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2 Cyber Resilience:An Emerging Need

Situation: advanced persistent threats (APTs) are
working tirelessly to compromise the Nation's most
critical digital assets and networks

Problem: cyber community is starting to recognize
that

It is simply impossible to stop all attacks and
compromises

Current response capabilities are wanting: 256 days to
detect infiltration, 90-120 days to remediate*

Approach: addressing the cyber.threat requires
changing mindsets and capabilities

*Dr. Dale Meyerrose, Major General,
U.S. Air Force, Retired, "What's Holding
Us Back?," Cyber Resilience Summit 2017

"You're never going to have an impenetrable network, that is a fool's errand. You have to have the
ability to fight through the hurt".

Rear Adm. Danelle Barrett, Dir. of the Navy Cyber Security Division, Office of Chief of Naval Ops
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4 What is Cyber Resilience?
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Informally, cyber resilient systems are able to execute required
mission parameters despite an hostile cyber-threat environment.



5 Security and Resilience

Goal

Assessment Focus

Enabling
Mechanisms

Metric Focus

Traditional Security Resilience

Prevent, protect network to maintain
CIA

Vulnerability

Restricting Access Et Management of
Permissions

Threat, vulnerability

Survive, overcome to execute
mission

Consequence, response

Prepare, withstand, adapt, recover

Mission execution, consequence

Security and resilience activities are complementary efforts that come
together to form a comprehensive, risk management strategy



6 I Cyber Resilience Objectives
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Our Methodology:
7 An extension of IRAM (Infrastructure Resilience Analysis Methodology)

7. Analyze
System

Attri butes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

2. Define
System(s)

This methodology provides a consistent, repeatable process for performing
cyber resilience analyse

Biringer, Betty, Eric Vugrin, and Drake Warren. Critical infrastructure system security and resiliency. CRC press, 2016.



8 I Step I : Specify Analysis Objectives

7. Analyze
System

Attributes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disruption
Scenario(s)

Define the specific questions the analyst aims to answer and
the ultimate objectives for the analysis.

• Essential for establishing the scope of the analysis
• Informs all subsequent steps
• Failure can result in an analysis that does not address

objectives and wastes time, effort, and resources.



9 Step 2: Define System(s)

7. Analyze
System

Attributes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disruption
Scenario(s)

Describe the system's intended mission and how it achieves
that mission

• System components or subsystems
• System structure
• Component dependencies/interactions
• System functions



10 I Step 3: Specify Disruption Scenario(s)

7. Analyze
System

Attributes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disrupti
Scenario

Describe the stressed conditions and how the system operates
through them

• Specification of the disruption
• Effect
• Timing
• System response
• Uncertainties



11 Step 4: Select Performance Measures

7. Analyze
System

Attributes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disruption
Scenario(s)

Describe the data that can be taken from the system to
measure performance

• Target system performance
• Actual system performance
• Response and recovery efforts
• Relative weights of importance



12 Step 5: Design Experiments and Gather Data

7. Analyze
System

Attributes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disruption
Scenario(s)

Determine how the scenarios can be tested against the system
and data gathered

Selection of the experimental platform generally depends upon
the resources available, time and budget, and analysis needs.
• Testbeds
• Emulation
• Modeling and simulation
• Historical events



13 Step 6: Perform Metric Calculations

7. Analyze
System

Attributes

6. Perform
Metric

Calculation

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disruption
Scenario(s)

Process the experimental data and performing the necessary
calculations to populate resilience metrics

tf

SI = B f q1(0[TSI31(t)— SPi (0] dt

to

tf
TRE = C f rk(t)[REk(t)]dt

k 0

RDR=SI+ aTRE



14 Step 7:Analyze System Attributes

p7. Analyze
System

Attributes

6. Perform
Metric

Calculations

5. Design
Experiments
& Gather

Data

1. Specify
Analysis

Objectives

4. Select
Performance
Measures

2. Define
System(s)

3. Specify
Disruption
Scenario(s)

Use the quantitative results to identify resilience-limiting
system properties and provide the basis for resilient design
activities.

• Anticipate
• Absorb
• Adapt
• Restore



1 5 Applying IRAM to Evaluate Moving Target Defense

Attack Computer

N etwork

Victim Computer

Moving Target Defense (MTD)

Image Source: https://www.energy.gov/sites/prod/files/2017/02/f34/SNL_ADDSec_Peer_Review_2016.pdf _



16 Summary of IRAM Evaluation Results

Energy systems are cyber attack targets; WANs are predictable and static

*
"11111oes 5novingtarget defense effectively defend against reconnaissance and

Ethernet-based attacks?
- - -

ADDSec: Artificial Diversity and Defense Security (Chavez et al., 2016) employs

Automatically reconfigures system with IP randomization and port hopping

( Can detect attack and then randomize using machine learning algorithms

TD

r-

Does ADDSec make the system more resilient?

Using quantitative resilience metrics and analysis, results indicate:

ADDSec is worth the cost of implementation for our target system.

ADDSec does improve system resilience during a reconnaissance attack!

ADDSec Reference: https://prod-ng.sandia.gov/techhb-noauth/access-control.cgi/2018/184545.pdf_



17 ADDSec:Artificial Diversity and Defense Security

Grid WANs have predictable communication paths and static configurations

To introduce unpredictability and enhance situational awareness, Chavez et
al. developed the ADDSec tool which leverages moving target defense (MTD)

• Anticipates and adapts against reconnaissance and Ethernet-based attacks
• Enables automatic reconfiguration of the system through IP randomization and port hopping
• Machine learning algorithms applied to detect attacks and notify SDN controller to randomize

Automatic
Reconfigurable
Network (ARN)

Randomizing
Application
Instruction
Sets (RAIS)

Machine-Based
Dynamic

Defense (MDD)



18 Research Questions Explored with IRAM

Key 1.1. Does ADDSec increase resilience of the system
Questions: during an attack, specifically during reconnaissance?

1.2. What performance does the system exhibit
under different IP randomization rates?

1.3. What performance does the system exhibit
under different IP randomization rates during an
attack?

1.4. Are machine learning triggers effective for this
type of attack?

1.5. Do our resilience metrics provide useful insight
into the effectiveness of ADDSec?

1. Specify
Analysis

Objectives



19 I Experimental Setup

KILLER
192.168.0.200

192.168.0.201

192.168.0.210

•Two subnets connected by router

•Total of twenty devices, ten on each subnet

•Poller periodically sends connection requests to each of the twenty devices
• Maintains routing paths and provides basic monitoring

10.0.0.210

•

2. Define
System(s)



20 Experiment Plan:ADDSec Modes and Attack Presence

Baseline:
No ADDSec

Constant IP
Randomization

Triggered IP
Randomization

• Worm
• No Worm

• Worm
• No Worm

• Worm
• No Worm

•Worm deployed on (an initially single) host(s) attempting to ping addresses and make connections
• Scanning-based attack
• Scans each subnet using ICMP requests to map active host addresses; when reply received, attempts to
open secure TCP connection to target host

• Once connection successfully established, worm attempts to self-replicate and continue to propagate

3. Specify
Di5ruption
Scenario(s)



21 I Resilience Metrics

Measurement of resilience costs utilizes:
. Systemic Impact (SI): cumulative impact that a disruption has on system performance

sI =EIN_1[Tsp(to—sP(tIACti— ti_i)

. Total Recovery Effort (TRE): total resources used for recovery efforts post-
disruption

T RE = ErL1[RE (t1)](t1 — t1-1)

Thus, the calculation of recovery-dependent resilience (RDR) cost is:
Takes into account the effect the different recovery activities have

S/ + a • TRE
RDR = 

Norm



22 Computing SI and TRE: Performance Metrics of Interest

Systemic Impact (SI)

Hosts Not Infected (#)

Total Recovery Efforts (TRE)

Latency (s)

Retransmitted Packets (#)

Dropped Packets (#)

4 Select
Performance

Mea5ures



23 Summary of Results: System Metrics

Frequency of IP Randomization

Average
over 10
trials

(1000s/trial
)

# Host
Infections

Latency

Retransmits

Dropped
Packets

None ML ls 4s 8s 16s 32s 64s 128s 256s

No
Worm

Worm 20 3 2.8 3.4 4.8 4.9 4.9 7.9 8.9 9.8

No
Worm 29.93 37.2 349.34 394.71 699.11 591.89 TBD

422.109
7

48.8840
3 420.31

Worm 729.91 698.92 346.22 733.84 1000.42 1148.1 997 1187.3 1559.14 2351.07

No
Worm 6039 5928.7 37.2 37.2 37.2 37.2 TBD 4291.8 6887 2681.3

Worm 5417 2267.8 1966.1 2151.1 2451.9 2839.5 3911.3 6297.6 7182.3 3911.3

No
Worm 0 0 0.1 0 0.1 0 TBD 0 0 0
Worm 0 0.3 1 0.7 0.6 0.1 0 0.1 0 0

5. Design
Experiments
& Gather

Data



24 Summary of Results: Resilience Metrics

Frequency of IP Randomization

Average over
10 trials

(1000s/trial)

SI

TRE

RDR

None ML ls 4s 8s 16s 32s 64s 128s 256s

No Worm 0 0 0 0 0 0 0 0 0 0

Worm 0.65146 0.05773 0.05378 0.06091 0.08202 0.08524 0.08373 0.1331 0.15133 0.16696

No Worm -0.00042 -0.00235 -0.00341 0.01331 0.02631 0.01751 TBD 0.0202 0.00094 0.0442

Worm -0.1872 0.04558 0.02497 0.05158 0.06614 0.07078 0.05336 0.0504 0.05643 0.07413

No Worm 0.0004

2 -0.00235 -0.00341 0.01331 0.02631 0.01751 TBD 0.0202 0.00094 0.0442

Worm 0.4642
6 0.1033 -0.07874 0.11247 0.14817 0.15602 0.13709 0.18352 0.20777 0.24108

6. Perform
Metric

Calculations



25 I Results

Key
Question: 1.1 Does ADDSec increase resilience of

the system during an attack, specifically
during reconnaissance?

Yes! ADDSec improves resilience significantly.

Resilience Costs of ADDSec with Worm at Different Randomization Rates
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26 Results

Key
Question:

2 What performance does the system
exhibit under different IP randomization
rates?

Constant ls and Trigger Mode tower performance losses.

Resilience Costs of ADDSeo with No Worm at Different Randomization Rates
- -
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0 015
cr
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-0 00

0

ConstantMode

Trend

Trigger Modewith ML
 Baseline \ivitri No ADDSec

1C 4C 8C 16C 32C 64C 126C 256C T
Constant Rate (s)

7. Ana I yze
Syste rn

Attri bu tes



27 I Results

Key
Question:

1.3 What performance does the system
exhibit under different IP randomization
rates during an attack?

Constant ls and Trigger Mode low performance overhead.

0.08
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A Trigger Mode with ML
 Baseline With No ADDSec

0.01  
1CW 4CW 8CW 16CW 32CW 64CW 128CW 256CW TW

Constant Rate (s)

7. Analyze
System

Attributes



28 Results

Key 4 Are machine learning triggersQuestion:
effective for this type of attack?

tTriggered randomization exhibited similar behavior to faster
randomization rates; Constant ls Mode always outperforms.

Resilience Costs of ADDSec with No Worm at Different Randomization Rates
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29 I Results

Key
Question: 5 Do our resilience metrics provide

useful insight into the effectiveness of
ADDSec?

Trends are seen in relation to ADDSec randomization
rate/strategy; found that Constant ls Mode most effective.

Resilence Costs of ADDSec with Worm at Different Randomization Rates
0.5
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30 Key Takeaways

Resilience analysis provides
useful insight into ADDSec
performance and optimal

modes

Automated triggers can be
effective

IP randomization is
effective but subject to

variability

• SI metric captures infection impact to system dynamically, over time
• TRE metric can be tuned to give more weight to important quantities (e.g., latency >
retransmits)

• RDR provides more granular insight that might be missed with only intuition (e.g., 32s
case)

• Reconnaissance activity is stopped even during period of the randomization rate
• Higher resilience than constant rate
• Caveat: algorithms need to be tuned to detect the attack

• Quantitative analysis shows that faster randomization rates improve resilience on average
• Increasing randomization decreases number of infected hosts and time to first infection

• Stochastic behavior means that there is no guarantee of improved resilience with faster
randomization

Paper Reference: S. Hossain-McKenzie, C. Lai, A. Chavez and E. Vugrin, "Performance-Based Cyber Resilience Metrics: An Applied Demonstration Toward Moving Target Defense," IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society, Washington, DC, 2018, pp. 766-773. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8591764&isnumber=8591058



31 1

Thanks! Questions?



32 Cyber Resilience

Many critical systems are the target of evolving, sophisticated attacks
. Cannot stop every attack — need to improve cyber resilience

Vugrin et al. on resilience:
. Given one or more disruptive event(s), resilience describes the system's ability to reduce the magnitude and

duration of deviation from targeted performance levels

Quantitatively evaluate resilience features such as ADDSec to make informed decisions
by examlnIng:
. Effectiveness of tool during a disruption

Resilience, Impact on normal system operations
, Resilience costs of different implementation strategies Systemic Impact &

Total Recovery Effort

Resilience Capacities

Resilience Enhancement Features

Informally, cyber resilient systems are able to execute required
mission parameters despite a hostile cyber-threat environment.



I Cyber Resilience Framework: Elements
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34 I ADDSec Machine Learning

Machine learning algorithms are deployed to each host

Features extracted from logs on each host:
System status and performance statistics

System call stack

Packet capture, Bro network analytics

Classification is performed by an ensemble of techniques (primarily decision trees)

When the machine learning is first turned on, a baseline is taken. The feature set is periodically
compared against a baseline and if an alert is triggered, a signal is sent to the controller to undergo
randomization.

Normal Behavior
****************,*
Normal Behavior
********************
Normal Behavior
********************
Normal Behavior
********************
Attack Detected
Sending force randomization command.

7

STARTING TESTING

STARTING TESTING

STARTING TESTING

STARTING TESTING

********************

********************

********************

*******************:*



35 ADDSec Exhibits Stochastic Behavior
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36 I Testing for Significant Differences in RDR

0.25

0.20

0.15

0.10

Mean RDR and 95% confidence interval

ML 4c 8c

Mode
32c 6:4c 128c 256c

p-values and significance for test of mean difference

256c -

128c -

64c -

32c -

o • 16c -

8c -

4c -

lc -

mL -

0 0 0 0 0 0 0.014

0 0 0.001 0 0.092 0.014

0 0.016 0.061 0.005 0.092

0.116 0.418 0.187 0.005

0.007 0.545 0.187 0.061 0.001

0.02 0.545 0.418 0.016

0.017 0.02 0.007 0.116 0

0.017 0 0 0 0

004 0.453 0 0 0.01 0

ma.
ML 1c 4c 8c 16c 32c 64c

Mode
128c 256c

Significant

• FALSE

• TRUE

Estimated additional number of obs needed to acheive significance

Significant

• FALSE

• TRUE



37 Lessons Learned and Future Experiments

Pre-processing took substantial effort

• Automated many processes compared to initial ADDSec analysis

ADDSec behavior stochastic, needed to collect more data to see more clear trend

• Difference-in-mean analysis useful for understanding results and if more data needed
• Gained insight into how to best improve ADDSec behavior:
• For a predictable scan, randomize among IP ranges that have already been scanned or are not initially scanned.

Significant effort s b •ebu ggi n g experiment, determining good data collection strategy and selecting
metrics

• Emulation requires more resources than simulation - deploy experiments on bigger cluster
• VM resources need to be tuned so that machine learning buffers do not cause crashes
• Future experiments could be automated with time-based scripts - or port experiment to Firewheel which has time triggers

•


