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Materials applied at high temperatures may undergo microstructure evolution coupled with plastic deformation and interfacial sliding. For example, grain boundary sliding (GBS) is an
important mechanism of creep and creep damage in polycrystalline alloys. In addition, for precipitation hardened materials during aging (Ostwald ripening) when coherent precipitates grow
bigger and bigger they gradually lose coherency to release elastic energy. The incoherent interfaces are considered to behave similar to sliding grain boundaries. In the literature, there yet
lacks a modeling tool that is able to capture the coupled kinetic process of plasticity, interfacial sliding and microstructure evolution. By extending our recently published diffuse-interface
crystal plasticity model (Int. J. Plas. 114, 106-125, 2019), a general crystal plasticity multi-phase-field framework (CP-MPF) is developed that can incorporate microstructure evolution, crystal
plasticity, interfacial sliding and coherency loss under a unified thermodynamic potential. This CP-MPF framework, incorporated with multicomponent diffusion, is validated against several
literature results. The simulation results demonstrate Ostwald ripening in different situations for precipitates with (a) no eigenstrain (where classical Lifshitz-Slyozov-Wagner theory applies);
(b) eigenstrain and coherent interface (c) eigenstrain and incoherent interface (d) eigenstrain and spontaneous coherency loss.
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 Developed a mesoscale crystal-plasticity multi-phase-field (CP-MPF)
framework that can couple J, plasticity and crystal plasticity with
microstructure evolution and multicomponent diffusion [1,2].
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0 Crystal plasticity | GBS on 15 Crystal plasticity | GBS off * Grain boundary sliding (GBS) is modeled by assigning J, type viscosity to
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2 5= F(10-154+647) The large p is, the broader the interfacial layer is: [2]; the 3D results show quantitative difference from 2D simulations.
3 y=¢"(35-84¢+704" —204") the larger r 1s, the steeper the shape function is. * The coherency loss is modeled by variational approach in which the

interfacial eigenstrain is linked to interfacial energy; and such method can

“There is substantial room at the phase-field interface.” capture coherency loss as a continuous process.

Particularly, the thin-interface phase-field approach (Karma
& Rappel 1996; Kim, Kim & Suzuki 1999; Steinbach & Apel

* This modeling framework has demonstrated its capability to simulate
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J, plasticity | GBS on J, plasticity | GBS off complex kinetic processes of materials at high temperatures in which
2006, Mc?elans 2011, etc.) a.IIow.s ff’r more space for 3D Simulation of polycrystal under shear microstructure evolution is coupled with multicomponent diffusion,
defining interfacial properties distinct from the bulk. with/without GBS: Crystal plasticity vs J, plasticity plasticity, interfacial sliding and coherency loss.
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