Goals for analysis, ML, and automation

Highest level goal:

- Find the capacitance matrix for gate to dot

 Find the dot-dot mutual capacitance matrix
- Create virtual gates automatically

- Navigate charge stability space by indicating spin
filling/chemical potential, rather than voltages

a Voltage Space b Vitual Gate Space
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Goals for analysis, ML, and automation

Per-scan goals:

- What features are in this image?
- Charge offsets, anti-crossings, latching

- What are the parameters that define the features?
- Slopes, triple points, charge occupation regions
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| Auto-tune n-quantum dots

Abstract procedure:

Step 1:

Measure
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Goals:
- Start from zero knowledge of device, find establish

virtual gates for device operation.

Qualify

machine
learning

Analyze

Model

image
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Step 2

 Note: Stochastic donors make this problem somewhat
harder




7‘ Machine learning - Convolutional Neural Net
Convolutional Neural Network - How does it work?
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Machine learning - CNN

How might a CNN train to identify anticrossing: Binary classification
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Machine learning - CNN

Trained CNN 1800 plots with offsets, anitcrossings or nothing
Labeled by (has offset, has anticrossing)

(True, True) (True, False) (False, False)

Each set of two layers has a pooling and a convolutional layer

NN layers Charge offset accuracy| Anticrossing Accuracy




ollmage analysis techniques
Peak finding/

ed‘e detection

Line clustering/labeling

Line/shape

Data detection
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4«1 Finding line segments: Hough transform
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Results: Get line equation of each segment, i.e capacitance ratios ‘

*Similar line recognition techniques developed at U. Sherbrooke Lapointe-Major, Thesis (2017)



12‘Finding AC: Generalized Hough transform

Instead of using a line, use templates.
We chose ray templates defined by two angles
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Results: Cr» and capacitance ratio for each AC




sl Device simulator example ‘measurement’

cb object is a n-quantum dot object that has
capacitance matrix information, custom or randomly

generated
1 # Setup
2 runinfc = ps.Funinfo('fast |
runinfo.sweep = {'dot gate 1': ps.drange(-~0.1, C.002, 0.1)})
¢ runinfo.step = {'dot_gate_2': ps.drange(~0.1, 0.002, 0.1)})

# Measure
6 oxpt - get_stability diagram(runinto, 2d)
7 # Plot
7 gplt.charge sense plot(sxpt)

olo0

o Simplifications

?>\.’ .. =« <Tunnel rates are just right
% *  eFixed tunnel coupling
5 o * + No stochastic donors
D 150 )
; ‘ *No charge sensor background
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4l Auto tune procedure for n-quantum dots

0. Fix voltages for O electron occupation in each dot

1.1 Increase dot gate 1 until charge transition is found (CNN)

1.2 Get capacitance matrix for dot 1 vs all other gates (IA)

1.3 Find next charge transition for dot 1 (CNN) IA - image analysis
1.4 Get charging voltage for dot 1 (1A) CNN - Convolutional
1.5 Virtualize all gates relative to dot 1 Neural Network

1.6 Fix chemical potential of dot 1, so dot 2 can be filled

2.1 Increase dot gate 2 until charge transition is found (CNN)

2.2 Cap matrix (I1A)

2.3 Next transition (CNN) 2.4 Charging V (lA)

2.4 Virtualize relative to dot 1 and dot 2

2.5 Go to (1, 0) <-> (0, 1) crossing and get Cnm

2.6 Fix chemical potential of dot 1 and 2 so that dot 3 can be filled

3. to n. Repeat all steps in 2 for all other quantum dots




sI Auto tune procedure for n-quantum dots

« Successfully implemented on simulated device with two

guantum dots.
Automation, CNN, & IA
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- Generalizing for step 3 and beyond
 Can likely restrict virtualization to NN and NNN




sl Conclusions

» Image analysis, using hough transforms give
guantitative information about stability diagrams

« Machine learning, (convolutional neural network) gives
qualitative information

« Combination of techniques builds into automation
routine for auto-tuning n-quantum dots.

Future steps:

« Add dynamic component binary classifiers, i.e. latching
and tunnel broadening

» Sprinkle random donors

» Add model learning routines for self correcting device
model, corrections of drift or miss-predictions

» Use model information for pulse design



