1 Photocaged functional nucleic acids for spatiotemporal imaging in biology

2 Yuting Wu^a, Zhenglin Yang^b, Yi Lu^{a,b,c,d}

3 Abstract

- 4 Imaging of species in living organisms with high spatiotemporal resolution is essential
- for understanding biological processes. While functional nucleic acids (FNAs), such as
- 6 catalytic nucleic acids and aptamers, have emerged as effective sensors for a wide range
- of molecules, photocaged control of these FNAs has played a key role in translating them
- 8 into bioimaging agents with high spatiotemporal control. In this review, we summarize
- 9 methods and results of photocaged FNAs based on photolabile modifications,
- photoisomerization, and photothermal activation. Future directions, including strategies
- to improve the performance of these photocaged FNAs, are also described.

12 Addresses

- 13 a. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
- 14 61801, United States
- 15 b. Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana,
- 16 Illinois 61801, United States
- 17 c. Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-
- 18 Champaign, Urbana, Illinois 61801, United States
- d. DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois
- at Urbana-Champaign, Urbana, IL 61801, USA
- 21 Corresponding author: Yi Lu (yi-lu@illinois.edu)

Keywords

DNAzymes, aptamers, photocage, spatiotemporal control, biosensing, bioimaging.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

22

1. Introduction

Biological processes build upon many delicate regulatory events of molecules from nucleic acids and proteins to organic metabolites and metal ions, whose concentrations vary widely with time and location in cells or other biological systems. Consequently, detecting, visualizing, and controlling these molecules in living organisms with high spatiotemporal resolution is very important in our understanding of biological processes. To achieve this goal, photocaged molecules, which are inactive in the absence of light and then activated upon light irradiation, have emerged as perhaps the most effective method because light activation is both kinetically fast and has high spatial resolution, allowing control of both the timing and location of the activation. A primary example is optogenetics in which precise modulation of intracellular signaling in intact cells and multicellular organisms has been achieved at subcellular resolution within seconds of light irradiation [1,2]. While optogenetics has been applied to control the functions of nucleic acids and proteins, it has been challenging to detect and control small organic metabolites and metal ions.

To overcome the limitation in the controlled detection of small molecule metabolites and metal ions, probes based on functional nucleic acids (FNAs) have been developed. FNAs are nucleic acids with either catalytic activities, called catalytic nucleic acids,

including ribozymes [3,4] and deoxyribozymes (DNAzymes) [5], or selective binding ability, called riboswitches [6] and DNA aptamers [7,8]. The FNAs can be obtained using a combinatorial process called in vitro selection or Systematic Evolution of Ligands by EXponential enrichment (SELEX) from a large DNA or RNA library of up to 10¹⁵ random sequences to bind not only large biomolecules like proteins but also small molecules like metabolites and metal ions [7–9]. After obtaining FNAs that can bind the targets selectively, signal transducers such as fluorophores can be conjugated to these FNAs to transform them into different in vitro sensors or in vivo imaging agents [10–*16,17,**18,**19–*21].

While FNA sensors and imaging agents have significantly expanded the number of targets of biological probes, because it takes time to deliver FNAs into cells and other living organisms, the sensing action may occur during the delivery process. To overcome this limitation, FNAs can be protected using photocaged groups. In this way, the function of FNAs is inhibited during the delivery process. Once the FNAs reach the desired location within the living organism, light irradiation can remove the caging group and reactivate the FNAs. More importantly, through control of the timing and location of the light irradiation, spatiotemporal control of the FNA sensors is achieved.

In this review, we summarize photocaging methods and strategies for spatiotemporal control of catalytic nucleic acids and aptamers, and how these photocages facilitate regulation of the FNA biosensors with spatiotemporal precision. We also provide recent

examples for improvements made to the caging groups and demonstrate their impact in practical applications such as imaging of metal ions. Finally, current limitations and potential opportunities for future photocontrollable FNA sensors are also discussed.

2. Spatiotemporal control of catalytic nucleic acids

2.1 Photocontrol of catalytic nucleic acids based on photolabile modifications

Photolabile modification is a frequently used caging method for controlling the configuration and activity of nucleic acids. These photolabile modifications include photoresponsive small molecule caging of a single nucleotide and photocleavable (PC) linkers between two nucleotides. Detailed properties and development of these photolabile groups in controlling DNA nanomaterials have been reviewed elsewhere [**22], and we will focus on the application of these photolabile groups in functional nucleic acid research in this review.

The photoresponsive small molecule caging of a single nucleotide can be used to inhibit the activity of the catalytic core, prevent or enable the formation of a functional structure, or block the cleaving site through various modifications, including on the nucleobase, 2´-OH group, or phosphodiester backbone (Figure 1A-D). Removing these photocaged protection groups with light, ranging from the ultraviolet to near-infrared (NIR) region, restores or disrupts the conformation or configuration for the FNA function (Figure

1E-H). One example of such photocontrolled small molecule cages is the modification of a nitrobenzyl to the active site of ribonucleotide-cleaving catalytic nucleic acids. This method works by modifying the 2'-OH group of the ribonucleotide at the cleavage site in the substrate strand with the caging group, which prevents the cleavage. Uncaging with a 308 nm light regenerated the 2'-OH group and restored the activity of the hammerhead ribozyme (Figure 1A,E) [23]. Later, the Lu group has transformed this caging method into practical applications to image metal ions in vivo by applying the caging to the RNA-cleaving 8-17 and NaA43 DNAzymes, whose activities depend on Zn²⁺ or Na⁺, respectively (Figure 2A) [24–26]. Before these demonstrations, most DNAzyme-based sensors were used outside living cells, because the DNAzyme can be cleaved during the delivery process before reaching the intended final cellular location. Using this photocaging method can not only address this issue but also allow imaging of metal ions with high spatiotemporal resolution.

Other than modifying the cleavage site of the catalytic nucleic acids, an 8-(2-(4-imidazolyl)ethyl-1-thio)-2'-deoxyribo adenosine (C8 adenosine) has been used to cage the catalytic loop of the 8-17 DNAzyme to inhibit its cleavage activity (Figure 1F). When irradiated with 254-310 nm UV light for 60 min, ≈30% of RNA cleavage efficiency was restored [27]. To improve the chemical stability and increase the uncaging rate, a 6-nitropiperonyloxymethyl modification was developed to disrupt the hydrogen bonds between nucleic acid strands, thus controlling the activity of the 10-23 DNAzyme by

perturbing hybridization of the substrate strand to its enzyme strand (Figure 1G) [28,29]. This system was also demonstrated to achieve the reverse, such that irradiation of the caging molecule inactivates an initially active DNAzyme. The same caging molecule was employed to prevent the blocking of both the binding arm and the catalytic core by adding an antisense tail sequence with multiple caged nucleotides (Figure 1H) [29].

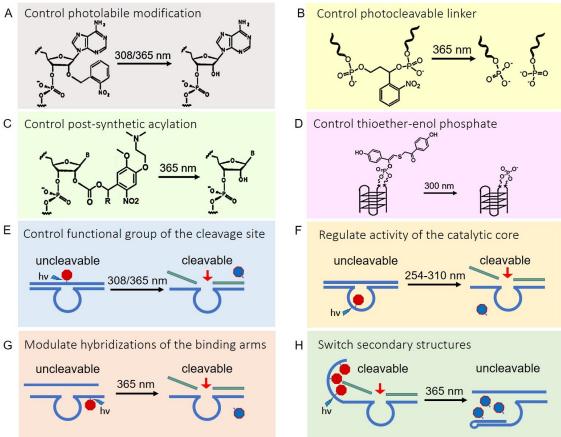


Figure 1 Photocaged control based on the cleavage of photolabile small molecules.

- (A) Photolysis of a nitrobenzyl modification on the 2'-OH group of a ribonucleotide.
- (B) Structure of the PC linker and photocleavage process.

- (C-D) Post-synthetic photocaging modifications of nucleic acids.
- (E-H) Different strategies for photocaged control of DNAzyme sensors based on the cleavage of photolabile small molecules.

In addition to photocaging of nucleotides, PC linkers are another class of photolabile

modifications that are readily available with commercial nucleic acid synthesis. Upon light irradiation, the PC linker is broken (Figure 1B), introducing a nick site in the DNA/RNA strand. As a result, the shorter strand can be designed to have a lower melting temperature to its complementary strand than the ambient temperature and thus is released to allow optical control of the sensing and imaging processes [30]. For example, such PC linkers have been used to turn off or turn on DNAzyme functions by light-induced disruption or regeneration of the catalytic components of DNAzymes [31].

While the above studies have demonstrated the potential of using photolabile cleavage to control DNAzyme activities, several improvements have been made for these methods to be applied for biosensing and imaging. First, most of these studies used UV light for optical control. While the UV-light allows efficient and fast uncaging, its exposure to cells often damages the cells. Since NIR light is less phototoxic and has better penetration into cells and living animals, a two-photon photocleavable version of the PC linkers using NIR light has been reported [32]. In addition, by blocking the cleavage site of the 8-17 DNAzyme with a nitrobenzyl group, and conjugating the DNAzyme onto lanthanide-doped upconversion nanoparticles (UCNPs), the Lu group has taken advantage of the ability of UCNPs to upconvert 980 nm NIR light to 365 nm UV light to minimize phototoxicity while maintaining high uncaging efficiency. With this system, imaging of Zn²⁺ in both live HeLa cells and zebrafish has been demonstrated (Figure 2B)

Second, most photocaging methods are on-and-off controls using a fluorophore and quencher pair, which is challenging to be used to quantify the target, especially in living cells, since the delivery amount of the sensor could vary widely between different cells. To allow quantification in cells, the fluorophore and quencher pair have been replaced by a FRET donor and acceptor pair. The ratiometric signal from the FRET donor and acceptor allowed quantification of Zn²⁺ in living cells (Figure 2C) [30].

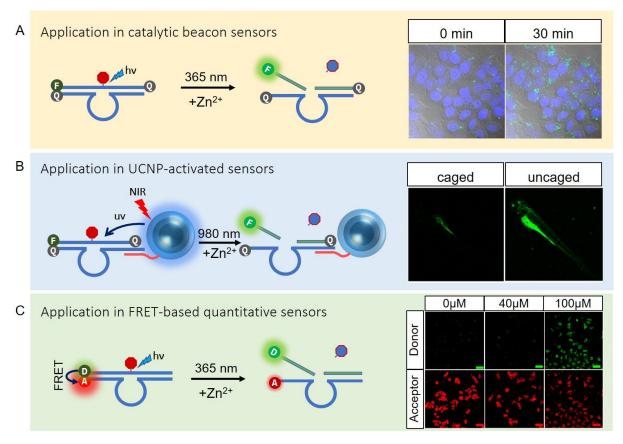


Figure 2 Examples of photolabile molecule based control of DNAzyme sensors.

- (A) Photocaged NaA43 DNAzyme detects Na⁺ influx in living cells. Nitrobenzyl modification was applied to block the cleavage site. Reprint from [24].
- (B) UCNP-controlled Zn^{2+} imaging in Hela cells and zebrafish. Nitrobenzyl modification was applied to block cleavage site. Reprint from [**18].
- (C) FRET-based Zn²⁺ quantification and imaging in Hela cells. Reprint from [33].

Finally, progress has been made to simplify the photocaging synthesis process. Since adding the photocaging groups during the solid-phase syntheses of nucleic acids requires special equipment and expertise, caging nucleic acids after the nucleic acids are synthesized has also been developed. For example, post-synthetic acylation of the 2' hydroxyls of RNA resulted in reversible optical control of the activity of the hammerhead ribozyme (Figure 1C) [*34]. Furthermore, a thioether-enol phosphate (TEEP-OH) was incorporated into the DNA phosphodiester backbone to block the activity of the peroxidase-mimicking DNAzyme. Under 300 nm light irradiation, this TEEP-OH modification can transform into a native DNA phosphodiester and regenerate the DNAzyme activity (Figure 1D) [*35].

2.2 Photocontrol of catalytic nucleic acids based on photoisomerization

In contrast to irreversible control based on photolabile cleavage, optical control based on photoisomerization is reversible. Different types of photoregulated switches and their applications in DNA nanotechnology has been reviewed by Lubbe et al. [**36]. Among these photoresponsive molecules, azobenzene and its derivatives are most popular due to their stability, accessibility, and ease of synthesis [**22], and will be discussed in this review (Figure 3A-C). A common usage of the azobenzene-based photocage is taking advantage of its conformational change and base-pair stacking ability to introduce reversible DNA hybridization that can interfere with the conformation and activity of the DNAzyme (Figure 3A). Azobenzene modifications can be incorporated into the catalytic

core or binding arms of DNAzymes to block the catalytic activity or substrate strand hybridization of DNAzymes (Figure 3D-E). With the reversible conformation change of azobenzene, the activity of a DNAzyme can be turned on and off multiple times [37,38]. To increase the caging efficiency, an extended antisense sequence carrying azobenzene was introduced to block both the catalytic core and the binding arm of DNAzymes (Figure 3F) [39]. Another strategy of adding extra azobenzene-containing overhang linkers to both ends of a DNAzyme has allowed reversible optical control between the inactive DNAzyme conformation that sandwiches the substrate within a hairpin structure and its active conformation (Figure 3G) [40].

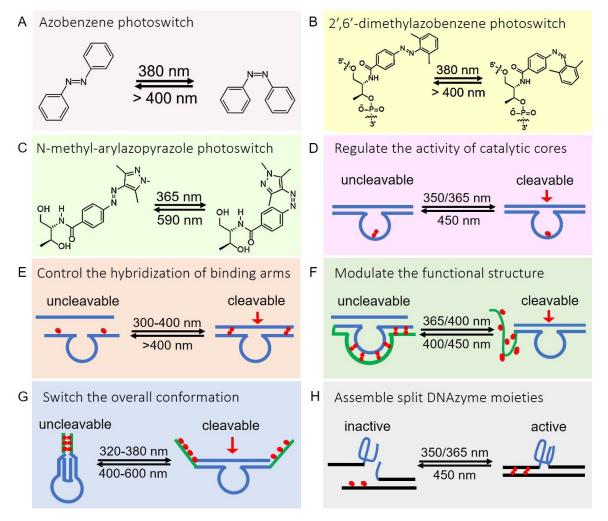


Figure 3. Photocaged control of catalytic FNAs based on the isomerization of photoswitches. (A-C) Structure of the isomerization of azobenzene and its derivatives.

(D-H) Photoswitches control the activity of FNAs via catalytic core blocking, substrate hybridization, and split DNAzyme assembly.

In order to increase the photoswitching efficiency, new photoswitches, such as 2',6'-dimethylazobenzene and N-methyl-arylazopyrazole that are derived from azobenzene, have been developed (Figure 3B-C). These photoswitches have been applied to a split horseradish peroxidase-mimicking DNAzyme for reversible control of logic gates, which could be further applied to biosensing applications (Figure 3H) [*41]

2.3 Photocontrol of catalytic nucleic acids based on photothermal activation

Photothermal activation is another method for controlling FNA function. It uses light to induce heat from light-absorbing nanomaterials to change the hybridization patterns and the resulting conformation of FNAs that are immobilized on the light-absorbing nanomaterials so that they can transform from an inactive form into an active form. For example, a short DNA strand that is complementary to a part of the enzyme strand of the 8-17 DNAzyme is conjugated to a gold nanoshell. In the absence of NIR light, the short DNA strand hybridizes to the DNAzyme, preventing the formation of the DNAzyme catalytic core. Upon absorbing 808 nm light, the nanoshell generates heat to increase the surrounding temperature enough to dehybridize the short DNA strand from the enzyme strand, restoring the DNAzyme to its active conformation for metal ion detection (Figure 4A). Using this strategy, Wang et al. detected Zn²⁺ in living HeLa cells under NIR light control (Figure 4B) [**42].

Expanding from this work, yolk-shell nanorod-satellite structures have been constructed to replace the gold nanoshell for near-infrared circular polarized light activation. Interestingly, their probe showed handedness-depended performance. Right circular polarized light activated the probe in buffer with the presence of metal ion while left circular polarized light only activated the probe inside of cells. This chiral property enabled their FNA sensors to detect intracellular metal ions with minimal interference from

metals in the culture media. With this system, single and multiple metal ions are detected with multi-channel readouts by fluorescent and UCNP luminescent signals (Figure 4C) [43,*44].

B NIR controlled photothermal activation

211

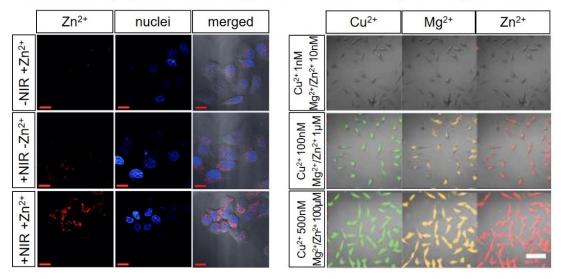
212

213

214

216217

219


220

221

222

223

C handedness-dependent light activation

215 Figure 4 Photothermal-based photocage.

- (A) Light-induced temperature increases by nanoparticles dehybridize blocking DNA to restore conformation and function of the DNAzymes.
- 218 (B-C) Cellular imaging of Zn²⁺ and other metal ions in Hela cells. Reprint from [**42,43].

3 Spatiotemporal control of aptamers

3.1 Photocontrol of aptamers based on photolabile modifications

Photolabile groups have also been used in regulating the functions of aptamers by blocking the binding interface for target recognition (Figure 5A). For example,

incorporating photocaged thymidine phosphoramidites into the target-binding site of the thrombin aptamer (TBA) prevented thrombin from binding, and the binding can be restored by using 366nm light to remove the photocage group [45]. Instead of blocking the binding domain of the aptamers using a photocage group, other studies prefer to control the conformation of aptamers (Figure 5B). For example, an alkyne-modified 2' - deoxythymidine has been incorporated into a C10 aptamer, which recognizes human Burkitt's lymphoma cells. Click chemistry was then used to lock the aptamer into a bicircularized structure to inhibit the binding of the aptamer. Upon 365 nm light activation, the cleavage of the intramolecular ring enabled efficient aptamer binding and uptake into the cells (Figure 5G) [*46]. Similar to the improvements made for photocontrol of DNAzymes, strategies such as RNA acylation and TEEP-OH modification have also been applied to control aptamer function by blocking the conformation and binding site of the aptamers (Figure 5C,H) [*34,*35].

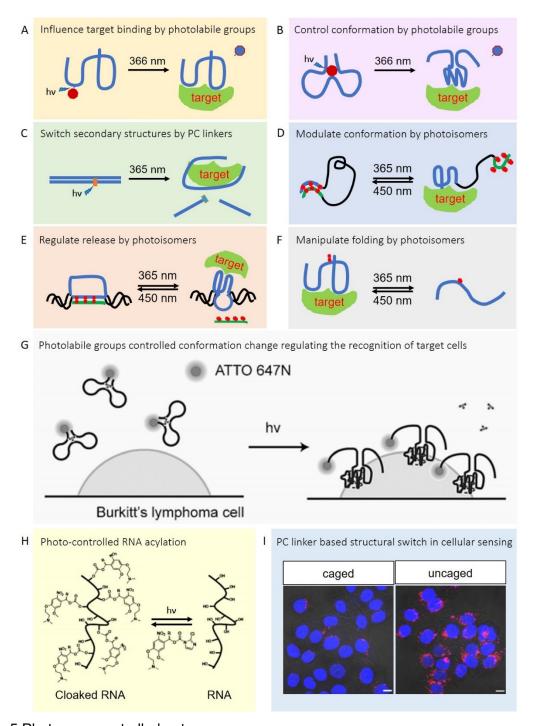


Figure 5 Photocage-controlled aptamers.

- (A-F) Photocage control of the function of aptamers by blocking target recognition sites and conformation formation.
- (G) Photolabile groups regulate aptamers binding onto and uptake by cells via controlling the conformation. Reprinted from [*46].
- 243 (H) Photocontrolled RNA acylation. Reprinted from [*34].
- 244 (I) PC linker-based ATP aptamer in cellular sensing and imaging. Reprinted from [**47]

In addition to photoresponsive small molecule caging, PC linkers have also been used for controlling the conformation of aptamers. With light, PC linkers within the DNA strand are cleaved, producing a nick in the DNA, which changes the melting temperature of the shorter strand of the nicked DNA, resulting in release of the shortened strand and activation of the aptamer (Figure 5C). When conjugated to UCNPs or specific delivery reagents, ATP has been detected with high spatial resolution using this method (Figure 5I) [**47,48].

3.2 Photocaged control of aptamers based on photoisomerization

Photoisomerization has also been applied to regulate the function of aptamers by controlling their hybridization and conformation properties (Figure 5D-E). Using an azobenzene-containing DNA strand that is complementary to the sequence of the thrombin binding aptamer (TBA), the hybridization and release of the TBA were regulated by the isomerization of azobenzene under UV or visible light, affecting the thrombin binding function of the TBA [49]. By adjusting the number of azobenzenes used in the hybridization system, the binding affinity of the TBA to thrombin can be modulated [50].In addition to regulating DNA hybridization, azobenzene derivatives have also been used to regulate the conformation of aptamers (Figure 5F). For example, by incorporating an azobenzene group into the unstructured loop region of the TBA, the formation of an active thrombin aptamer has been reversibly controlled by light [51].

Recent efforts have been made to improve the chemical properties of azobenzene derivatives for their applications in controlling aptamers. For example, to enhance the control of double-stranded hybridization, a locked azobenzene C-nucleoside has been introduced with an increased hybridization affinity [52]. To minimize phototoxicity, new photoisomerization groups, such as stilbenyl-azopyrroles, have been synthesized to allow two-photon excitation using 800nm NIR light [53]. In addition to azobenzene, anthracene photochromism has also been used to force the conformation change of the functionalized bottom loop of the TBA and thus optically control the activity of thrombin [54].

4 Summary and future directions

In this review, we have summarized the recent progress of spatiotemporal control of photocaged functional nucleic acids for sensing and imaging in biology by discussing methods to control the functions of catalytic nucleic acids and aptamers based on photolabile modifications, photoisomerization, and, in the case of DNAzymes, photothermal activation. While many uncaging methods have been reported, the efficiency is still relatively low. Developing novel photolabile and photoswitching groups that are highly efficient, including a fast rate and high yield, in response to light irradiation will have a significant impact in this field. To apply photoregulation in live biological systems, especially nontransparent animals such as mice, the phototoxicity, tissue heating effect, and tissue penetration depth are still limiting factors for photocaging

methods. To enhance the performance, deep tissue penetrating NIR-II light (in the 1000-1700 nm window) will be an option that may significantly increase the depth of photoactivation. New photocaging groups that directly respond to NIR light via multiphoton events may be used for deep tissue activation. Another frontier lies in using interdisciplinary approaches (e.g., nanomaterials, optogenetic constructs) to generate activating molecules (e.g., ROS, enzymes) by light to trigger existing chemocaging strategies. For instance, nucleotide modifications that could be removed by ROS, restriction enzymes, or other chemicals are reported to block the function of FNAs [55-57], and could potentially be removed indirectly by light if the light could trigger the release or synthesis of these activation chemicals or enzymes. In this way, many published FNA chemocaging and activation methods may be expected to be converted into a lightactivatable version for photocaging designs. Finally, since light has a low penetration depth, photocaged control of FNAs are limited so far to cell culture and zebrafish [**18]. To expand this field to even more biological systems, such as living animals or human bodies, the use of photoacoustic imaging that use sound that has a higher penetration depth as a detecting mechanism, as demonstrated recently using a photoacoustic aptamer-based sensor, is promising [58]. Given the significant progress made in the past two years, especially the breakthroughs in sensor activation in vivo, this research field is full of opportunities in developing novel light controlled FNA sensors.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

<u>Acknowledgments</u>

We thank the Lu group members and collaborators who have contributed over the years to the many studies described here, Gregory Pawel and Ryan Lake for proofreading, and the U.S. National Institutes of Health (GM124316 and MH110975) and DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420) for financial support. Zhenglin Yang acknowledges support from the Charles F. Kade Fellowship in the Department of Biochemistry at the University of Illinois at Urbana-Champaign.

314

315

305

306

307

308

309

310

311

312

313

Conflict of interest statement

Nothing declared.

317

318

316

References and recommended reading

- Papers of particular interest, published within the period of review, have been highlighted as:
- 321 * of special interest
- ** of outstanding interest
- 1. Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K: **Applications of Optobiology in Intact Cells** and **Multicellular Organisms**. *J Mol Biol* 2017, **429**:2999–3017.
- Fenno L, Yizhar O, Deisseroth K: The development and application of optogenetics. *Annu Rev Neurosci* 2011, 34:389–412.

- 327 3. Kruger K, Grabowski PJ, Zaug AJ, Sands JD, Cech TR: **Self-splicing RNA: Autoexcision and autocyclization**328 of the ribosomal RNA intervening sequence of tetrahymena. *Cell* 1982, **31**:147–157.
- 4. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S: **The RNA moiety of ribonuclease P is the**catalytic subunit of the enzyme. *Cell* 1983, **35**:849–857.
- 331 5. Breaker RR, Joyce GF: A DNA enzyme that cleaves RNA. Chem Biol 1994, 1:223–229.
- 332 6. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR: **Genetic Control by a Metabolite Binding** 333 mRNA. *Chem Biol* 2002, **9**:1043–1049.
- Ellington AD, Szostak JW: In vitro selection of RNA molecules that bind specific ligands. *Nature* 1990,
 346:818-822.
- 336 8. Tuerk C, Gold L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. *Science* 1990, **249**:505–510.
- 9. Beaudry AA, Joyce GF: Directed evolution of an RNA enzyme. Science 1992, 257:635–641.
- 10. Li J, Lu Y: A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. J Am Chem Soc 2000,
 122:10466–10467.
- Liu J, Lu Y: A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. *J Am Chem Soc* 2003, **125**:6642–6643.
- 343 12. Nutiu R, Li Y: **Structure-switching signaling aptamers**. *J Am Chem Soc* 2003, **125**:4771–4778.
- 344 13. Liu J, Cao Z, Lu Y: **Functional Nucleic Acid Sensors**. *Chem Rev* 2009, **109**:1948–1998.
- 345 14. Xiang Y, Lu Y: Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. *Nat Chem* 2011, **3**:697–703.
- 15. Liu M, Chang D, Li Y: **Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes**. *Acc Chem Res* 2017, **50**:2273–2283.
- *16. Zhou W, Ding J, Liu J: Theranostic DNAzymes. Theranostics 2017, 7:1010–1025.
- 350 This comprehensive review summarizes the in vitro selection approach and provides examples of
- 351 representative DNAzymes with specific emphasis on RNA-cleaving DNAzymes in biological applications,
- including sensing metabolites and treating diseases. Important photocontrolled DNAzyme sensors are covered,
- and their significance are discussed in a section of this review.
- 17. Findeiß S, Etzel M, Will S, Mörl M, Stadler PF: **Design of Artificial Riboswitches as Biosensors**. *Sensors* (*Basel*) 2017, **17**.

- **18. Yang Z, Loh KY, Chu Y-T, Feng R, Satyavolu NSR, Xiong M, Nakamata Huynh SM, Hwang K, Li L, Xing H, et
 al.: Optical Control of Metal Ion Probes in Cells and Zebrafish Using Highly Selective DNAzymes
 Conjugated to Upconversion Nanoparticles. J Am Chem Soc 2018, 140:17656–17665.
- This study provides a generalizable approach using near infrared light to achieve UV-vis light-responsive DNAzyme decaging by upconversion nanomaterials. It also gives the first demonstration of a photocontrolled DNAzyme-based metal ion sensor for in vivo live animal imaging beyond cultured cell models.
- **19. Li L, Xing H, Zhang J, Lu Y: Functional DNA Molecules Enable Selective and Stimuli-Responsive
 Nanoparticles for Biomedical Applications. *Acc Chem Res* 2019, **52**:2415-2426.
- A review summarizes strategies of integrating inorganic and organic nanoparticles with functional DNA, including aptamers, DNAzymes, and aptazymes, to create fDNA–NP complexes with biocompatibility and biorecognition functionality. Critical nanomaterial-based activation strategies, including photoactivation, are included in one section of this review.
- Zhang J, Lan T, Lu Y: Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo
 Applications. Adv Healthc Mater 2019, 8:e1801158.
- *21. Lake RJ, Yang Z, Zhang J, Lu Y: DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications,
 Demonstrated Advantages, Current Challenges, and Future Directions. Acc Chem Res 2019, 52:3275–
 3286.
- This review summarizes historical development of DNAzyme-based sensors in the Lu group and related contributions from other groups, including in vitro selection and the catalytic beacon. Advantages and disadvantages of DNAzyme-based sensors are illustrated in detail and compared with other imaging methods. Important applications of DNAzymes that require photocaging are explained and corresponding examples are given.
- **22. Tam DY, Zhuang X, Wong SW, Lo PK: Photoresponsive Self-Assembled DNA Nanomaterials: Design,
 Working Principles, and Applications. Small 2019, 15:e1805481.
- 380 An important review that introduces the development, design, and application of photoresponsive DNA-
- 381 based systems and emphasizes their advantages over other stimuli-responsive systems in biology,
- 382 biomedicine, materials science, nanophotonics, and nanoelectronics. Methods in photoactivation of DNA
- 383 nanomaterials are also summarized.
- 23. Chaulk SG, MacMillan AM: **Caged RNA: photo-control of a ribozyme reaction.** *Nucleic Acids Res* 1998, **26**:3173–3178.
- Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y: Photocaged DNAzymes as a General Method for Sensing
 Metal Ions in Living Cells. Angew Chem Int Ed Engl 2014, 53:13798–13802.
- Torabi S-F, Wu P, McGhee CE, Chen L, Hwang K, Zheng N, Cheng J, Lu Y: In vitro selection of a sodiumspecific DNAzyme and its application in intracellular sensing. *Proc Natl Acad Sci U S A* 2015, **112**:5903– 5908.

- Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang J-H, Lu Y: Imaging Endogenous Metal Ions in Living
 Cells Using a DNAzyme–Catalytic Hairpin Assembly Probe. Angew Chem Int Ed Engl 2017, 56:8721–8725.
- Ting R, Lermer L, Perrin DM: Triggering DNAzymes with Light: A Photoactive C8 Thioether-Linked
 Adenosine. J Am Chem Soc 2004, 126:12720–12721.
- 395 28. Lusic H, Young DD, Lively MO, Deiters A: Photochemical DNA Activation. *Org Lett* 2007, **9**:1903–1906.
- Young DD, Lively MO, Deiters A: Activation and Deactivation of DNAzyme and Antisense Function with
 Light for the Photochemical Regulation of Gene Expression in Mammalian Cells. J Am Chem Soc 2010,
 132:6183–6193.
- 39. Shen Y, Li Z, Wang G, Ma N: **Photocaged Nanoparticle Sensor for Sensitive MicroRNA Imaging in Living**400 **Cancer Cells with Temporal Control**. *ACS Sens* 2018, **3**:494–503.
- 401 31. Richards JL, Seward GK, Wang Y-H, Dmochowski IJ: **Turning the 10–23 DNAzyme On and Off with Light**.
 402 *Chembiochem* 2010, **11**:320–324.
- Weyel XMM, Fichte MAH, Heckel A: A Two-Photon-Photocleavable Linker for Triggering Light-Induced
 Strand Breaks in Oligonucleotides. ACS Chem Biol 2017, 12:2183–2190.
- 405
 406
 406
 407
 407
 408
 409
 409
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 401
 402
 403
 404
 405
 406
 407
 407
 408
 409
 409
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
- *34. Velema WA, Kietrys AM, Kool ET: **RNA Control by Photoreversible Acylation.** *J Am Chem Soc* 2018, 409 **140**:3491–3495.
- This paper reports a novel method for post-synthesis modifications of functional nucleic acids, which simplifies
- 411 the synthetic steps of photocaging modified functional nucleic acids. This method allows more flexible design
- 412 of photo-regulation of functional nucleic acids.
- *35. Feng M, Ruan Z, Shang J, Xiao L, Tong A, Xiang Y: **Photocaged G-Quadruplex DNAzyme and Aptamer by**Post-Synthetic Modification on Phosphodiester Backbone. *Bioconjug Chem* 2017, **28**:549–555.
- 415 This work develops a facile post-synthetic method to achieve efficient photocaging of activities of G-
- 416 quadruplex-containing DNAzymes and aptamers by incorporating TEEP-OH (thioether-enol phosphate, phenol
- substituted) into the phosphodiester backbone of G-quadruplex DNA.
- 418 **36. Lubbe AS, Szymanski W, Feringa BL: **Recent developments in reversible photoregulation of**419 **oligonucleotide structure and function**. *Chem Soc Rev* 2017, **46**:1052–1079.
- 420 Comprehensive review that focuses on the key strategies for photoswitch inclusion in oligonucleotides and
- 421 their applications in gene regulation, drug delivery, and materials design. Interdisciplinary approach and

- application in chemical biology, nanotechnology, and material science are given. Specific emphasis is given on
- 423 photoregulation of DNA and RNA aptamers and other functional nucleic acid nanostructures.
- 424 37. Liu Y, Sen D: Light-regulated Catalysis by an RNA-cleaving Deoxyribozyme. J Mol Biol 2004, 341:887–892.
- 425 38. Keiper S, Vyle JS: Reversible Photocontrol of Deoxyribozyme-Catalyzed RNA Cleavage under Multiple-
- 426 **Turnover Conditions**. *Angew Chem Int Ed Engl* 2006, **45**:3306–3309.
- 427 39. Kamiya Y, Arimura Y, Ooi H, Kato K, Liang X-G, Asanuma H: **Development of Visible-Light-Responsive RNA**428 **Scissors Based on a 10–23 DNAzyme**. *ChemBioChem* 2018, **19**:1305–1311.
- 429 40. Zhou M, Liang X, Mochizuki T, Asanuma H: **A Light-Driven DNA Nanomachine for the Efficient**430 **Photoswitching of RNA Digestion**. *Angew Chem Int Ed Engl* 2010, **49**:2167–2170.
- *41. Haydell MW, Centola M, Adam V, Valero J, Famulok M: **Temporal and Reversible Control of a DNAzyme**by Orthogonal Photoswitching. *J Am Chem Soc* 2018, **140**:16868–16872.
- 433 This paper reports a logic gate system by a split horseradish peroxidase mimicking DNAzyme under the
- 434 regulation of two sets of photoisomers. The catalytic function of the DNAzyme can be turned on and off
- 435 reversibly upon activation of a different sets of photoisomers, orthorgonally, with different wavelengths and
- 436 durations of light irradiation.
- 437 **42. Wang W, Satyavolu NSR, Wu Z, Zhang J-R, Zhu J-J, Lu Y: Near-Infrared Photothermally Activated
- 438 DNAzyme-Gold Nanoshells for Imaging Metal Ions in Living Cells. Angew Chem Int Ed Engl 2017,
- **56**:6798–6802.
- 440 Photothermal activation of functional nucleic acid is illustrated in this work. It achieves DNAzyme activation in
- live cells by a near infrared light, which generated local temperature increase through gold nanomaterials, and
- 442 leads to dehybridization of a DNA fragment that blocks formation of active DNAzyme conformation for
- 443 intracellular metal ion sensing.
- 444 43. Hao C, Xu L, Sun M, Ma W, Kuang H, Xu C: Chirality on Hierarchical Self-Assembly of Au@AuAg Yolk-
- Shell Nanorods into Core–Satellite Superstructures for Biosensing in Human Cells. Adv Funct Mater 2018,
- **28**:1802372.
- *44. Gao R, Xu L, Hao C, Xu C, Kuang H: Circular Polarized Light Activated Chiral Satellite Nanoprobes for the
- 448 Imaging and Analysis of Multiple Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019, 58:3913—
- 449 3917.
- 450 This work takes advantage of circular polarized light to induce handedness-dependent activation of DNAzyme
- 451 for multiple metal ions imaging in multiple channels with low background noise detected outside of cells.
- 452 45. Heckel A, Mayer G: Light Regulation of Aptamer Activity: An Anti-Thrombin Aptamer with Caged
- 453 **Thymidine Nucleobases**. *J Am Chem Soc* 2005, **127**:822–823.
- *46. Seyfried P, Eiden L, Grebenovsky N, Mayer G, Heckel A: **Photo-Tethers for the (Multi-)Cyclic,**
- 455 Conformational Caging of Long Oligonucleotides. *Angew Chem Int Ed Engl* 2017, **129**:365–369.

- 456 This work develops a method for intramolecular circularization of long DNA oligonucleotides by alkyne-
- 457 modified photolabile nucleosides and a Cu(I) -catalyzed alkyne-azide cycloaddition with bis-azido linker
- 458 molecules. Light irradiation releases the circularization tether and restore the function of DNA aptamers.
- **47. Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L: Upconversion Luminescence-Activated DNA Nanodevice
 for ATP Sensing in Living Cells. J Am Chem Soc 2018, 140:578–581.
- 461 A novel application of photoregulating the release and activation of DNA aptamer sensors in vivo by near
- infrared light rather than classical UV-vis light. Upconversion nanomaterials are applied in the process of light
- 463 wavelength conversion to achieve photoactivation of sensors in nontransparent tissues.
- 48. Hong S, Zhang X, J. Lake R, T. Pawel G, Guo Z, Pei R, Lu Y: A photo-regulated aptamer sensor for
- spatiotemporally controlled monitoring of ATP in the mitochondria of living cells. Chem Sci 2020,
- 466 **11**:713-720.
- 49. Kim Y, Phillips JA, Liu H, Kang H, Tan W: **Using photons to manipulate enzyme inhibition by an**468 **azobenzene-modified nucleic acid probe**. *Proc Natl Acad Sci U S A* 2009, **106**:6489–6494.
- Wang J, Song Q, Guo X, Cui X, Tan L, Dong L: Precise Cross-Dimensional Regulation of the Structure of a
 Photoreversible DNA Nanoswitch. Anal Chem 2019, 91:14530–14537.
- 471 51. Mo M, Kong D, Ji H, Lin D, Tang X, Yang Z, He Y, Wu L: Reversible Photocontrol of Thrombin Activity by
- 472 Replacing Loops of Thrombin Binding Aptamer using Azobenzene Derivatives. Bioconjug Chem 2019,
- **30**:231–241.
- 474 52. Grebenovsky N, Luma L, Müller P, Heckel A: Introducing LNAzo: More Rigidity for Improved Photocontrol
- 475 **of Oligonucleotide Hybridization**. *Chem Eur* 2019, **25**:12298–12302.
- 476 53. Muñoz Rugeles L, Gallardo Rosas D, Durán Hernández J, López Arteaga R, Toscano RA, Esturau -
- 477 Escofet N, López Cortés JG, Peón J, Ortega Alfaro MC: Synthesis and Photodynamics of Stilbenyl-
- 478 Azopyrroles: Two-Photon Controllable Photoswitching Systems. *ChemPhotoChem* 2019, 4:144-154.
- 479 54. Ali A, Bullen GA, Cross B, Dafforn TR, Little HA, Manchester J, Peacock AFA, Tucker JHR: Light-controlled
- 480 thrombin catalysis and clot formation using a photoswitchable G-quadruplex DNA aptamer. Chem
- 481 *Commun* 2019, **55**:5627–5630.
- 482 55. Xiao L, Gu C, Xiang Y: Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen
- 483 **Species**. *Angew Chem Int Ed Engl* 2019, **58**:14167-14172.
- 484 56. Lin Y, Yang Z, Lake RJ, Zheng C, Lu Y: Enzyme-Mediated Endogenous and Bioorthogonal Control of a
- 485 **DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells.** Angew Chem Int Ed Engl 2019, **58**:
- 486 17061-17067.
- 487 57. Park HS, Kietrys AM, Kool ET: Simple alkanoyl acylating agents for reversible RNA functionalization and
- 488 **control**. *Chem Commun* 2019, **55**:5135–5138.

489 58. Zhang J, Smaga LP, Satyavolu NSR, Chan J, Lu Y: **DNA Aptamer-Based Activatable Probes for**490 **Photoacoustic Imaging in Living Mice**. *J Am Chem Soc* 2017, **139**:17225–17228.