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1 INTRODUCTION

The convergence of ever-faster computational platforms and algorithmic advancements in scien-
tific simulations have led to a data deluge—it is now possible to produce very fine-grained and de-
tailed simulations, resulting in terabyte-sized or larger datasets. Consider the problem we discuss
later on in this work: a simulation on a three-dimensional rectangular grid of size 500 X 500 X 500,
tracking 11 variables for 400 time steps. Even this modest-sized simulation yields 4 TB of data in
double precision. With current computational platforms, this data cannot easily be stored, moved,
visualized, or analyzed. Nevertheless, it is well known to simulation scientists that their massive
datasets have extensive latent structure and are therefore highly compressible. The problem is how
to discover the redundancies automatically.

Most compression methods focus on compressing local structure with very little loss in preci-
sion. Fout, Ma, and Ahrens [13] do multivariate volume block data reduction to take advantage of
local multiway structure, achieving up to 70% compression. Likewise, Lindstrom’s ZFP compresses
data in local blocks [24] with 1.3-2.6X (23-61%) compression. More recently, Di and Cappello [12]
report up 3-436X (66—-99.8%) compression, but again focusing on local blocks.

Our method, in contrast, aims at detecting global structure in the data, yielding much higher
compression ratios in exchange for potential loss in local accuracy. It does not process the data in
blocks but rather considers the data in its entirety. Before we delve into the mathematical details,
we note briefly that lossy compression need not replace the original data; rather, the compressed
version is a thumbnail or preview of the full dataset, which may reside on long-term storage or be
regenerated.

In this article, we consider the Tucker tensor decomposition [32], also known as the higher-
order singular value decomposition (HOSVD) [11]. This is an effective tool for compression for
many application domains [1, 5, 14, 16, 18, 34]. The idea is to consider the multiway structure of
the data. For instance, the problem described above is a five-way object, and so we exploit this
structure in the compression procedure. Specifically, each mode is compressed individually by
determining a small number of vectors that span the fibers in that mode, fibers being the vectors
that are the higher-order analogue of matrix rows and columns. We aim to compress an N-way
tensor of size [y X I, X - -+ X I;_, to size Ry X R; X --- X Ry,_, by computing R, vectors for each
mode n that approximately span the range of the mode-n fibers. We call R, the rank of mode n.
The ranks are typically selected to retain a specified relative accuracy e, i.e., if X is the data tensor
and X is the reconstruction from the compressed representation, then we choose the ranks such
that

1 = XII < ellX]]. (1)
Choosing R, = I, yields perfect reconstruction, so viable choices for the ranks always exist. If we
assume I, = I and R,, = R for all n, for sake of exposition, then the storage is reduced from N to
RN + NIR, and so the compression ratio is ~ (I/R)", which is the size of the original data divided
by the size of the compressed representation.

In this article, we develop a parallel implementation of the sequentially truncated HOSVD (ST-
HOSVD) [33]. This article builds on past work by Austin, Ballard, and Kolda [2], which showed
initial results for parallel versions of ST-HOSVD as well as the higher-order orthogonal iteration
(HOOQI). The code is available at https://gitlab.com/tensors/TuckerMPI. Our contributions are as
follows:

(1) We describe the details of the TuckerMPI software that were not provided in
Reference [2], including global data distributions (even in the case when a tensor dimen-
sion is not divisible by the number of processors in that dimension), local data layouts,
and sequential and parallel algorithms.
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(2) We present a new and improved kernel for computing the Gram matrix in ST-HOSVD,
which is faster and less sensitive to the parallel data layout than the version in
Reference [2].

(3) We present more extensive compression results for terabyte-scale data by compressing
data sets that are an order of magnitude larger than those in Reference [2]. Specifically,
we show that we can compress 4.5 and 6.7 TB datasets by 2—5 orders of magnitude in
0O(10-100) seconds, less time then reading the data from the parallel file system.

(4) An advantage of the Tucker decomposition that was mentioned but not implemented for
Reference [2] is that we can reconstruct just a portion of the full tensor. Here, we present
an efficient method for partial reconstruction, taking care not to create any object that is
larger than the compressed or reconstructed subtensor so that it can be run on a worksta-
tion rather than a parallel system. We give experimental results to showcase its efficiency.

2 NOTATION AND MATHEMATICAL BACKGROUND

We use boldface Euler script letters to denote tensors (X) and boldface uppercase letters to denote
matrices (X). We reserve the uppercase letters I, J, K, L, M, N, P, R to denote sizes and the corre-
sponding lowercase letters i, j, k, [, m, n, p, r to denote the indices. We use zero-indexing through-
out so that if i is the index corresponding to size I, then we have i = 0,1,...,I — 1. For any size I,
we use the notation [ I] to denote the set {0,1,...,I —1}.

2.1 Sizes

We define a few special quantities with respect to tuples of sizes, which are used in describing both
tensor and processor grid sizes. For an object with dimensions I; X I; X - - X I;_,, we define the
product of all its sizes (the total size) as

® = l—[ I. )
ne[ N]

We further define some quantities that depend on the mode n € [ N]:

I,? = l_[ I = I®9/1,, (product of all sizes except mode n), (3)
k#n
&= 1_[ I = I2/12, (product of sizes below mode n), 4)
k<n
D= l—l I = 2112, (product of sizes above mode n). (5)
k>n

For the edge cases, we say IO@ =1and Iﬁ_l =1

2.2 Tensor Operations

We discuss key tensor operations for computing the Tucker decomposition. Here, we assume an
N-way tensor X of size [ X I; X+ -+ X I,_,.

2.2.1 Tensor Unfolding. The mode-n unfolding of X rearranges the elements of the N-way ten-

sor into a matrix, denoted Xy, of size I,, X I?. We map tensor element (i, i1, . . ., iy—1) to matrix
element (i,, i;,), where
i’ = Zik I+ Zik-lk@/ln.
k<n k>n

See also Section 4.2 for examples of unfolded tensors and details of the organization in computer
memory.
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2.2.2  Tensor Norm. The norm of a tensor is the square root of the sum of squares of all the
elements. This means it is equivalent to the Frobenious norm of any unfolding, i.e., [|X|| = [ X llF
for any n € [ N].

2.2.3 Tensor Times Matrix. The mode-n product of X with a matrix U of size J X I, is denoted
X %, U, and the result is of size Iy X - -+ X I,_; X J X I41 X - - - X In—1. This can be expressed in
terms of unfolded tensors, i.e.,

Y=Xx,U & Y =UX4.
This is also known as the tensor-times-matrix (TTM) product. For different modes, the order is
irrelevant so that
XX,Ux,V=Xx,VXx,,Uform#n.
In the same mode, order matters so that
X %5 Uy V= X X VU, 6)

where Vis K X J.

3 REVIEW OF THE SEQUENTIALLY TRUNCATED HIGHER-ORDER SVD

In this section, we describe the Tucker decomposition and review the ST-HOSVD method that we
parallelize to compute it. Before we do so, we introduce some notation and basic theory.

Let the N-way tensor X of size I, X I, X - -+ X I;_, denote the data tensor to be compressed. The
goal is to approximate X as

xzXESXOonlUl"'XN_lUN_I. (7)

The tensor G is called the core tensor, and its size is denoted by Ry X R X+ XRy_,. Each factor
matrix Uy, is necessarily of size I, X R,, for n € [ N], and we assume throughout that the factor ma-
trices have orthonormal columns. This means U] U,, = I (the R, X R,, identity matrix). The storage
of X is I® as compared to the storage for X, which is R® + Yine[N] Rnln. If, for example, I,, /R, = 2
for all n, then the compression ratio is I® /R® ~ 2N,

We review a few relevant facts about Tucker per Reference [20, Section 4.2]. If the factor matrices
are given, then it can be shown that the optimal G is

SZ:X:XOUgXlUI"'XN_lUL_l. (8)
Substituting Equation (8) back into Equation (7) and using identity Equation (6), we have
X =X %o UyU] x; U UT - xn_; Uy UL .. 9)

Thus, the factor matrices determine the projections (one per mode) of the original tensor down to
the reduced space. It is easy to show that ||X — X||? = ||X||? - ||G||?, which means that G retains
most of the mass of X but is just represented with respect to a different basis.

It is convenient to make a few special definitions. Assume that the factor matrices are specified.
Then define the partial core that is the result of applying n + 1 factor matrices to X:

G,=XxoUl---x, Ul for ne[N]. (10)

This means that Qn is only reduced in the first (n + 1) modes and so is of size Ry X - -+ X R, X
Iny1 -+ - X Iny—1. By definition, G = Gy_;. Likewise, we can define the incremental approximation
using the partial core to be

Xn=8,%Up %, Up =X xUUL -+ %, U UL for ne[N]. (11)
By definition, X =X
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3.1 Key Theorem

The following theorem categorizes the error in terms of the incremental approximations and
orthogonal projections based on the factor matrices. We refer the reader to Reference [33] for
the proof. This theorem is key to understanding how to pick the factor matrices in the ST-
HOSVD.

THEOREM 3.1 [VANNIEUWENHOVEN, VANDEBRIL, AND MEERBERGEN [33, THEOREM 5.1]]. Let X
be a tensor of size I, X I; X - -+ X I,_,, which is approximated by X as defined in Equation (9), in
which the factor matrices U, 0fszze I, X Ry, have orthonormal columns. The approximation error is
then given by

2 2 o 2 .~ 2
‘ 5 H X Xo (I - U(,Ug) + H Xo X1 (1 - UIUI) oot H Xz Xn-1 (I -UN_IU},_]) , (12)
where X, is as defined in Equation (1 1). Additionally, the error is bounded by
‘ <> H X Xy, (I — Unuﬁ) HZ (13)

ne[N]

3.2 HOSVD Method

The bound in Equation (13) from Theorem 3.1 is key to understanding the HOSVD method, orig-
inally known as Tucker1 [11, 32]. Suppose the goal is to find a Tucker decomposition of the form
in Equation (7) with relative error no greater then ¢, i.e.,

I =X _
——— =€
BV

Then the idea is as follows. Let the eigenvalue decomposition of the Gram matrix S of the mode-n
unfolding be given by

(14)

$=X, )X(Tn) =VAV'. (15)

Here, A = diag({ A1,...,4;, }) and Ay > A3 --- > A, > 0 are the eigenvalues in descending order.
The matrix V contains the corresponding eigenvectors. We choose U,, and R, so that

U, =V(:,1:R,) where R,,—Rm[ln]R subject to E A < €XX|I?/N. (16)
I
i=R+1

This choice of U,, ensures that
2
H X Xy (1 - UnUZ) H < e2[X|1?/N.

Repeating this procedure for each n € [ N] ensures that the desired error bound Equation (14)
holds. This discussion can be framed equivalently in terms of the leading left singular vec-
tors of X(), which is how the HOSVD is usually described. However, we explicitly form the
Gram matrices in our parallelized method, so this presentation is more convenient in our
exposition.

3.3 ST-HOSVD

The HOSVD works with the full tensor at each step. The idea behind the sequentially truncated
version introduced in Reference [33] is that we work with the partial cores. In other words,
at step n, we compute the next factor matrix based on G,.—1. This is possible because we can
swap G,_; for X,_; in the summands in the error expression Equation (12) due to the following
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equivalence:
2
. (17)

. 2 -
” N 5, (1 - UHUII) = H 6 % (1 - UnUIl)

Hence, substituting Equation (17) into Equation (12) then yields the following key corollary.

COROLLARY 3.2. Let the conditions of Theorem 3.1 hold. Then

2 2 N 2 N 2
= H X %o (I—UoUg) + H Go x4 (I—UIUI) £t H G s Kot (I—UN_IU}TV_I) ” , (18)

=

where G, is as defined in Equation (10).

Corollary 3.2 means that we can pick the (n + 1)st factor matrix, U,, using the partial core <
Choosing Uy is unchanged. For n > 1, however, we replace the eigenvalue problem in Equation (15)
with

S=Y,Y(,=VAV' where Y=G, . (19)
We can still pick U, according to Equation (16), but we are just working with the eigen decompo-
sition of a different matrix. The ST-HOSVD algorithm is given in Algorithm 1.

ALGORITHM 1: Sequentially Truncated Higher-Order SVD (ST-HOSVD) [33]

1: function (G, U) = ST-HOSVD(X, ¢€) > X is data tensor of size Iy X - - - X In—1 and € is desired accuracy
2 YeX

3: forn=0,1,...,N—-1do

4: S « Y(n)Y-(rn) > S is referred to as the Gram matrix
5 (A, V) « eig(S) > Eigenvalues in descending order
6: R, < min{Re[I,]| ZII,":RH Ai < €| X|?/N )} > Choose R, to satisfy the error bound
7: U, « V(:,1:Ry) > Uy, is the leading R, eigenvectors of S
8: Ye—Yx, U.,E >Sets Y = Qn, the partial core
9: end for

10: G<¥Y > Core of size Ry X Ry X+ ++ X Ry, _;
11: U « {Uyp,...,Un_1} > Factor matrices with Uy, of size I, X R, foralln € [ N ]
12: return (G, U) > Result satisfies ||X — X||/||X]| < e where X = G %o Up - - - Xn—1 Un—1

13: end function

3.4 Quasi-Optimality
Neither the HOSVD nor the ST-HOSVD yields an optimal rank-(Rg, Ry, . . ., Ry—1) decomposition,
and neither is necessarily more accurate than the other. The major advantage of the ST-HOSVD is
in terms of computational cost: the cost of the Gram computation is decreased by a factor of I, /R,
at each step. Both methods yield quasi-optimal results with error within a factor of the square root
of the number of modes of the best approximation, as specified by the following theorem from
[15].

TueoreM 3.3 [HAckBUSCH [15, THEOREMS 6.9-10]]. Let X be a tensor of size I, X I; X - -+ X I;_,,
Xrosvp be the rank Ry X R, X -+ X Ry_, approximation computed by HOSVD, and Xsr-mosvp be
the rank Ry X R, X - -- X R,_, approximation computed by ST-HOSVD. Then

H X — Xsr—HosvD H < \/Nl

X — Xrosvp

sW”DC—:fCOPt

and

X — Xopt

s

where :)‘copt is the optimal rank-R; X R; X - - - X Ry,_, approximation of X.
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3.5 Pre- and Post-Processing

Algorithms for computing Tucker models like ST-HOSVD (Algorithm 1) minimize the relative ap-
proximation error in a norm-wise sense. As a result, the relative component-wise errors are gener-
ally smaller for large entries in the data tensor than for small entries. If the data is not preprocessed,
then the differences in magnitude are artifacts of the type of variable or unit of measurement rather
than reflecting the importance of the data value.

To address these issues, we pre-process the original data using hyperslice-wise computations,
where a single hyperslice corresponds to the values of a particular variable like pressure or tem-
perature, all with the same physical units. These computations include gathering statistics, such
as mean or maximum value, for each hyperslice of a particular mode and applying a single linear
function to every element in a hyperslice to uniformly shift and/or scale the values. The vector
of shifting and scaling values are stored so that the inverse operations can be applied in post-
processing after the (partial) reconstruction process.

The hyperslice-wise statistics that can be collected include the mean, standard deviation, max-
imum, minimum, vector 1-norm, and vector 2-norm. Common preprocessing techniques are (a)
shifting by the mean value (to center each hyperslice at 0) and scaling by the standard deviation
(to impose a variance of 1) and (b) scaling by the maximum absolute value (to impose a range of
—1to 1). We refer to (a) as “standardization” and (b) as “max rescaling.”

4 DATA LAYOUTS

In this section, we describe how tensors are stored in local memory and how they are distributed
for parallel computation. Factor matrices are stored redundantly on every processor. We assume
throughout that we have a generic N-way tensor Y of size Jy X J; X - -+ X Jy;_,. WLOG, this Y
tensor is the one that is updated in Algorithm 1, so each J, is either R, or I,,. We assume that
the processors are logically arranged into an N-way Cartesian processor grid, with dimensions
Py X P, x+--XPy_,asin [2, 3, 29]. In the analysis, we assume P, € {1,..., J, } foreachn € [ N].
We use the size shorthands discussed in Section 2.1, e.g., P® denotes the total number of processors.

4.1 Tensor Data Layout

Consider the natural descending format that generalizes the column-major matrix layout. That is,
tensor element (jo, ji, .. .,jn-1) can be mapped to

j/ = idXZIin{UO9jl’ 8% -vjN—l)’ (.]07]1’ #¢ "JNvl)} = Z jfl ]r?’ (20)
ne[ NJ

which we refer to as the linear index. We can also define the inverse operation,

Gos s - - - in-1) = lin2idx{j", (o, Jis - - -» Jn-1)}-
Figure 1 shows a 3 X 4 X 3 X 2 tensor with each entry labeled by its linear index.

4.2 Unfolded Tensor Data Layout

If the tensor is stored in the natural descending format, then the data layout of each unfolding can
be thought of as a set of contiguous submatrices, where each submatrix is stored in row-major
ordering. In other words, there is no reason to do any data movement in memory to work with the
unfolded matrix, because BLAS calls can operate on submatrices stored in row- or column-major
order, as observed in References [2, 17, 22, 28]. The number and dimensions of these submatrices
depend on the mode of the unfolding. For the nth-mode unfolding, the number of submatrices
is J©, and each submatrix is of size I % JS. Let us look at these for the 3 X 4 X 3 x 2 tensor in
Figure 1. Recall that the values indicate the relative position in the natural descending format.
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/24 /21 /30 /33 /60 /63 /56 /69
2 S12/15 /18 /21 / /18 /51 /54 )51/
9

0 /3 /6 36 /39 /42 /45

25 /28 /3) /34 61 /64 /6 /70

0 13 /16 /19 f22 49 /52 /55 A58

1 /4 /7,1 37 /40 /43 /46

L L

26 /29 /3 /35 52 /65 /6B /71

14 /17 /20 y 50 /53 /56 y

2 /5 /8 /11 38 /a1 /44 /47
Yiizma) Y, 2)

Fig. 1. A 34X 3 X 2 tensor, where labels correspond to linear indices. The arrows show the direction for
each mode, except the fourth mode, which is denoted explicitly in the labels at the bottom.

In the case n = 0, each submatrix has one column, which corresponds to a global column-major
matrix, so it has 24 submatrices of size 3 X 1:

0[3|6| 9112|15(18|21|24|27|30|33|36(39|42|45|48|51|54|57|60|63|66]|69
Yo)=|1(4]7|10|13|16|19|22|25|28|31|34|37|40|43|46|49|52|55|58|61|64|67|70
215(|8(11|14|17(20|23|26(29|32|35|38(41|44|47|50(53|56|59|62|65|68|71

Note that this yields a special mode-0 case in the implementation of operations, because it is more
efficient to treat the data as one column-major block than many blocks of vectors. The mode-1
unfolding has 6 row-major submatrices of size 4 X 3:

0 1 2|12 13 14|24 25 26|36 37 38|48 49 50|60 61 62
3 4 5|15 16 17|27 28 29|39 40 41|51 52 53|63 64 65
6 7 8|18 19 20|30 31 32|42 43 44|54 55 56|66 67 68
9 10 11|21 22 23|33 34 35|45 46 47|57 58 59|69 70 71

Yoy =

The mode-2 unfolding has two row-major submatrices of size 3 X 12:

01 2 3 4 5 6 7 8 910 11|36 37 38 39 40 41 42 43 44 45 46 47
Yo = |12 13 14 15 16 17 18 19 20 21 22 23|48 49 50 51 52 53 54 55 56 57 58 59
24 25 26 27 28 29 30 31 32 33 34 35|60 61 62 63 64 65 66 67 68 69 70 71

Inthe case n = N — 1, there is only one submatrix, which corresponds to a global row-major matrix,
so we have one submatrix of size 2 X 36:

01 2 3 4 5 6 7 8 910 11 --- 26 27 28 29 30 31 32 33 34 35

Yo = 36 37 38 39 40 41 42 43 44 45 46 47 --- 62 63 64 65 66 67 68 69 70 71 |°

These layouts become important when we discuss the local operations in Section 5.

4.3 Global Tensor Data Distribution

Now we consider how the tensor is distributed on the global processor grid. We let an overbar

indicate local quantities with respect to a specific processor. If ], is the global size of mode n, then

Jn is the corresponding local size for the subtensor owned by a processor (P, pi, - - -, PN-1)-
Processor (po, p1, - - -, pn-1) owns a block of size Jy X J; x - -+ X J,_, where J, is given by

{(]n divPy) +1 if pn < (Ju mod P,)

Jn = lSZ{pn»]rmPn} (]n div Pn) lfﬁn > (]n mod Pn)

. (21)

ACM Transactions on Mathematical Software, Vol. 46, No. 2, Article 13. Publication date: May 2020.



TuckerMPI: Large-scale Data Compression via the Tucker Tensor Decomposition 13:9

Table 1. Local Tensor Sizes for a 3 X 4 X 3 X 2 Tensor Distributed
ona2X2Xx2x1Processor Grid, Demonstrating How Uneven
Sizes Are Handled

Proc. ID Proc. Linear ID Local Size
(Po, p1, P2.P3) P’ JoX i x o X Js
(0,0,0,0) 0 ZRDRIAKD
(1,0,0,0) 1 I1X2X2x2
(0,1,0,0) 2 2X2X2X2
(1,1,0,0) 3 1X2X2x%X2
(0,0,1,0) 4 2X2X1X2
(1,0,1,0) 5 1X2X1X2
(0,1,1,0) 6 2X2X1X2
(1,1,1,0) 7 1X2X1x2

Sa/1/6 /6 /] /4466/‘ /o /2 /0 /2 /] S4/6 /4 /6 /]
fo /o2 /2 / So/So /2 /2 S1/6 /1 /6 ) S12/14 /12 /14 /

O Aoy 2 /2 D0/ 2 /2 QW /Aa28/ 0 /2 10 /8 /10
1 1 1 1
4 /4 /4 6 4 /4 /G 6 1 3 [0 3 5 7 A 7
0/0/2 A2 Q0 2 A2 Sl 5 A7 ISPl Y13 /115
0 0 2 2 0 0 2 2 1 3 1 3 9y11y/9 /11
1 1 L L
SN /E55) 7 5/ 5% } 7 0/1 1 20037/ 1 3
1/1/3 f3 VaY @ 4 2 /3 /2 3/ s /1/6 1/
1 1 5 3 1 1 3/3 0 1 0 1 4 5 4 5
Y, 1) Y@, n:,2) Yesnsl) Y, 2)
(a) Processor Linear ID (b) Local linear indices

Fig. 2. The 3 x 4 X 3 X 2 tensor from Figure 1 distributed on a 2 X 2 X 2 X 1 processor grid. Each of the eight
processors is represented by a different color.

Table 1 shows the size of each local subtensor for a tensor of size 3 X 4 X 3 X 2 distributed on
a processor grid of size 2 X 2 X 2 X 1. Table 1 also indicates the processor linear index, which is
defined analogously to Equation (20):

p' = idx2lin{ (o, 1, ....pn-1)» (Pos P P1)} = D pu- P €[PP].
ne[ N]

The tensor element with global index (jo, ji, - . ., jn—-1) is mapped to processor (po, P15 - - - s PN-1)
where p, is given by

— . [D{,"HJ ifjn < Mn(Dn + 1),
Pn = glbzprc{]najn’Pn} = = M, (Dy+1)
l]"#J + M, otherwise,

where D, = (J,divP,) and M, = (J, modP,). (22)

Figure 2(a) shows the mapping of elements to processors for the tensor in Figure 1 using a processor
grid of size 2 X 2 X 2 X 1.
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We define the set of mode-n global indices mapped to processor p, to be

1l

{ pnDy + min{p,, My}, ..., (pn+1)D, + min{p,+1, M} — 1},
D, = (JudivP,) and M, = (J, modP,).

In = premap{ pn, Ju, Pn}

where (23)

The per-mode assignments can be combined to get all the indices assigned to a specific processor.
One interesting note is that elements that are contiguous in the global natural descending linear
index are not necessarily mapped to the same processor. For instance, in the example in Figure 2,
consider that processor p’ = 2 owns the following global linear indices:

J =1{6,7,9,10,18,19,21,22 },

which is not contiguous in the global linear ordering.
The local index is denoted (jo, ji, . . ., jn—1) Where j, is given by

jn = gblZICI{jn,ﬁmJn’ Pp} =jn— (P_n(]n div P,) + min {P_n, (Jn mod Pn)})

Locally, the subtensors are stored contiguously according to the natural descending index and
in the same order as their global linear index. Figure 2(b) shows the local linear indices for the

(24)

example in Figure 2(a). This equation can be reversed to find the global index (jo, j1,- - -,jN-1)
where j, is given by
Jn = 1c12gbl{ ju, Pns Jus Pn} = jn + (pn(Jn div Pp) + min {p,, (J, mod P,)}). (25)

4.4 Global Unfolding Data Distribution

In the parallel case, the unfolded tensor is distributed among the processors in a block fashion. For
instance, the mode-1 unfolding is here color-coded to the processor (using the same colors as in
Figure 2):

O 1| 2|12|13 |14 |24 |25|26|36|37 |38 |48 49|50 |60 |61 |62
Y = 3| 4| 5|15|16 |17 |27 |28 |29 |39 |40 |41 |51 |52 |53 |63 |64 |65
6| 7| 8[18| 19|20 |30 |31 |32|42|43 |44 |54|55|56 |66 |67 | 68
9110 11|21 |22 |23 |33 |34|35|45|46 |47 |57 (583969 |70 71

Note that a single MPI process may own multiple contiguous pieces of the unfolded tensor. In
particular, the data distribution of the unfoldings are not a standard distribution such as blocked
or block-cyclic. However, the distribution is still a blocked matrix distribution, equivalent to un-
folding the local tensor. Here, we show the local linear index of each entry:

0 1 04 5 2 01T 80N 8 9 412 13 6 (4 582
Ve = 2 3 16 7 3 203 M 100 11 5 (14 15 7 f60 7 §3
0 1§08 4 5 F28R0RNIN O 8 9 NdN 12 13 RGNNEESH 2
2 3 B 6 7 F3NRZ2ENSN 1 | 10 11 B58 14 15 F7ZUR6ANTS 3

Notice that they are contiguous for each processor. This means that we can work with the locally
unfolded tensor for the local operations in distributed computations.

4.5 Processor Fibers

Just as for the data tensor, there is a corresponding processor grid “unfolding” that corresponds
to the tensor unfoldings. Instead of an N-way processor grid, we can think of the processors as
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rearranged into a 2-way grid. So, if we revisit the example in the previous subsection, then the
mode-1 processor unfolding for the 2 X 2 X 2 X 1 processor grid is

(0,0,0,0) (1,0,0,0) (0,0,1,0) (1,0,1,0)
(0,1,0,0) (1,1,0,0) (0,1,1,0) (1,1,1,0)

We see the processors in the same column match in every index except the mode-1 index, since this
is the mode-1 unfolding. We see later that certain operations require collective communications
within each processor column in this unfolding. We refer to these column groups of processors as
mode-n processor fibers. We refer to row groups of processors as mode-n processor slices.

5 LOCAL KERNELS

In Algorithm 1, there are three key kernels: Gram of the mode-n unfolded tensors in line 4, the
I, X I, eigen problem in line 7, and tensor-times-matrix to shrink in mode n in line 8. Here, we
explain the serial implementation, which is also used for the local computations in the parallelized
version. We explain all the functions with respect to a generic tensor Y of size Jy X J; X -++ X J_;.

5.1 Local Gram

We want to compute S = Y<n)YIn) so S will be of size J, X J,. The arithmetic cost is O(J®],).
Although the computation is mathematically one matrix operation, the data layout of the unfolding
of the input tensor prevents a single call to the syrk BLAS subroutine, which requires strided
row- or column-major ordering. Thus, the algorithm works on the native row-major submatrices
as described in Section 4.2, except in the case of n = 0 where the algorithm works on the native
column-major matrices. For n > 0, Y(,) has J2 submatrices of size J, x JS. We denote the jth
block-column submatrix as Y, [j] = Y(n)(: IS TS + J€ — 1), which is stored in row-major
form. The algorithm is shown in Algorithm 2.

ALGORITHM 2: Local Gram (compute gram matrix of unfolding in mode n)

function S = Gram(Y, n)
if n = 0 then
Se= Y(n)Y-(rn) > Call to syrk, Y(p) in column-major format
else
S«<0
forj e [],l@ ]do
S S+Ym LY 1" > Call to syrk, Y(p) [j] denotes jth block column in row-major format
end for
end if
end function

5.2 Local Eigenvalue Decomposition

We need to compute the eigenvalue decomposition of a J,, X J, matrix S. The computational cost
is O(J?). We use the the LAPACK direct eigenvalue computation routine syev to compute all the
eigenvalues and all the eigenvectors.

A couple of notes are in order. The cost of the full eigenvector decomposition is approximately
% J3. One alternative approach would be to compute the full set of eigenvalues at a cost of % J3, and
then compute only the leading eigenvectors with O(JR,) flops. Iterative methods, such as sub-
space iteration, would also work well in this case. However, because this phase of computation has
never been a bottleneck for our applications, we have not implemented these cheaper approaches.
If J, is relatively large compared to the product of the other dimensions, J2, then the eigenvalue
decomposition may become a bottleneck, so we leave this as a topic for future work.
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5.3 Local TTM

We want to compute the product Z =Y X, V where V is a matrix of size K X J,,. Recall that the
TTM operation is defined in Section 2.2.3. The arithmetic cost of TTM is O(J®K).

As in the case of Gram, although TTM is mathematically a matrix multiplication (Z¢,y = VY(5)),
the data layouts of Y,y and Z,) prevent a single call to the gemm subroutine in BLAS, because
BLAS requires strided row- or column-major access to the matrices. We use the same notation as
for Gram, so that Y, [j] is the jth block column of Y, stored in row-major form. Likewise, Z ;)
is organized into row-major block column submatrices of size K x J&, and the jth submatrix is
denoted as Z,) [j]. In the case of n = 0, both Y(,;) and Z,) are natively in column-major mode.
The algorithm is shown in Algorithm 3.

ALGORITHM 3: Local TTM (tensor-times-matrix in mode n)

function Z = Ttm(Y, n, V) >Y is tensor of size Jy X - -+ X Jy_1 and V is matrix of size K X J,
if n = 0 then
Zin) =VY(p) > Call to gemm, Z(,,y and Y, in column-major format
else

forje [J@]do
Zny il < VY () i1 > Call to gemm, Z(,,) [j] and Y(,) [j] denote jth block column in row-major format
end for
end if
end function

6 DISTRIBUTED KERNELS

To parallelize STHOSVD (Algorithm 1), we use parallel algorithms for the two key kernels: Gram
and TTM. All other computations are performed redundantly on each processor, including the
eigen decomposition.

Throughout this section, we consider a generic tensor Y of size J, X J; X - - X J,_,, distributed
on a processor grid of size Py X P, X -+ X Py,_,, as described in Section 4.3. We use an overbar to
denote the local portions/versions/sizes of distributed variables. For instance, Y denotes the local
portion of Y, and J; X J; X - -+ X Jy,_, is its size. Note that local quantities, including their sizes,
may vary from processor to processor.

6.1 Assumptions on Collective Communication

To analyze our algorithms, we use the MPI model of distributed-memory parallel computation. We
assume a fully connected network of P processors and therefore do not model network contention.
For simplicity of discussion in our analysis, we assume that P is a power of two and that optimal
collective communication algorithms are used. The cost to send/receive a message of size W words
between any two processors is @ + W3, where « is the latency cost and f is the per-word transfer
cost. The cost of the collective communications used in this work are given in Table 2, with y
corresponding to the time per floating point operation (flop). For simplicity of presentation, we
will ignore the flop cost of the reductions in later analysis, as they are typically dominated by the
bandwidth costs. For more discussion of the model and descriptions of efficient collectives, see
References [8, 31].

6.2 Parallel Gram
The goal here is to compute S = Y(n)Y(Tn) where Y is distributed as described in Section 4.3. Each

processor owns Y (local portion of Y) of size Jj X J; X --- X Jy_, where J, = Isz{py, Jo, P,} and
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Table 2. Communication Costs in MPI Model, Where W
Is the Local Input Data Size and P Is the Number of Processors

Send/Receive a+ W
Reduce/All-Reduce 2alog P + (28 + y)%w
Reduce-Scatter alogP + (B + y)%w
All-to-All a(P-1) + ﬁ%w

O
===k
+ +
O
= o,
s 31 = + =i
O
O
+ +
O
Hy: 50
(a) First matrix multiplication (b) Second matrix multiplication (c) Final matrix multiplication

Fig. 3. Round-robin variant of parallel Gram matrix computation with P,, = 3 [2].

the mode-n indices correspond to the global indices in ., = prcmap{ pp, Ju, Pn}. In the end, each
processor will own the entirety of S, which is only of size J, X J,.

Austin et al. [2] previously proposed a parallel Gram as illustrated in Figure 3. In this algorithm,
each processor fiber, which owns a column block of Y(,, computes a contribution V to the result
S; V is distributed across the processor fiber. To compute V within the fiber, the processors rotate
their tensor data around in a round-robin fashion, and at each step, each processor computes a
J, X ], block of V. To compute S, the processors perform an All-Reduce across processor slices, so
that S is redundantly stored on every processor fiber but distributed across the processors within
the fiber. We refer to the older version as the round-robin variant.

We propose a new version of parallel Gram that is nearly always faster, which we refer to as the
redistribution variant. Algorithm 4 presents the new parallel algorithm for computing the Gram
matrix corresponding to a particular mode. The algorithm assumes that the input tensor Y is block
distributed; at the end of the algorithm, the output matrix S = Y(n)Y(Tn) is redundantly stored on
every processor. The parallel Gram algorithm presented here differs from the one described in
Reference [2], depicted in Figure 3. When the number of processors in the specified mode P, is
1, the algorithms are identical. However, when P, > 1, the previous algorithm uses P, — 1 com-
munication steps within the processor fiber and then communicates across the processor slice.
As we describe in more detail below, Algorithm 4 works by first redistributing the tensor data
with an All-to-All collective within the processor fiber and then performing a reduction across all
processors. We compare the communication costs of the two algorithms at the end of the section.

As in the case of Algorithm 5, line 2 and 3 of Algorithm 4 define the processor’s index and the
set of processors within the processor’s nth-mode processor fiber. The goal of line 5 is to obtain
a 1D parallel distribution of the tensor. With this distribution, all processors can perform Gram
computations with their local data, and the only remaining communication is to sum up the results
over all processors. Figure 4 illustrates the redistribution. Because each processor fiber stores a set
of columns of the matricized tensor (distributed row-wise), the redistribution occurs within each
fiber independently and converts the row-wise distribution to a column-wise distribution.

Again, a key issue in the implementation is the need to pack and unpack buffers for the All-to-
All collective, depending on n. The input buffer must be arranged so that the data to be received
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Fig. 4. New redistribution variant of parallel Gram matrix computation.

by each processor is stored contiguously, and the result buffer is ordered so that the data each
processor sent is contiguous. In the case n = 0, the local matricized tensor is column-major, so no
packing is necessary. After the All-to-All, the result buffer consists of P,, contiguous column-major
blocks, where each column has length J,. The unpacking consists of collecting the P, chunks of
each mode-n fiber (of length J,) into contiguous columns. In the case 0 < n < N — 1, the local
matricized tensor is stored as an array of row-major submatrices. The packing consists of con-
verting every row-major submatrix to column-major ordering, which makes every local mode-n
fiber contiguous. The unpacking is the same as for n = 0: for each mode-n fiber, the P, chunks
are made contiguous. We note that the local ordering of the columns is not consistent with a
matricized tensor format, but the Gram computation is invariant under column permutations, so
this does not affect the result. In the case n = N — 1, the local matricized tensor is row-major. In-
stead of converting the entire matrix to column-major, each contiguous row is broken up into P,
chunks, and the row ordering is maintained. After the All-to-All, no unpacking is necessary, be-
cause the result buffer is a (vertical) concatenation of row-major matrices and is thus also row-
major.

ALGORITHM 4: Parallel Gram (redistribution variant)

1: function S = PAR_GRAM(Y, 1, (Po, Py, ....PN_1))

2 myProcID « (po,p1,---,PN-1)

3: myProcFiber « (Po, ..., Pn—1, s Pn+ls-- - PN-1) > Processor group of size P,
4 allProcs « all P® processor ids

5 Z = ALLTOALL(Y (), myProcFiber) > Change from within-fiber block row to block column distribution
6: W=27" > Local computation
Ve S = ALLREDUCE(W, allProcs) > All processors own a copy of the same matrix

8: end function

After obtaining a 1D distribution of the matricized tensor, each processor performs its local
computation in line 6, computing the Gram matrix associated with its subset of the columns of
the matricized tensor. To compute the Gram matrix of the entire matricized tensor, all processors
participate in an All-Reduce (line 7), which results in (symmetric) S being redundantly stored on
all processors.

The cost of Algorithm 4 is

®
Coram = (Pr — 1) (0{ +ﬁ]_) +Y]nj® +2alogp® + ,B.]r%
P —_— ———

n

- line 6 line 7
line 5

a-O(Py)+B-0(J+J7)+y-0(JnJ®).

Il
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For comparison, the cost of the previous parallel Gram algorithm [2] is

2
a'O(Pn)+ﬁ'O(Pnj®+}])_n)+}/'o<]nj®),
where the major difference is in the bandwidth cost. In particular, Algorithm 4 is more efficient
when P, J® > J2. In this case, both bandwidth cost terms of the new algorithm are smaller than
the first term of the old algorithm. (If the converse is true, then both bandwidth cost terms of the
old algorithm are smaller than the second term of the new algorithm.) We expect the inequality
to hold in nearly all cases (except for extreme strong-scaling cases), because J® itself is the size of
the local input tensor, while ]ﬁ is the size of the nth-mode Gram matrix.

The temporary memory requirement of Algorithm 4 (besides the input and output data) is 2J® +
J? words. Two temporary arrays of the size of the local tensor are required for the send and receive
buffers in the All-to-All (local data has to be reordered to match the requirements of the input
buffer), and J2 space is required for W (All-Reduce requires separate input and output buffers). For
comparison, the temporary memory requirement of the previous Gram algorithm is J® + J2.

6.3 Parallel TTM

We consider the problem of computing the TTM Z = Y x,, V where the input Y of size J, x J; X
-+» X Jy_, is block distributed, the matrix V of size K, X J, with K;, < J, is stored redundantly
on every processor, and the output tensor % of size J; X -+ X Jo—1 X Kpy X Jy1 X -+ X Jy will be
block distributed. Specifically, the data is distributed so that processor (po, p1, - - ., pn—1) owns the
following:

e Y (local portion of Y) is of size jo X ]_1 X e X jN_l where J, = Isz{ pn, Ju, Pn} and the mode-
n indices correspond to the global indices in ., = prcmap{ pn, Jn, Pn}-

e Z (local portion of Z) is of size J; X -+ X Jo1 X Ky X Juy1 X - -+ X Jy where K, =
Isz{ pn, Ky, Py }; it is distributed the same as Y except that the mode-n indices correspond to
the global indices in K, = premap{ p,, Ky, Py}

e Vis of size K,, X J, and is the submatrix of V corresponding to the columns in the set 7.
(Although every processor owns all of V, the distributed TTM only needs V.)

Algorithm 5 presents the parallel algorithm for distributed TTM. This is the same algorithm as
previously presented by Austin et al. [2], but here we provide additional implementation details
and analysis.

The computation reduces to a large matrix-matrix product, i.e., Z(,) = VY (). If Y(, is parti-
tioned into column blocks, then the computation can be computed separately in each block. There-
fore, since each mode-n processor fiber owns a separate column block of Y, they are independent.
For this reason, line 3 defines the local processor fiber, and all communication for that processor
occurs within the P, nodes of that fiber. There are P independent column fibers.

The algorithm chooses between two methods based on the size of Kj,. The decision is based on
the size of the intermediate quantities that are computed. The choice of method ensures that the
temporary memory never exceeds the memory of Y.

In the Reduce-Scatter variant, each processor computes the local matrix-matrix product, W =
VY (), and then sums and distributes the result using a Reduce-Scatter. The temporary object W
is of size K,, X J©, which may be too large to store on the processor. We assume that the processor
has enough extra memory to store something the same size as Y(n) (i.e., Y), which is of size J, X ]_,? ,
and so we use this variant if K, < | J,/Pn] ~ J,. This process is demonstrated in Figure 5 where
five processors are shaded (in the first processor fiber) to understand that data ownership of each
processor.
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(a) Local matrix multiplication produces a local product that needs to be summed and distributed

(b) The Reduce-Scatter collective produces final result, with communication only within the processor fiber

Fig. 5. Reduce-Scatter variant of TTM, used if temporary storage does not exceed original data. The data
belonging to five processors (in the same processor fiber) is color-coded for tracking.

ALGORITHM 5: Parallel TTM [2]

1: function % = rarR_TT™M(Y, 1, V, (Py, P1,...,PN—1)) »Yislocal portion of the tensor and V is column block of V
2 myProcID « (po,p1,. - ., PN-1)

3 myProcFiber « (o, ..., Pn—1, :sPn+1s-- - PDN-1) > Processor group of size P,
4 if K, < |Jn/Ppn] then > Reduce-scatter variant
5 W = 1M(Y, 1, V)

6 Z = REDUCESCATTER(W, myProcFiber)

7 else > Multiple-reduction variant
8 Partition V into row blocks V [¢] of size K; = Isz{ €, Ky, Pp} X J, for € € [Py ]

9: for( e [P,] do
10: W = 1Mm(Y, 1, V [£])
11: Z = Repuck(W, myProcFiber, ) > Root for Reduce is processor (o, - - - » pr—1> s Pr+1s - - - » PN—1)
12: end for
13: end if

14: end function

A key issue in the implementation is that the entries’ ordering in W is not correct for a Reduce-
Scatter and so must be reorganized when the data is packed for the Reduce-Scatter to obtain the
proper layout of Z at the end of the call. The input buffer for Reduce-Scatter must be arranged
so that contributions to each processor’s result Z are contiguous. The ordering of W consists of
J$ row-major submatrices of dimension K x J§, and it must be reordered into P, contiguous sub-
blocks, each consisting of J row-major submatrices of dimension K/P, x J< (assuming P, divides
K evenly). If n = N — 1 (the last dimension), then no reordering is necessary, and no unpacking is
necessary after the Reduce-Scatter for any dimension.

In the multiple-reduction variant, the algorithm uses a blocked approach that involves P, local
TTMs and P, collective communications. Here, each iteration computes the contribution to one
processor’s output (within the processor fiber—all processor fibers are working concurrently) and
uses a Reduce collective to compute the sum across all processors in the fiber and store the result
on the ¢th processor. The matrix V is divided into block rows so that V[¢] owns the rows in the
set prcmap{ py, £, Ky, Pn, P, }. In this case, the dimensions of the temporary tensor W in the £th
iteration is bounded above by Jy X - - - X [K,/P,] X - - - X Jy—1, which is essentially the same size
as % (recall that K/ is within 1 of K,,). This process is demonstrated in Figure 6, where we highlight
the contribution to the 4th processor in the 1st column fiber.

The two variants perform the same number of flops and communicate almost the same amount
of data (to within a factor of 2). The number of flops is O(J®K,,/P®), which is the cost of the local
TTM(s).
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Table 3. Asymptotic Costs of Algorithms for TTM and Gram with Respect to Mode n for a Tensor with
Global Dimensions J, X J; X -+ X Inoa and Processor Grid with Dimensions Py X P; X -+ X Py_s

Flops Bandwidth Latency Memory
TTM (Reduce-Scatter) }]3—2[( 1]3—’:?[( log P, ,]3—"3 K
TTM (Reduce) {,—21( % P,logP, P_n;
Gram (Original) IJ)—Z T 113_2 P, + % P, 1{_2 N ( I )2
Gram (New) {7—2 T % + J? P, {)_2 +J2

We omit leading constant factors and lower order terms. The columns correspond to per-processor costs: number
of floating point operations, number of words communicated, number of messages communicated, and amount of
temporary local memory required, respectively. Recall J® = [TheinyJnand J;) = J @/ Ju, with analogous definitions
for P® and P2.
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Fig. 6. Multiple-reduction variant of TTM, used to obtain a smaller memory footprint. The data belonging
to five processors (in the same processor fiber) is color-coded for tracking.

The data communication costs differ by only a factor of 2. In the Reduce-Scatter variant, the
amount of data communicated is the cost of one Reduce-Scatter collective over the mode-n fiber:
[mzn [ Jn/Pm1TKn/Py1(Py — 1) = JPK, (P, — 1)/P®. In the multiple-reduction variant, there are
P,, Reduce collectives of a data size that is smaller by a factor of P,,, which yields the same asymp-
totic cost, but incurs an extra factor of 2 due to the cost of the Reduce collective.

The number of messages is fewer for the Reduce-Scatter variant, which has only one collective,
at a cost of log P, messages. The multiple-reduction variant involves P,, collectives, at a total cost
of 2P, log P, messages.

The temporary memory (W) of the multiple-reduction variant is much lower: [K;, /P, ]_,1@ words
for the multiple-reduction variant versus K, ]_,? words for the Reduce-Scatter variant. As an aside,
we note the block size of the blocked algorithm can be chosen arbitrarily, navigating a tradeoff
between latency cost and memory footprint; we used a version that corresponded to the result size
for simplicity, but it assumes the available remaining memory is at least the size of the required
memory for the problem.

7 PARALLEL ST-HOSVD COST ANALYSIS

In this section, we analyze the computation, communication, and temporary memory requirements
of the ST-HOSVD algorithm. We note that the computation and bandwidth costs are sensitive to
mode order, while the latency cost and memory requirements are not. This analysis assumes that
the mode order used by the algorithm is increasing by mode index; the costs for other mode orders
can be derived by relabeling modes. If the core ranks are specified a priori, then an optimal (in terms
of flops or communication) mode ordering can be determined similar to the case of reconstruction,
as described in Section 8. We also note that the communication costs are sensitive to the processor
grid, but the computation cost and memory requirements are not. In this analysis, we use the
new Gram algorithm and allow for the choice of TTM algorithm based on the relative sizes of
dimensions as described in Section 6.3. To simplify the analysis, we provide an upper bound on
the communication costs by assuming the Reduce version, which sends more messages, is used
for each mode.
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The nth mode Gram performs RS I2I$ /P® flops (exploiting the symmetry of the output), the

nth mode eigenvalue computation requires (10/3)I> flops, and the nth mode TTM performs
2RS R, I,I2 /P® flops. Thus, the leading order terms in the flop costs are

| N 10 M=t
N 2 oo , WU 3
y (P® 7 (12 + 2Ral) ROID + s Zln).
n=0 n=0

The communication cost of the nth mode (new) Gram computation is f - (RSI,IS /P® -
((Ph=1)/Pp) + I2) + a - (P,—1 + 2log P®). The communication cost of the nth mode (Reduce)
TTM is B - (RS RIS /P2 - ((P,~1)/P,)) + a - (2P, log P,). Thus, the leading-order terms in the

bandwidth costs, assuming we use the new Gram algorithm, are

= N-1

B (P_® Z (In% & 2Rn(Pn—1)) RIS + Z Iﬁ).
n=0 n n=0

The leading-order terms in the latency costs, conservatively assuming we use the Reduce TTM

algorithm at each step, are

N-1
- (2Nlogp® + ) 2P, loan>.
n=0
The temporary memory required for the nth Gram computation is twice the size of the current
local tensor data, which is RS1,IS /P®. Because this memory can be re-used and R,, < I, for each
n, this cost is dominated by the first mode, requiring 2I¥ /P® words. The Gram computation also
requires space for storing the output Gram matrix, which is of size I2/2 and can be re-used across
modes. The eigenvalue computation requires as much as I2 extra memory if all eigenvectors are
computed. The temporary memory required for TTM is guaranteed to be smaller than the input
tensor, which is always bigger than the output tensor in the case of ST-HOSVD, so the temporary
memory required for the nth TTM never exceeds the size required of the nth Gram computation.
Thus, the leading-order terms of the total temporary memory required on each processor is

I® 5
2 max {P—®, m’?xln} .
8 OPTIMIZED RECONSTRUCTION

After the data has been compressed using ST-HOSVD, the user may wish to move the compressed
data to another machine and reconstruct an approximation of the original data there. Since the
full reconstructed data set would take up just as much space as the original, we provide the user
an option to reconstruct sub-tensors of the original tensor. Thanks to the structure of the Tucker
model, linear operations can be applied cheaply to each mode. For example, the user may want
to downsample one of the spatial dimensions (mode 2) and select a single variable (mode 3) at a
single timestep (mode 4) for the purposes of visualization. This can be accomplished through the
following series of TTMs:

2 = G %o Uy X1 Uj X3 C; Uy X3 C37U3 X4 Cy Uy,

where o
050 -0 0 0
05 0 -0
Cz = 0 05 -0 5 C3 =11 ’ C4 = |1
0050 0
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The five TTMs can be done in any order to obtain the result, but the Multi-TTM ordering can
have a large effect on computational cost, memory footprint, and communication cost (in the par-
allel case). We demonstrate the effects of reconstruction mode ordering on run time and memory
in Section 9.5. In the code, the user can specify the mode ordering or allow the software to auto-
matically select the ordering that minimizes either computational cost or memory footprint. In the
case of parallel reconstruction with linear operations applied to the factor matrices, each processor
redundantly stores each C,, and computes C,” U, locally.

To determine the optimal mode ordering, the TuckerMPI code exhaustively searches over all
N! permutations to obtain the optimal ordering, but the optimal ordering can be determined in
O(N log N) time by sorting with a specific comparator [7]. For example, consider the N = 2 case,
which corresponds to a product of three matrices, with input core matrix dimensions Ry X R; and
output subtensor dimensions K, X K;. Computing the mode-0 product followed by the mode-1
product requires KoRyR; + KoR;K; scalar multiplications, while computing the products in the
opposite order requires RyR;K; + RyKK; scalar multiplications, so to minimize flops we order the
products based on the comparison of these two costs.

More generally, let the input core tensor G have dimensions R, X R; X -+ X R;_; and the out-
put subtensor % have dimensions K; X K, X - -+ X K,_;. The key insight is that optimal order-
ing of all N modes is the one such that every pair of modes is ordered correctly according to
the N =2 case. That is, to minimize flops, mode i should precede mode j in the ordering if
KiRiR; + K;R;K; < R;R;K; + R;K;K;. This can be shown, as argued by Chakravarthy [7], by recog-
nizing that this comparator yields a total ordering on modes and arguing by contradiction. Suppose
the optimal ordering is not sorted by this comparator, then there exists two consecutive modes
n and n + 1 that are out of order. Swapping the two consecutive modes will reduce the overall
cost, because the costs of the first n — 1 TTMs and the last N —n — 1 TTMs are equivalent, but
the cost of the n and n + 1 TTMs are reduced by the property of the comparator, and we have a
contradiction.

Similar arguments can be made for communication (bandwidth) cost and memory footprint.
Given the bandwidth cost of Algorithm 5, to minimize words moved, mode i should precede mode
jif RjK;(P; — 1) + K;K;(P; — 1) < RiK;(P; — 1) + K;K;(P; — 1). To minimize temporary memory,
mode i should precede mode j if R;/K; < R;/K;.

9 EXPERIMENTAL RESULTS
9.1 Experimental Platform

We run all experiments on Skybridge, a Sandia supercomputer consisting of 1,848 dual-socket
8-core Intel Sandy Bridge (2.6 GHz) compute nodes. Each node has 64 GB of memory, a peak flop
rate of 332.8 GFLOPS (i.e., 20.8 GFLOPS per core), and the nodes are connected by an Infiniband
interconnect. We use Intel compilers and the MKL for BLAS and LAPACK subroutines. We execute
16 MPI processes per node with 1 thread per process unless otherwise stated. Data files are stored
on a Lustre file system, and Skybridge’s I/O is shared with other clusters. All reported timings in
this section are averages over multiple runs. All reported memory requirements are computed by
the application, using a wrapper around memory allocation calls, and do not include memory used
by the operating system or by the MPI implementation.

9.2 Data Description

We consider two large-scale simulation datasets that were produced by S3D [9], a massively paral-
lel direct numerical simulation of compressible reacting flows, developed at Sandia National Lab-
oratories. The datasets are as follows:
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Table 4. Experimental Setup

Dataset Overall Total Number of Storage per
Name Tensor Size Storage Nodes Processes Node Process
SP 500 X 500 X 500 X 11 X 400 44TB 250 4,000 17.6 GB 1.1GB
JICF 1,500 X 2,080 X 1,500 X 18 X 10 6.7 TB 350 5,600 19.3 GB 1.2 GB
(a) Data sets to be compressed and the number of parallel nodes to be used in the compression experiments.
Dataset Proc. Config. Name Processor Grid Local Tensor Size
SP A 1X1X40X1X100 500 X 500 X 13 X 11 x 4
B 10X 8X5x1x10 50 X 63 X 100 X 11 X 40
C 40X 10x1x1x10 13 X 50 X 500 X 11 X 40
JICF A 1X16%x35Xx1x10 | 1,500 X 130 X 43 X 18 X 1
B 10X 8X7X1x10 150 X 260 X 215 X 18 X 1

(6} 35X 16X1x1x10 | 43X 130x1,500%x 18X 1

(b) Three different processor grid configurations per dataset, to test the efficiency of the compression. The local tensor
size may vary, but here we list the largest local size in each dimension.

e SP: This 5-way data tensor is of size 500 X 500 X 500 X 11 X 400 and corresponds to a cubic
500 X 500 X 500 spatial grid for 11 variables over 400 time steps. Each time step requires 11
GB, so the entire dataset is 4.4 TB. The SP dataset is from the simulation of a 3D statistically
steady planar turbulent premixed flame of methane-air combustion [21]. The first 50 time
steps (a 550 GB dataset) was used in previous work [2].

e JICF: This five-way data tensor of size 1,500 X 2,080 X 1,500 X 18 X 10 comes from a
1,500 X 2,080 X 1,500 spatial grid with 18 variables over 10 time steps. Each time step re-
quires 674 GB storage, so the entire dataset is 6.7 TB. The JICF dataset is from a jet in cross-
flow simulation, which is a canonical configuration for many combustion systems [25].

The general experimental setup is described in Table 4. For each dataset, we use the same number
of nodes for all experiments: 250 for SP and 350 JICF. Since each node has 64 GB of RAM and runs 16
threads/processes, storage of the full tensor requires a little more than 1/4 of the memory per node
(our data is stored in double precision). For each dataset, we consider three different processor grid
configurations (A/B/C), as specified in Table 4(b). They vary primarily in how the processors are
distributed in the first three modes with scenario A having fewer processors in mode 0, scenario
B being more evenly divided on modes 0-2, and scenario C having more processors on mode 0.

For testing and debugging, TuckerMPI also provides both sequential and parallel synthetic
tensor generators for the users’ convenience. The user specifies the desired size and rank of
a tensor, denoted by (Iy,I1,...,In-1) and (R, Ry, ...,RN—_1), respectively, and the amount of
relative noise to be added, denoted 1. We construct a core tensor G with dimensions defined
by (Ro, Ry, ...,Rn-1); the numbers are drawn from a standard normal distribution. The factor
matrices Ug---Uy_; are generated in a similar fashion, where U, is I, X R,. By performing
the tensor times matrix mulitplications G X Uy X1 Uy - - - Xn—1 Un_1, We obtain a tensor of size
(Io, I1, . . . , In—1) with rank (Ro, Ry, ...,Rn-1), which we refer to as M.

After obtaining the tensor M, we wish to add noise to it so that it is not exactly rank R. Let X =
M+ UMN, where N is a randomly generated tensor of noise whose values are also obtained

1Nl
from a standard normal distribution. This gives us Hgﬁ_xjﬁ[” ~ 1. Note that we do not explicitly

construct and store N due to its large size, so we approximate its norm using its expected value:
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Gram | Proc. Run Times (sec) Memory Usage (GB)
Dataset | Mode | Config. | Old | New | Ratio | Old | New | Ratio
A 6.3 6.0 1.0 1.15 | 1.15 1.0
1 B 69.6 | 18.9 3.7 222 | 332 1.5
Sp C 759 | 18.1 4.2 2.29 | 3.34 1.5
A 788.9 | 16.3 484 | 2.29 | 3.43 1.5
4 B 344 | 121 2.8 2.22 | 333 1.5
C 36.0 | 13.8 2.6 2.29 | 343 1.5
A 18.1 18.0 1.0 1.26 | 1.24 1.0
0 B 131.7 | 29.4 4.5 2.44 | 3.62 1.5
JICF C 434.2 | 29.1 149 | 243 | 3.61 1.5
A 390.5 | 36.2 10.8 | 2.43 | 3.62 1.5
2 B 653 | 30.0 2.2 2.44 | 3.62 1.5
C 16.2 16.0 1.0 1.26 | 1.24 1.0
(a) Total times and memory usage per process.
150 ' T T 150
[ | Other
m Packing
W Matrix Comm
M Tensor Comm
100 |- [ | Computation ?10()
E E
3 3
B &
=50 - & 50

0
oz Q9Z oz QOZ oz oz
a g a g = % = g a g a g
mode 1 mode4 mode 1 mode4 mode 1 mode 4 mode 0 mode 2  mode 0 mode 2 mode 0 mode 2
A B C A B C
(b) Breakdown for SP dataset (c) Breakdown JICF dataset

Fig. 7. Gram total run time and breakdowns for old (round-robin variant from Reference [2]) and new (re-
distribution variant) Gram algorithms on two datasets with different processor configurations as detailed
in Table 4(b). The “Gram Mode” or “Mode” refers to the unfolding mode, i.e., n. In the table, differences of
more that 2x between the old and new are highlighted in boldface. In the breakdowns, “Packing” only oc-
curs for the new method and refers to the reordering of the data in memory before communication with the
other processors, “Tensor Comm” refers to communication of the tensor data, which happens every step of
the round-robin procedure for the old method and only once in the redistribution for the new method, and
“Matrix Comm” refers to the all-reduce, which happens after each step in the round-robin procedure for the
old method and just once in the new method. Note that some bars go past the y-axis limit as indicated by
vertical dots.

9.3 Comparison of Gram Algorithms

We compare the two versions of the Gram algorithms described in Section 6.2: the old round-robin
variant from Reference [2] and the new redistribution variant from Algorithm 4. We use the two
datasets and pick two representative modes, with corresponding experimental conditions detailed
in Table 4. The results are shown in Figure 7(a). The new algorithm is up to 48 times faster than the
old algorithm and never slower. The least speedup occurs when there is only one processor in the
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Gram mode fiber and no communication is performed in either case. The most speedup is when
there are 100 processors in each fiber of the Gram mode. Ignoring the cost of the All-Reduce, the
communication cost ratio between the old and new algorithms for a Gram operation in mode n is
P,, which is an upper bound on the possible speedup. We see speedups of around 20-50% of that
upper bound because of time that both algorithms spend on computation and the increased cost
of the All-Reduce for the new algorithm. With respect to processor configurations, there is much
less variance in the new algorithm than in the old. The timing for the new algorithm varies by no
more than 3X, whereas the timing for the old algorithm varies between 12-62X depending on the
processor configuration.

A breakdown of the run time for each of the experiments is shown in Figure 7. We see that the
main speedup comes from a reduction in communication of the tensor, but we also see a reduction
in computation time. This is the result of the new algorithm making a single BLAS call rather
than the old algorithm’s P,, BLAS calls on smaller subproblems. The new algorithm does include
some overhead for packing and unpacking the data, but it is negligible compared to the benefits
of reduced communication.

Figure 7(a) also reports the per-process memory requirement of each algorithm. Because the
new algorithm requires re-packing the data and performing an All-to-All collective, it requires
space for two extra copies of the local tensor data. The old algorithm requires temporary space
for only one extra copy of the local tensor data, to perform its round-robin exchange of data. The
ratio of three total copies to two total copies yields the memory footprint ratio of 1.5 as reported
in the table. When the number of processors in the mode of the Gram computation is one, no
communication is necessary and no extra memory is required, so the memory footprint ratio is 1
in those cases.

9.4 ST-HOSVD

We analyze the parallel ST-HOSVD (Algorithm 1) using the new redistribution version of the Gram
algorithm. First, we consider its performance on two real-world datasets, varying the processor
grid but not the number of processors. Second, we do strong and weak scaling studies varying the
number of processors.

9.4.1 Compression of Combustion Data. We use TuckerMPI to compress the SP and JICF
datasets described in Table 4(a) using the number of processors and grids specified in Table 4(b).
In terms of the pre-processing described in Section 3.5, there was no preprocessing on the SP data,
since it was already scaled, and max scaling was applied to the JICF data. For each dataset, we
consider two relative error tolerances: le-2 and le-4, which we refer to as “High” and “Low” com-
pression, respectively. The scenarios are summarized in Figure 8(a) along with the compressed core
size, total storage for the core and factor matrices, and overall compression ratio. For real-world
datasets such as these, the compression potential depends on the amount of redundancy that is
inherent in the data. For time-evolving simulations, there may be spatial regions with minimal
change, and so these parts can be highly compressed. In our code, the user specifies the desired
relative error tolerance (€), from which the level of compression is determined on the fly. (Alter-
natively, the software allows the user to specify the desired final core size, from which the final
relative error is determined.) For our two datasets, the high-compression scenario yields reduc-
tions in size of 4-5 orders of magnitude. We note that our subject-matter experts have deemed the
high compression datasets to be faithful representations that are scientifically useful. For instance,
Figure 9 shows a visual comparison between the original and compressed versions. Specifically,
Figure 9 shows a temperature isosurface at the 201st (middle) time point, used to track the bound-
aries of a flame during the simulation. The errors in the reconstructions of the compressed versions
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Scenario | Relative Compressed Total | Compression
Dataset | Name Error Core Size Storage Ratio
Sp High le-2 30 X 38X 35%X6x11 21.5 MB 2x10°
Low le-4 95 X 129 X 125 X 7 X 125 10.7 GB 4% 102
JICF High le-2 90 X 61 X 48 X 13 X 6 167 MB 4% 10%
Low le-4 424 X 387 x 261 X 18 X 10 | 45.7 GB 1x10?

(a) ST-HOSVD compression results (independent of processor grid)

Time (seconds)

High Low High Low
A B

High Low
c

(b) ST-HOSVD on SP dataset with different processor grids

13:23
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B TT™
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(c) ST-HOSVD on JICF dataset with different processor grids

SP dataset JICF dataset
Proc. | Compression | Memory I/0 Time (s) Comp. Memory I/0 Time (s) Comp.
Config. Scenario Usage (GB) | Input | Output | Time (s) | Usage (GB) | Input | Output | Time (s)
High e=1e-2 1.22 0.2 6 1.43 2 57
A Low e=1e-4 1.42 370 22 13 2.24 2308 424 106
High e=1e-2 3.33 0.9 24 3.62 4 137
B Low e=1e-4 3.33 877 983 38 3.62 2187 18517 187
High e=1e-2 3.34 0.8 37 3.61 5 180
c Low e=1e-4 3.34 L 13470 79 3.61 2Vl DNC 244

(d) STHOSVD per-core memory usage, I/O time, and computation time

Fig. 8. ST-HOSVD compression, run time breakdown, memory usage, and 1/O cost for different choices of
€ (in in Algorithm 1) and processor grids. The different processor grids (A/B/C) are given in Table 4(b). In
the breakdowns, since these are five-way datasets, there are five iterations of ST-HOSVD, each of which
calls Gram, local eigenvalue decomposition (Evecs), and TTM. These are stacked from mode 0 (bottom) to
mode 4 (top). The mode-0 calls are the most expensive, because the tensor is reduced in size for subsequent
iterations, and Evecs is never a bottleneck.

(a) Original

(b) Low compression (e=1e-4)

o

o

(c) High compression (e=Te-2)

Fig. 9. Temperature isosurfaces at a given timestep in SP data computed from the original and compressed

(and reconstructed) data sets.
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are unobservable in this visualization. As we see from Figure 8, the resulting compressed data sets
are small enough to be easily shared across high-speed networks and/or analyzed on workstations
as described in Section 9.5.

Figure 8 shows the run time results of ST-HOSVD using the different compression scenarios in
Figure 8(a) and processor grid configurations in Table 4(b). Note that the degree of compression has
no dependence whatsoever on the processors grid configuration; the configuration impacts only
the run time. In the figure, the run times are broken down into color-coded segments corresponding
to the three main kernels: Gram, local eigenvalue decomposition (Evecs), and TTM. As these are
five-way tensors, there are five calls to each kernel. The times corresponding to mode zero are at the
bottom and the most expensive. Since the tensor is reduced at each iteration (via the call to TTM),
the calls become significantly cheaper so that the breakdown is hardly apparent past the first 2-3
iterations/modes. Comparing the “high” and “low” scenarios, the initial Gram computations are
roughly equivalent, but all other computations in the 1le-2 case finish more quickly than the 1e-4
case, because the data is compressed more drastically at each step. Comparing SP and JICF datasets,
the Evecs computation is negligible for SP but is noticeable for JICF, because its largest mode sizes
are 3—4 times larger than for SP (the eigenvector computation is not parallelized). Comparing
across processor grid configurations (A/B/C), loading more processors onto later modes generally
improves run time, as the heavy communication steps are performed on data that can be orders of
magnitude smaller than the initial tensor. The fastest of the processor grids are 3-6x faster than
the slowest of the processor grids. This is not included in the figure, but the average time taken
for preprocessing the JICF data (scaling each mode-3 slice by the inverse of the maximum entry) is
8 seconds and varied minimally across processor grids. This amounts to at most 15% of the run time
of ST-HOSVD after the tensor is loaded in memory. The SP data in our experiments has already
been scaled, so TuckerMPI does no pre-processing.

We note that this experiment does not consider alternative mode orderings, which can have a
significant effect on run time. In the case of ST-HOSVD with a specified tolerance, the core tensor
size is not known a priori, so it is not possible to pick an optimal ordering as discussed in Section 8.
However, one can use some heuristics to pick a mode ordering. For example, starting with a mode
whose processor grid dimension is 1 avoids communication of the tensor in the first Gram (which
is typically the most expensive operation). Indeed, in this experiment, the fastest processor grid (A)
has one processor in mode 0 for both SP and JICF data sets, but using the natural mode ordering
01234 is not necessarily optimal, even for that processor grid.

Figure 8(d) shows the memory footprints and I/O times of the different cases. The input SP ten-
sor requires about 1.1 GB per core on 4,000 cores, and TuckerMPI requires about 3x that much
memory to complete its computations, which is dominated by the memory required by the initial
Gram computation. When a processor grid with only one processor in mode 0 is used, the memory
footprint is only about 10-30% more than the initial data, depending on how much compression is
achieved through the algorithm. The JICF data on 5,600 cores requires about 1.2 GB per core, and
again we see a memory footprint of about 3X that amount. In terms of I/O time, the TuckerMPI
code uses the MPI I/O interface for reading and writing binary files of multidimensional arrays.
From the input results, we see a file reading bandwidth of 3-10 GB/s, requiring O(10) minutes
to read the input tensors from disk. In comparison, computing the ST-HOSVD takes O(1) minute
per Figure 8(d). For instance, the SP-High-A scenario is 100X faster than reading the data from
from disk. Writing to disk is much more expensive than reading. As a result, writing the com-
pressed representation takes a disproportionate amount of time. We believe this is an artifact of
the underlying MPI1/O implementation with the Lustre filesystem on Skybridge. One experiment,
labeled “DNC,” did not complete due to an error within the MPI I/O implementation. Improving
I/O performance for the low compression scenario is a topic of future work.
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256 % 256 tensor compressed to size 32 X 32 X 32 X 32 (4096x 200k x 200k x 200k tensor with reduced size 20k x 20k X
compression), using 2K nodes for 0 < k < 7. The proces- 20k x 20k, using k* nodes and a 1x 1 x 4k? x 4k? processor
sor grids are 1X1x2x8, 1X1X2x16, 1X1x4x16, 1X1x8x16, grid for 1 < k < 5. For reference, the peak GFLOPS per
1X1X16X16, 1X2X16X16, 1X4X16X16, 1X4X16X32. core is 20.8.

Fig. 10. Parallel scaling experiments on synthetic data. There are 16 cores per node.

9.4.2 Strong Scaling with Synthetic Data. In this section, we demonstrate the scalability of our
code on a synthetic 4D tensor with dimensions 256 X 256 X 256 X 256. The experimental setup
is as follows. We fix the core dimensions to 32 X 32 X 32 X 32 (4,096 compression) so that all
mode orderings are equivalent, and we scale from 1 node up to 128 nodes (2,048 cores), using
1 MPI process per core. Since all the dimensions are the same, the mode ordering is irrelevant.
We used the following processor grids: 1X1x2x8, 1X1X2x16, 1X1x4X16, 1X1x8%16, 1X1X16X16,
1X2X16X16, 1X4X16x16, 1xX4X16%32, chosen heuristically to have fewer processors in the first and
second modes to minimize communication in the early Gram computations, which dominate the
run time.

The run times are reported in Figure 10(a). The input tensor is 32 GB in size, about half the mem-
ory available on a single node. The performance scales well up to 16 nodes (256 cores), achieving
9% speedup over the single node, because the run time is dominated by the local Gram computation
in the first node, which is perfectly parallelized. The degradation of performance after 16 nodes is
caused in large part by the local computation in the first Gram computation (a single call to syrk)
failing to scale perfectly. This is due to the local dimensions becoming too small and performance
variability across nodes. We note that performance reported in Reference [2] shows strong scaling
of nearly the same algorithm on nearly the same problem to 256 nodes, but it was benchmarked
on a different parallel computer.

9.4.3  Weak Scaling with Synthetic Data. In this section, we demonstrate the weak scalability
of our code on synthetic 4D tensors whose sizes scale with the number of processors so that the
portion per processor remains constant. We ran our code on 2¥ nodes (for 1 < k < 5), using 16
MPI processes per node, with a 1 x 1 x 4k? x 4k? processor grid. We take a tensor of order 200k x
200k X 200k X 200k and reduce it to a core size of 20k X 20k X 20k X 20k. This means that the local
data on each node is approximately 0.8 GB. The processor grid was chosen as the best performing
among 2k X 2k X 2k X 2k, k X k X 4k x 4k and 1 X k X 4k x 4k?. The largest speedup of the 1 X 1 X
4k? x 4k? grid over the other grids was about 70%, and the 1 X k x 4k X 4k? grid performed nearly
as well.
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Table 5. Intermediate Tensor Sizes in the Partial Reconstruction for Two Different TTM Orderings, Using
the High Compression Scenario (e=1e-2) for the SP Dataset

Ordering 01234 Ordering 43120

TT™M Dimensions Intermed. Size (GB) Dimensions Intermed. Size (GB)
None| 30x38x35%X6Xx11 0.02 30X 38X35X6X%11 0.02

1st | 500 X 38 X 35X 6 X 11 0.35 30X 38X35X6X1 <0.01

2nd | 500 X 500 X 35 X 6 X 11 4.62 30 xX38%x35%x1X%1 <0.01

3rd (500 X 500 X 500 X 6 X 11 66.0 30 X500 x35X1xX1 <0.01

4th |500 X 500 X 500 X 1 X 11 11.0 30 X 500 X 500 X 1 X1 0.06

5th | 500 X 500 X 500 X 1 X 1 1.00 500 X 500 X 500 X 1 X 1 1.00

The TTM ordering can make a dramatic different in memory usage.

Figure 10(b) reports the performance in terms of GFLOPS per core. We observe that weak-scaling
performance is generally preserved up to 625 nodes, with the code achieving 40-50% of peak per-
formance throughout. In this experiment, the amount of local computation is held fixed, while the
communication is increased with the number of processors. The weak scaling is possible, because
the run time remains dominated by computation. On 1 node (k = 1), the tensor size is 12.8 GB,
and on 625 nodes (k = 5) it is 8 TB. Compared to the performance reported in Reference [2], we
observe similar overall performance relative to the architecture.

9.5 Reconstruction

Compressing data makes it cheaper to store and to transmit, but ultimately it needs to be recon-
structed to be useful. We expect that most users will do only partial reconstructions. These can
be used to visualize a portion of the data, extract summary statistics, and so on. Moreover, this
can oftentimes be done on a workstation rather than a parallel computer, making analysis much
simpler. We can also reconstruct the entire dataset, which is primarily useful for comparison to
the original dataset for quality control. In either case, reconstruction is a Multi-TTM operation as
described in Section 8.

9.5.1  Partial Reconstruction. Our aim in this section is to show that we can do partial recon-
structions on a laptop or workstation, so we run all experiments sequentially using only one MPI
process (and thus only one node and one thread). We note that each node on Skybridge has 64 GB,
and that the sequential execution has access to all 64 GB. We consider the SP dataset, as described
in Section 9.2.

Visualization of Single Time Step. One partial reconstruction for visualization is to extract the
entire 500 X 500 X 500 grid corresponding to a single variable (out of 11) at a single timestep (out of
400). This results in a tensor of size 500 X 500 X 500 X 1 X 1, which requires 1 GB of storage. This
is the first step used to generate the visualizations of the compressed data in Figure 9, for example.

As discussed in Section 8, the mode ordering is important in the reconstruction. We never want
the intermediate size to be bigger than the larger of the input and output tensor sizes, but this can
happen for the wrong mode ordering. Consider the high compression scenario and the intermedi-
ate tensor sizes that result as shown in Table 5. Using the ordering 01234 results in a 66 GB tensor
after the third TTM in the reconstruction. But ordering 43120 never has an intermediate result
larger than the final reconstruction. We stress that any ordering produces the same result (up to
floating point error) and the difference is in the size of the intermediate results and the run time.

In Table 6, we report the maximum memory usage, the compute time (Multi-TTM), and the I/O
times for different mode orders. The sizes of the core tensors on disk are 21 MB and 11 GB per
Figure 8(a), and the size of the reconstructed output is 1 GB. The I/O time shows a bandwidth rate
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Table 6. Partial Reconstruction Results on the SP Dataset with a Single MPI Process, Computing a Partial
Reconstruction of Size 500 X 500 X 500 X 1 X 1 (1 GB)

Compression Mode | Max Memory | Compute I/O Time (s)
Scenario Order | Usage (GB) Time (s) Input Output
01234 out of memory
. 03421 1.08 1.55
;;Illge}_lz 24013 7.00 8.88 0.05 (21.5 MB)
34021 7.00 1.19
43120 1.08 1.05
01234 out of memory 1.01 (1 GB)
L 03421 out of memory
ow
e=le-4 24013 53.62 129.70 12.23 (10.7 GB)
34021 12.26 5.83
43120 10.81 4.72

Table 7. Summary Statistic Results on the SP Dataset with a Single MPI Process, Computing the Average

Fraction of Carbon Dioxide Across All Time Steps and Entire Physical Grid

Compression | Mode | Max Memory | Compute I/O Time (s) Relative
Scenario Order | Usage (GB) | Time (s) Input Output Error

High (e=1e-2) | 01234 0.022 0.16 0.69 (21.5 MB) 0.04 (8 B) 6.7e-6

Low (e=le-4) | 01234 10.84 2.63 13.02 (10.7 GB) ' 5.7¢-8

Relative error is in comparison to the value computed based on the original data.

of about 1 GB/sec. In the high compression case, the partial reconstruction is larger than then the
input; in contrast, the reverse is true for the low compression scenario. For both the high and low
compression scenarios, the unique minimizer of the flops is mode order 43120, and it is one of the
memory minimizers. Compared with the other orders benchmarked in the experiment, the optimal
order runs as much as an order of magnitude faster, and some orders, including the straightforward
01234 order, fail due to out-of-memory errors.

Computing a Summary Statistic. As an example summary statistic for the SP data, we can com-
pute the average fraction of carbon dioxide across all space and time in a few seconds. Mathe-
matically, in the notation of Section 8, we set Cy, Cq, Cy, and C4 to be all-ones vectors and Cs
(the mode corresponding to variables) to be all zeros except for a one in the index that corre-
sponds to carbon dioxide. Table 7 shows the results of this computation on a single node for both
compression scenarios. The average fraction of carbon dioxide across all space and time is 0.0534
(calculated using the original data).! In comparison, the relative error of the averages computed
from the compressed versions are 6.7e-6 (high compression) and 5.7e-8 (low compression). The
memory required is only that of storing the compressed data, and the time is dominated by the
cost of reading the core tensor from disk. For the high compression case, the computation took
less than 1 s in total; for the low compression case, it required less than 16 s. Recall that working
with the original data set requires a parallel computer and 100 s of nodes just to read the data.

9.5.2  Full Reconstruction of the SP Data. As mentioned above, we do not expect users to em-
ploy full reconstruction very often, but it is useful as a diagnostic tool to check the quality of the

n preprocessing, the data was rescaled to have a maximum value of 0.5, and the mean based on the rescaled data was
0.3014.
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Table 8. Full Reconstruction Results of the SP Dataset Using 250 Nodes/4000 MPI Processes

Compression Mode | Max Memory | Compute I/0 Time (s)
Scenario Order | Usage (GB) Time (s) Input Output
12034 2.57 320.34
High 34120 1.21 27.51 4.02
e=le-2 41203 1.77 16.39 (21.5 MB)
42103 1.77 5.04 3118.57
12034 out of memory (4.4 TB)
Low 34120 1.37 82.46 15.24
e=le-4 41203 1.88 53.74 (10.7 GB)
42103 1.88 19.43

The processor grid is size 1 X 1 X 40 X 1 x 100. The “Max Memory Usage” is per process.

approximation. Hence, we reconstructed the full SP dataset for both the high and low compression
scenarios using a variety of mode orderings and processor configuration A (1 X 1 X 40 X 1 X 100),
since it resulted in the fastest compression time. The results are reported in Table 8.

The I/O timings are averaged over the runs with different mode orderings. As the output is
about 400 times larger than the larger of the two inputs, the overall time for the experiment is
dominated by writing the output to disk, which takes almost an hour. (This supports the idea of
avoiding reading and writing the full data sets to disk.) As compared with the bandwidth rate of
one MPI process (see Table 6), the parallel I/O bandwidth rate is slower for the smaller inputs and
about 50% faster for the larger output.

As discussed in Section 8, the computational and communication costs for the Multi-TTM, as
well as the temporary memory footprint, are all dependent on the mode ordering of the individual
TTMs. Furthermore, the mode ordering that minimizes computation need not be the same as the
one that minimizes communication or memory. For the high compression scenario, mode order
41203 minimizes computation, 42103 minimizes communication, and 34120 minimizes memory.
We also experiment with ordering 12034, which requires about 60% more temporary memory than
the optimal orders and yields an out-of-memory error in the high compression scenario. The 34120
order yields minimum max memory usage for both scenarios, and 42103 is the fastest for both
scenarios.

10  CONCLUSION

The Tucker tensor decomposition is useful for compression of many large-scale datasets, because it
uncovers latent low-dimensional structure. For multi-terabyte datasets that arise in direct numeri-
cal simulation of combustion reactions, we demonstrate that the Tucker decomposition can obtain
five orders of magnitude in compression by reducing a 4.4 TB dataset to 21.5 MB. The compres-
sion time is an order of magnitude faster than simply reading the data. Austin, Bader, and Kolda
[2] proposed the first parallel Tucker implementation. In this article, we build upon their work,
explaining the details of the parallel and serial algorithms as well as the local and distributed data
layouts. Additionally, we have improved upon the algorithm in Reference [2] and so can now run
on much larger datasets. We also explain in detail how to reconstruct portions of the data, one of
the most important benefits of the Tucker decomposition, without requiring any parallel resources.
We show that it is possible to reconstruct portions of the data on a single processor in only a few
seconds and using no more memory than the size of the input or output (whichever is larger).
Other parallel algorithms and implementations for computing Tucker decompositions of dense
tensors using Higher-Order Orthogonal Iteration include Reference [6], which uses TTM-trees
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and performs dynamic regridding to optimize computation and communication costs, and Refer-
ence [26], which uses TTM-trees and approximate information to update factor matrices in each
iteration. Choi, Lui, and Chakaravarthy [10] implement ST-HOSVD for dense tensors on a cluster
equipped with GPUs, and they also use randomized SVD algorithms to improve run time. In the
sparse case, there have also been several algorithmic innovations to improve the parallel perfor-
mance of Higher-Order Orthogonal Iteration [19, 27, 30]; these optimizations exploit the sparsity
of the data tensor and avoid memory overhead of temporary dense data structures.

In future work, we hope to create a library for in situ compression that can compress at each
time step in a simulation. Ideally, the simulation would never write the full dataset to disk but only
compressed versions. Although these compressed versions cannot be used for restart in the event
of a failure, they are a sort of “thumbnail” of the full simulation. This would save both time (for
I/0) and disk space, not to mention making the sharing of data much easier.

We have not compared our approach to other methods of compression but hope to do so in
future studies. Ballester-Ripoll, Lindstrom, and Pajarola [4] have recently compared Tucker com-
pression (computed in serial) to the ZFP, SZ, and SQ compression methods and determined that
this method “typically produces renderings that are already close to visually indistinguishable
to the original data set.” Most other compression methods are focused on pointwise errors and
achieve only about O(10) compression and moreover divide up the space into blocks and com-
press the blocks individually. The Tucker approach we use here bounds the overall error and looks
for large-scale patterns with the advantage being that it can get much higher compression, e.g.,
up to O(10°). A comparison study would need to determine how to compare across different types
of compression metrics (e.g., overall versus pointwise) and have a common large-scale dataset for
the comparisons. We note that we can also potentially combine compression methods, using other
methods to compress the core that results from the Tucker compression. Indeed, the “readme” file
for the SZ Fast Error-Bounded Scientific Data Compressor lists Tucker compression as an option.”

Li et al. [23] evaluate the impact of wavelet compression (up to 512X) for turbulent-flow data
on visualization and analysis tasks, and such analysis would be interesting to consider also in the
case of Tucker compression.

The data we compress in our study corresponds to a regular rectilinear grid. Another topic for
future work is dealing with unstructured and/or non-rectilinear grids that are not neatly repre-
sented as a tensor. We also assume that the data is dense, but there are applications in data mining
that have sparse tensors so this is another potential topic for study.
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