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High-Entropy Alloys and Four Core Effects
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Two definitions by Professor Jien-Wei Yeh: 

• One is based on composition. HEAs are preferentially defined as 

alloys containing at least five principal elements, each with an 

atomic percentage between 5% and 35%. 

• The other is based on configurational entropy. HEAs are defined 

as alloys having configurational entropies at a random state larger 

than 1.5R, no matter they are single phase or multi-phase at room 

temperature. 

Other names that are also used: 

• Multi-principal-component alloys

• Compositionally complex alloys

• Solid-solution alloys 

• Concentrated solid solution alloys

Four core effects:

• High entropy effect for thermodynamics

• Sluggish diffusion effect for kinetics

• Severe lattice distortion effect for structure

• Cocktail effect for properties
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Reported Single-phase HEA Compositions

FCC Refs.

CoCrFeNi 1

CoFeMnNi 2,3

CoCrMnNi 3

CoFeNiPd 4

CoCrFeMnNi 5

CoCrFeNiPd 6

Al20Li20Mg10Sc20Ti30 7

BCC Refs.

AlNbTiV 8

HfNbTiZr 9

MoNbTaW 10,11

NbTaTiV 12

NbTiVZr 13

AlCrMoTiW 14

AlNbTaTiV 12

HfNbTaTiZr 15

HfNbTiVZr 16

MoNbTaVW 10,11

MoNbTaTiV 17

MoNbTiVZr 18

NbReTaTiV 17

MoNbReTaW 17

CrMoNbTaVW 19

HfNbTaTiVZr 20

MoNbTaTiVW 21

MoNbReTaVW 17

MoNbReTaTiVW 17

HCP Refs.

CoFeReRu 22

MoPdRhRu 23

DyGdHoTbY 24

DyGdLuTbTm 24

DyGdLuTbY 25

Al20Li20Mg10Sc20Ti30 7

1M. S. Lucas et al., Appl. Phys. Lett. 100, 251907 (2012).
2M. C. Gao and D. E. Alman, Entropy 15, 4504 (2013).
3Z. Wu et al.  Intermetallics 46, 131 (2014).
4R. Kozak et al. Z. Kristallogr. 230, 55 (2014).
5B. Cantor et al. Mat. Sci. Eng. A 375–377, 213 (2004).
6M. S. Lucas et al. J. Appl. Phys. 109 (2011).
7K. M. Youssefa et al. Mater. Res. Lett. 3, 95 (2015).
8N. D. Stepanov et al. Materials Letters 142, 153 (2015).
9Y. D. Wu et al. Materials Letters 130, 277 (2014).
10O. N. Senkov et al. Intermetallics 18, 1758 (2010).
11O. N. Senkov et al. Intermetallics 19, 698 (2011).
12X. Yang et al. Iumrs Int.  Conf.  2011 36, 292 (2012).
13O. N. Senkov et al. Mat. Sci. Eng. A 565, 51 (2013).
14B. Gorr et al. J. Alloys Compd. 624, 270 (2015).
15O. N. Senkov et al. J. Alloys Compd. 509, 6043 (2011).
16M. C. Troparevsky et al. Phys. Rev. X 5, 011041 (2015).
17H. Bei et al. US20130108502 A1.
18Y. Zhang et al. JOM 64, 830 (2012).
19B. Zhang et al. CALPHAD 51, 193 (2015).
20M. C. Gao et al. Metall. Mater. Trans. A (2015).
21B. Zhang et al. Mat. Sci. Tech. 31, 1207 (2015).
22M. C. Gao et al. Metall. Mater. Trans. A (2015).
23J. O. A. Paschoal et al.  Z. Metallkd. 74, 652 (1983).
24A. Takeuchi et al. JOM 66, 1984 (2014).
25M. Feuerbacher et al. Mater. Res. Lett. 3, 1 (2014).
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Disordered HEA Formation Rules

d ≤ 5 or 6.6%
-15 ≤ Hmix≤ +5 kJ/mol 

1. Enthalpy (Hmix) versus atomic size difference (d)

2. W−parameter

3. Valence electron concentration (VEC)

4. Electronegativity difference (c)

5. -parameter

6. Root mean square residual strain 

W > 1 for solid solution 

FCC  if  VEC > 8
BCC if VEC < 6.87 
FCC + BCC if VEC in between
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8. Elastic strain energy



6

Disordered HEA Formation Rules
Literature review
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Reevaluate Disordered HEA Formation Rules

M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom and J.A. Hawk, “Thermodynamics of Concentrated 
Solid Solution Alloys,” Current Opinion of Solid State & Materials Science, 21 (2017) 238-251

1) Most empirical thermo-physical parameters except ∆𝜒 are efficient in separating single-phase compositions from 
amorphous compositions, but they fail to separate single-phase compositions from multiphase compositions.

2) Considerable overlapping of single-phase compositions with multiphase compositions requires the development of 
new empirical parameters or methodologies that are stricter and more effective.
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Our Searching Strategies

• Inspection from existing binary/ternary phase 

diagrams
− Look for isomorphous or large solubility

• Prediction from CALPHAD modeling
− The key is the database

• Phase stability from density functional theory (DFT)

• Ab initio molecular dynamics (AIMD) simulations
− Avoid potent short-range order in the liquid

• Experimental validations: casting and characterization

1

2 2 3

Searching results

1.Dy-Er-Gd-Ho-Lu-Sc-Sm-Tb-Tm-Y 

2.Mo-Nb-Ta-Ti-V-W

3.Co-Os-Re-Ru

4.Ba-Ca-Eu-Sr-Yb

5.Co-Cr-Fe-Mn-Ni

6.Mo-Nb-Re-Ta-Ti-V-W

M.C. Gao, Chapter 11, “Design of High Entropy Alloys,” High-Entropy Alloys: Fundamentals and Applications, 
eds. Gao, Yeh, Liaw, and Zhang, Springer, 2016.
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The machine-learning (ML) 
scenario
Gaussian Process Classification

Z. Pei, J. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, unpublished work, 2019
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ML prediction after learning half 
of 1252 multicomponent alloys

93% accuracy

Z. Pei, J. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, unpublished work, 2019
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Propose a new rule based on ML
Three key quantities: bulk modulus, molar volume and melting temperature

• ∆𝑮 = ∆𝑯 < 𝑩 >,< 𝑽 > − 𝜶𝟏 < 𝑻𝒎> 𝜶𝟐𝑺𝒄𝒐𝒏𝒇,  <> represents the 
average of  a quantity;

• 𝜸 = ൞

Δ𝑮𝑵

min Δ 𝑮𝟐
, if min Δ 𝑮𝟐 < 𝟎;

−
Δ𝑮𝑵

min Δ 𝑮𝟐
, if Δ 𝑮𝑵 < 𝟎 and min Δ 𝑮𝟐 > 𝟎.

• New rule: 𝜸 ≥ 𝟏.

73% (81% jointly with delta parameter)

𝜶 = 𝟎. 𝟐

64% (75% jointly with delta parameter)

𝜶
= 𝟎. 𝟐𝟓

Z. Pei, J. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, unpublished work, 2019
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Application of the new rule

Z. Pei, J. Yin, J.A. Hawk, D.E. Alman, M.C. Gao, unpublished work, 2019
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Enthalpy of Formation: 
DFT at T = 0 K

Gao MC , Gao P, Hawk JA, Ouyang LZ, Alman DE, and Widom M, 
“Computational Modeling of High-Entropy Alloys: Structures, 
Thermodynamics and Elasticity”, J. Mater. Res., 32 (2017) 3627-
3641.

M.C. Gao, C. Niu, C. Jiang, D.L. Irving, Chapter 10, “Applications of 
Special Quasi-random Structures to High-Entropy Alloys,” High-
Entropy Alloys: Fundamentals and Applications, eds. Gao, Yeh, Liaw, 
and Zhang, Springer, 2016.

FCC

BCC

HCP
Top: Enthalpy of formation vs atomic size 

difference for reported single-phase HEAs 

with FCC, BCC and HCP structures.

Bottom: Enthalpy of formation as a function 

of atomic configurations of the quaternary 

FCC CoCrFeNi, BCC MoNbTaW and HCP 

CoOsReRu SQS. 
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Magnetic 
Properties: 
CoFeMnNi-(Cr,Al)

1) Antiferromagnetism of Mn atoms in CoFeMnNi is 
suppressed especially in BCC CoFeMnNiAl

2) Al changes the structure from FCC to BCC
3) Al changes the Fermi level and itinerant electron-spin 

coupling
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CoFeMnNiCr

CoFeMnNi

CoFeMnNiAl

CoFeMnNiCr

Zuo TT, Gao MC, Ouyang LZ, Yang X, Cheng YQ, Zhao WL, Xia SQ, Feng R, Chen SY, Liaw PK, Hawk JA, and Zhang Y, 
“Structural and Magnetic Behaviors of CoFeMnNiX (X = Al, Ga, and Sn) High Entropy Alloys,” Acta Mater., 130 (2017) 10-18
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Configurational and 
Vibrational Entropies

▪ Total vibrational entropy is large and increases with 
increasing temperature.

▪ Vibrational entropy of mixing can be positive or negative.
▪ The magnitude of vibrational entropy is smaller than 

configurational entropy. 
▪ Electronic entropy is negligible.

Vibrational (total)

Configurational

Vibrational (mixing)

M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom and J.A. Hawk, 
“Thermodynamics of Concentrated Solid Solution Alloys,” Current Opinion of 
Solid State & Materials Science, 21 (2017) 238-251
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Total Entropy Properties
Total vs mixing

M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom and J.A. Hawk, “Thermodynamics of Concentrated 
Solid Solution Alloys,” Current Opinion of Solid State & Materials Science, 21 (2017) 238-251

Total entropy Total entropy of mixing
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Excess Entropy: CALPHAD Modeling

• Positive excess entropy in 

FCC phase in Co-Cr-Fe-

Mn-Ni system, which may 

result from positive 

vibrational entropy of  

mixing.

• Negative excess entropy in 

BCC phase in Mo-Nb-Ta-

Ti-V-W system, which may 

result from negative 

vibrational entropy of  

mixing.

• Maximum entropy of  

mixing may deviate from 

equimolar compositions.

+=
i

ii

totalex xxRSS ln

1000 C

1000 C

Gao MC , Gao P, Hawk JA, Ouyang LZ, Alman DE, and Widom M, “Computational Modeling of High-Entropy 
Alloys: Structures, Thermodynamics and Elasticity”, J. Mater. Res., 32 (2017) 3627-3641.

FCC

BCC
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CALPHAD: Entropy vs Enthalpy

Gao et al., “Design of Refractory High-Entropy Alloys”, JOM, 67 (2015) 2653.  Rui et al., “Design of Light-Weight 
High-Entropy Alloys,” Entropy 18 (2016) 333

1000 C

1000 C
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Al1.25CoCrCuFeMnNi: AIMD 

L.J. Santodonato, Y. Zhang, M. Feygenson, C. Parish, M.C. Gao, J.K.R. Weber, J.C. Neuefeind, Z. Tang, and P.K. 
Liaw, Nature Communication 6 (2015) 5964.

▪ Cu segregation exists 
in liquid.

▪ Cu has the fastest 
diffusion constant.

▪ Formation of Cu-rich 
FCC phase during 
solidification. 
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AIMD: Al1.5CrFeMnTi at 2073 K

Feng R, Gao MC, Zhang C, Poplawsky JD, Guo W, Zhang F, Hawk JA, Neuefeind JC, Ren Y, and Liaw PK, “Phase Stability 

and Transformation in a Light-weight High-entropy Alloy,” Acta Mater. 146 (2018) 280-293

▪ Preferred correlations are AlFe, AlMn, AlTi, and 

FeTi pairs. 

▪ Unfavorable correlations are FeFe, AlAl and TiTi

pairs. 

Fe Mn Cr Al Ti
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▪ Fe diffuses the fastest and Ti diffuses 

the slowest. 

▪ Diffusivity follows the Arrhenius 

behavior.  
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Enthalpy and Bulk Modulus
DFT calculations: Al-Cr-Fe-Mn-Ti-V system
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DFT predicts: strong attractive interaction and very 

negative enthalpy of formation and significantly larger 

bulk modulus than Ti-6Al-4V. 

Gao MC, Hawk JA, and Alman DE, "High performance light-weight 

high-entropy alloys", US Non-provisional Patent Application No. 

62/108566, filed on June 9, 2015
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Enthalpy of 
Formation: L21

and C14
Al-Cr-Fe-Mn-Ti system: 
DFT calculations

Cr, Fe or Mn contents [mol %]
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Feng R, Gao MC, Zhang C, Poplawsky JD, Guo W, Zhang F, Hawk JA, Neuefeind JC, Ren Y, and Liaw PK, “Phase Stability 

and Transformation in a Light-weight High-entropy Alloy,” Acta Mater. 146 (2018) 280-293

L21: Substitution in 

AlFe2Ti L21 increases 

the enthalpy

C14: (AlFe)2Ti has the 

lowest enthalpy; Al2Ti 

has lower enthalpy than 

Fe2Ti and Mn2Ti

L21
C14
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Al-Cr-Fe-Mn-Ti: Phase Compositions

Feng R, Gao MC, Zhang C, Poplawsky JD, Guo W, Zhang F, Hawk JA, Neuefeind JC, Ren Y, and Liaw PK, “Phase Stability 

and Transformation in a Light-weight High-entropy Alloy,” Acta Mater. 146 (2018) 280-293

• BCC is rich in 

Cr.

• L21 is rich in Fe 

and Ti.

• C14 is rich in Ti 

and Fe.

• Agreement is 

acceptable 

between 

CALPHAD and 

experiments.
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Precipitation of 
L21 Phase in 
Al1.5CrFeMnTi

The size, shape, 

coherency, and spatial 

distribution of the L21

precipitates can be tuned 

through selected 

annealing treatments.

Feng R, Gao MC, Zhang C, Poplawsky JD, Guo W, Zhang F, Hawk JA, Neuefeind JC, Ren Y, and Liaw PK, “Phase Stability 

and Transformation in a Light-weight High-entropy Alloy,” Acta Mater. 146 (2018) 280-293
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For alloy 7, the situation is similar except that 
the order-disorder transition takes place much 
later, ~2270K. The occupation of Fe, Al, Ti do 
not change until the temperature arrives at 
1800K; so the LRO parameters of Cr and Mn 
changes in opposite directions.

Alloy 7
2270K

Alloy 1

1880K

Z. Pei, J.A. Hawk, M.C. Gao, unpublished work, 2019
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The renormalized SRO parameters for alloy7, 
which is similar to alloy 1 in trends. But the 
maximum changes take place at different 
temperatures due to the different 
concentrations.

Alloy 7 Alloy 1

Z. Pei, J.A. Hawk, M.C. Gao, unpublished work, 2019



27

Perspectives of Alloy Design for Light-
Weight HEAs

Coordinate the ratios of dominant 
low-density elements (Al, Mg, Ti).

Use the high-entropy concept to 
adjust the bulk composition so as 

to maximize the role of 
strengthening, ductilizing, anti-

oxidation, etc.

Predict phase stability using 
the CALPHAD, AIMD, and 
DFT methods, and design 

processing and heat-
treatment routes to optimize 

the microstructure. 

Fabricate the down-selected 
alloys and characterize their 

microstructures and 
mechanical (and other) 

properties.

Refine alloy design by 
repeating the above 

procedures.

Feng R, Gao MC, Lee C, Mathes CM, Zuo T, Chen S, Hawk JA, Zhang Y, Liaw PK, Design of Light-
Weight High-Entropy Alloys, Entropy 18(9) (2016) 333.
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Summaries
• Formation of single-phase high-entropy alloys

− Empirical rules cannot separate single-phase solid solution from multi-phase compositions 
effectively. 

− CALPHAD method is a much better tool in predicting HEA phase stability.

− Machine learning (ML) and ML-inspired new empirical rule.

• Entropy sources: DFT, MC/MD, and CALPHAD modeling

− FCC CoCrFeNi: Positive vibrational entropy of mixing ≈ positive excess entropy from 
CALPHAD.

− BCC MoNbTaW: Negative vibrational entropy of mixing ≈  negative excess entropy from 
CALPHAD.

− Electronic entropy of mixing is negligible for all three alloys studied. 

− Configurational entropy >> vibrational entropy of mixing >> electronic entropy of mixing.

− Maximum entropy of mixing may deviate from equimolar compositions.

• Light-weight high-entropy alloys

− DFT calculations were carried out to predict the enthalpy for substitution in AlFe2Ti L21 and 
(Fe,Mn)2Ti C14 Laves phases in Al-Cr-Fe-Mn-Ti system, and to predict density, enthalpy of 
formation and elastic properties of various equimolar light-weight HEAs in Al-Cr-Fe-Mn-Ti-V 
system with the BCC structure.

− Metropolis Monte Carlo simulations predicted short-range order and long-range order transition.


