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Green Chemistry

Cutting-edge research for a greener sustainable future

Sustainable method to produce ultraclean liquid
fuels and chemicals from coal, natural gas and
biomass, reducing dependence on petroleum.

wwwirsc.org/greenchem Volume 13 | Number 8 | August2011 | Pages1925-2211

The FT processes and catalysts are especially
suitable for modular catalysis systems with
enhanced mass and heat transfer properties.

FT catalysis is one of the most complex catalytic
processes and understanding the reaction
mechanism and catalyst property is also of
trtemendous scientific and practical value.

e Figure 3. Multi-tube ~137 cm FT reactor (19 x 10cm D x 6.5m L);
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Global Olefins Production from Steam Crackers
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available method* to synthesize industrially important under construction near Pittsburgh, PA

light olefins (C,™ — C, ) directly from syngas, which can
improve sustainability and reduce the dependence on

petroleum for these chemicals.

*There are hybrid processes using composite catalysts, e.g., the OX-ZEO he chemical ind
process reported in Science 351, 1065 (2016) as well as recently developed the chemical industry.
Co based catalyst Nature 538, 84 (2016).

Steam cracking is one of the most
energy-consuming processes in
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— Selectivity
* Anderson-Schulz-Flory product 100
distribution 90
* Undesired products such as methane _ 80 | Fe-MnK /cOOX-ZEO
and CO, s =
AU 4 Ru/Al,0, _
. Activity S _— b Co,C nanoprism
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— Advantages
* Inexpensive and abundant
* High olefins selectivity
* High reverse water gas shift reaction activity
* One of the commercial FT catalysts
— Disadvantages
* Coking

* Formation of complex, sometimes inactive, phase
during reaction
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Selection of catalyst support materials

850 °C, 1 hr

(HOC(COOK)(CH,COOK), - H,0

potassium citrate

(NH,);Fe(CH,0,), +
ammonium iron citrate
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Carbon support materials have been used for
FT synthesis catalysts

Chemically inert — weak interaction
with iron species (enhanced
reducibility of iron species while
preserving the integrity of catalyst
particles under reaction conditions)

Easily tailored to have high surface area
Tunable pore structure
Excellent thermal conductivity

Potassium precursor
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MFEC
N, ~—
H, — >
2™ [\Temp. probe
MS-13X column & TCD: CO, H,, N,, CH,
Stainless steel Hayesep Q & FID: CO,, C,-Cq
reactor Methanizer for CO detection in ppm levels
o
oot Catalysts
4 Quartz wool
~ Agilent GC 7890A
L — .
Filter
Catalysts pretreatment: H, (@ 400 °C for 3 h, 50 SCCM .

FTO Reaction conditions: 350 °C, 20 bar, CO/H,/N,= 45:45:10,
100 SCCM, W__ = 200 mg, WHSV = 30000 cc/g.../h
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Highly Active and Robust FTO Catalyst S RS oo

Exceedingly high FTY and excellent selectivity for Fe,O, supported on CNS TL|iRBOkarory
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Catalysts can be repeatedly used and remain robust for up to > 500 hrs on stream.

U.S. DEPARTMENT OF




N NATIONAL

TL TECHNOLOGY
LABORATORY

High Performance FTO Catalyst

TOS Lo FTY Selectivity (Yowt.)
h Conversion /o s
( ) (0/0) (meo co/ 8Fe S) CH4 CZ_C4 CZ:_C4:

Fe O y/ CNS 90 72.6 1882 29.9 53.5 41.2 16.6
FeXOJ/CNT 90 42.1 861 29.7 61.0 22.4 9.0
1K—FeXOy/ CNT 10 4.1 89.2 26.3 64.5 54.4 9.1
Fe-Cu-K-S10, 18 52.3 161 47.1 47.5 26.0 6.4
Fe,O,/CNFU 64 88 29.8 13 (%C) | 64 (%C) | 55.5 (%C) | 18 (%C)

The activity of our catalysts is between 40 to 1000 times higher compared to other Fe-
based FTO catalysts with similar light olefins selectivity reported in the literature.
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Effect of Carbon Support

Fe, O, supported on CNT
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Fe-based FTO Nanocatalysts on CNS N=lREy

More readily reducible Fe;O, advantageous for the formation of active Fe,C, TL){as5karory
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Fe,0, is identified as the main I Formation of Fe C,@FeO _ core-shell
phase in the fresh catalyst. structure in post-reaction catalyst.
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(a)
= Sample Phase 8 AEq B, (T) T %
E . (mm/s) (mm/s) (mm/s)
% Fresh Fe O, 0.46 0 52.1 0.5 35
@ Fe,O,/ Fe O I1 043 0 49.8 0.5 37
< 1 u u CNS Fe, O/IIT 083 -1.14 46.3 0.5 16

. u : . . : Spent Fe, O 0.46 0 52.1 0.5

10 -5 0 5 10
Velocity (mmis) Fe O,/ Fe O 043 0 49.8 0.5
(b) CNS Fe,O-II 045 0 46.5 0.5
< W y-FesC-l  0.39 0.09 25.5 0.4 30
%— y-FesC- 1T 0.33 0 21.8 0.55 27
2 y-FesC,-IIT  0.33 0.05 10.6 0.5 15
2 Fe C 0.36 0 18.3 0.3 10
<
Mossbauer spectroscopy results are consistent with the presence of Fe;O, phase in

10 5 0 5 10

Velocity (mm/s) the fresh catalyst, and the conversion to Fe.C, in the post-reaction catalyst.
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Fe, O, supported on CNS LABORATORY

fresh
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Fe K-edge XANES spectra illustrate the similarity of fresh catalyst to Fe;0,, consistent
with TEM, XRD, Md&ssbauer spectroscopy results. The oxide phase gradually
decreases, whereas the iron carbide feature increases, as a function of TOS.

U.S. DEPARTMENT OF

) ENERGY




NATIONAL
ENERGY

Fe-based FTO Nanocatalysts on CNT ¥E ENERGY

LABORATORY

fresh

ST
o
%
[ -
L4
S N
- o
v 2

Fech NT . ;; .

10 hr TOS

Intensity (a.u.)

10 hr TOS

fresh
1 1 I I 1 I
7110 7120 7130 7140 7150 7160
Energy (eV)

. U.S5. DEPARTMENT OF




EXAFS Analysis of FTO Catalyst N ENERGY

Fe, O, supported on CNS T LABORATORY
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EXAFS data clearly show the reduction and conversion
of Fe;0O, to form catalytically active iron carbides
under FTO reaction conditions.
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Comparison of CNT and CNS Support NE ENERGY

Fe O, /CNT
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Compared to CNT support, CNS leads to markedly enhanced
carburization of Fe O catalyst under FTO reaction conditions.
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CNS Stabilized Fe Metallic Nanoparticles

: , : T L [[ESHNoLoGy
More robust formation of metallic Fe on CNS compared to CNT upon H, reduction LABORATORY

metallic iron
Fe-Fe

— Fe,O,/CNS
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Fe K-edge EXAFS spectra of H, reduced
Fe O, /CNS and reduced Fe O /CNT catalysts. Reduced Fe O /CNS
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Uniformly Distributed Promoter K on N=[ramens
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The use of potassium citrate for the synthesis of carbon nanosheets introduces
promoter K uniformly distributed on the catalyst support. (Scale bar, 100 nm.)
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— in situ and operando
characterization (electron
microscopy, X-ray
spectroscopy, Raman
spectroscopy).

.

- Computational modeling.
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MEC
N, >— -
H ->—- >
’ [\Temp. probe
MS-13X column & TCD: CO, H,, N,, CH,
Stainless steel Hayesep Q & FID: CO,, C,-Cq
reactor Methanizer for CO detection in ppm levels
®
oot Catalysts
4 Quartz wool
~ Agilent GC 7890A
—— — ,
Filter
Catalysts pretreatment: H, (@ 400 °C for 3 h, 50 SCCM .

CO, hydrogenation conditions: 350 — 400 °C, 20 bar, CO,:H, = 1:1 — 1:4,
100 SCCM, W_,, = 200 mg, WHSV = 18000 to 30000 cc/g_,./h
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™™ CO Selectivity
I CH, Selectivity
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Reaction Conditions Reaction Conditions

TOS (hr)

* CO, conversion up to ~37%

* C,—C, hydrocarbon selectivity of up to ~13%

* Catalysts stable for > 550 hrs (with testing at different rxn conditions).
* Low CH, selectivity.

* Further optimization needed
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Characterization of FTO Catalysts

After catalytic reaction
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Laboratory-based XPS results agree with the core/shell
Fe.C,/FeO_ structure of catalyst nanoparticles after FTO reaction.
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TL
Bulk Standard  Ep (tef)/ eV
Fe’ 7006, 707
Fe,C, 708
FeO 710
Fe,O, 710.6
Fe,O; 711.0
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XANES Spectra of FTO Catalyst A = B
Fe, O, supported on CNT TL LABORATORY
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