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Applying High-Entropy Concept to TL [Echnoocy
Functional Materials RO

* Conventional alloying strategies used in the functional materials community - preceding the
initial high entropy papers in 2004 - have produced a vast literature of functional HEAs and
MPEAs, which may be missed by conventional literature searches. Many functional materials
have been studied that satisfy HEA definitions or are consistent with the broader concept of
MPEAs but they have not been identified with the HEA concept.

* Since conventional efforts to develop functional materials precede the high-entropy concept, and
since early work in the high-entropy field focused on structural properties, these two
communities appear to be rather disconnected.

* Two general alloying approaches including doping and iso-electronic (also called iso-structure)
substitution have been established to improve the balance of functional properties in ordered
compounds. Simply stated, the iso-electronic concept mixes two or more chemically or
electronically similar elements on a specific sub-lattice of an ordered crystal structure.

* In both doping and iso-electronic approaches, alloying elements are selected based on
considerations that include their influence on the electronic structure of the compound or the
charge carrier density, atomic size, and the ability to retain the crystal structure of the host
compound.

* Important features in both approaches include the concentrations of elemental substitutions, the
sub-lattice in the ordered structure targeted by the alloying additions, and the number of
candidate alloying elements that satisfy the alloying strategy.
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High-Entropy Magnetic Materials
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Projected Trend (HEA | Rationale for Projection
vs conventional

Saturation Magnetization (M,) RET7:l

Intrinsic Coercivity (;H.) Higher

Permeability (L) Lower
Electrical Resistivity Higher

Curie Temperature (T) May be
lower

o

Wear Resistance Higher

higher
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Lower content of ferromagnetic elements

Lattice structures will tend to pin domain
walls

Lower content of high permeability
elements
Greater lattice distortion; potentially

higher content of non-metallic elements

Less compact lattices tend to reduce T
smaller particle sizes tend to reduce T
changes in crystal structure and in alloying
elements can raise or lower T..

Cocktail effect promotes the formation of
various surface oxide films.

Severe lattice distortion tend to improve
hardness and strength, high temperature
softening resistance tend to facilitate high
wear resistance.
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To get high RC values, we
need:

= High |AS,,| values

» High ATz Values
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* Thermodynamic Maxwell
haons [23), = ()
relation: (g7 ) =37/,

* Under adiabatic conditions,
AS,, must be compensated
by an equal but opposite
change of the entropy
associated with the lattice,
resulting in a change in
temperature of the material,
and vice versa.

o ASy = [T (?3_1\’1/"1)1.1 dH
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There are mainly three ways to
calculate refrigerant capacity (RC).
The first one is commonly used.
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Composition
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Reported high entropy alloys for example DyErGdHoTb do show extraordinary refrigerant capacity (RC), and the RC
values increase with increasing the configurational entropy of the alloys but Gd seems to be critically important.

.S. DEPARTMENT OF




N: NATIONAL

=m [ENERGY

TL TECHNOLOGY
LABORATORY

Traditional MCE Materials
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Configurational entropy (AS, /k.)

VRN

=  Magnetic entropy change does NOT always increase with increasing AS, —T, relations of magnetic rare-earth
N . m
the configurational entropy of the alloys. element doped and transition metal-doped
" For LaFe,; Si; 5, substituting Pr for La increases AS,, but decreases LaFe,, Si, family compounds
—-X X

T, while substituting Co for Fe lowers AS,, but increases T..
* To balance AS,, and T, Substituting in both La and Fe sites are
required.
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Reported maximum
magnetic entropy change
for H=5T versus peak
temperature for different
families of magnetocaloric
materials

Magnetic refrigeration requires MCE materials with high refrigerant capacity (RC) to be operated at room temperature.

Maximum magnetic entropy change |AS,;| usually occurs around the magnetic critical temperature, e.g., Curie temperature.

Most reported MCE materials that have high | AS,;| tend to have too low T temperatures.

Many MCE materials that have high T temperatures tend to have low |AS,,| values.

It is important to design high-performance MCE materials that have high RC values with T around room temperature.
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Resistance Against Hydrogen ENERGY
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Summaries

* Doping and iso-electronic (also called iso-structure) substitution
have been established to improve the balance of traditional
functional properties in ordered compounds.

* Some unique feature of HEAs such as tremendously reduced
thermal conductivity makes them promising thermoelectric
materials.

* Applying high-entropy concept to known compounds that show
excellent functional properties can be a good starting point.

* Extending HEA concept to high-entropy materials and multi-
principal element materials can be a transformative approach to
design next-generation functional materials.




