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• Widely proposed for Concentrated Solar and Nuclear 
Energy due to their relatively narrow temperature range 
requirements

• The split recuperator allows a portion of  the high 
pressure sCO2 to bypass the LTR to balance its heat duty 
and improve efficiency 

• For Fossil Energy applications, consideration must be 
given to use the significant thermal energy remaining in 
the combustion flue gas after passing through the PHX

• Oxycombustion using O2 instead of  air to burn fuel

• More akin to gas turbines (indirect cycles more akin 
to steam turbines)

• Higher turbine inlet temperatures and thus higher 
efficiencies

• High pressure sCO2 output allows for CO2 transport 
and sequestration

• Working fluid not pure CO2, but contains other 
combustion products including H2O 
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Microlamination -

1. Pattern microscale flow paths into 
laminae using a variety of  methods 
(etching, micromachining, laser cutting, 
EDM, others)

2. Bond these laminae using a variety of  
methods (diffusion bonding, laser 
welding, brazing, others). For sCO2, 
diffusion bonding seems to be the most 
robust approach

3. Transient Liquid Phase (TLP) bonding 
used for this study

• Shims coated with lower melting point Ni-P layer 
to facilitate bonding

Typical Microchannel HX Fabrication Process
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Materials

Nominal chemical composition (weight %) of materials used in this study 

(Haynes 230 and Haynes 282)

Ni Cr W Ti Mo Fe Co Mn Si Al C B

H230 57 22 14 -- 2 3* 5* 0.5 0.4 0.3 0.10 0.015*

H282 57 19.5 -- 2.1 8.5 1.5* 10 0.3* 0.15* 1.5 0.06 0.005

* = maximum

Sheet Thickness

H230 sheet: 0.533 mm 

H282 sheet: 0.584 mm



5

• Sheets were water-jet cut into shims

• 100 shims were bonded together in each stack

• All shims were reverse current etched and cleaned with 
acetone

• Shims plated with electroless nickel, 2 - 4 mm thick 

• All shims were thoroughly cleaned by hand and in an 
ultrasonic acetone bath for 15 minutes immediately 
before bonding

• Shim stacks were held in a fixture during bonding and 
pressure was applied only after the temperature ramped 
up to the desired value

• The hot press vacuum was maintained ~5 x 10-6 torr 
(0.0007 Pa)

• Annealing stacks at 1150°C, 12.7 MPa
• 250 bar exposures → 8 hours (Ni-12P interlayer)

• 1 bar exposures     → 4 hours (Ni-6P interlayer)

TLP Bonding 
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Oxidation Exposures (1 bar)

• Three zone furnace control for a flat 
temperature zone where samples are located

• Gas: 1 bar CO2 (99.999% purity) 

• Gas flow rate: 0.032 kg/h

• Temperature: 700 °C

• Duration: 2500 h (500 h increments)

• 14 h purging with CO2 before heating

• 6 h dwell at 350 °C to fully desorb oxygen from 
system 

• Oxygen monitored with downstream inline 
sensor

• Oxygen levels at 2-11 ppm

• Three replicates of  each sample

• Removal at 500, 1500, and 4000 h
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Oxidation Exposures (250 bar)

Flow 
outlet

Flow 
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Thermo-
couple
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• Flow controlled with a high pressure pump

• Pressure controlled with a back pressure 
regulator

• ASME rated to 800°C/277 bar

• Autoclave body made of  H230

• Three zone furnace control for a flat 
temperature zone where samples are located

• Gas: 250 bar CO2 (99.999% purity) 

• Gas flow rate: 0.14 kg/h

• Temperature: 720 °C

• Duration: 1500 h (500 h increments)

• 10 cycles Ar backfill purging before heating

• Three replicates of  each sample

• Removal at 500 and 1500 h

autoclave

3-zone
heater

water-
cooled 
cap
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Isothermally Solidified Zone (ISZ)

1 bar, 500 h
Surface

ISZ not fully 

homogenized during 

TLP bonding process 

(both alloys)

Doesn’t appear to 

affect overall oxidation

Surface

H230

H282

Ni-rich, Cr poor within ISZ

Carbide free 

within ISZ
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• XRD confirms oxide is predominantly Cr2O3, with small spinel amounts

• Most oxide growth in initial 500-1000 h, followed by steady oxide formation

• Slight pressure effect on mass gain

• H282 1 bar TLP mass gains unexpectedly high

Mass Change Results
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TLP Microstructure

1 bar, 4000 h 250 bar, 1500 h

ISZ

Off-
bond

These metallic structures generally not found at 1 bar or within the ISZ

Internal Al oxidation leads to more H282 oxidation 
(than H230)

1 bar, 4000 h 250 bar, 1500 h

H282

Similar oxide scales
Increased internal oxidation off-bond

H230
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H282 TLP Microstructure, 250 bar
ISZ Off-bond 

• Predominantly chromia oxide layer

• Gamma prime free, Cr/Ti/Al depleted sub-oxide region

• Off-bond regions not significantly different

• Oxide layers appear equivalent for both

• Exception is unreacted Ni-rich phase in lower oxide

• These areas also contain deeper gamma prime free zones and increased internal oxidation
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H230 TLP Microstructure
1 bar, 1500 h

ISZ not fully 
homogenized, but still no 

observable oxide 
difference between ISZ 
and off-bond regions

Carbides less likely to be 
found within ISZ

Alumina found along 
bond line deposited 
during TLP process
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• Linear regions of  plot indicate diffusion 
controlled kinetics

• All samples obey parabolic kinetics after 500-
1000 h oxide buildup phase

• Slope is parabolic rate constant (kp)

• More negative log kp = slower reaction

• Slight slowing of  continued oxidation with 
increased pressure

• H282 little difference between base and TLP

• H230 slightly decreased oxidation for TLP

• H282 more oxidation than H230

• Increased Al, Ti composition

Diffusion Controlled → Parabolic Kinetics

𝑘𝑝 =
∆𝑚2

2𝑡

*Arrhenius behavior used to adjust 720 °C log 

kp values to 700 °C equivalent for comparison
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• All H230/H282 TLP samples exhibited excellent corrosion resistance in high purity CO2 at 1 
bar/700 °C/4000 h and 250 bar/720 °C/1500 h

• Little difference in overall mass gain between base alloy and TLP

• 1 bar H282 TLP the exception

• TLP bonds did not fully homogenize, but overall oxidation protection was minimally affected

• Locally around the TLP bonds and bulk

• All samples obeyed parabolic kinetics after initial oxide buildup phase of  500-1000 h, indicating a 
diffusion controlled process

• Higher pressure increased the initial oxidation step, but then resulted in slight reduction of  
continued oxidation rates

• A few minor morphological/compositional differences at higher pressure

Summary
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Extra if needed

Essentially pure CO2

CO2 with combustion products 
including H2O and SO2


