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Motivation: Predictions Under Uncertainty

We need to make predictions that incorporate both parametri( and
model form uncertainties
• Predictions may be interpolatory or extrapolatory
• Central to high-consequence modeling and simulation activities

Here, we focus on non-intrusive methods to support black-box
simulations
• Perform predictions under uncertainty with explicit discrepancy

models
• Explore challenges from algorithmic and deployment perspectives

Calibration of Lomputer Models

Experimental data = model output + error

cl(xi) = M(6 0, xi) E

variables to be calibrated
• x= scenario or configuratior variables

Represent different experimental settings at which data is taken
(temperature, pressure, etc)

• r (0, 62) = measurement/observation error

Often, even with calibration, the agreement between the data and the
model is not very close. This can be due to modei form error, also called
model discrepancy or structural error

cl(xi) = A4(6 , xi) + ök) E

Goal: Make predictions in the presence of parametric and model
form uncertainties under different experimental conditions

Philosophical and Implementation Issues
• How do we estimate 6?

Simultaneous versus sequential optimization of discrepancy and
calibration parameters

• What model form is appropriate for 6?
• How can we understand if there is significant confoundirig (non-

identifiability) between our estimates of 0 and 6?
• How can we appropriately use 6 to improve the predictive

capability of the model?
• How do we capture and propagate extrapolation uncertainty?

In the model form
In the parameters

• In the discrepancy

How do we make the answers to these questions general?

DAKO 
Explore and predict with confidence.

Automate typical parameter variation studies with advanced
methods  and a generic interface to your simulation 

parameters

DAKOTA
Optimization, sensitivity analysis,
parameter estimation, uncertainty

quantification

response
metrics

  Computational Model

Discrepancy Formulation in Dakota

Sequential calibration of model parameters and model discrepancy
• Parameters 0 are calibrated to experimental data d(x)
• Discrepancies are calculated

For each scalar response
ö(X;) = d(xi) - M(61 , xi)

For each field response

16(ti, xj) = d(ti, xj) - A4(ti, e, xj)
• Prediction variance can also be computed

Example:Thermal Battery Calibration

We wish to use a single model for temperature calculations for any initial
condition
• Calibrate 0 to experimental data

Model is an emulator with 7 parameters
Three cases orleave one out" calibration
One experiment of each type
71-(9), It and (dlO) N

Calculate discrepancies and calibrate discrepancy model
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Discrepancy model corrected some areas better than others, but
experimental data is contained within the prediction intervals of the
corrected model
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