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1 Summary: Z data can benchmark models of emission from
2 photoionized accretion-powered plasmas

• Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra
4 These models are largely untested in the laboratory
4 Need benchmark quality data

• A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z
4 the column density is adjustable, testing radiation transport

• Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

• Presently, models do not reproduce neither relative or absolute emission

• First terrestrial RRC for a photoionized plasma was obtained on Z enabling test of
astrophysical temperature diagnostics

These results raise questions about the suitability of models used to
interpret astrophysical observations
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Active Galactic Nuclei and X-ray Binaries are revealed through the
3 emission from their accretion disk
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Challenges:
Line identification
Blended spectra from multiple elements
Spatial and temporal integration
Limited spectral resolution
Limited signal-to-noise
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4
Benchmark requirements to emission experiment

Experimental requirements for model benchmarking:
• large volumes for uniformity
• long duration x-ray drive for steady state
• demonstrated reproducibility
• independent diagnosis of plasma conditions and x-ray driving radiation
• demonstrated photoionization regime (CSD vs Te, > 1 erg.cm/s)

Specifically for emission:
• Large column density for high S/N
Since column = density x length , density < 1019e-/cc 4 large —1cm plasma size

Experiments on the Z Facility can meet these criteria.

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)



All required inputs are obtained on a single Z shot, confirm the
5 plasma is photoionized and at relevant regime
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All required inputs are obtained on a single Z shot, confirm the
6 plasma is photoionized and at relevant regime

X-ray drive, flux and shape F - 1.3 1019 erg/cm2/s

Tcolor= [45, 80, 170] eV

Average charge Z* - 10 , Si+1°

Electron density ne = 8 x 1018 e-/cm3

Photoionization parameter 20-300 erg.cm/s

Column density (adjustable) N, - 2.5 - 10 1017 Si/cm2

Electron temperature Te = 26 - 40 eV

Emission spectroscopy
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G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)
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The interpretation of x-ray spectra emerging from x-ray binarics and activc galaclic nucici aecraed plasmas

relics on complex physical models for radiation generation and transport in photoionizcd plasmas. These

models have not been sufficiently experimentally validatml. Wc have developed a highly reproducibk
benthmark expaiment to study spectrum formation from a photeionizzxl silicon plasma in a regime

comparablc to astrophysical plasmas. Ionization praiktions are higher than infernxi from measunxi absorption

spectra. Self-emission meatsurtx.1 at adjustablc column densities tests radiation transport eflikts, demonstrating

that the monant Auger destmelion assumption used to interpret black hok arxretion spectra is inaccuratc.

1. Transmission was measured with 4.7% reproducibility
enabling test of ionization predictions

2. Models over-predict ionization at measured conditions
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3. Emission is measured down to 5.2% reproducibility and
at three column densities thus enabling test of radiation 20
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4. Resonant Auger Destruction is not 100% effective at 5

quenching L-shell ion K emission 38
25

5. Emission predictions don't match measurements even 
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at conditions that favor transmission agreement.
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G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)
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The emission data shows contributions from different charge states
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Simultaneous line observation contradicts an assumption used to interpret black hole spectra*
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The emission is not reproduced by any model even with conditions
9 adjusted to match absorption spectra
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Comparison with a Monte Carlo radiation transport code exhibits
10 improved agreement
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The effect of the different atomic physics data must also be evaluated

MC: Monte Carlo radiation transport code, D. Liedahl



High-n, ri I 4, He-like transitions with merging into the continuum
11 • first obtained in a laboratory photoionized plasma

Silicon closer to the x-ray source
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4 Effect of line shape, line broadening, continuum lowering on the RRC can be studied. High-n
lines getting broader with n 4 density sensitivity.



The radiative recombination continuum (RRC) is considered the most
12 reliable temperature diagnostics for accretion-powered objects
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RRC = emission following the capture of
electron by plasma ions above
recombination threshold energy

Requirements to observe RRC: 
1. low temperature Te<</p (ionization

potential)
2. Overionized recombining plasma
3. High sensitivity instrument (overcome

x-ray drive radiation)
4. Spectral resolution better than Te
5. Little contamination from line and/or

other continuous emission

4 RRC visibility with highly charged ions supports the photoionized nature of the accreted matter
4 Untested in the laboratory in a well-characterized photoionized plasma.

[1] Liedahl, Paerels et al. (1996), 12] Schulz et al., Ap. J. Letters 564 (2002). [3] Watanabe et al., Ap. J. 651 (2006)
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We recorded first RRC (~10-8 Z-pinch energy) in a photoionized
plasma in a terrestrial laboratory
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4 RRC visibility with highly charged ions supports the photoionized nature of the accreted matter

4 Untested in the laboratory in a well-characterized photoionized plasma.

[1] Liedahl, Paerels et al. (1996), 12] Schulz et al., Ap. J. Letters 564 (2002). [3] Watanabe et al., Ap. J. 651 (2006)



Preliminary: temperature inferred from line absorption agrees with
14 the RRC slope
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How much of the predictive difficulty is unique to our experiments
15 and how does it impact astrophysical objects?

Possible needed improvements in understanding the experiment
• Could electron density be higher than the value measured with radiography?
• Transient kinetics appear relatively unimportant, but further evaluation is needed
• The bulk of x-ray drive in 0.1 -lkeV is measured to ±20%, but accuracy in >1.7keV photon spectrum needs

more evaluation.
• Accounting for geometrical dilution of drive requires attention
• Velocity impact on line optical depths appears small, but further investigation needed

Scrutiny is required for the models
• Accuracy of the recombination rates? dielectronic recombination rates?
• Is the atomic data complete?
• Are approximations in the radiation transport valid?

e.g. escape factors, escape geometry, self-consistency...

We will scrutinize some of these for the 2018-2020 Z fundamental science proposal
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1 Summary: Z data can benchmark models of emission from
photoionized accretion-powered plasmas

• Understanding X-ray Binaries and AGN accretion disks requires complex models
that interpret observed spectra
4 These models are largely untested in the laboratory
4 Need benchmark quality data

• A photoionized silicon plasma with a measured drive radiation spectrum, density
and temperature was created on Z
4 the column density is adjustable, testing radiation transport

• Spectral absorption and emission are measured to high reproducibility enabling
benchmark code comparison

• Presently, models do not reproduce neither relative or absolute emission

• First terrestrial RRC for a photoionized plasma was obtained on Z enabling test of
astrophysical temperature diagnostics

These results raise questions about the suitability of models used to
interpret astrophysical observations
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Emission spectra are also measured at very high spectral resolution
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The high-n lines are not systematically decreasing with principal
19 l quantum number
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The temperature has been obtained from Li-like absorption from
20 low-lying state assuming partial LTE
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The temperature inferred relies on the partial LTE assumption,
21 oscillator strengths and energy level separation (~28eV)
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The radiation driving each sample is inferred from a combination of
2 2 x-ray diagnostics
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Ion density is measured from the sample areal mass and sample
23 expansion
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Measured relative absorption from different ion stages tests model
24 ionization predictions
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Agreement can be obtained by adjusting parameters that increase
25 recombination
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Dividing spectra into segments according to charge states facilitates
26 model radiation transport tests
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The line intensity grows faster than code predicts as plasma column
27 density increases
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