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Motivation: Predictions Under Uncertainty Discrepancy Formulation in Dakota
We need to make predictions that incorporate both parametric and Sequential calibration of model parameters and model discrepancy
model form uncertainties = Parameters 0 are calibrated to experimental data d(x)
= Predictions may be interpolatory or extrapolatory = Discrepancies are calculated
= Central to high-consequence modeling and simulation activities " For each scalar response

(5(X,’) — d(X,') — M(B, X,')

Here, we focus on non-intrusive methods to support black-box .
= For each field response

simulations
= Perform predictions under uncertainty with explicit discrepancy 0(ti, xj) = d(t;, x;) — M(t;, 0, x;)
models * Prediction variance can also be computed

= Explore challenges from algorithmic and deployment perspectives . .
Example: Thermal Battery Calibration

Calibration of Computer Models | | | .
We wish to use a single model for temperature calculations for any initial

Experimental data = model output + error condition
d(x;) = M(0, x;) + €; = (Calibrate 0 to experimental data
" 0 = variables to be calibrated = Model is an emulator with 7 parameters
= x =scenario or configuration variables = Three cases of “leave one out” calibration
= Represent different experimental settings at which data is taken * One experiment of each type
(temperature, pressure, etc) * 1(@)~Uand (d|O)~ NV
= ¢~N(0,0%) =i.i.d. measurement/observation error = Calculate discrepancies and calibrate discrepancy model
Often, even with calibration, the agreement between the data and the 0.55 0.55
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model is not very close. This can be due to model form error, also called . © Calibration Data _ 0 © Calbration Data
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Goal: Make predictions in the presence of parametric and model T  0.35
€035 =
) )
= = 0.3F

form uncertainties under different experimental conditions
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Philosophical and Implementation Issues 2o | .
* How do we estimate 9! 0 | | | 015 | | |
’ g . e . . 0 0.05 0.1 0.15 0 0.05 0.1 0.15
= Simultaneous versus sequential optimization of discrepancy and Time Time
calibration parameters
*  What model form is appropriate for §? o = Experimental Data
= How can we understand if there is significant confounding (non- 05 | > Unconreoted ode
identifiability) between our estimates of 8 and 6! 045 B Corrected Model Uncertainty

* How can we appropriately use 0 to improve the predictive
capability of the model?
* How do we capture and propagate extrapolation uncertainty?
* |n the model form
= n the parameters
* |n the discrepancy

Temperature

How do we make the answers to these questions general? 0.15. - - -
| Time | |
‘ D A K D T A Discrepancy model corrected some areas better than others, but
)) experimental data is contained within the prediction intervals of the
l Explore and predict with confidence. corrected model
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