

Phase-Field Modeling of Microstructure Evolution Coupled with Plasticity, Interfacial Sliding and Coherency Loss

Tianle Cheng^{a,b}, Youhai Wen^a, Jeffrey A. Hawk^a

^a National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA

^b Leidos Research Support Team, 1450 Queen Avenue SW, Albany, OR 97321, USA

Materials applied at high temperatures may undergo microstructure evolution coupled with plastic deformation and interfacial sliding. For example, grain boundary sliding (GBS) is an important mechanism of creep and creep damage in polycrystalline alloys. In addition, for precipitation hardened materials during aging (Ostwald ripening) when coherent precipitates grow bigger and bigger they gradually lose coherency to release elastic energy. The incoherent interfaces are considered to behave similar to sliding grain boundaries. In the literature, there yet lacks a modeling tool that is able to capture the coupled kinetic process of plasticity, interfacial sliding and microstructure evolution. By extending our recently published diffuse-interface crystal plasticity model (*Int. J. Plas.* 114, 106-125, 2019), a general crystal plasticity multi-phase-field framework (CP-MPF) is developed that can incorporate microstructure evolution, crystal plasticity, interfacial sliding and coherency loss under a unified thermodynamic potential. This CP-MPF framework, incorporated with multicomponent diffusion, is validated against several literature results. The simulation results demonstrate Ostwald ripening in different situations for precipitates with (a) no eigenstrain (where classical Lifshitz-Slyozov-Wagner theory applies); (b) eigenstrain and coherent interface (c) eigenstrain and incoherent interface (d) eigenstrain and spontaneous coherency loss.

APPROACH

Crystal Plasticity Multi-Phase-Field modeling (CP-MPF)

$$\text{Total free energy} \quad F = \int (f^{\text{chem}} + f^{\text{elas}} + f^{\text{int}} + f^{\text{pena}}) dV$$

$$\text{Elastic energy} \quad f^{\text{elas}}(\{\eta\}, \boldsymbol{\varepsilon}^p) \quad (\text{Khachaturyan, 1983})$$

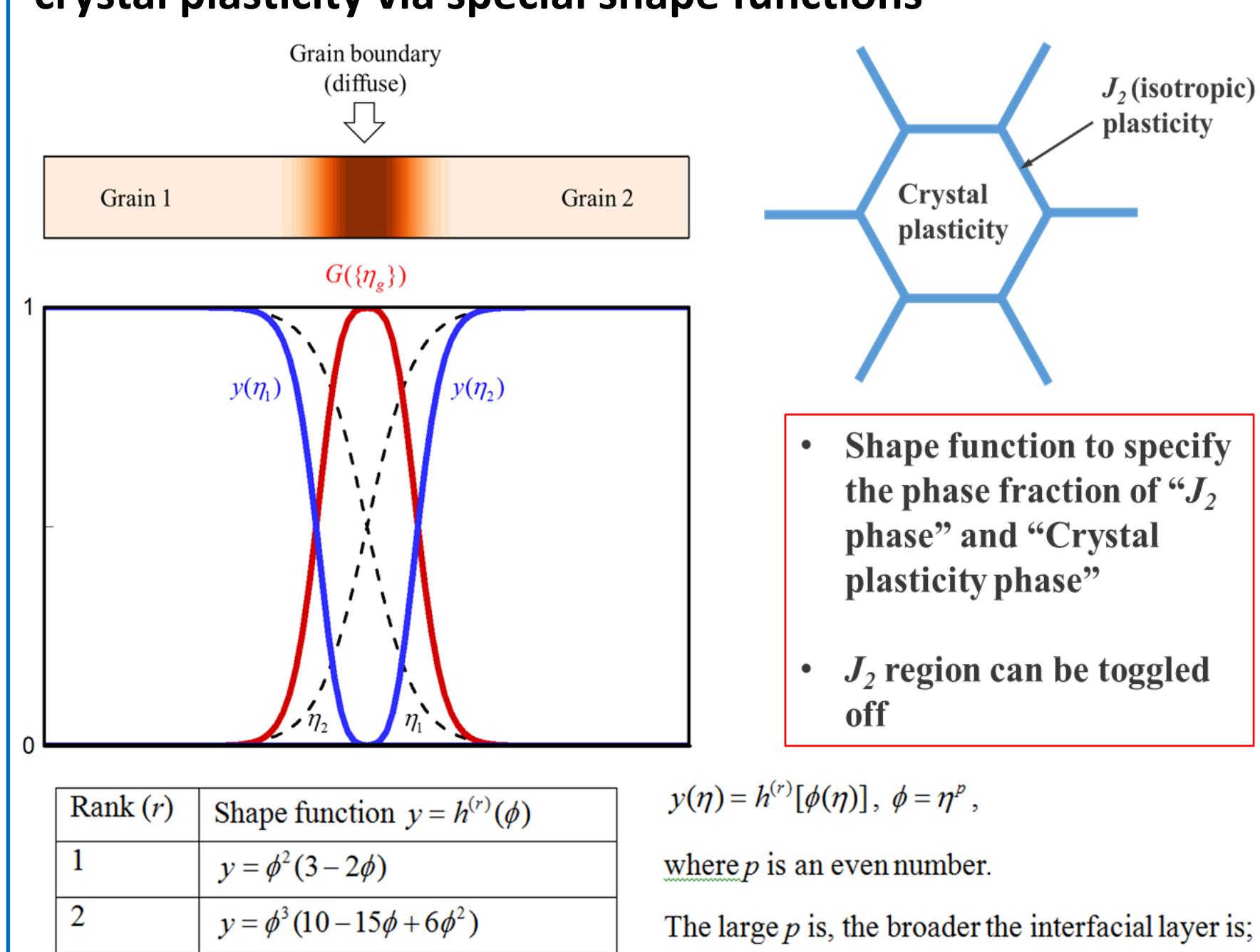
$$\text{Interfacial energy} \quad f^{\text{int}}(\{\eta\}, \boldsymbol{\varepsilon}^p) = m_0 \left[\sum_{\alpha=1,M} \sum_{i=1}^{N^\alpha} \left(\frac{\eta_{\alpha i}^4}{4} - \frac{\eta_{\alpha i}^2}{2} + \frac{1}{2} \sum_{\beta=1,M} \sum_{j=1, \beta \neq \alpha}^{N^\beta} \eta_{\alpha i}^2 \eta_{\beta j}^2 \right) + \frac{1}{4} \right] + \sum_{\alpha=1,M} \frac{N^\alpha}{2} |\nabla \eta_{\alpha i}|^2 + \psi(\boldsymbol{\varepsilon}^p) \quad (\text{Moelans N, } \textit{Acta Mater.} 2011)$$

$$\text{Chemical energy} \quad f^{\text{chem}}(\eta_p, \{x_k\}) = \sum_{\alpha=1,M} g_\alpha(\eta) G^\alpha(T, \{X_k\}) \quad g_\alpha(\eta) = \frac{\sum_{i=1}^{P_\alpha} \eta_{\alpha i}^2}{\sum_\beta \sum_{i=1}^{P_\beta} \eta_{\beta i}^2} \quad (\text{linked to CALPHAD database})$$

$$\text{KKS treatment} \quad \begin{cases} X_k = \sum_{\alpha=1}^M g_\alpha(\eta) X_k^\alpha \\ \frac{\partial G_m^\alpha}{\partial X_k^\alpha} = \frac{\partial G_m^\beta}{\partial X_k^\beta} = \dots = \frac{\partial G_m^M}{\partial X_k^M} \end{cases} \quad (\text{Kim S. et al., } \textit{Phys. Rev. E} 1999)$$

• Time-dependent Ginzburg-Landau (TDGL) equation

$$\frac{\partial \mathcal{E}_{ij}^p}{\partial t} = \frac{\partial}{\partial t} \left(\mathcal{E}_{ij}^{p(A)} + \sum_{g=1}^N \sum_{\alpha=1}^{S_g} \mathcal{E}_{ij}^{p(\alpha;g)} \right) = -L_{ijkl}^{(4)} \frac{\delta \mathcal{L}}{\delta \mathcal{E}_{kl}^{p(A)}} - \sum_g \sum_\alpha L_{ijkl}^{(g;g)} \frac{\delta \mathcal{L}}{\delta \mathcal{E}_{ij}^{p(\alpha;g)}}$$


$$\left\{ \begin{array}{l} L_{ijkl}^{(4)} = \frac{3\dot{\gamma}^0}{2J_2} \left(\frac{J_2}{\Lambda^*} \right)^{N^*} \delta_{ik} \delta_{jl} [1 - \sum_g y(\eta_g)] \\ L_{ijkl}^{(g;g)} = \dot{\gamma}^0 \frac{1}{\tau^{(g;g)}} \left| \frac{\tau^{(g;g)}}{s^{(g;g)}} \right|^{1/m} \text{sign}(\tau^{(g;g)}) \delta_{ik} \delta_{jl} y(\eta_g) \end{array} \right.$$

$$\left\{ \begin{array}{l} \frac{\partial \mathcal{E}_{ij}^p}{\partial t} = \frac{3}{2} \left(\frac{J_2(\mathbf{r})}{\Lambda^*} \right)^{N^*} \frac{\sigma_{ij}^p}{J_2(\mathbf{r})} \\ \frac{\partial \mathcal{E}_{ij}^p}{\partial t} = \dot{\gamma}^0 \left| \frac{\tau^{(g;g)}}{s^{(g;g)}} \right|^{1/m} \text{sign}(\tau^{(g;g)}) m_g^{(g)} \end{array} \right. \quad \begin{array}{l} \text{Odqvist's law } (J_2 \text{ plasticity}) \\ \text{Asaro & Needleman (crystal plasticity)} \end{array}$$

• Governing equation for microstructure evolution and multicomponent diffusion

$$\begin{cases} \frac{\partial \eta_i}{\partial t} = -K^\eta \frac{\delta L}{\delta \eta_i} & \text{TDGL} \\ \frac{\partial X_k}{\partial t} = \nabla \cdot M_k \left(\nabla \frac{\delta L}{\delta X_k} \right) & \text{Cahn-Hilliard} \end{cases}$$

Defining interfacial region as J_2 plasticity and bulk region as crystal plasticity via special shape functions

"There is substantial room at the phase-field interface."

Particularly, the thin-interface phase-field approach (Karma & Rappel 1996; Kim, Kim & Suzuki 1999; Steinbach & Apel 2006, Moelans 2011, etc.) allows for more space for defining interfacial properties distinct from the bulk.

ACKNOWLEDGEMENTS

This work was performed in support of the US Department of Energy's Fossil Energy Crosscutting Technology Research Program. The research was executed through NETL's IPT program coordinated by David E. Alman. Research performed by Leidos Research Support Team staff was conducted under the RSS contract 89243318CFE000003. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

ADDITIONAL REFERENCES

- [1] T.-L.Cheng, Y.-H. Wen, and J. A. Hawk, "Modeling Elasto-Viscoplasticity in a consistent phase field framework," *International Journal of Plasticity*, 96(2017), 242-263
- [2] T.-L.Cheng, Y.-H. Wen, and J. A. Hawk, "Diffuse interface approach to modeling crystal plasticity with accommodation of grain boundary sliding," *International Journal of Plasticity*, 114(2019), 106-125

DISCLAIMER

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

