

Calibration, Propagation, and Validation of Model Discrepancy Across Experiments

K. Maupin, L.P. Swiler

Motivation: Predictions Under Uncertainty

We need to make predictions that incorporate both **parametric** and **model form** uncertainties

- Predictions may be interpolatory or extrapolatory
- Central to **high-consequence** modeling and simulation activities

Here, we focus on **non-intrusive** methods to support black-box simulations

- Perform predictions under uncertainty with explicit discrepancy models
- Explore challenges from algorithmic and deployment perspectives

Calibration of Computer Models

Experimental data = model output + error

$$d(x_i) = M(\theta, x_i) + \varepsilon_i$$

- θ = variables to be **calibrated**
- x = **scenario** or **configuration** variables
 - Represent different experimental settings at which data is taken (temperature, pressure, etc)
- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ = i.i.d. measurement/observation **error**

Often, even with calibration, the agreement between the data and the model is not very close. This can be due to **model form** error, also called **model discrepancy** or **structural error**

$$\Rightarrow d(x_i) = M(\theta, x_i) + \delta(x_i) + \varepsilon_i$$

Goal: Make predictions in the presence of parametric and model form uncertainties under different experimental conditions

Philosophical and Implementation Issues

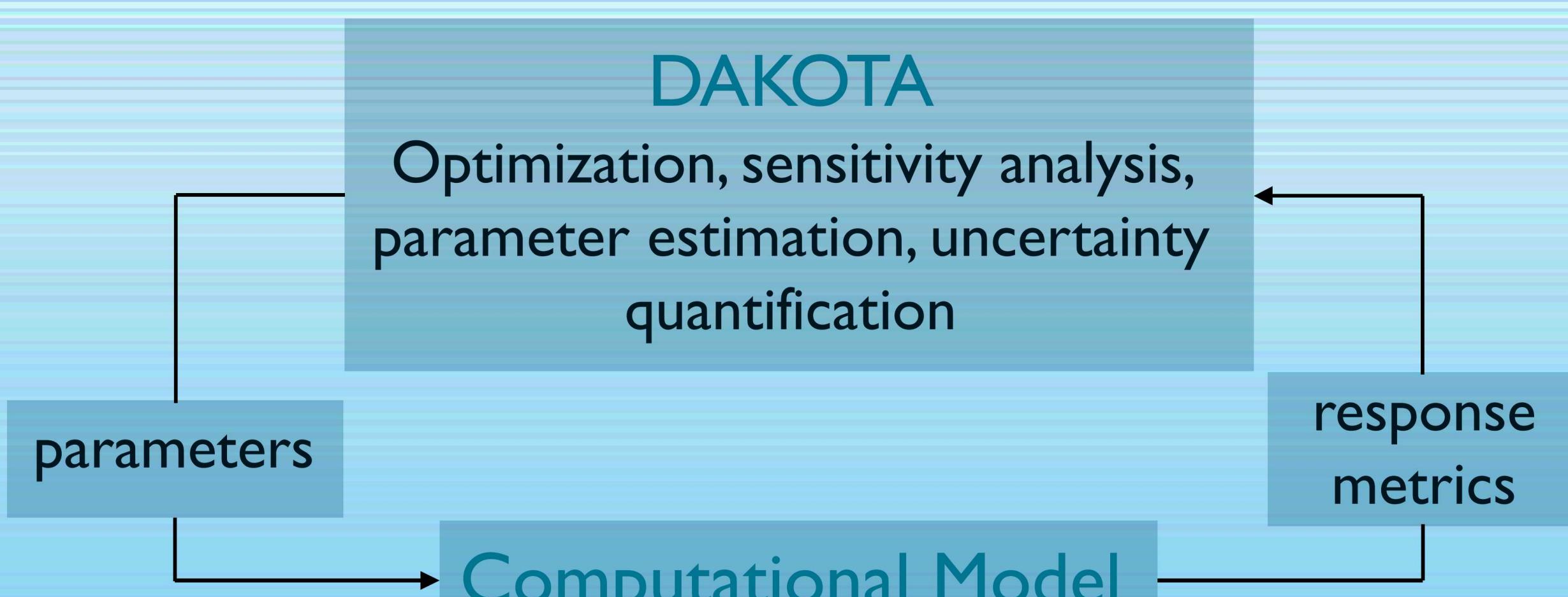
- How do we estimate δ ?
 - **Simultaneous** versus **sequential** optimization of discrepancy and calibration parameters
- What model **form** is appropriate for δ ?
- How can we understand if there is significant **confounding** (non-identifiability) between our estimates of θ and δ ?
- How can we appropriately use δ to improve the **predictive capability** of the model?
- How do we capture and propagate extrapolation uncertainty?
 - In the model form
 - In the parameters
 - In the discrepancy

How do we make the answers to these questions general?

DAKOTA

Explore and predict with confidence.

Automate typical parameter variation studies with advanced methods and a generic interface to your simulation



Discrepancy Formulation in Dakota

Sequential calibration of model parameters and model discrepancy

- Parameters θ are calibrated to experimental data $d(x)$
- Discrepancies are calculated
 - For each scalar response

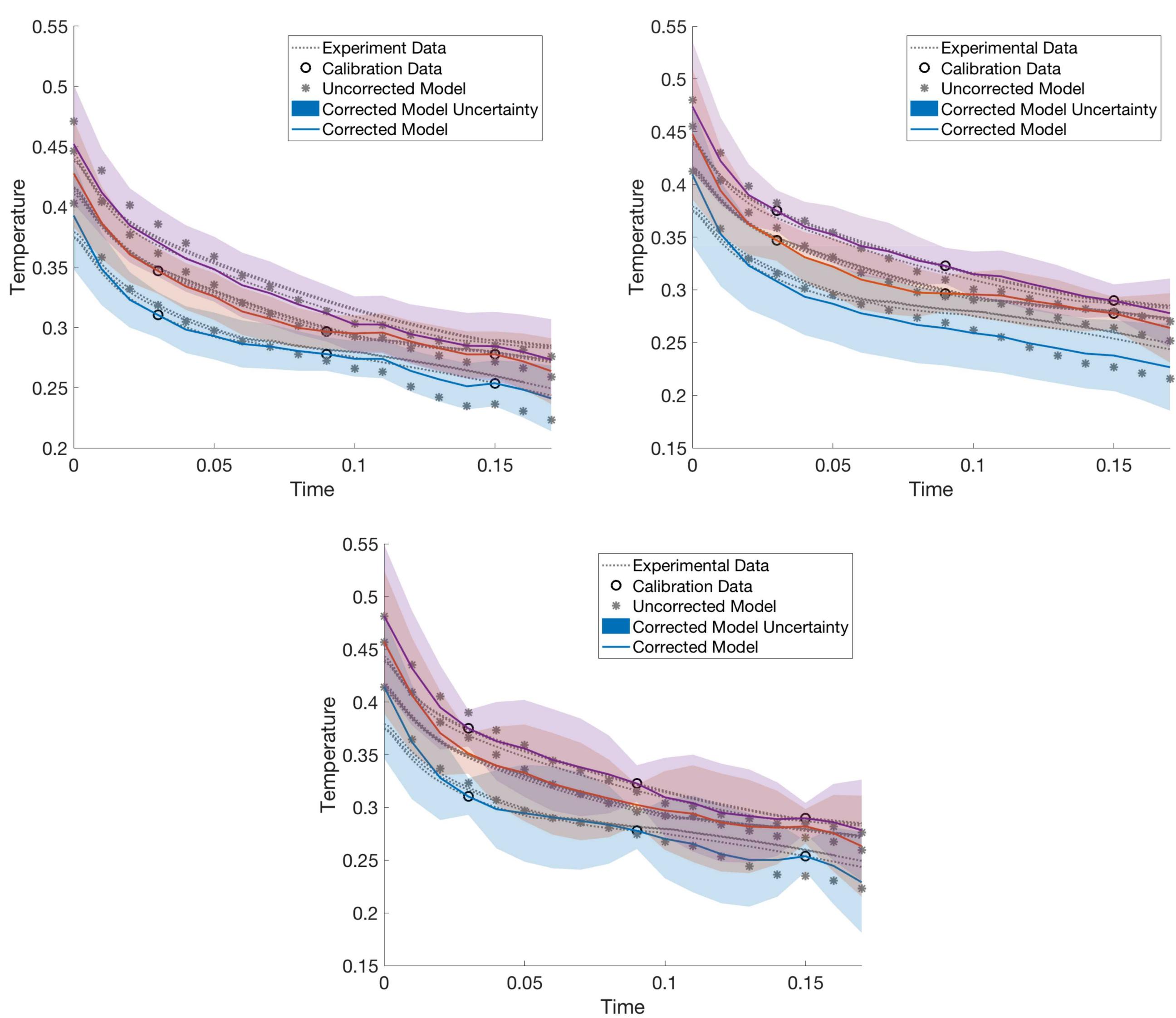
$$\delta(x_i) = d(x_i) - M(\theta, x_i)$$
 - For each field response

$$\delta(t_i, x_j) = d(t_i, x_j) - M(t_i, \theta, x_j)$$
- Prediction variance can also be computed

Example: Thermal Battery Calibration

We wish to use a single model for temperature calculations for any initial condition

- Calibrate θ to experimental data
 - Model is an emulator with 7 parameters
 - Three cases of “leave one out” calibration
 - One experiment of each type
 - $\pi(\theta) \sim \mathcal{U}$ and $(d|\theta) \sim \mathcal{N}$
- Calculate discrepancies and calibrate discrepancy model



Discrepancy model corrected some areas better than others, but experimental data is contained within the prediction intervals of the corrected model

References

Explicit Discrepancy Calibration

- K. Maupin and L.P. Swiler. Model Discrepancy Calibration Across Experimental Settings. *Reliability Engineering & System Safety*. Submitted.
- J. Brynjarsdottir and Anthony O'Hagan. Learning about physical parameters: the importance of model discrepancy. *Inverse Problems*, 30(11):114007, 2014.
- M. C. Kennedy and A. O'Hagan. Bayesian calibration of computer models. *Journal of the Royal Statistical Society, Series B*, 63:425–464, 2001.

Embedded Discrepancy Calibration

- K. Sargsyan, X. Huan, and H.N. Najm. Embedded model error representation for Bayesian model calibration. *arXiv:1801.06768 [stat.CO]*.
- T. Portone, D. McDougall, and R.D. Moser. A stochastic operator approach to model inadequacy with applications to contaminant transport. *arXiv:1702.07779 [cs.CE]*
- R. Morrison, T. Oliver, and R. Moser. Representing model inadequacy: A stochastic operator approach. *SIAM/ASA Journal on Uncertainty Quantification*, 6(2):457–496, 2018.

Identifiability

- Y. Ling, J. Mullins, and S. Mahadevan. Selection of model discrepancy priors in bayesian calibration. *Journal of Computational Physics*, 276:665 – 680, 2014.
- P.D. Arendt, D.W. Apley, and W. Chen. Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. *ASME Journal of Mechanical Design*, 134(10):1–12, 2012.