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The acetylene emission spectrum from the trans-bent electronically excited Ã state

to the linear ground electronic X̃ state has attracted considerable attention because

it grants Franck-Condon access to local bending vibrational levels of the X̃ state

with large-amplitude motion along the acetylene ⇀↽ vinylidene isomerization coor-

dinate. For emission from the ground vibrational level of the Ã state, there is a

simplifying set of Franck-Condon propensity rules that gives rise to only one zero-

order bright state per conserved vibrational polyad of the X̃ state. Unfortunately,

when the upper level involves excitation in the highly admixed ungerade bending

modes, ν ′4 and ν ′6, the simplifying Franck-Condon propensity rule breaks down—so

long as the usual polar basis (with v and l quantum numbers) is used to describe

the degenerate bending vibrations of the X̃ state—and the intrapolyad intensities

result from complicated interference patterns between many zero-order bright states.

In this paper, we show that when the degenerate bending levels are instead treated

in the Cartesian two-dimensional harmonic oscillator basis (with vx and vy quantum

numbers), the propensity for only one zero-order bright state (in the Cartesian basis)

is restored, and the intrapolyad intensities are simple to model, so long as corrections

are made for anharmonic interactions. As a result of trans ⇀↽ cis isomerization in the

Ã state, intrapolyad emission patterns from overtones of ν ′4 and ν ′6 evolve as quanta

of trans bend (ν ′3) are added, so the emission intensities are not only relevant to the

ground-state acetylene ⇀↽ vinylidene isomerization—they are also a direct reporter

of isomerization in the electronically-excited state.

a)Electronic mail: barratt@mit.edu, barratt.park@gmail.com
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I. INTRODUCTION

The bending dynamics of acetylene on both its ground (X̃ 1Σ+
g ) and first singlet excited

(Ã 1Au) electronic states have attracted considerable spectroscopic and theoretical atten-

tion. Acetylene has a linear equilibrium geometry in the X̃ state but becomes trans-bent

upon excitation to the Ã electronic state. Although acetylene was the first molecule for

which a qualitative change in geometry and symmetry accompanying an electronic excita-

tion was proven by spectroscopic methods,1–3 similar large amplitude displacements along

bending coordinates are known to be quite common in the electronic spectroscopy of π-

bonded molecules. Qualitative changes in bond angles and geometries are expected to result

whenever an electronic π∗ ← π excitation changes the effective bond order and the accom-

panying spn hybridization.

Because acetylene is the prototype molecule for CC triple bond systems, its dynamics are

of broad interest to the chemical community. Significant work has been done to characterize

the acetylene ⇀↽ vinylidene and trans ⇀↽ cis isomerization reactions that occur on the X̃

and Ã electronic surfaces, respectively. Both of these reactions primarily involve bending

vibrations. Because the Ã–X̃ transition involves a large change in equilibrium bond angles,

the electronic transition grants Franck-Condon (FC) access to high overtones of the bending

vibrations on both electronic surfaces, which has allowed extensive characterization of large

amplitude bending dynamics relevant to chemical isomerization.4,5 Investigators have used a

variety of spectroscopic schemes to observe these levels, including laser-induced fluorescence

(LIF),5–11 dispersed fluorescence (DF),12–15 and Stimulated Emission Pumping (SEP).16,17

One phenomenon of particular interest is the emergence of vibrational eigenstates on

the X̃ electronic surface that have large amplitude local bending character (i.e. with the

bending amplitude localized in a single CCH bend), because this vibrational motion lies

approximately along the acetylene ⇀↽ vinylidene minimum energy isomerization path.18,19

Excited bending levels of the Ã state may provide Franck-Condon access (via DF or SEP) to

isomerization-relevant levels of the X̃ state, because the half-linear transition state geometry

of the trans ⇀↽ cis isomerization in the Ã state20 is believed to resemble the acetylene

⇀↽ vinylidene transition state geometry.21–23 This has motivated a recent full-dimensional

calculation of Franck-Condon factors in the harmonic normal mode basis.24,25 The results of

the harmonic calculation indicate that Ã-state levels with high quanta of torsion (ν ′4) and
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cis-bend (ν ′6) excitation provide good FC overlap with large-amplitude counter-rotational

and local bending zero-order bright states, respectively, of the X̃ state. However, the results

of Refs. 24 and 25 provide only qualitative—not quantitative—agreement with experiment,

largely because the treatment fails to account for anharmonic interactions that occur in the

Ã state.

In this paper, we correct for interactions among bending levels of the Ã state and obtain

near-quantitative agreement with the patterns observed in DF and SEP spectra. Further-

more, we demonstrate that within sets of pure bending polyads of the X̃ state with conserved

total number of bending quanta, v′′4 + v′′5 , the emission intensity patterns are correctly ex-

plained by a simple Franck-Condon propensity rule in the Cartesian basis for the degenerate

two-dimensional harmonic oscillator (2DHO) bending wavefunctions of the linear X̃ state.

These propensities are analogous to those that are naturally applied in the case of nonlinear

symmetric-to-asymmetric top transitions.

II. POLYAD STRUCTURE AND BENDING DYNAMICS IN THE Ã—X̃

SYSTEM

Descriptions and frequencies of the acetylene X̃-state normal modes are given in Table I.

The vibrational Hamiltonian of the X̃ state of acetylene is approximately block diagonal in

the polyad-forming quantum numbers, {Ns, Nres, l}:

Ns = v′′1 + v′′2 + v′′3 (1)

Nres = 5v′′1 + 3v′′2 + 5v′′3 + v′′4 + v′′5 (2)

l = l4 + l5, (3)

up to energies of at least 15,000 cm−1.4,12,13,26–29 In other words, zero-order vibrational levels

with the same polyad quantum numbers may interact with one another, but do not interact

with levels belonging to other polyads. The Ns quantum number conserves the total quanta

of stretching excitation, and the l quantum number conserves the total quanta of vibrational

angular momentum from the bending modes. The Nres quantum number is approximately

proportional to the vibrational energy and arises from near-integer ratios between the mode

frequencies that lead to resonances. In addition to the polyad numbers, {Ns, Nres, l}, the
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TABLE I. Normal mode labels for X̃-state acetylene. The harmonic vibrational frequencies (taken

from ref. 29) were determined from experiment after deperturbing the anharmonic resonances.

Mode Description Symmetry ω/cm−1

ν ′′1 symmetric stretch σ+
g 3397.12

ν ′′2 CC stretch σ+
g 1981.80

ν ′′3 antisymmetric stretch σ+
u 3316.86

ν ′′4 trans bend πg 608.73

ν ′′5 cis bend πu 729.08

vibrational levels also have well-defined g/u symmetry and may be symmetrized to have well-

defined +/− total parity. The parity and g/u symmetry are conserved by the vibrational

Hamiltonian, and are therefore also conserved within each polyad. In this paper, we will

use the term “polyad set” to mean the set of polyads with given values of {Ns, Nres}, which

may differ in l, g/u symmetry, and +/− total parity. In the absence of excitation in the

stretching modes, Ns = 0 and the bending modes ν ′′4 (πg) and ν ′′5 (πu) form pure bending

polyads with conserved polyad numbers

NB = Nres = v′′4 + v′′5 (4)

l = l4 + l5. (5)

At high quanta of bending excitation (NB ≥ 12), the ν ′′4 and ν ′′5 normal modes become

strongly mixed via intra-polyad Darling-Dennison interactions, and local bending quantum

numbers provide a better zero-order description of the vibrational eigenstates.18,19

Descriptions and frequencies of the Ã-state normal modes are given in Table II. A global

rovibrational effective Hamiltonian fit has not been attempted for the Ã state, but a polyad

model has been used for the near-degenerate torsion ν ′4(au) and cis-bending ν ′6(bu) modes,

which interact via Darling-Dennison resonances and a- and b-axis Coriolis interactions. In

this paper, we refer to polyads with v′4 + v′6 = n as Bn.

III. FRANCK-CONDON PROPENSITY RULES IN THE CARTESIAN

BASIS

The ν ′6 (cis-bend) and ν ′4 (torsion) vibrational modes that comprise the Ã-state Bn

polyads correlate to the in-plane and out-of-plane components of the ν ′′5 (cis-bend) vibration
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TABLE II. Normal mode labels for Ã-state acetylene. The harmonic vibrational frequencies (taken

from ref. 11) were determined from experiment after deperturbing the anharmonic resonances.

Mode Description Symmetry ω/cm−1

ν ′1 symmetric stretch ag 3052.1

ν ′2 CC stretch ag 1420.9

ν ′3 trans bend ag 1098.0

ν ′4 torsion au 787.7

ν ′5 antisymmetric stretch bu 3032.4

ν ′6 cis bend bu 801.6

in the X̃ state. Because the frequencies of ν ′6 and ν ′4 are nearly degenerate and are close to the

ν ′′5 frequency and because there is no displacement along the ungerade cis-bend vibrational

mode between the equilibrium geometries of the X̃ and Ã states, there is a Franck-Condon

propensity for quanta in these modes to be conserved in the Ã–X̃ transition. That is, there

is a vibrational propensity for transitions between levels with v′′5 = v′4 + v′6 to be strongly

allowed, but for transitions between vibrational levels with v′′5 6= v′4 + v′6 to be much weaker.

This propensity is well established,4,12,30 and similar arguments that stem from the near-

equal CH bond lengths in the X̃ and Ã states lead to FC propensities conserving the quanta

of symmetric and antisymmetric CH stretch, v′′1 = v′1 and v′′3 = v′5, respectively. This leads to

a simplifying golden rule that has long guided our understanding of the emission spectrum

of acetylene: emission from Ã-state levels with no excitation in the Bn polyads will lead to

only one zero order bright state within each X̃-state polyad. That is, an Ã-state vibrational

level with vibrational quantum numbers (v′1, v
′
2, v
′
3, v
′
4 = 0, v′5, v

′
6 = 0) will have a strong

propensity to fluoresce to the zero-order bright state within each X̃-state polyad (with given

values of {Ns, Nres, l}) with quantum numbers

v′′1 = v′1, v′′2 = Ns − v′1 − v′5,

v′′3 = v′5, v′′4 = Nres − 5v′1 − 3v′2 − 5v′3,

l4 = l, v′′5 = l5 = 0. (6)

Intrapolyad interactions described by the global effective Hamiltonian will fractionate the

single zero-order bright state (6) between the eigenstates of the polyad in a manner that is

well understood.15,29
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On the other hand, in emission experiments from Ã-state vibrational levels with excitation

in the Bn polyads, previous investigators—who have used the conventional basis of polar |v, l〉

quantum numbers to label the degenerate linear molecule bending (2DHO) wavefunctions—

have observed multiple zero-order bright states within a given X̃-state polyad with different

combinations of l4 + l5 = l.15,31 The observed emission pattern within each X̃-state polyad

will result from interferences that arise when the multiple zero-order states are fractionated

among the eigenstates of the polyad. The SEP and DF spectra in Figure 1 from the three

K ′ = 1 members of the Ã-state 32B2 polyad to the NB = 10 pure bending polyad of the

X̃ state illustrate this point. Each member of the 32B2 polyad gives rise to a qualitatively

different pattern of intensities that are distributed across the polyad set. Because many

quanta of both v′′4 and v′′5 are required to form large-amplitude local bender levels relevant

to the acetylene ⇀↽ vinylidene isomerization, it is important to understand the emission

intensities from Bn polyads. This was a large part of the motivation for our recent full-

dimensional FC calculation.24,25

In complement to previous work, we show that—when the X̃-state bending modes ν ′′4 and

ν ′′5 are viewed in the basis of Cartesian doubly degenerate 2DHOs with in-plane (y) and

out-of-plane (x) bending quanta—there are additional, stricter, Franck-Condon propensities

that require conservation of the number of in-plane vs. out-of-plane cis bend quanta. That

is, there is a strong propensity for

v′′5x = v′4, v′′5y = v′6. (7)

Also, because the out-of-plane component of ν ′′4 correlates with a rotation in the trans-bent

Ã-state, the Ã-state Eckart conditions prevent ν ′′4x from participating in the vibrational FC

overlap intensities. This leads to the additional Cartesian propensity, v′′4x = 0. This Eckart

restriction is explained in detail in Ref. 24, and is based on considerations for linear-to-

bent transitions that were first utilized by Kovner et al.32 and later described in detail by

Watson.33,34 However, the work of Kovner and Watson was limited to systems where only

one bending vibration was considered, so these authors did not explore the multidimensional

bending dynamics encoded by bright states that arise from linear-to-bent transitions in

polyatomic molecules.

The advantage of applying these stricter Cartesian-basis propensity rules is that in the
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FIG. 1. The SEP spectra from J ′ = 1 intermediate levels of the three different K ′ = 1 stacks of the

32B2 polyad of the Ã state (labeled with Roman numerals in order of increasing energy) into the

{Ns, Nres} = {0, 10} pure bending polyad set of the X̃ state are displayed as downward-directed

peaks. The eigenstate compositions of the SEP intermediates are given in Table IV. The DF

spectrum from 32B2 K ′ = 1 Q(1) is shown for comparison at the top of the figure. Also shown as

upward stick spectra are the polyad set intensities obtained from the Cartesian propensity model.

The stick spectrum is colored according to the symmetry of the lower level (see legend).

new basis there is only one zero-order state within a given X̃-state polyad that is bright in

emission from any zero-order level of the Ã state, including those with excitation in the mem-

bers of the Bn polyads. Thus, when the bright state is viewed in the Cartesian basis, there is

no interference. An Ã-state level with vibrational quantum numbers (v′1, v
′
2, v
′
3, v
′
4, v
′
5, v
′
6) will
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have a propensity to fluoresce to the member of a given X̃-state polyad set with quantum

numbers

v′′1 = v′1, v′′2 = Ns − v′1 − v′5,

v′′3 = v′5, v′′4y = Nres − 5v′1 − 3v′2 − 5v′3 − v′4 − v′6,

v′′4x = 0, v′′5x = v′4, v′′5y = v′6. (8)

Bright states of the type given in Eq. (8) represent a well-defined linear combination of

degenerate 2DHO states in the polar basis with quantum numbers |v(l4)4 , v
(l5)
5 〉, which is the

basis in which the X̃-state global effective Hamiltonian is written.15,29,35 The Cartesian-to-

polar transformation (in the signed-l product basis of ν ′′4 and ν ′′5 ) is obtained by standard

ladder operator methods:

|vl44 ,vl55 〉 = [(n4d)! (n4g)! (n5d)! (n5g)!]
−1/2

×
(
â†4x + iâ†4y

)n4d
(
â†4x − iâ

†
4y

)n4g

×
(
â†5x + iâ†5y

)n5d
(
â†5x − iâ

†
5y

)n5g

|0, 0〉|0, 0〉, (9)

where

n4d =
1

2
(v4 + l4), n4g =

1

2
(v4 − l4),

n5d =
1

2
(v5 + l4), n5g =

1

2
(v5 − l5).

The terms in the expansion of Eq. (9) are evaluated according to

(â†4x)v4x(â†4y)
v4y(â†5x)v5x(â†5y)

v5y |0, 0〉|0, 0〉

= (v4x!v4y!v5x!v5y!)
1/2 |v4x, v4y〉|v5x, v5y〉. (10)

The |v(l4)4 , v
(l5)
5 〉 basis functions must be symmetrized to form states of well-defined vibra-

tional parity:

|v(l4)4 , v
(l5)
5 〉± =

1√
2

(
|v(l4)4 , v

(l5)
5 〉 ± |v

(−l4)
4 , v

(−l5)
5 〉

)
. (11)

Because of the K ′ − l′′ = ±1 rotational selection rule for the c-type transition moment,

only a handful of terms from Eq. (9) must be evaluated to obtain the desired transformation.

The basis transformation coefficients have asymptotically limiting behavior as NB increases.

For example, in Figure 2, the Cartesian overlap coefficients are shown for emission from

the ag members of B2 upper levels to the various classes of pure-bending bright states, as
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a function of NB. Note that the overlaps from the in-plane 62 vibrational level and the

out-of-plane 42 vibrational level are identical in magnitude, but have a phase relationship

that gives rise to qualitatively different bending dynamics and spectral intensity patterns.25

From the correlation table connecting D∞h to C2h, we find that in emission to l = 0 levels of
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FIG. 2. Overlap of the zero-order Cartesian bright states |v′′4x, v′′4y〉|v′′5x, v′′5y〉 = |0, NB − 2〉|0, 2〉
(panel a) and from |0, NB − 2〉|2, 0〉 (panel b)—which are accessed from 62 and 42, respectively—

with the l = 0, 2 zero-order polar 2DHO basis states. The various classes of polar basis bright

states are indicated in the legend. The magnitude of overlap does not depend on which Cartesian

plane of ν ′′5 is excited. However, the different pattern of phases that is obtained from either plane

encodes a qualitatively different spectral interference pattern from 6n vs. 4n (as in Figure 1) and

qualitatively different bending dynamics (see Figures 3 and 4 of Ref. 25).

the X̃-state, the vibrational selection rules are ag → σ+
g , bg → σ−g , au → σ−u , and bu → σ+

u .

IV. CORRECTIONS FOR ANHARMONIC INTERACTIONS

In the current work, we use the X̃-state global effective Hamiltonian parameters of Ref.

15 to obtain the fractionation of zero-order basis states obtained from Eq. (8) into the
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eigenstates on the X̃ electronic surface. Although a global effective Hamiltonian fit has

not been reported for the Ã state, considerable effort has been made to characterize the

vibrational structure and most of the Bn intrapolyad interactions are understood up to 5000

cm−1 above the Ã-state origin.5–8,10,36 The individual polyad fit models (using the complex

matrix elements defined in Eq. 8 of Ref. 8) can be used to obtain the correctly phased linear

combination of zero-order bright states given in Eq. (8). Tables III and IV list the zero-order

contributions to the specific eigenstates of the 32B1, 33B1, and 32B2 polyads whose emission

spectra are modeled in Section V. In Section V, the b-axis Coriolis interaction with the

K ′ = 0 levels is neglected, because it is a small effect and any K ′ = 0 character that results

will fluoresce to X̃-state polyads with l = 1.

TABLE III. Eigenenergies (in cm−1) and basis state coefficients for the nominally 3n61 JKaKc = 110
upper levels used to obtain the DF spectra reported in Ref. 15. The coefficients are obtained from

the fit parameters for a- and b-axis Coriolis interactions given in Refs. 6 and 7.

zero-order n = 2 n = 3

vib. level JKaKc 44972.36 45941.07

3n61 110 −0.841i −0.938i

3n41 101 0.036 0.027

111 0.539 0.345

TABLE IV. Eigenenergies (in cm−1) and basis state coefficients for the three K ′ = 1 levels of the

32B2 used as the upper level for the SEP spectra in Figure 1. The levels are labeled with Roman

numerals in order of increasing energy. The R(0) and Q(1) transitions used in the PUMP terminate

on levels of opposite total rovibronic parity.

zero-order (I) R(0) (II) Q(1) (III) Q(1)

vib. level JKaKc 45728.12 45728.20 45812.77

3242(ag) 101 0.054i 0.035

111 0.63i 0.74

110 0.19

324161(bg) 101 0.021i

111 0.25i

110 0.77 −0.59i

3262(ag) 101 −0.0013i −0.016

111 0.078i −0.31

110 0.95
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FIG. 3. High-resolution DF spectra obtained from JKaKc = 110 rotational levels of 3261 and 3361

into a representative collection of pure-bend and stretch-bend polyad sets. The DF spectra have

been previously reported in Ref. 15, and the eigenstate compositions of the upper levels are given

in Table III. Stick spectra show the relative intensities obtained from the Cartesian propensity

model, colored according to the symmetry of the lower state. In panels (c) and (d), the modeled

intensities into the polyad sets {Ns, Nres} = {2, 12} and {0, 12} are scaled by the relative Franck-

Condon factors reported in Ref. 15.

V. COMPARISON OF MEASURED EMISSION INTENSITY PATTERNS

WITH THE CARTESIAN BRIGHT STATE MODEL

Figure 3 provides a comparison between the high resolution DF spectra obtained from

the JKaKc = 110 rotational level of the 3261 and 3361 (Ref. 15) and the Cartesian propensity

model developed in Section III. The zero-order members of the B1 polyad are almost exactly

degenerate and the eigenstates are strongly mixed by a- and b-axis Coriolis interactions.6

However, because modes ν ′3 and ν ′6 combine to form the reaction coordinate for the trans ⇀↽

cis isomerization, there is a large negative x36 cross-anharmonicity that encodes the soften-

ing of the potential energy surface along the approach to the barrier.5 In the combination

polyads, 3nB1, the addition of mode ν ′3 causes a much larger decrease in the effective ν ′6 fre-

quency than in the effective ν ′4 frequency. As a result, the zero-order 3n61 levels are detuned

from resonance, and the mixing angle of zero-order 3n41 into the nominally 3n61 eigenstate

decreases with increasing n (see Table III).

The model captures several clear differences between the intrapolyad intensity patterns
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in Figure 3 that result from the evolution of the 3nB1 polyad structure. First, because the

symmetry of 3n41(au) correlates to Σ−u and the symmetry of 3n61(bu) correlates to Σ+
u , the

relative intensity of transitions to Σ−u levels is a direct measurement of the au character of

the upper level. There is a ∼ 2 fold decrease in the relative intensity of Σ−u levels when the

upper level is changed from 3261 to 3361, which is consistent with the decreased admixture

of 3n41 character from a-axis Coriolis effects in the upper level. Similar arguments are used

by the authors of Ref. 5 to determine the ag vs. bg character of the members of 32B2 from

the appearance of Σ−g peaks in the SEP spectrum.

On the other hand, ∆u correlates with au + bu, so the intensities of transitions to ∆u

levels in Figure 3 arise from interferences between the zero-order au and bu contributions to

the upper eigenstate. For example, the intensity of the transitions to the ∆u level at 3860

cm−1 in the pure-bend polyad set {Ns, Nres} = {0, 6} and at 5770 cm−1 in the stretch-bend

polyad {1, 9} arises from constructive interference with the admixed 3n41 character. Thus

the relative intensity decreases with n.

The emission to Nres = 12, shown in Figure 3 panels c and f, is qualitatively different

because v′′4 = 11 is the location of the first node in the trans-bending progression from 3261,

so the set of pure bending polyads with {Ns, Nres} = {0, 12} do not appear in the spectrum

from 3261. On the other hand, the trans-bending progression from 3361 has its first node in

the trans bending progression at v′′4 = 9, so both the {2, 12} and {0, 12} polyad sets appear

in the spectrum. This shift in the node position reflects the shift in the first node of the

upper state vibrational wavefunction along the trans-bend coordinate.

The DF spectrum to the {1, 11} polyad set is shown in Figure 4 and is compared with

both the results of the full Franck-Condon calculation, described in Refs. 24 and 25 (upward

stick spectra) and the Cartesian propensity model described in Section III (downward stick

spectra). The Cartesian propensity model does a fairly good job of reproducing the highly

fractionated bright states, but the relative intensities at the weak, high-frequency end of

the polyad are not reproduced by the model. For example, the model overestimates the

intensity of the cluster at ∼7080 cm−1 relative to the peaks at ∼7220 cm−1. When the full

FC calculation is used, the relative intensities are in closer agreement with the observed

spectrum. The cause for this is Duschinsky rotation among the bu levels (ν ′5 and ν ′6, which

correlate to ν ′′3 and ν ′′5—see Tables I-II). In the full FC calculation, there is non-negligible

intensity into the class of bright states (v1, v2, v3, v
(l4)
4 , v

(l5)
5 ) = (0, 0, 1, 6(l), 00). This class
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of bright states involves an exchange of one quantum of ν ′′3 for ν ′′2 + ν ′′4 + ν ′′5 and carries

approximately 0.3% of the intensity away from the nominally bright states of the type

(0, 1, 0, 7(l4), 1(l5)), which is sufficient to cause noticeable disagreement with the model at the

weak, high-frequency end of the polyad. In emission from 3361, the full FC calculation still

places too much relative intensity in the cluster at ∼7120 cm−1. This is probably caused

by additional anharmonic interactions between 3361 and nearby levels (most notably B5(II)

K = 1).10 At present, these interactions are incompletely understood and are not taken into

account in our model.

Figure 1 shows the SEP spectra (downward peaks) from the three K ′ = 1 rotational stacks

of the 32B2 polyad. Roman numerals are used to label the admixed energy levels from low

to high. Also shown for comparison are the DF spectrum from 32B2(III) and the relative

intensity patterns obtained from the Cartesian propensity model. The SEP spectra are

obtained at much higher resolution than the DF spectrum, but the DF spectrum has greater

sensitivity. Furthermore, the DF spectrum has its intensity calibrated against the emission

spectrum of a halogen lamp dispersed to the same detector, whereas the intensities in the

SEP spectra are not corrected for fluctuations in laser power and laboratory conditions as

the laser is scanned. Therefore, the relative intensities in the DF spectrum are quantitatively

accurate to within better than 15%, whereas the relative intensities in the SEP spectra are

only qualitative.

The intensity patterns in Figure 1 are reproduced remarkably well by the Carte-

sian propensity model. The zero-order 3262 state is detuned from polyad resonance by

isomerization-induced x36 cross anharmonicity so that it is separated from the zero-order

324161 level by 82.12 cm−1 and from the zero-order 3242 level by 102.91 cm−1. As a result, the

32B2(I) JKaKc = 110 level escapes most of the effect of a-axis Coriolis interaction with 324161

via the 2Aζa46 = 23.559 cm−1 matrix element, but it is not immune to Darling-Dennison

interaction with 3242 via the K4466 = −66.502 cm−1 matrix element (see Table IV).5

As a result of strong a-axis Coriolis interaction between 3242(ag) and 324161(bg), the

emission spectra from 32B2(II) and 32B2(III) both terminate on levels with Σ+
g and Σ−g

symmetry with comparable relative intensity, even though 3242(ag) nominally fluoresces

only to l = 0 levels of Σ+
g symmetry and 324161(bg) fluoresces only to l = 0 levels of Σ−g

symmetry. On the other hand, the emission spectrum from 32B2(I) includes fluorescence

only to l = 0 levels of Σ+
g symmetry, because 3262 is detuned from a-axis Coriolis resonance

14
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FIG. 4. High-resolution DF spectra obtained from JKaKc = 110 rotational levels of 3261 and

3361 into the {Ns, Nres} = {1, 11} polyad set. The DF spectra have been previously reported

in Ref. 15. For comparison, the relative intensities obtained from the Cartesian propensity model

(downward stick spectra) and the Full Franck-Condon calculation described in Ref. 24 (upward stick

spectra) are shown, colored according to the vibrational symmetry of the lower level (see legend).

Duschinsky rotation of the bu modes leads to minor discrepancies between the observed spectrum

and the Cartesian propensity model, which are reproduced by using the Full FC calculation. (See

the text for further discussion.)
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with 324161. In the emission spectrum from 32B2(III), the first cluster at ∼6380 cm−1

is absent due to destructive interference from 3242 ↔ 3262 Darling-Dennison interaction.

Unfortunately, the SEP spectrum obtained from 32B2(I) has poor signal-to-noise due to the

weakness of the PUMP transition, so the complementary constructive interference is not

observed in the spectrum. Nevertheless, the six peaks in the 32B2(I) SEP spectrum that are

above the signal-to-noise floor are the six strongest transitions predicted by the Cartesian

propensity model.

VI. ANALOGY TO NONLINEAR MOLECULAR SYSTEMS

Our goal in the current work has been to model the emission spectrum of acetylene, but

in this section we briefly point out that our analysis is generally applicable to a wide range

of molecular systems. In any electronic transition that involves a change of equilibrium ge-

ometry from a point group with degenerate representations to one without degenerate repre-

sentations, each doubly-degenerate vibrational mode will correlate with two non-degenerate

vibrational modes of different symmetry. Therefore, we expect similar effects not only in

other linear-to-bent transitions but also in any other symmetric-to-asymmetric-top transi-

tions, where the coordinate transformations for Franck-Condon integrals are most naturally

performed using a Cartesian basis for the degenerate vibrations.

As a concrete example, consider the doubly degenerate mode ν ′′11 in the ground electronic

state of allene 1A1 (D2d), pictured in the bottom half of Figure 5. Because allene is a

symmetric top in the D2d configuration, the choice of molecule-fixed x and y axes is arbitrary

and any linear combination of the degenerate components may be used to represent the

vibration. In Figure 5, we have chosen the x and y axes to lie in the planes defined by

the H–C–H groups at either end of the molecule, which are oriented at 90◦ to one another.

We have chosen the phases of the two components so that ν ′′11x encodes motion in the xz

plane and ν ′′11y encodes motion in the yz plane. In either case, one of the H–C–H groups

undergoes an out-of-plane rocking motion and the other H–C–H group undergoes an in-

plane wagging motion. In the rotating allene molecule, the components of the degenerate

e vibrational modes are split by first-order (and higher-order) a-axis Coriolis interactions

into eigenstates with well-defined l quantum number.37 Eigenstates of this type with ±l11
vibrational angular momentum quantum number will have wavefunctions that depend on
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the complex linear combination of Cartesian normal coordinates q′′11x ± iq′′11y.

The first excited 1B1 electronic state of allene is stabilized by a large-amplitude torsion

according to Walsh’s rules, and theoretical calculations predict a planar geometry.38 (The

electronic symmetry correlates to 1Ag in D2h.) The doubly-degenerate e vibrational modes

are split into singly degenerate modes of b2 and b3 symmetry. The top half of Figure 5 shows

the ν ′14(b3u) and ν ′15(b2u) modes that correlate with the y- and x-axis components of ν ′′11y and

ν ′′11x, respectively. Although similar correlations exist for the other doubly degenerate modes

of allene, we have chosen this mode as an example because it bears a striking resemblance

to the acetylene case where out-of-plane torsion (ν ′4) and in-plane bending (ν ′6) modes in the

excited electronic state correlate with the Cartesian components of the degenerate ground

electronic state cis bend (ν ′′5 ).

In analogy to acetylene, we expect the Franck-Condon factors to obey propensity rules in

the basis of the Cartesian components of ν ′′11. That is, we expect bright states that conserve

quanta of v′′11y = v′14 and v′′11x = v′15 to have the strongest Franck-Condon factors. These

zero-order Cartesian bright states will be fractionated by the effective Hamiltonian into

eigenstates with well-defined vibrational angular momentum. Certainly, this is not a novel

idea, because the natural approach to the coordinate transformation the in planar↔twisted

allene problem is to use the point group of lower symmetry (D2h). The authors of Ref. 39 have

used ab initio calculations of the ground 1A1 and excited 1Ag electronic states to calculate

a full-dimensional Duschinsky matrix for the transition. The results indicate that the q′14

and q′15 modes remain essentially unmixed with other normal coordinates, which supports

our argument for Cartesian propensity rules. In Table 5 of Ref. 39, the relative orientations

of the x- and y- axes for the ground state Cartesian-to-normal-mode transformation are

not specified (and the choice is arbitrary for symmetric top molecules), but the normal

coordinates will match those given in our Figure 5 if the axes are chosen to lie in the

dihedral planes (rotated 45◦ about the z-axis relative to our axis choice in Figure 5).

There are numerous double-bonded systems that undergo torsional displacement upon

electronic excitation and similar propensity arguments should hold. Such systems have

received widespread attention because of interest in photoinduced cis-trans isomerization.40

Propensities will exist for conserved quanta in Cartesian Franck-Condon zero-order bright

states to be fractionated among the eigenstates by Coriolis forces and other interactions. Of

course, the zero-order Franck-Condon bright states have a direct bearing on photoinduced
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FIG. 5. Allene has a twisted D2d geometry in its 1A1 ground state but π∗ ← π excitation leads to

a planar D2h
1Ag state at an adiabatic (non-vertical) electronic excitation energy of ∼3 eV. The

lower half of the figure depicts the two Cartesian components of the degenerate ν ′′11 (e) vibrational

mode. These components correlate to the non-degenerate out-of-plane rock ν ′14 and in-plane wag

ν ′15 of the excited state.

isomerization dynamics.

VII. DISCUSSION AND CONCLUSION

Although the Ã → X̃ emission intensities in acetylene have attracted the attention of

researchers for more than two decades, the origin of relative intensities within polyad sets

with given {Ns, Nres} quantum numbers have not previously been fully understood. For
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example, the authors of Ref. 15 were forced to treat the interference pattern of ∆u levels in

the 3n61 DF spectra by empirical fitting—it was not understood at the time how to predict

the interferences, even though the eigenstate compositions of the upper levels7 and the lower

levels15,35 were already known. So far, fluorescence patterns obtained from Ã-state levels

with intensity in Bn polyads have always been discussed in terms of more than one bright

state per polyad of the X̃ state, because the X̃-state effective Hamiltonian is written in terms

of the polar 2DHO basis.15 In the current work, we demonstrate that in the Cartesian basis

of degenerate 2DHOs for the bending modes, this is not the case, and there is a propensity

for only one bright state per X̃-state polyad, described in Eq. (8). In other words, we show

that the most appropriate basis for writing the effective Hamiltonian of the linear X̃ state

(the polar basis) is not the same as the “best” basis for describing the zero-order bright

states that are observed in emission from the Ã state. These are better described in the

Cartesian basis because of the way in which the bent Ã state “chooses” an x, y axis frame

for Franck-Condon integral. However, the two basis sets are connected by a straightforward

ladder operator transformation that enables us to greatly simplify our interpretation of the

intensity patterns.

Our treatment of the linear-to-bent acetylene transition is analogous to the most natural

treatment for nonlinear symmetric-to-asymmetric-top transitions, where the x and y com-

ponents of degenerate symmetric top vibrations are chosen to correlate to the components

of the lower-symmetry modes along the well-defined x and y asymmetric top axes. How-

ever, linear-to-bent transitions have led to confusion in the literature because the number

of vibrational degrees of freedom changes from 3N − 5 to 3N − 6, so the correlation of the

bending modes is not straightforward. We believe that our treatment should be quite general

for linear polyatomic molecules undergoing transitions to bent geometries. One Cartesian

bending mode component will correlate to the a-axis rotation in the bent molecule. Due

to Eckart constraints, this component will not contribute to the vibrational FC overlap.

Franck-Condon propensities in the other bending modes should be viewed in the basis of

in-plane vs. out-of-plane Cartesian components of the planes chosen by the nonlinear equi-

librium configuration.

Furthermore, the relative intensities between the different polyads that comprise a polyad

set with given {Ns, Nres} quantum numbers (but differing in l, g/u symmetry and +/− total

parity) are also correctly described by the Cartesian propensity model. Of course, in order
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to predict the relative intensities between polyad sets differing in Ns and Nres, one must

also know the Franck-Condon progressions in the FC-active modes, ν ′′2 and ν ′′4 . A full FC

treatment is also necessary in order to correct for the effects of Duschinsky rotation or for

interferences caused by Ã-state interactions that are off-diagonal in the approximately con-

served Bn polyads. The effects of Duschinsky rotation are minor and will not affect emission

intensities into pure bending polyads because each of the Ã-state bending modes (ν ′3, ν
′
4, and

ν ′6) belong to different symmetry blocks, so Duschinsky rotation only causes stretch↔stretch

or stretch↔bend interactions, and not bend↔bend interactions. However, in the absence

of a global rovibrational Ã-state effective Hamiltonian, extrapolyad interactions remain a

challenge.

The success of our Cartesian propensity model relies on our knowledge of the Bn intra-

polyad interactions in the Ã state. Not only does the model provide an additional physical

test of our description of intra-polyad interactions in the upper levels—it should also pro-

vide us with a means of observing directly the evolution of the bending dynamics of Ã-state

acetylene in the vicinity of the trans ⇀↽ cis isomerization. For example, Figure 4 of Ref.

41 depicts the evolution of the 3nB4 polyad wavefunctions as quanta of ν ′3 are added. In-

trapolyad Darling-Dennison resonance causes the wavefunctions of B4 to resemble degenerate

2DHO wavefunctions with well-defined l quantum number. However, as quanta in ν ′3 are

added, the isomerization causes the bending character to evolve in a manner that ought to

be directly observable in the emission patterns from these levels. Previous work has made

qualitative use of intensity distributions in overview DF spectra to characterize levels of

Ã-state acetylene.14,42 However, as we have shown in the current work, the full emission

spectrum is not necessary—the high-resolution emission pattern from the upper level in

question to a single X̃-state polyad set provides the quantitative information necessary for

a complete characterization of the bending dynamics of the upper level.

Finally, the Cartesian propensity model gives us an additional tool for understanding

the vibrational dynamics in the X̃-state that are encoded by the intrapolyad fractionation

patterns that are observed in the spectrum, since it is straightforward to transform from a

Cartesian zero-order bright state to a spectral interference pattern. As shown in Ref. 25,

it is also straightforward to transform to the basis of local bending modes relevant to the

acetylene ⇀↽ vinylidene isomerization. Indeed, the quest to find Ã-state levels that grant

access to local bending levels along the acetylene-vinylidene isomerization path was a major
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motivating factor for the work described here.
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