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High-Entropy Alloys and Four Core Effects

AGmix =AH mix _TASmix

N
conf _ conf __ _ _
ASmiX max =RInN ASm'X ideal RZXI In XI
ASinix = AS,, “’”f +ASe. + ﬁsph + as‘”"‘“g

Two definitions by Professor Jien-Wei Yeh:

*  One is based on composition. HEAs are preferentially defined as
alloys containing at least five principal elements, each with an
atomic percentage between 5% and 35%.

*  The other is based on configurational entropy. HEAs are defined
as alloys having configurational entropies at a random state larger
than 1.5R, no matter they are single phase or multi-phase at room

temperature.

Other names that are also used:

High entropy

N NATIONAL

TL TECHNOLOGY
LABORATORY
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Relationships

*  Multi-principal-component alloys effect —— T T T= -
.. hermodynamics
*  Compositionally complex alloys Sluggish .~ 7 Loy :
*  Solid-solution alloys diffusion effect \*_-Geformation theory /l" 9
*  Concentrated solid solution alloys A -
Severe-lattice- - —_——

Four core effects:

. High entropy effect for thermodynamics

C Sluggish diffusion effect for kinetics

. Severe lattice distortion effect for structutre

O Cocktail effect for properties
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1. Enthalpy (AH, ;) versus atomic size difference (d)
N
. 2 0
AH . =4 AH My y B N NG ) 0<50r6.6%
mix izlz,i;j e 5_\/Zilx'(1 X'/ijlxlrl -15 < AH_. < +5 kJ/mol

2. Q-parameter

_ TmASmix

= |AH | () > 1 for solid solution 7. Gibbs free energy
mix
f
3. Valence electron concentration (VEC) n= TannASiceal >1
N FCC if VEC>8 | AHi}M | 1
VEC = Z xVEC, | BCCifVEC < 6.87
i—1 FCC + BCCif VEC in between TAS. .
4. Electronegativity difference (Ay) chr (T) =1-—T=(1~x,) > AHy [ AH 5,
mix
N N
AZ:\/Zi:lxi (Zi ‘ijllej)

5. ¢-parameter
N 8. Elastic strain energy
A iz 12
¢= S, | N cicj‘ri+rj—2r‘
6. Root mean square residual strain E,/E, = Z 4(?)2
j>i
< g2 512 <0.05
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Disordered HEA Formation Rules

Literature review
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Reevaluate Disordered HEA Formation
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Most empirical thermo-physical parameters except Ay are efficient in separating single-phase compositions from
amorphous compositions, but they fail to separate single-phase compositions from multiphase compositions.
Considerable overlapping of single-phase compositions with multiphase compositions requires the development of

new empirical parameters or methodologies that are stricter and more effective.
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M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom and J.A. Hawk, “Thermodynamics of Concentrated

Solid Solution Alloys,” Current Opinion of Solid State & Materials Science, 21 (2017) 238-251
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* Inspection from existing binary/ternary phase
diagrams Searching results
— Look for isomorphous or large solubility
* Prediction from CALPHAD modeling 1.Dy-Er-Gd-Ho-Lu-Sc-Sm-Tb-Tm-Y
— The key is the database 2.Mo-Nb-Ta-Ti-V-W
o Phase stability from density functional theoty (DFT) || > ©0-Os-Re-Ru
. ; : . 4.Ba-Ca-Eu-Sr-Yb
* Ab initio molecular dynamics (AIMD) simulations :
— Avoid potent short-range order in the liquid . Co-Cr-Fe-Mn-N!
) . ) o 6.Mo-Nb-Re-Ta-Ti-V-W
* Experimental validations: casting and characterization
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EﬁETﬁEFY M.C. Gao, Chapter 11, “Design of High Entropy Alloys,” High-Entropy Alloys: Fundamentals and Applications, 8

eds. Gao, Yeh, Liaw, and Zhang, Springer, 2016.
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The machine-learning (ML)
scenario

Gaussian Process Classification
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ML prediction after learning half || [|Esinowoey
of 1252 multicomponent alloys
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Propose a new rule based on ML

Three key quantities: bulk modulus, molar volume and melting temperature
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*AG =AH(< B >,<V >) —ay <Typ> ayScons, <> trepresents the

average of a quantity;
AGy
v min(A G;)’
V= AGy
B min(A G;) '’
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Group  newruley > 1 Calphad consistency
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of atomic configurations of the quaternary
FCC CoCrFeNi, BCC MoNbTaW and HCP
CoOsReRu SQS.

Gao MC, Gao P. Hawk JA, Ouyang LZ, Alman DE, and Widom M,
“Computational Modeling of High-Entropy Alloys: Structures,
Thermodynamics and Elasticity”, J. Mater. Res., 32 (2017) 3627-

] 3641.

M.C. Gao, C. Niu, C. Jiang, D.L. Irving, Chapter 10, “Applications of
Special Quasi-random Structures to High-Entropy Alloys,” High-
Entropy Alloys: Fundamentals and Applications, eds. Gao, Yeh, Liaw,

SQS configurations
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Configurational and

S [J/K/mol]

Vibrational Entropies
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Total vibrational entropy is large and increases with
increasing temperature.

Vibrational entropy of mixing can be positive or negative.
The magnitude of vibrational entropy is smaller than
configurational entropy.

Electronic entropy is negligible.

M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom and J.A. Hawk,

EN ERGY “Thermodynamics of Concentrated Solid Solution Alloys,” Current Opinion of

Solid State & Materials Science, 21 (2017) 238-251
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Total vs mixing
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Excess Entropy: CALPHAD Modeling
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Positive excess entropy in
FCC phase in Co-Cr-Fe-
Mn-Ni system, which may
result from positive
vibrational entropy of
mixing.

Negative excess entropy in
BCC phase in Mo-Nb-Ta-
T1-V-W system, which may
result from negative
vibrational entropy of
mixing,

Maximum entropy of
mixing may deviate from
equimolar compositions.

Gao MC, Gao P, Hawk JA, Ouyang LZ, Alman DE, and Widom M, “Computational Modeling of High-Entropy 1

Alloys: Structures, Thermodynamics and Elasticity”, J. Mater. Res., 32 (2017) 3627-3641.




CALPHAD:

Entropy vs Enthalpy
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Al, ,;CoCrCuFeMnNi: AIMD
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AIMD: Al, :CrFeMnTi at 2073 K
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Fe diffuses the fastest and Ti diffuses
the slowest.

Diffusivity follows the Arrhenius
behavior.

Feng R, Gao MC, Zhang C, Poplawsky JD, Guo W, Zhang F, Hawk JA, Neuefeind JC, Ren Y, and Liaw PK, “Phase Stability 20
and Transformation in a Light-weight High-entropy Alloy,” Acta Mater. 146 (2018) 280-293
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Al-Cr-Fe-Mn-Ti: Phase Compositions
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Misfit Dislocations
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Precipitation of
L2, Phase in
Al, .CrFeMnTi

The size, shape,
coherency, and spatial
distribution of the L2,
precipitates can be tuned
through selected
annealing treatments.

Feng R, Gao MC, Zhang C, Poplawsky JD, Guo W, Zhang F, Hawk JA, Neuefeind JC, Ren Y, and Liaw PK, “Phase Stability

and Transformation in a Light-weight High-entropy Alloy, ” Acta Mater. 146 (2018) 280-293




Long range order parameter

For alloy 7, the situation is similar except that = [NATIONAL

the order-disorder transition takes place much
later, ~2270K. The occupation of Fe, Al, Ti do
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not change until the temperature arrives at
1800K; so the LRO parameters of Cr and Mn
changes in opposite directions.
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Renormalized SRO parameter

The renormalized SRO parameters for alloy?7, N=|NATNAL

which is similar to alloy 1 in trends. But the
maximum changes take place at different
temperatures due to the different
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concentrations.
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Perspectives of Alloy Design for Light-
Weight HEAS
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the CALPHAD, AIMD, and
DFT methods, and design
processing and heat-
treatment routes to optimize
0 the microstructure.

C Predict phase stability using\

/

2/ ENERGY Weight High-Entropy Alloys, Entropy 18(9) (2016) 333.
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» Formation of single-phase high-entropy alloys

— Empirical rules cannot separate single-phase solid solution from multi-phase compositions
effectively.

— CALPHAD method is a much better tool in predicting HEA phase stability.
— Machine learning (ML) and ML-inspired new empirical rule.

« Entropy sources: DFT, MC/MD, and CALPHAD modeling

— FCC CoCrFeNi: Positive vibrational entropy of mixing = positive excess entropy from
CALPHAD.

— BCC MoNbTaW: Negative vibrational entropy of mixing ~ negative excess entropy from
CALPHAD.

— Electronic entropy of mixing is negligible for all three alloys studied.
— Configurational entropy >> vibrational entropy of mixing >> electronic entropy of mixing.
— Maximum entropy of mixing may deviate from equimolar compositions.
* Light-weight high-entropy alloys
— DFT calculations were carried out to predict the enthalpy for substitution in AlFe,Ti L2, and
(Fe,Mn),Ti C14 Laves phases in Al-Cr-Fe-Mn-Ti system, and to predict density, enthalpy of

formation and elastic properties of various equimolar light-weight HEAs in Al-Cr-Fe-Mn-Ti-V
system with the BCC structure.

— Metropolis Monte Carlo simulations predicted short-range order and long-range order transition.
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