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Stark broadening is used as a density diagnostic in many plasma
experiments, including the Z iron opacity experiments.

• Mg, Na and F spectra are simultaneously
acquired to compare and contrast density
diagnostic consistency in the range of 50-60eV
and densities of r‘j 2x1021 electrons/cc.

• This initial data is being analyzed and
interpreted with PrismSPECT.

• Here, we discuss the methodology.
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Pinch x-rays drive and backlight a plasma, yielding absorption spectra.
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Stark broadening dominates all observed linewidth contributions.
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Absorption features of three elements acquired
thanks to uniquely broadband backlighter and spectrometer range.
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He-like charge state is the highest observed charge state in the plasma.
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Uncertainty is acceptable on each spectrum;
precision improves with multiple spectra.
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Determining electron density from spectra
is based on the weighted-average linewidth.
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The linewidth uncertainty (GO
translates into an electron density uncertainty (o-n).

Probable Width = m * Probable Density + b
Width-b
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The width-temperature-density relationship
is determined using PrismSPECT.
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Thus each line's width (AX) translates into an electron density (ne).

Agreement between
F-Hey and F-He6, and
F-HeE and F-Hey
suggests that electron
density lies
—2.3X1021 electrons/cc
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Conclusion and Future Work

• High quality data (SNR and spectral range) were acquired
• Methodology has been established to gauge diagnostic consistency.

• Repeat this process for the He-like Na and Mg lines.
• Repeat this process for multiple tamper thicknesses.
• Complement with theory, such as Griem approximation's predictions.
• Involve models, such as MERL, in the predictions.
• Study the effects of density gradients on measured linewidths and quantify
the role they play.
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