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Photocaged functional nucleic acids for spatiotemporal imaging in biology
Yuting Wu?, Zhenglin YangP, Yi Lu#Pcd
Abstract
Imaging of species in living organisms with high spatiotemporal resolution is essential
for understanding biological processes. While functional nucleic acids (FNAs), such as
catalytic nucleic acids and aptamers, have emerged as effective sensors for a wide range
of molecules, photocaged control of these FNAs has played a key role in translating them
into bioimaging agents with high spatiotemporal control. In this review, we summarize
methods and results of photocaged FNAs based on photolabile modifications,
photoisomerization, and photothermal activation. Future directions, including strategies
to improve the performance of these photocaged FNAs, are also described.
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1. Introduction

Biological processes build upon many delicate regulatory events of molecules from
nucleic acids and proteins to organic metabolites and metal ions, whose concentrations
vary widely with time and location in cells or other biological systems. Consequently,
detecting, visualizing, and controlling these molecules in living organisms with high
spatiotemporal resolution is very important in our understanding of biological processes.
To achieve this goal, photocaged molecules, which are inactive in the absence of light
and then activated upon light irradiation, have emerged as perhaps the most effective
method because light activation is both kinetically fast and has high spatial resolution,
allowing control of both the timing and location of the activation. A primary example is
optogenetics in which precise modulation of intracellular signaling in intact cells and
multicellular organisms has been achieved at subcellular resolution within seconds of light
irradiation [1,2]. While optogenetics has been applied to control the functions of nucleic
acids and proteins, it has been challenging to detect and control small organic metabolites
and metal ions.

To overcome the limitation in the controlled detection of small molecule metabolites
and metal ions, probes based on functional nucleic acids (FNAs) have been developed.

FNAs are nucleic acids with either catalytic activities, called catalytic nucleic acids,
2
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including ribozymes [3,4] and deoxyribozymes (DNAzymes) [5], or selective binding ability,
called riboswitches [6] and DNA aptamers [7,8]. The FNAs can be obtained using a
combinatorial process called in vitro selection or Systematic Evolution of Ligands by
EXponential enrichment (SELEX) from a large DNA or RNA library of up to 10" random
sequences to bind not only large biomolecules like proteins but also small molecules like
metabolites and metal ions [7-9]. After obtaining FNAs that can bind the targets
selectively, signal transducers such as fluorophores can be conjugated to these FNAs to
transform them into different in vitro sensors or in vivo imaging agents [10-
*16,17,°*18,**19—*21].

While FNA sensors and imaging agents have significantly expanded the number of
targets of biological probes, because it takes time to deliver FNAs into cells and other
living organisms, the sensing action may occur during the delivery process. To overcome
this limitation, FNAs can be protected using photocaged groups. In this way, the function
of FNAs is inhibited during the delivery process. Once the FNAs reach the desired location
within the living organism, light irradiation can remove the caging group and reactivate
the FNAs. More importantly, through control of the timing and location of the light
irradiation, spatiotemporal control of the FNA sensors is achieved.

In this review, we summarize photocaging methods and strategies for spatiotemporal
control of catalytic nucleic acids and aptamers, and how these photocages facilitate

regulation of the FNA biosensors with spatiotemporal precision. We also provide recent
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examples for improvements made to the caging groups and demonstrate their impact in
practical applications such as imaging of metal ions. Finally, current limitations and

potential opportunities for future photocontrollable FNA sensors are also discussed.

2. Spatiotemporal control of catalytic nucleic acids

2.1 Photocontrol of catalytic nucleic acids based on photolabile

modifications

Photolabile modification is a frequently used caging method for controlling the
configuration and activity of nucleic acids. These photolabile modifications include
photoresponsive small molecule caging of a single nucleotide and photocleavable (PC)
linkers between two nucleotides. Detailed properties and development of these
photolabile groups in controlling DNA nanomaterials have been reviewed elsewhere
[**22], and we will focus on the application of these photolabile groups in functional nucleic
acid research in this review.

The photoresponsive small molecule caging of a single nucleotide can be used to
inhibit the activity of the catalytic core, prevent or enable the formation of a functional
structure, or block the cleaving site through various modifications, including on the
nucleobase, 2°-OH group, or phosphodiester backbone (Figure 1A-D). Removing these
photocaged protection groups with light, ranging from the ultraviolet to near-infrared (NIR)

region, restores or disrupts the conformation or configuration for the FNA function (Figure
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1E-H). One example of such photocontrolled small molecule cages is the modification of
a nitrobenzyl to the active site of ribonucleotide-cleaving catalytic nucleic acids. This
method works by modifying the 2’-OH group of the ribonucleotide at the cleavage site in
the substrate strand with the caging group, which prevents the cleavage. Uncaging with
a 308 nm light regenerated the 2’-OH group and restored the activity of the hammerhead
ribozyme (Figure 1A,E) [23]. Later, the Lu group has transformed this caging method into
practical applications to image metal ions in vivo by applying the caging to the RNA-
cleaving 8-17 and NaA43 DNAzymes, whose activities depend on Zn?* or Na*,
respectively (Figure 2A) [24—-26]. Before these demonstrations, most DNAzyme-based
sensors were used outside living cells, because the DNAzyme can be cleaved during the
delivery process before reaching the intended final cellular location. Using this
photocaging method can not only address this issue but also allow imaging of metal ions
with high spatiotemporal resolution.

Other than modifying the cleavage site of the catalytic nucleic acids, an 8-(2-(4-
imidazolyl)ethyl-1-thio)-2’-deoxyribo adenosine (C8 adenosine) has been used to cage
the catalytic loop of the 8-17 DNAzyme to inhibit its cleavage activity (Figure 1F). When
irradiated with 254-310 nm UV light for 60 min, =30% of RNA cleavage efficiency was
restored [27]. To improve the chemical stability and increase the uncaging rate, a 6-
nitropiperonyloxymethyl modification was developed to disrupt the hydrogen bonds

between nucleic acid strands, thus controlling the activity of the 10-23 DNAzyme by
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perturbing hybridization of the substrate strand to its enzyme strand (Figure 1G) [28,29].
This system was also demonstrated to achieve the reverse, such that irradiation of the
caging molecule inactivates an initially active DNAzyme. The same caging molecule was
employed to prevent the blocking of both the binding arm and the catalytic core by adding

an antisense tail sequence with multiple caged nucleotides (Figure 1H) [29].
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Figure 1 Photocaged control based on the cleavage of photolabile small molecules.

(A) Photolysis of a nitrobenzyl modification on the 2’-OH group of a ribonucleotide.

(B) Structure of the PC linker and photocleavage process.

(C-D) Post-synthetic photocaging modifications of nucleic acids.

(E-H) Different strategies for photocaged control of DNAzyme sensors based on the cleavage of
photolabile small molecules.

In addition to photocaging of nucleotides, PC linkers are another class of photolabile

6
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modifications that are readily available with commercial nucleic acid synthesis. Upon light
irradiation, the PC linker is broken (Figure 1B), introducing a nick site in the DNA/RNA
strand. As a result, the shorter strand can be designed to have a lower melting
temperature to its complementary strand than the ambient temperature and thus is
released to allow optical control of the sensing and imaging processes [30]. For example,
such PC linkers have been used to turn off or turn on DNAzyme functions by light-induced
disruption or regeneration of the catalytic components of DNAzymes [31].

While the above studies have demonstrated the potential of using photolabile
cleavage to control DNAzyme activities, several improvements have been made for these
methods to be applied for biosensing and imaging. First, most of these studies used UV
light for optical control. While the UV-light allows efficient and fast uncaging, its exposure
to cells often damages the cells. Since NIR light is less phototoxic and has better
penetration into cells and living animals, a two-photon photocleavable version of the PC
linkers using NIR light has been reported [32]. In addition, by blocking the cleavage site
of the 8-17 DNAzyme with a nitrobenzyl group, and conjugating the DNAzyme onto
lanthanide-doped upconversion nanoparticles (UCNPs), the Lu group has taken
advantage of the ability of UCNPs to upconvert 980 nm NIR light to 365 nm UV light to
minimize phototoxicity while maintaining high uncaging efficiency. With this system,
imaging of Zn?* in both live HeLa cells and zebrafish has been demonstrated (Figure 2B)

[**18].
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Second, most photocaging methods are on-and-off controls using a fluorophore and
quencher pair, which is challenging to be used to quantify the target, especially in living
cells, since the delivery amount of the sensor could vary widely between different cells.
To allow quantification in cells, the fluorophore and quencher pair have been replaced by
a FRET donor and acceptor pair. The ratiometric signal from the FRET donor and
acceptor allowed quantification of Zn?* in living cells (Figure 2C) [30].

A Application in catalytic beacon sensors 0 min | 30 min

By 365 nm 6 o

.' Q) > %55%

B Application in UCNP-activated sensors
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+Zn2* @ ( 5
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Figure 2 Examples of photolabile molecule based control of DNAzyme sensors.

(A) Photocaged NaA43 DNAzyme detects Na* influx in living cells. Nitrobenzyl modification was
applied to block the cleavage site. Reprint from [24].

(B) UCNP-controlled Zn?* imaging in Hela cells and zebrafish. Nitrobenzyl modification was
applied to block cleavage site. Reprint from [**18].

(C) FRET-based Zn?* quantification and imaging in Hela cells. Reprint from [33].
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Finally, progress has been made to simplify the photocaging synthesis process. Since
adding the photocaging groups during the solid-phase syntheses of nucleic acids requires
special equipment and expertise, caging nucleic acids after the nucleic acids are
synthesized has also been developed. For example, post-synthetic acylation of the 2’
hydroxyls of RNA resulted in reversible optical control of the activity of the hammerhead
ribozyme (Figure 1C) [*34]. Furthermore, a thioether-enol phosphate (TEEP-OH) was
incorporated into the DNA phosphodiester backbone to block the activity of the
peroxidase-mimicking DNAzyme. Under 300 nm light irradiation, this TEEP-OH
modification can transform into a native DNA phosphodiester and regenerate the
DNAzyme activity (Figure 1D) [*35].

2.2 Photocontrol of catalytic nucleic acids based on photoisomerization

In contrast to irreversible control based on photolabile cleavage, optical control based
on photoisomerization is reversible. Different types of photoregulated switches and their
applications in DNA nanotechnology has been reviewed by Lubbe et al. [**36]. Among
these photoresponsive molecules, azobenzene and its derivatives are most popular due
to their stability, accessibility, and ease of synthesis [**22], and will be discussed in this
review (Figure 3A-C). A common usage of the azobenzene-based photocage is taking
advantage of its conformational change and base-pair stacking ability to introduce
reversible DNA hybridization that can interfere with the conformation and activity of the

DNAzyme (Figure 3A). Azobenzene modifications can be incorporated into the catalytic
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core or binding arms of DNAzymes to block the catalytic activity or substrate strand
hybridization of DNAzymes (Figure 3D-E). With the reversible conformation change of
azobenzene, the activity of a DNAzyme can be turned on and off multiple times [37,38].
To increase the caging efficiency, an extended antisense sequence carrying azobenzene
was introduced to block both the catalytic core and the binding arm of DNAzymes (Figure
3F) [39]. Another strategy of adding extra azobenzene-containing overhang linkers to both
ends of a DNAzyme has allowed reversible optical control between the inactive DNAzyme
conformation that sandwiches the substrate within a hairpin structure and its active

conformation (Figure 3G) [40].
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Figure 3. Photocaged control of catalytic FNAs based on the isomerization of photoswitches.
(A-C) Structure of the isomerization of azobenzene and its derivatives.

(D-H) Photoswitches control the activity of FNAs via catalytic core blocking, substrate
hybridization, and split DNAzyme assembly.

In order to increase the photoswitching efficiency, new photoswitches, such as 2',6'-
dimethylazobenzene and N-methyl-arylazopyrazole that are derived from azobenzene, have
been developed (Figure 3B-C). These photoswitches have been applied to a split
horseradish peroxidase-mimicking DNAzyme for reversible control of logic gates, which

could be further applied to biosensing applications (Figure 3H) [*41]

11



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

2.3Photocontrol of catalytic nucleic acids based on photothermal

activation

Photothermal activation is another method for controlling FNA function. It uses light to
induce heat from light-absorbing nanomaterials to change the hybridization patterns and
the resulting conformation of FNAs that are immobilized on the light-absorbing
nanomaterials so that they can transform from an inactive form into an active form. For
example, a short DNA strand that is complementary to a part of the enzyme strand of the
8-17 DNAzyme is conjugated to a gold nanoshell. In the absence of NIR light, the short
DNA strand hybridizes to the DNAzyme, preventing the formation of the DNAzyme
catalytic core. Upon absorbing 808 nm light, the nanoshell generates heat to increase the
surrounding temperature enough to dehybridize the short DNA strand from the enzyme
strand, restoring the DNAzyme to its active conformation for metal ion detection (Figure
4A). Using this strategy, Wang et al. detected Zn?* in living HelLa cells under NIR light
control (Figure 4B) [**42].

Expanding from this work, yolk-shell nanorod-satellite structures have been
constructed to replace the gold nanoshell for near-infrared circular polarized light
activation. Interestingly, their probe showed handedness-depended performance. Right
circular polarized light activated the probe in buffer with the presence of metal ion while
left circular polarized light only activated the probe inside of cells. This chiral property

enabled their FNA sensors to detect intracellular metal ions with minimal interference from

12
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metals in the culture media. With this system, single and multiple metal ions are detected
with multi-channel readouts by fluorescent and UCNP luminescent signals (Figure 4C)
[43,%44].

A Photothermal controlled conformation refolding
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B NIR controlled photothermal activation =~ C handedness-dependent light activation

Zn% || nuclei H merged Cu?* Mg?* Zn?*

Cu?*1nM

-NIR +Zn2‘r
Mg?*/Zr2* 100uM|[Mg2*/Zn2* 1M [Mg*/Zn?* 10nM

Figure 4 Photothermal-based photocage.

(A) Light-induced temperature increases by nanoparticles dehybridize blocking DNA to restore
conformation and function of the DNAzymes.
(B-C) Cellular imaging of Zn?* and other metal ions in Hela cells. Reprint from [**42,43].
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3 Spatiotemporal control of aptamers

3.1Photocontrol of aptamers based on photolabile modifications

Photolabile groups have also been used in regulating the functions of aptamers by

blocking the binding interface for target recognition (Figure 5A). For example,
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incorporating photocaged thymidine phosphoramidites into the target-binding site of the
thrombin aptamer (TBA) prevented thrombin from binding, and the binding can be
restored by using 366nm light to remove the photocage group [45]. Instead of blocking
the binding domain of the aptamers using a photocage group, other studies prefer to
control the conformation of aptamers (Figure 5B). For example, an alkyne-modified 2’ -
deoxythymidine has been incorporated into a C10 aptamer, which recognizes human
Burkitt's lymphoma cells. Click chemistry was then used to lock the aptamer into a
bicircularized structure to inhibit the binding of the aptamer. Upon 365 nm light activation,
the cleavage of the intramolecular ring enabled efficient aptamer binding and uptake into
the cells (Figure 5G) [*46]. Similar to the improvements made for photocontrol of
DNAzymes, strategies such as RNA acylation and TEEP-OH modification have also been
applied to control aptamer function by blocking the conformation and binding site of the

aptamers (Figure 5C,H) [*34,*35].
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239  (A-F) Photocage control of the function of aptamers by blocking target recognition sites and
240  conformation formation.

241  (G) Photolabile groups regulate aptamers binding onto and uptake by cells via controlling the
242 conformation. Reprinted from [*46].

243 (H) Photocontrolled RNA acylation. Reprinted from [*34].

244  (I) PC linker-based ATP aptamer in cellular sensing and imaging. Reprinted from [**47]
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In addition to photoresponsive small molecule caging, PC linkers have also been used
for controlling the conformation of aptamers. With light, PC linkers within the DNA strand
are cleaved, producing a nick in the DNA, which changes the melting temperature of the
shorter strand of the nicked DNA, resulting in release of the shortened strand and
activation of the aptamer (Figure 5C). When conjugated to UCNPs or specific delivery
reagents, ATP has been detected with high spatial resolution using this method (Figure

51) [**47,48].

3.2Photocaged control of aptamers based on photoisomerization

Photoisomerization has also been applied to regulate the function of aptamers by
controlling their hybridization and conformation properties (Figure 5D-E). Using an
azobenzene-containing DNA strand that is complementary to the sequence of the
thrombin binding aptamer (TBA), the hybridization and release of the TBA were regulated
by the isomerization of azobenzene under UV or visible light, affecting the thrombin
binding function of the TBA [49]. By adjusting the number of azobenzenes used in the
hybridization system, the binding affinity of the TBA to thrombin can be modulated [50].In
addition to regulating DNA hybridization, azobenzene derivatives have also been used to
regulate the conformation of aptamers (Figure 5F). For example, by incorporating an
azobenzene group into the unstructured loop region of the TBA, the formation of an active

thrombin aptamer has been reversibly controlled by light [51].
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Recent efforts have been made to improve the chemical properties of azobenzene
derivatives for their applications in controlling aptamers. For example, to enhance the
control of double-stranded hybridization, a locked azobenzene C-nucleoside has been
introduced with an increased hybridization affinity [52]. To minimize phototoxicity, new
photoisomerization groups, such as stilbenyl-azopyrroles, have been synthesized to
allow two-photon excitation using 800nm NIR light [53]. In addition to azobenzene,
anthracene photochromism has also been used to force the conformation change of the

functionalized bottom loop of the TBA and thus optically control the activity of thrombin [54].

4 Summary and future directions

In this review, we have summarized the recent progress of spatiotemporal control of
photocaged functional nucleic acids for sensing and imaging in biology by discussing
methods to control the functions of catalytic nucleic acids and aptamers based on
photolabile modifications, photoisomerization, and, in the case of DNAzymes,
photothermal activation. While many uncaging methods have been reported, the
efficiency is still relatively low. Developing novel photolabile and photoswitching groups
that are highly efficient, including a fast rate and high yield, in response to light irradiation
will have a significant impact in this field. To apply photoregulation in live biological
systems, especially nontransparent animals such as mice, the phototoxicity, tissue

heating effect, and tissue penetration depth are still limiting factors for photocaging
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methods. To enhance the performance, deep tissue penetrating NIR-II light (in the 1000—
1700 nm window) will be an option that may significantly increase the depth of
photoactivation. New photocaging groups that directly respond to NIR light via multi-
photon events may be used for deep tissue activation. Another frontier lies in using
interdisciplinary approaches (e.g., nanomaterials, optogenetic constructs) to generate
activating molecules (e.g., ROS, enzymes) by light to trigger existing chemocaging
strategies. For instance, nucleotide modifications that could be removed by ROS,
restriction enzymes, or other chemicals are reported to block the function of FNAs [55—
57], and could potentially be removed indirectly by light if the light could trigger the release
or synthesis of these activation chemicals or enzymes. In this way, many published FNA
chemocaging and activation methods may be expected to be converted into a light-
activatable version for photocaging designs. Finally, since light has a low penetration
depth, photocaged control of FNAs are limited so far to cell culture and zebrafish [**18].
To expand this field to even more biological systems, such as living animals or human
bodies, the use of photoacoustic imaging that use sound that has a higher penetration
depth as a detecting mechanism, as demonstrated recently using a photoacoustic
aptamer-based sensor, is promising [58]. Given the significant progress made in the past
two years, especially the breakthroughs in sensor activation in vivo, this research field is

full of opportunities in developing novel light controlled FNA sensors.
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