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PFLOTRAN is well-established in single-phase
reactive transport problems, and current research is
expanding its visibility and capability in two-phase
subsurface problems. A critical part of the development
of simulation software is quality assurance (QA). The
purpose of the present work is QA testing to verify the
correct implementation and accuracy of two-phase flow
models in PFLOTRAN. An important early step in QA is
to verify the code against exact solutions from the
literature.

In this work a series of QA tests on models that have
known analytical solutions are conducted using
PFLOTRAN. In each case the simulated saturation
profile is rigorously shown to converge to the exact
analytical solution. These results verify the accuracy of
PFLOTRAN for use in a wide variety of two-phase
modelling problems with a high degree of nonlinearity in
the interaction between phase behavior and fluid flow.

I. INTRODUCTION

Benchmarking of codes against analytical solutions is
a key part of code development, as it allows developers to
verify that the simulation converges to the correct solution
for simplified problems.  Analytical solutions are
typically too simple to be representative of realistic
scenarios in the subsurface, however if each part of the
equations used in a complex simulation have been
demonstrated to provide the correct solution, confidence
can be gained that the full set of equations are
implemented  correctly and  accurately.  Code
benchmarking is especially important if the software is
used to model high-consequence systems which cannot be
physically tested in a fully representative environment
(Oberkampf and Trucano 2007), such as the performance
assessment of a geologic nuclear waste repository.

PFLOTRAN, an open source, massively parallel
subsurface flow and reactive transport code, is part of a
software toolkit, Geologic Disposal Safety Assessment
(GDSA) Framework, under development by the U.S.
Department of Energy (DOE) for performance assessment
of deep geologic repositories for nuclear waste. The DOE
is considering direct disposal of large dual-purpose

canisters (DPCs) containing spent nuclear fuel. Assuming
150-year storage of high burn-up fuel, heat output at the
time of disposal can be sufficient to boil in situ pore
water. Reactions of the canister may also generate
hydrogen gas. This necessitates inclusion of high-
temperature two-phase flow in simulations of DPC
disposal.

Beginning in FY2017, a new QA testing suite was
developed to perform code verification for several basic
processes in PFLOTRAN (Mariner et al. 2017). The
testing suite consists of more than 50 individual tests
exercising single-phase fluid flow, heat transfer, and
radionuclide decay and ingrowth. The purpose of the
present work is verification of the accuracy of two-phase
flow models in PELOTRAN.

One-dimensional analytical models are particularly
useful in verifying that a simulator is accurately
modelling chemo-physical processes such as the nonlinear
interaction of multiple phases flowing simultaneously and
the transition of chemical components between phases
during flow. These processes are typically too complex to
allow for analytical solutions in multiple dimensions.

In this work a series of QA tests on one-dimensional
models that have known analytical solutions are
conducted in PFLOTRAN. One-dimensional simulations
of injection of an immiscible, isothermal fluid to displace
water (called the Buckley-Leverett problem in petroleum
engineering) are conducted. It is shown that the simulated
fluid profile converges to the analytical solution as the
mesh is refined. Subsequently more complex variations of
the Buckley-Leverett problem are modelled including:
radial geometry, component partitioning between the
phases and injection of a cold fluid. In each case the
simulated saturation profile is rigorously shown to
converge to the analytical solution.

These results verify the accuracy of PFLOTRAN for
use in two-phase modelling problems. The suite of QA
problems are publicly available as an option in the suite of
QA tests available for PFLOTRAN at
https://qa.pflotran.org.
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II. VERIFICATION AGAINST ANALYTICAL
SOLUTIONS

The method of characteristics (MOC) can be used to
find travelling wave solutions for purely advective
multiphase,  multicomponent  flow  through an
incompressible porous media. The model applies to
constant rate injection of an incompressible fluid into a
porous media containing constant saturation of a second
incompressible fluid with which it is immiscible or
slightly miscible. The temperature of the injected fluid
may be different than the porous medium, however the
temperature of both must be constant with respect to time.

A general model for two-component, two-phase flow
that can be solved using MOC is (Orr, 2007; Lake 1989,
Sumnu-Dindoruk and Dindoruk, 2008):
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where C; is the molar concentration of component i, F; is
the molar flow of component i, S; f;, ki, p;, and p; are the
saturation, fractional flow, relative permeability, density,
and viscosity of phase j, cj is the mole fraction of
component i in phase j, cjv is the heat capacity of the fluid
or rock. Time is denoted by t, T is temperature and ¢ is
porosity. The distance from the injection point is denoted
x, and may be either linear or radial distance.

Table 1 describes the analytical models that
PFLOTRAN is tested against in the present work. A full
discussion of the analytical solutions to these equations is
beyond the scope of this paper, however references to
detailed discussions for each case are included in every
subsection, and python scripts to solve each benchmark
case are available at https://ga.pflotran.org.

The system of equations outlined in Eq. 1-5 is quite
challenging from a numerical perspective. The system of
equations of purely advective flow with no capillary
pressure and incompressible fluids and solids is
numerically very stiff. The solutions also admit shocks in
saturation and temperature which must be numerically
resolved. This results in simulators having to take small
timesteps and simulation times that are much longer than
one might expect for such small one-dimensional
problems. Moreover, previous studies have shown that
for multi-phase flow problems convergence rates are at
best first-order (Goater and LaForce, 2010).

I.A. Model 1: Immiscible, isothermal linear flow

In petroleum engineering literature the model for
isothermal flow of two completely immiscible fluids is
known as the Buckley-Leverett problem. Model 1 is used
to explore the nonlinearities introduced by having two
phases, each with relative permeability ky(S;) where the
k are typically a polynomial function of S;. For the case
of isothermal injection from a point source in one
dimension and two immiscible phases the model in Eq. 1-
2 simplifies to:
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where C1=S; and f; is defined in auxiliary relation Eq. 4.
In this case the thermal equation is not needed, as
temperature is the same everywhere.

MOC gives a travelling wave solution to Eq. 1 where
the wave velocity is proportional to x/t. Lake (1989)
section 5.2 shows examples of the construction of
solutions for this kind of model. The solution consists of
a shock where the gas saturation changes from zero to an
intermediate value, followed by a rarefaction curve or
spreading wave where the gas saturation gradually
increases to 1-Sy:.

Model I represents injection of an ideal gas at 1 atm
and 25°C into an aquifer completely saturated with water.
Gas injection takes place at x=0, and the aquifer is
modelled as 10 m long, but has an open boundary at
x=10m to represent an infinite-acting aquifer. The
parameters used in this test are outlined in Table 2.

The phases are made to behave immiscibly and
isothermally by wusing the IMMISCIBLE and
ISOTHERMAL keywords in PFLOTRAN. The built-in
Burdine/Brooks-Corey relative permeability functions are
used for both phases. The implementation of the relative
permeability and capillary pressure into PFLOTRAN is
shown on the documentation page. Constant density and
viscosities of the phases are used by defining



TABLE I. Parameters used in 1D analytical solutions. All convergence times are from simulations on a MacBook Pro laptop

with a 3.1 GHz processor and 16 GB of memory.

Name | Model details Grid cells to convergence Time to convergence
(norm used)

Model | Injection of air into a completely saturated linear 400 (L2) 44 sec
1 aquifer. The air and water components completely

immiscible so there is no component partitioning

between phases. This problem is isothermal.

(BL 1D GENERAL IMMISC GAS INJ)
Model | Air injection into a radial aquifer with properties 100 (L2) 3.0 sec
2 identical to Model 1.

(1D RAD BL GENERAL IMMISC GAS INJ)
Model | Water injection into a completely dry linear porous | 100 (L1) 5.4 min
3 media. The air and water components exist in both

fluid phases, so there is component partitioning

driven by the fluid flow.

(BL_ 1D GENERAL COMP WATER INJ)
Model | Air injection into a completely saturated linear 40 (L1) 18 sec
4 aquifer. The air and water components exist in

both fluid phases, so there is component

partitioning driven by the fluid flow.

(BL 1D GENERAL COMP GAS INJ)
Model | Water injection into a completely dry radial porous | 80 (L1) 3.2 min
5 media with identical flow properties as Model 3.

(BL 1D RAD GENERAL COMP WATER INJ)
Model | Air injection into a completely saturated aquifer 80 (L1) 23 sec
6 with identical flow properties as Model 4.

(BL 1D RAD GENERAL COMP GAS INJ)
Model | CO:s injection into a completely saturated linear 480 (L1) 6.8 min
7 aquifer. The CO; and water components exist in

both fluid phases, so there is component

partitioning driven by the fluid flow.

(BL_1D MPHASE COMP CO2 INJ)
Model | Injection of cold air into a completely saturated 1000 (L1) 4.2 min
8 linear aquifer. The air and water components

completely immiscible so there is no component

partitioning between phases.

(BL 1D GEN IMMISC COLD GAS INJ)

CONSTANT properties in the phase EOS sections of the
input file. It is not possible to completely turn off
capillary pressure, compressibility or diffusion in the
simulated solution. The VAN GENUCHTEN capillary
pressure function is used with parameters chosen so that
the simulated capillary pressure is negligible, and the
assumptions of the analytical model are justified.

Figure 1 shows a series of simulated profiles with
increasing grid refinement compared with the analytical
solution. The simulator is able to capture most of the
displacement even with a relatively coarse grid of 50 grid
cells, but the saturation shock front is not well resolved
until the grid is highly refined, to 400 grid cells. The
simulation time for 400 grid cells is 44 seconds, which is
surprisingly long for such a small, one-dimensional

problem. This highlights the stiffness of the system of
equations in the analytical solution and the small grid
cells necessary to converge on the solution.

Spreading of shock fronts is intrinsic to simulating
discontinuities in fluid flow models. PFLOTRAN uses
single-point upstream weighting, which is known to result
in a diffusion-like second-order error term in the flux
approximation. However, even when higher-order
methods are used, convergence to MOC solutions with
saturation shocks has been shown to be at best first-order
(Goater and LaForce, 2010).

The difference between the analytical and numerical
solution is evaluated by using the L2 relative, or mean
squared error metric:
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Q is the simulation output quantity used for comparison,
where Q™ and Q%™ denote the analytical and simulated
solutions, respectively. The sum is over all the cell centers
on the simulation grid. In Model 1 Q=Sy, is used to test
for convergence.

TABLE 2. Parameters used in Models 1-6.

Parameter Value
Domain length (m) 10.0
Domain cross-sectional area (m?) 1.0
Porosity (-) 0.25
Permeability (m?) 1.0x102
Model 1 gas injection rate (g/s) 2x107°
Model 2 gas injection rate (g/s) 2x10*
Simulation time (yr) 1.0

Gas phase viscosity, g, (Pa-s) 1.61x10°
Water phase viscosity, L, (Pa-s) 1.00x10°
Gas phase density, p,, (kg/m?) 1.18
Water phase density, pw, (kg/m?) 1.00x10°
Gas phase molecular weight, (g/mol) | 28.9598
Temperature (°C) 25.0

Swr () 0.1

Ser () 0.1
Lambda (-) 0.8
Alpha (-) 1.0
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Fig. 1. Comparison of the analytical solution for Model 1
with simulations with increasing grid refinement.

A tolerance of 2% error is used by the QA test
harness to test for convergence. Figure 2 shows the rate
of convergence (top) and comparison plot of the
converged solution (bottom) as they are generated in the

QA test harness. In this example 400 grid cells were
necessary for the simulation to converge within the 2%
error tolerance.
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Fig. 2. Top: Rate of convergence of simulation to
analytical solution for Model 1. Bottom: Comparison of
the analytical solution with converged simulation for
Model 1 as output by the PFLOTRAN test harness.

L.B. Model 2: Immiscible, isothermal radial flow

This scenario describes radial flow outwards from a
gas injection well in a one-dimensional radial porous
medium. The governing equation for this scenario is
identical to Eq. 1. The only difference in the model is that
x now represents radial distance, so that the travelling



wave solution to the analytical model is proportional to

"\ instead of x/t. Solutions are discussed in more detail
in Sumnu-Dindoruk and Dindoruk (2008). Gas injection
takes place at x=0, and the aquifer is modelled as 10 m
long, but has an open boundary at x=10m to represent an
infinite-acting radial aquifer.
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Fig. 3. Top: Rate of convergence of simulation to
analytical solution for Model 2. Bottom: Comparison of
the analytical solution with converged simulation for
Model 2.

The properties outlined in Table 2 are used for Model
2. The only property that has changed between Models 1
and 2 is that the rate for the cylindrical problem is one
order of magnitude larger. This is necessary because a

radial domain of length 10m has volume 1007 m?, while
the one-dimensional linear domain had volume 10 m®.

The purpose of including this benchmark in addition
to Model 1 is to ensure that the two-phase flow simulation
converges on the structured cylindrical grid type.

Figure 3 shows the rate of convergence (top) and
comparison plot of the converged solution (bottom) as
they are generated in the QA test harness. The L2 error
metric is again used to compute the error in the simulated
solution. In this example 100 grid cells were necessary
for the simulation to converge within the 2% error
tolerance.

I.C. Models 3 and 4: Compositional, isothermal linear
flow

These two examples add a layer of complexity to the
system of equations above that considered in Models 1
and 2. These test cases consider miscible multiphase flow,
meaning that the air and water chemical components both
exist in the gas and liquid phases. The model in this case
is as outlined in Eq. 1 with auxiliary relations in Eqgs. 3
and 4. A full derivation of the analytical solution to these
equations is in Section 4.4 of Orr (2007). As in the
previous examples, the thermal equation is not needed
because temperature is constant.

Model 3 represents water injection into a dry porous
medium. The parameters used in the simulation are
shown in Table 2 with additional compositional
parameters in Table 3. It is important to note that the
phase compositions shown in Table 3 are taken from the
simulation output files, so this benchmark verifies the
solutions to the flow equations, not the computations
behind the  air/water = component  partitioning.
PFLOTRAN does not account for dissolved gas in
calculating the liquid phase density, so the pure and
mixture liquid densities are the same, while the gas phase
density is a function of the phase composition, as shown
in Table 3.

There may be up to two shocks in composition when
the phase partitioning of components is added to MOC
models as described in Egs. 1-5 (Orr, 2007). The first
shock is the water saturation shock. This is similar to the
shock in saturation in Models | and 2, but slightly more
complex because wherever there are two phases present
the water phase is saturated with respect to the air
component and the gas phase is fully saturated with
evaporated water. This means that both the saturation and
the compositions of the phases change simultaneously
across the shock front.

The second shock is at the trailing end of the
displacement. As it is possible for air to dissolve into the
water phase, there is a trailing saturation shock where the
system transitions from a two-phase state to a liquid state
with an air mole fraction of zero.

Figure 4 shows the profiles for the Model 3 analytical
solution and simulations with increasing levels of



refinement. The saturation and total molar concentration
of each component are shown. As can be seen, across
each shock in saturation the composition of the phases
also changes. When two phases are present the smooth
change in saturation also results in a smooth change in the
component molar concentration. Downstream of the
leading front there is only air component, and upstream of

the trailing dissolution shock there

component.

TABLE 3. Additional parameters used in Models 3-6.

is only water

Model 3 Henry’s Law constant (1/Pa) | 5.0x10°
Model 4 Henry’s Law constant (1/Pa) | 1.5x108
Mole fraction of water in the gas 3.111x102
phase, cwg (-)

Mole fraction of gas in the gas phase, | 0.96889
Cee (-)

Model 3 Mole fraction of water in the | 0.99998
water phase, Cyw (-)

Model 3 Mole fraction of gas in the 5.0x10°
water phase, Cwg (-)

Model 4 Mole fraction of water in the | 0.99934
water phase, Cyw (-)

Model 4 Mole fraction of gas in the 6.6x10*
water phase, Cwg (-)

Density of pure water phase (kg/m?®) | 9.9716x10?
Density of water phase with 9.9716x10?
dissolved gas (kg/m?)

Density of pure gas phase (kg/m®) 1.1845
Density of gas phase with evaporated | 1.1720
water (kg/m?)

Model 3 water injection rate (g/s) 6.0x1072
Model 4 gas injection rate (g/s) 7.5x107
Model 5 water injection rate (g/s) 1.0

Model 6 gas injection rate (g/s) 7.5x10%

Due to the additional complexity of the model and
subsequent spreading of the shocks it was necessary to
switch to a different error metric in order to demonstrate
PFLOTRAN’s convergence to the analytical solution in a
few minutes of simulation time, as required for the QA
test harness. The relative L1 norm of the difference
between analytical and numerical solution is used:

sim an
O it
z10°] ®)
|| denotes the absolute value, Q*" and Q™ denote the
analytical and simulated solutions, respectively. The sum
is again over all the cell centers on the simulation grid. In
the compositional problem of Model 3 the phase
saturation does not contain all of the information
necessary to verify convergence, so Q=Cy, the total moles
of water is used in Eq. 8.

As can be seen in Figure 4, the simulated profile
again converges very quickly to the portions of the
solution where the saturation and compositions are
changing continuously, but the simulation spreads out the
shock fronts. The simulation with 100 grid cells has
converged to within 2% error of the analytical solution
using the L1 norm. This simulation took 5.4 minutes to
converge. By comparison, convergence using the L2
error took 320 grid cells and 51 minutes to converge to
within 2% error, which is obviously far too long to
include in the test harness. The long computation times
are indicative of the model requiring small time steps and
also the complexity introduced by allowing components
to partition between the phases.
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Fig. 4. Comparison of the analytical solution for Model 3
with simulations with increasing grid refinement.

Model 4 is the case of air injection into water using
parameters nearly identical to Model 3, as shown in
Tables 2 and 3. The only difference is an even lower
mole fraction of the air component in the water phase. In
Model 4 the trailing shock across which water evaporates
into the gas phase moves very slowly and is not captured
by either the simulation or the analytical solution
projected onto the resolved simulation grid, as can be seen
in Figure 5.

The Model 4 simulation converges quickly to the
analytical solution using just 40 grid cells and a
computation time of 18 seconds. As gas is the injected
component in this case, the correct comparison quantity
for convergence in Eq. 6 is the total moles of air, Q=C,.
This benchmark case shows that the realistic problem of



air injection into an aquifer is far easier to solve
numerically than the water injection problem of Model 3
with similar parameters.
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Fig. 5. Comparison of the analytical solution for Model 4
with the converged simulation.

L.D. Models 5 and 6: Compositional, isothermal radial
flow

Models 5 and 6 are the radial versions of Models 3
and 4, respectively. The results of the models are not
shown as they are qualitatively similar to the results of the
linear flow problems in Model 3 and 4.

Model 5 for water injection converges for the
simulation with 80 grid cells, and a long computation time
of 3.3 minutes. Model 6 for gas injection again converges
quickly to the analytical solution in a simulation with 80
grid cells and a computation time of just 23 seconds. It is
interesting in this case that the converged grid refinement
is identical, but the computation times are so different.

As with the linear gas injection problem, the trailing
evaporation shock in Model 6 is not captured in either the
simulated solution or the projection of the analytical
solution on the simulation mesh. The lack of trailing
shock is almost certainly the reason that the simulation for
Model 5 takes so much longer than Model 6.

LLE. Model 7: Compositional, isothermal linear CO:
flow

Model 7 is conceptually identical to Model 4. The
equations to be solved are Eq. 1, with auxiliary relations
Eq. 3-4. The construction of the analytical solutions is the
same as Models 3-6. The computational difference is that

10

for simulating super-critical CO; injection a full equation
of state (EOS) must be solved to find the properties of
super-critical CO, and CO»-saturated water, whereas the
previous examples the water phase properties were not
dependent on the dissolved gas mass.

The PFLOTRAN module MPHASE is capable of
simulating this problem. As in the previous four models,
the phase composition parameters used in the analytical
solutions are taken from simulation output.  This
benchmark does not test the accuracy of the solutions to
the EOS, but rather the ability of PFLOTRAN to model
the flow of water and CO, in the reservoir assuming the
EOS is correct.

TABLE 4. Parameters used in Model 7 for CO; injection
into an aquifer.

Parameter Value
Domain length (m) 5.0
Domain cross-sectional area (m?) 1.0
Porosity (-) 0.25
Permeability (m?) 1.0x102
Model 7 gas injection rate (g/s) 8x1073
Simulation time (yr) 0.8
CO,-phase viscosity, g, (Pa-s) 2.8x10°
Water phase viscosity, L, (Pa-s) 5.41x10*
Density of pure water phase (kg/m®) | 9.92x10?
Density of water phase with 1.00x10?
dissolved CO, (kg/m*)

Density of pure CO, phase (kg/m?) 3.79x102
Density of CO, phase with 3.85x10?
evaporated water (kg/m?)

Swr (-) 0.1

Sg () 0.1
Lambda (-) 0.8

Mole fraction of water in the CO» 1.25x1073
phase, cwg (-)

Mole fraction of CO, in CO; phase, 0.99875
Ceg (5)

Mole fraction of water in the liquid 0.97994
phase, cww (-)

Mole fraction of CO; in the liquid 2.006x102
phase, cwg (-)

The parameters used in the simulated and analytical
solutions are shown in Table 4. They are representative
of an aquifer at 50°C and 10 MPa, which corresponds to a
typical 1 km depth for CO, storage. The built-in
VAN GENUCHTEN DOUGHTY relative permeability
model was used in these simulations. This is slightly
different than the van Genuchten relative permeabilities
used in the rest of the models.

The numerical complexity of this problem means that
a highly refined grid of 480 grid cells, and a
computational time of 6.8 minutes is required to have
convergence to the analytical solution for Q=C. to



within 2% error using the L1 error metric in Eq. 8. This is
the most time-consuming test case in the QA harness. A
radial benchmark case was also built, but computation
times were prohibitively long for the test suite.

I.F. Model 8: Immiscible, non-isothermal linear flow

Model 8 is for injection of cold air into an aquifer
completely saturated with water. The fluid problem is
assumed to be immiscible, like Model 1, however the
thermal equation is now needed to solve for the
temperature. The equations necessary for this example
are Eq. 2 with auxiliary relation Eq. 5 for temperature and
Eq. 6 with auxiliary relation Eq. 4 for the saturation
profile. The construction of the analytical solution is
detailed in Sumnu-Dindoruk and Dindoruk, (2008).

The fluid and thermal parameters for Model 8§ are in
Table 5. The phase viscosities are taken from
PFLOTRAN output, so that this example verifies the
solution to the flow and thermal equations, not the
computations or assumptions used in the viscosity
models. In Eq. 5 the product of the heat capacity times
density of the injected air is much lower than the resident
water or surrounding porous medium, so the thermal
shock front will lag behind the saturation shock. Like the
compositional flow problems in Models 3-7, there are two
shocks in saturation for the non-isothermal model.

The downstream shock corresponds to the invasion of
gas into the aquifer and is very similar to the leading
shock in Model 1. There is no change in temperature
across this saturation shock because the leading edge of
the gas plume has been warmed up to reservoir
temperature.

The wupstream shock is where the temperature
changes abruptly from the injection temperature to the
initial reservoir temperature. The thermal shock also
causes a change in saturation because the viscosities of
the phases change between the hot and cold regions, as
shown in Table 5. The simulation has to be run for 5
years, which is five times as long as Model 1, in order to
resolve the slow-moving thermal shock.

The fluid flow part of the solution has already been
extensively tested in the previous examples, so the L1
error in Eq. 8 is calculated using the temperature profile,
so that Q=T. As shown in Figure 6, the thermal front and
associated shock in saturation both suffer from numerical
dispersion except for a highly refined grid. This is in
large part because the thermal shock is moving very
slowly relative to the leading saturation shock, which has
exited the simulation domain. Model 8 requires 1000 grid
cells and 4.2 minutes to converge to within the 2% error
tolerance.

A radial benchmark and one for hot fluid injection
were also considered, but computation times were
prohibitively long to include in the test harness.

TABLE 5. Parameters used in Model 8 for cold air
injection into an aquifer.

Parameter Value
Domain length (m) 10.0
Domain cross-sectional area (m?) 1.0
Porosity (-) 0.25
Permeability (m?) 1.0x10"2
Gas injection rate (g/s) 5x1073
Simulation time (yr) 5.0

Hot gas phase viscosity, L, (Pa-s) 2.54x107

Hot water phase viscosity, v, (Pa-s) | 1.34x10*

Cold gas phase viscosity, g, (Pa-s) 1.82x107

Cold water phase viscosity, pw, (Pa-s) | 1.00x10™

Gas phase density, p,, (kg/m*) 1.18

Water phase density, pw, (kg/m*) 1.00x10?

Solid phase density, ps, (kg/m?) 2.70x10°

Gas phase molecular weight, (g/mol) | 28.9598

Injection temperature (°C) 20.0

Initial temperature (°C) 200.0

Swr () 0.1

Ser () 0.1

Lambda (-) 0.8

Alpha () 1.0

Heat capacity of gas (J/kg C) 6.04x10°

Heat capacity of water (J/kg C) 4.15x10°

Heat capacity of rock (J/kg C) 0.01

0.35

0.30 -
0.25 1<
0.20 A

0.15 A

Saturation [-]

0.10 A
0.05 -
0.00

Z[m]

200 1

= 50 grid cells

Temperature [C]

= 100 grid cells
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=== Analytical

0 2 2 6 8 10
Z[m]

Fig. 6. Comparison of the analytical solution for Model 8

for cold gas injection with simulations with increasing

grid refinement.



IV. CONCLUSIONS

In conclusion, eight benchmark simulations in
PFLOTRAN have been verified against analytical
solutions. ~ The benchmark solutions are all one-
dimensional flow problems that test the ability of the
simulator to converge to analytical solutions with
increasingly complex phase behavior. In each case
PFLOTRAN converges to within 2% of the analytical
solution based on a rigorous error metric. This
demonstrates that the implementation of the equations for
these models are correct in PFLOTRAN, and also that the
approximation in the numerical method is highly accurate
when sufficient grid resolution is used. All of the
presented benchmarks are freely available online as part
of the PFLOTRAN test harness.

Four of the cases converge in under a minute, while
the other four cases take several minutes for the simulated
profile to converge to the analytical solution. Three of the
displacements with more than one discontinuity in the
saturation solution (Models 3, 5, and 8) have slow
convergence, along with Model 7, which has a full
equation of state for the fluid properties.

Models 3 and 5 do not require an unduly large number
of grid cells to converge, with 100 and 80 grid cells in the
final solution, respectively. These two simulations are
slowed down because small timesteps are required to
capture two shocks in saturation. Models 7 and 8 are
slowed purely by the complexity of the phase behavior.
This is a testament to the numerical stiffness of the
equations in the analytical model, which have no
dispersive or compressible terms, and not necessarily a
reflection of computation times for more realistic
problems.
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