Thermodynamics of
High-Entropy Alloys and
Alloy Design

Michael C. Gao'?, Zongrui Peil3, Mike
Widom?*, Jeffrey A. Hawk!, and David E.
Alman!

"National Energy Technology Laboratory;

’Leidos Research Supporting Team;
50RISE;

*Carnegie Mellon University

MS&T719 Materials Science & Technology,
Columbus, Ohio, USA.

September 29 - October 3, 2019

N: NATIONAL

e« [ENERGY

TL TECHNOLOGY
LABORATORY




N NATIONAL

Acknowledgments T [rectvoocy

LABORATORY

* This work was performed in support of the US Department of Energy’s Fossil Energy
Crosscutting Technology Research Program. The Research was executed through the
NETL Research and Innovation Centers Advanced Alloy Development Field Work
Proposal. Research performed by Leidos Research Support Team staff was conducted
under the RSS contract 89243318CFE000003. This research was supported in part by an
appointment to the U.S. Department of Energy (DOE) Postgraduate Research Program at
the National Energy Technology Laboratory (NETL) administered by the Oak Ridge
Institute for Science and Education.

* Collaborators and colleagues: Peter K. Liaw’s group (University of Tennessee), Chuan
Zhang & Fan Zhang (CompuTherm), Chao Jiang (Idaho National Lab), Paul D. Jablonski,
Martin Detrois, and Kyle Rozman (NETL), and many more.

Disclaimer : This work was partially funded by the Department of Energy, National Energy Technology Laboratory, an agency of the
United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government
nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

.:,\ U.S. DEPARTMENT OF 2

s ENERGY



High-Entropy Alloys and Four Core Effects
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Two definitions by Professor Jien-Wei Yeh:

*  One is based on composition. HEAs are preferentially defined as
alloys containing at least five principal elements, each with an
atomic percentage between 5% and 35%.

*  The other is based on configurational entropy. HEAs are defined
as alloys having configurational entropies at a random state larger
than 1.5R, no matter they are single phase or multi-phase at room
temperature.

Other names that are also used:

*  Multi-principal-component alloys
*  Compositionally complex alloys

*  Solid-solution alloys

*  Concentrated solid solution alloys

Four core effects:

. High entropy effect for thermodynamics

. Sluggish diffusion effect for kinetics

. Severe lattice distortion effect for structutre

o Cocktail effect for properties
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1. Enthalpy (AH, ) versus atomic size difference (d)
N
. 2 0
i:%:ij y 0= \/Zuxl’(l i /ijlxjrj) -15 < AH_. < +5 kJ/mol
2. Q-parameter
T AS . .
Q= ﬁ () > 1 for solid solution 7. Gibbs free energy
3. Valence electron concentration (VEC) n= EnnASiZZZ >1
N FCC if VEC>8 | AHM 7
VEC = Z x,VEC, |BCCifVEC<6.87 /
-1 FCC + BCC if VEC in between TAS
4. Electronegativity difference (Ay) ki (T)=1- AHmlx (1-x,)>AH, /AH ;.
mix
N N
Ay = \/Zi:lxi(li _ijlxj;{j)

5. ¢-parameter
N 8. Elastic strain energy
—RY xInx,~| > 4Hxx,|/T, $>20
=l i#] - —2

¢ = 5 N cl.cjrl.+rj—2r‘

6. Root mean square residual strain E) [ Ey= 4(—)2
J2i r
<g?>? <0.05
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Disordered HEA Formation Rules

Literature review
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Reevaluate Disordered HEA Formation
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1) Most empirical thermo-physical parameters except Ay are efficient in separating single-phase compositions from
amorphous compositions, but they fail to separate single-phase compositions from multiphase compositions.
2) Considerable overlapping of single-phase compositions with multiphase compositions requires the development of

new empirical parameters or methodologies that are stricter and more effective.
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M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom and J.A. Hawk, “Thermodynamics of Concentrated

Solid Solution Alloys,” Current Opinion of Solid State & Materials Science, 21 (2017) 238-251
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* Inspection from existing binary/ternary phase
diagrams Searching results

— Look for isomorphous or large solubility
* Prediction from CALPHAD modeling 1.Dy-Er-Gd-Ho-Lu-Sc-Sm-Tb-Tm-Y

— The key is the database 2.Mo-Nb-Ta-Ti-V-W
R ] oy o el e Ty | 3- Co-Os-Re-Ru
+ Ab initio molecular dynamics (AIMD) simulations Lo PR CA BT

— Avoid potent short-range order in the liquid 5.Co-Cr-Fe-Mn-Ni

. L . o 6. Mo-Nb-Re-Ta-Ti-V-W

* Experimental validations: casting and characterization

(a) 3200 : : : (b) 2500 ‘ ' : : (c) 2000 ' '
Liquid
2800 - -
2400 i 2000 -
& =] o
Rl i = 1500 2
£ 1600 - - 3 g
o HCP s a
£ 1200 - L g 1000 - £
= £ et
800 1 L k3
500
400 =
0 T T T \ 0 . . . " 0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
e Ru [at. %] B Cr MOLE_PERCENT RU Ru Cr Rh [at. %] Rh
-
EﬁPAERmREEFY M.C. Gao, Chapter 11, “Design of High Entropy Alloys,” High-Entropy Alloys: Fundamentals and Applications, 8

eds. Gao, Yeh, Liaw, and Zhang, Springer, 2016.



The machine-learning (ML)
scendario

Gaussian Process Classification
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Z. Pei, J. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, unpublished work, 2019 9
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ML prediction after learning half [T |eEcHnowoey
of 1252 multicomponent alloys
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Propose a new rule based on ML

Three key quantities: bulk modulus, molar volume and melting temperature
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*AG =AH(< B >,<V >) —ay <Tp> azScons, <> represents the

average of a quantity;
AGy
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oy:

* New rule: y = 1.
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Z. Pei, J. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, unpublished work, 2019 11



Application of the new rule
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Enthalpy AH_, [kJ/mol]
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- Enthalpy of Formation:
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Top: Enthalpy of formation vs atomic size
HCP

difference for reported single-phase HEAs
with FCC, BCC and HCP structures.

Bottom: Enthalpy of formation as a function

[ A

A 8.354 + 0.266
A A _ _A_A__A_A_ N _A__A_A___‘_____‘_ |
A k‘ K A A A A A A a _
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of atomic configurations of the quaternary
FCC CoCrFeNi, BCC MoNbTaW and HCP
CoOsReRu SQS.

Gao MC, Gao P, Hawk JA, Ouyang LZ, Alman DE, and Widom M,
“Computational Modeling of High-Entropy Alloys: Structures,

] Thermodynamics and Elasticity”, J. Mater. Res., 32 (2017) 3627-
] 3641.

M.C. Gao, C. Niu, C. Jiang, D.L. Irving, Chapter 10, “Applications of

] Special Quasi-random Structures to High-Entropy Alloys,” High-

] Entropy Alloys: Fundamentals and Applications, eds. Gao, Yeh, Liaw,
and Zhang, Springer, 2016.

SQS configurations

13



F (a) CoFeMnNi

3 E v s =] " Bm
—_ E \aadd 2
%= 2F i ""V'vl
k= ‘ o-.°.'.¢“
GE) 1% 1
5 ' &R S0
€ O0F 1
© ¥ 1
e r
=) ¥
© E
= -2 E s

-3§ ...I mm"®

Co Fe Mn Ni
4
(c) CoFeMnNiAl

3r B85
— Y o ¥ i
g 2 v’v"wvv:‘h _.
-— @ v
5 SRR
5 S0 9, O
E Lt v
°
S f
(o)}
©
= oof

? g
-3 F
Co Fe Mn Ni Al

(b) CoFeMnNiCr

v v . =}
’J:" 'W a By m
A

"7'!-..

A

Magnetic moment [u,]
(=)

=]
o O o
e . BRI® a4
) A‘A Pl
v A AA
1 v v = R Asa 1
A
.l
2 B =
|
3k
Co Fe Mn Ni Cr
Atom type

U.S. DEPARTMENT OF

%/ ENERGY

Zuo TT, Gao MC, Ouyang LZ, Yang X, Cheng YQ, Zhao WL, Xia SQ, Feng R, Chen SY, Liaw PK, Hawk JA, and Zhang Y,
“Structural and Magnetic Behaviors of CoFeMnNiX (X = Al, Ga, and Sn) High Entropy Alloys,” Acta Mater., 130 (2017) 10-18
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CoFeMnNi-(Cr,Al)

1 CoFeMM 1 ,,] CoFeMnNi
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2)
3)

Antiferromagnetism of Mn atoms in CoFeMnNi is
suppressed especially in BCC CoFeMnNiAl

Al changes the structure from FCC to BCC

Al changes the Fermi level and itinerant electron-spin
coupling
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Configurational and -
. . . . Vibrational (total)
Vibrational Entropies
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= Total vibrational entropy is large and increases with
increasing temperature.

= Vibrational entropy of mixing can be positive or negative.

* The magnitude of vibrational entropy is smaller than
configurational entropy.

= Electronic entropy is negligible.

CoCrFeNi (FCC)
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—— CoOsReRu (HCP)
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Total vs mixing
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Excess Entropy: CALPHAD Modeling
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i

Positive excess entropy in
FCC phase in Co-Cr-Fe-
Mn-N1 system, which may
result from positive
vibrational entropy of
mixing.

Negative excess entropy in
BCC phase in Mo-Nb-Ta-
T1-V-W system, which may
result from negative
vibrational entropy of
mixing.

Maximum entropy of
mixing may deviate from
equimolar compositions.
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CALPHAD: Entropy vs Enthalpy
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AIMD: Al, :CrFeMnTi at 2073 K
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Fe diffuses the fastest and Ti diffuses
the slowest.

Diffusivity follows the Arrhenius
behavior.
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Enthalpy of
Formation: L2,
and C14

Al-Cr-Fe-Mn-Ti system:
DFT calculations

L2,: Substitution in

AlFe,Ti L2, increases
the enthalpy

C14: (AlFe),Ti has the
lowest enthalpy; Al,Ti

has lower enthalpy than
Fe,Ti and Mn,Ti
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Al-Cr-Fe-Mn-Ti: Phase Compositions
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Long range order parameter

For alloy 7, the situation is similar except that
the order-disorder transition takes place much
later, ~2270K. The occupation of Fe, Al, Ti do
not change until the temperature arrives at
1800K; so the LRO parameters of Cr and Mn
changes in opposite directions.
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The renormalized SRO parameters for alloy7,
which is similar to alloy 1 in frends. But the
maximum changes take place at different
temperatures due to the different
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Perspectives of Alloy Design for Light-
Weight HEAs
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the CALPHAD, AIMD, and
DFT methods, and design
processing and heat-
treatment routes to optimize
< the microstructure.

4 Predict phase stability using\

/
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* Formation of single-phase high-entropy alloys

— Empirical rules cannot separate single-phase solid solution from multi-phase compositions
effectively.

— CALPHAD method is a much better tool in predicting HEA phase stability.
— Machine learning (ML) and ML-inspired new empirical rule

* Entropy sources: DFT, MC/MD, and CALPHAD modeling

— FCC CoCrFeNi: Positive vibrational entropy of mixing = positive excess entropy from
CALPHAD.

— BCC MoNbTaW: Negative vibrational entropy of mixing = negative excess entropy from
CALPHAD.

— Electronic entropy of mixing is negligible for all three alloys studied.
— Configurational entropy >> vibrational entropy of mixing >> electronic entropy of mixing.
— Maximum entropy of mixing may deviate from equimolar compositions.
* Light-weight high-entropy alloys
— DFT calculations were carried out to predict the enthalpy for substitution in AlFe,Ti L2, and
(Fe,Mn),Ti C14 Laves phases in Al-Cr-Fe-Mn-T1 system, and to predict density, enthalpy of

formation and elastic properties of various equimolar light-weight HEAs in Al-Cr-Fe-Mn-Ti-V
system with the BCC structure.

— Metropolis Monte Carlo simulations predicted short-range order and long-range order transition
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