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Abstract—Solving a non-linear inverse problem is challeng-
ing in computational science and engineering. Sampling based
methods require a large number of model evaluations; gradient-
based methods require fewer model evaluations but only find
the local minima. Multifidelity optimization combines the low-
fidelity model and the high-fidelity model to achieve both high
accuracy and high efficiency. In this paper, we present a bi-
fidelity approach to solve non-linear inverse problems. In the
bi-fidelity inversion method, the low-fidelity model is used to
acquire a good initial guess, and the high-fidelity model is
used to locate the global minimum. Combined with a multi-
start optimization scheme, the proposed approach significantly
increases the possibility of finding the global minimum for non-
linear inverse problems with many local minima. The method
is tested with two toy problems and then applied to an electro-
magnetic well logging inverse problem, which is difficult to solve
using traditional gradient-based methods. The bi-fidelity method
provides promising inversion results and can be easily applied to
traditional gradient-based methods.

Index Terms—bi-fidelity, multi-fidelity, gradient-based inver-
sion, inverse problem, polynomial chaos expansion, well logging

I. INTRODUCTION

NVERSE problems are ubiquitous in scientific and engi-

neering fields, such as geophysics, astronomy, computer
vision and medical imaging. Most of the time, these in-
version problems are ill-posed and non-linear thus can not
be well-solved using deterministic inversion methods [1].
The Bayesian inference approaches, such as Markov Chain
Monte Carlo (MCMC) sampling [2], make it possible to
find the global optimum. The major challenge of sampling-
based methods is the computational burden induced by a large
number of evaluations of the forward model. When the forward
simulation is CPU-intensive, sampling-based methods become
computationally prohibitive. The forward model producing
outputs that satisfy the accuracy requirement of the task at
hand is normally a high-fidelity model. The low-fidelity model
or the surrogate model, constructed as an approximation of the
high-fidelity model, is cheaper to evaluate but not necessarily
accurate. Fast surrogate models are also valuable for sampling-
based methods to dramatically reduce computational costs.
Many surrogate modeling methods such as polynomial chaos
expansion (PCE) [3], Gaussian process regression [4], support
vector machines (SVMs) [5], [6] and other simplified models
[7], [8] have been developed and successfully employed for
many optimization tasks [9], [10]. However, simply replacing
the high-fidelity model with the low-fidelity model can lead
to biased parameter estimations. A multifidelity optimization
method that takes advantage of both low-fidelity and high-

fidelity models has drawn great attention because of its capa-
bility of achieving desired accuracy and efficiency.

Many previous works implemented the multifidelity model
by adapting the low-fidelity model during the inversion pro-
cess. These methods rely on a large number of low-fidelity
evaluations along with a small number of high-fidelity eval-
uations to build a correction for the low-fidelity model. The
adjusted model then serves as a multifidelity approximation to
the high-fidelity model. For example, in [11] the polynomial
chaos expansion (PCE) surrogate modeling error is modeled
by another PCE during the MCMC sampling process. The
low-fidelity model can also be corrected by a multiplicative
or/and additive term, see [12], [13], [14] for example.

There are also some works using a model management
strategy based on filtering, where the high-fidelity model is
invoked following the evaluation of a low-fidelity filter. This
strategy is mainly employed under the context of statistical
inference [15], [16], [17], [18], [19]. However, these methods
may have limited applications, because they are sensitive to
large modeling errors introduced by the low-fidelity model
[11] and the computational budget might still be unacceptable
for high-dimensional (d > 10) problems [20]. For example, the
logging-while-drilling (LWD) electromagnetic (EM) resistivity
measurement inverse problem shown in Section 5 is high-
dimensional (usually larger than 10) with strong non-linearity
and requires real-time inversion. Our tests demonstrate that a
9-parameter LWD forward model is too hard to approximate
at an affordable computational cost in the context of a multi-
fidelity statistical inference method.

Different from previous works, in this work we develop
a bi-fidelity approach that is designed for gradient-based
methods. The motivation for this work is twofold. First, an
accurate surrogate is not always available. Second, sampling-
based methods are not computationally efficient enough for
inverse problems in some real-time applications even with low-
fidelity models. To address the above problems, our bi-fidelity
approach is summarized as follows:

e The surrogate model is used in a gradient-based opti-
mizer. The result is taken as the initial guess for the
next gradient-based optimization process using the high-
fidelity model. The two-step approach is less sensitive
to the modeling error of the low-fidelity model. The
surrogate model smooths out local minima of the high-
fidelity model and is much cheaper to construct.

« To reduce the probability of being stuck in local minima,
we use a multi-start framework for the deterministic
inversion. The multi-start framework is thoroughly de-
scribed in [21], it is efficient for problems where solutions



can be easily constructed but have multiple local minima.
Though the surrogate modeling methods have been widely
explored in recent years, there is no surrogate model that works
well for all kinds of applications. In this work, we use PCEs
as low-fidelity models of the EM resistivity LWD forward
model for the purpose of bi-fidelity inversion. The reason of
choosing PCE as the surrogate model is two-fold: (a). PCE is
good at capturing global trends in the high-fidelity model; (b)
the input dimensionality is too high for many other surrogate
models. The original PCE model also suffers from the curse of
dimensionality, which means that a prohibitively large number
of sample points are required when the problem dimensionality
is high. To combat this challenge, Sargsyan et al. developed a
methodology to construct a sparse PCE surrogate by learning
and retaining the most relevant polynomial basis terms with the
aid of sparse Bayesian learning [22]. We adopt this approach to
construct a sparse PCE surrogate for the EM resistivity LWD
forward model for multi-layer earth models. The proposed
approach is tested on 2D and 3D Shekel functions as well
as multi-layer LWD inverse problems. LWD inverse problems
usually have many local optimal solutions due to the non-
linearity of the forward model. Given the high dimensionality
and time requirement of LWD inverse problems, deterministic
inversion methods based on the gradient is still widely used
[23], [24], [25], [26]. To our best knowledge, it is the first
work that uses multi-fidelity optimization for LWD inverse
problems. Testing results show that our approach significantly
improves the inversion accuracy with negligible computational
overheads.

II. BACKGROUND

In this section, we first describe the gradient-based opti-
mization methods for inverse problems. Then we introduce a
PCE surrogate construction method using sparse learning in a
Bayesian framework.

A. Inverse Problems

In this paper, we are interested in the problem of estimating
a set of unknown model parameters * € R™ from indirect
measurements y € R™. With a non-linear forward function
f (@) that yields responses given model parameters, the inverse
problem is defined as follows:
argmin|| f(x) — y||3 (1
xcR™
This is an unconstrained non-linear least-square optimiza-
tion problem and many numerical methods are developed
to solve such a problem by iteratively updating the model
parameters to minimize the misfit between the observation y
and the model prediction f(x). To determine the direction
of the model updating, derivative of the objective function
needs to be calculated during each iteration. For example,
given the objective function F(z) = || f(x) — y||3, at the
i-th iteration the gradient-descent algorithm [27] updates the
model parameters x to the direction of the negative gradient
of F at ¢;_1, i.e. VF(x;_1), as follows:

Ty =Tj—1 — P)’VF(wifl) 2

where the positive step size 7y controls the converge speed and
the accuracy of the algorithm. For multi-variate functions, the
derivative VF'(x;_1) is the Jacobian matrix J of F at x;_1.
With certain assumptions on the function F' and particular
choices of ~, the algorithm is guaranteed to converge to a local
minimum. In case that the function F' is twice-differentiable,
one can use Newton’s method [28] to minimize the objective
function more efficiently by the following updating rule:

3)

where V2F(x;_1) is the Hessian matrix of F' at x; ; and
automatically decides the step size. However, if the second-
order derivative is computationally expensive, it will be less
efficient to compute it at each iteration. As a modification of
Newton’s method, the Gauss-Newton algorithm replaces the
second derivative with an approximation:

V2F(x;) = J(x;) T T (x;)

L, = &L;—1 — (VQF($i_1))7IVF($i_1)

“4)

The Levenberg-Marquadt algorithm (LMA) [29], [30], also
known as the damped least-squares (DLS) method, is a hy-
brid approach. Comparing to the Gauss-Newton algorithm, a
damping term is added to the updating rule:

;i =xi 1 — (J(xi )T T (2i_1)) + \XI)7'VE(x_1) (5)

where small values of A result in a Gauss-Newton update and
large values of A result in a gradient descent update. The
damping factor is adjusted during each iteration, as a result,
the solution typically reaches the local minimum faster. In this
work, we use LMA to solve the inverse problems.

B. Polynomial Chaos Expansion Surrogate

In this section, we describe the polynomial chaos approx-
imation to the forward model y = f(x), where * € R" is
an n-dimensional input vector and y is a scalar output. In
polynomial chaos (PC) theory [31], [32], both input param-
eters and the output of interest are represented as a series
of orthogonal polynomials Wy (&) of standard, i.i.d. random
variables £ € R™. As such, the input parameters can be written

as follows:
Kin —1

T = Z 2k V5(§) (6)
k=0

where z;; for ¢ = 1,2,...,n,k = 0,1,..., K;;, — 1 are the
expansion coefficients corresponding to the polynomial chaos
expansion for the input parameter x. K, is the number
of basis terms in the input PC expansions which can be
fixed at 2 so that = and £ has a linear relationship. We go
through this exercise to construct a probabilistically consistent
functional form for the model outputs dependency on the input
parameters. The output is written as

K-1

y= Z cxVi(§)

k=0

)

where ¢ for £k = 0,1,..., K — 1 are the PCE coefficients
for the output y, the value of K is chosen according to the
modeling accuracy requirements.



The type of polynomials W (€) is chosen to keep consis-
tency with the distribution of €. For example, Hermite poly-
nomials are used for normally distributed random variables
and Legendre polynomials are used for uniformly distributed
random variables. For the surrogate construction purpose, one
can use the first-order polynomial of &; to represent the
input parameters z;. Subsequently, an available data set of
input output pairs {x;,y;}X, can be linearly transferred to

= {&,v:}Y, and what remains is determining cj, in eq.
(7) with the given data.

There exist intrusive and non-intrusive methods [33] for the
calculation of the polynomial coefficients ci. The intrusive
approach requires a reformulation of the solution method
and rewriting of the code and it is not always practical.
Alternatively, the non-intrusive method does not require an
explicit representation of the forward model but treats it
as a black-box. Non-intrusive methods attempt to solve the
following explicit problem:

Kmfl

Z Ck\I/k Z Ty, k\I/k

which can be solved using non-intrusive spectral projection
(NISP) [34] or regression-based methods [35] to compute the
coefficients ci. NISP provide the coefficients as

ck = (Y, Yr) /(Ur, V) ©)

where (X (€),Y(€)) is the inner product of two functions
X and Y with respect to the probability density function
of &. (¢g,1y) is in practice known exactly, (y, ) can be
calculated by numerical integration

(s ) = / Yk (€)p(€)dE

Deterministic (Gauss quadrature) or random (Monte Carlo)
sampling can be used to compute the integration. However,
for high-dimensional problems, both methods require a large
number of simulation runs even with sparse sampling tech-
niques, which renders those approaches impractical for the
inversion problem under consideration.

Alternatively, eq. (7) can be treated as a regression model,
the regression coefficients c; can then be computed using
regression methods. In the following section, we will demon-
strate how to solve this regression problem efficiently with
Bayesian compressive sensing (BCS).

®)

(10)

C. Bayesian Compressive Sensing for Polynomial Regression

From the Bayesian point of view, the solution to the problem
of determining the coefficients c; in eq. (7) is a posterior
probability density function ¢(c):

q(c) < Lp(e)p(e) (11)

where Lp(c) is the likelihood of ¢, a measure of a goodness-
of-fit of the corresponding surrogate with respect to the given
data D, and p(c) is the prior distribution of ¢. Given a zero-
mean normal distributed noise model e with standard deviation
o, we can write the likelihood:

N
_ﬂ
Fowp(- Y e

i=1

—ye(&)? ) (12)

Lp(c) = (2n0?)

This problem becomes intractable for high-dimensional prob-
lems since the number of unknown coefficients will grow
rapidly with increasing dimensionality. In many applications,
most of the basis functions in PCE have negligible impact,
i.e. the vector c is sparse. It is efficient and reasonable to
only compute the most significant terms of the PCE, both
in the construction and evaluation of the PCE surrogates.
To this end, in [22] the authors proposed to use Bayesian
compressive sensing (BCS) to find a sparse representation of
c given available data [36], [37]. The key for inferring a sparse
PCE is to impose a prior distribution on c that induces sparsity.
A commonly used sparsity-inducing prior is the Laplace prior

K
Q@
ple) = (5)*exp(=a)_lle|) (13)
k=0
The vector ¢ that maximize the posterior g(c) in eq. (7) co-
incides with the solution of the classical compressive sensing
problem

arg max(log Lp(c) — a|c||1) (14)

c
where the regularization term «llc||; corresponds to the
sparsity-inducing prior distribution. The positive parameter
« is a user-defined value that controls the level of sparsity.
However, the Laplace distribution is not conjugate to the Gaus-
sian likelihood and thus does not allow a tractable Bayesian
analysis. This issue was addressed in sparse Bayesian learning,
particularly with the relevance vector machine (RVM) [38].
Instead of directly using the Laplace prior, a hierarchical prior
distribution is constructed with a Gaussian prior distribution

on c 9

2y ~ %
plerlst) = g elg55) (1)
and a gamma prior to the hyperparameter s%
o? a?s?
p(silo®) = = exp(——*) (16)
2 2
with a resulting (marginalized) Laplace prior density
0o K—1 K—-1 o
— [ I palsbpistia®yist = T e
0 2
k=0 k=0
a7

This procedure has been implemented in the Bayesian LASSO
method [39]. For details of the implementation, see [22], [37],
[40]. The task of finding PCE coefficients ¢ now has became
an optimization problem that finds hyperparameters o2, s? and
« that maximizes the evidence or the integrated likelihood

B(o*.5%.0) = [ Inleso®)n(els®)p(s* )p(a)plo?)de

_ _1 1 _
o HC| zexp(— =y T C~ly)

o< p(e)p(o®)p(s|a) 57

(18)
where C = I + S~ 'W. Here ¥ is an N x K pro-
jection matrix with entries W;, = Ug(§) and S =
diag(c/s3,...,0/s%_). In practice it turns out that for many

basis terms, the inverse variance S% that maximizes eq. (18)

grows indefinitely, i.e., s7 — 0. Tiiese terms will be purged
from the basis set.



Let us denote by K’ the number of retained basis functions,
and reindex them using k, for k = 0,1, ..., K’ —1. One obtains
a Gaussian posterior distribution for ¢ with mean and variance

p=oc220Ty (19)
=020y + 57!

where ¥ is an N x K’ projection matrix with entries ¥, =
V(&) and S = diag(o/s?,...,0/s% ). Finally, p is used
as coefficients to form a sparse PCE surrogate

K'—1

y= Y i€ (20)
=0

III. BI-FIDELITY APPROACH FOR GRADIENT-BASED
OPTIMIZATION

Low-fidelity model

High-fidelity model
IA

flx)

Fig. 1: An example of surrogate model that have large mod-
eling error at some points but are helpful for global search.

The major drawback of gradient-based methods is that they
are inherently local methods. However, as pointed out in
[41], for differentiable problems, one should first consider
using multi-start gradient-based optimization because of their
ease of implementation as well as their advantages in using
derivative. With many randomly distributed initial guesses, it
is likely that some models are close to the global minimum
and will finally converge to the global minimum. For high-
dimensional problems, the required number of initial guesses
grows exponentially to obtain the global minimum, which has
put big pressure on the computational resources. Based on
the empirical observation, a low-order surrogate with large
modeling error may not mislead the global search [42] since it
can smooth out the high-fidelity model as illustrated in Figure
1. In this paper, we propose a bi-fidelity approach that utilizes
a sparse PCE surrogate to help find initial guesses that may
converge to the global minimum, then uses the high-fidelity
model for an accurate inversion. PCE is a spectral expansion
approach that represents quantities-of-interest as a series of
orthogonal polynomials of standard, i.i.d. random variables
and has already been introduced in Section 2.2. We use LMA
for the inversion task in this work due to its good performance
on non-smooth objective functions, one can switch to any
other gradient-based algorithm according to the behavior of

the objective function. The workflow of the proposed method
is shown in Figure 2.

Before performing the bi-fidelity inversion, the low-fidelity
model should be constructed based on the high-fidelity model.
As shown in Figure 2, the surrogate replaces the high-fidelity
model in the inversion process at the first stage. The surrogate
used in step 1 is to capture the global trends in the response
surface and the solution at this stage is located closer to the
global optimum. At step 2, the LMA inversion is performed
with the high-fidelity model initialized with the solutions from
the previous stage. Finally, the solution with the smallest data
misfit will be selected as the final result. Comparing to the
single-fidelity inversion that only uses the high-fidelity model,
this bi-fidelity optimization strategy has a better chance of
escaping from local minima and reaching the global minimum.
Multi-start optimization scheme is used in this approach, the
number of required initial models is greatly reduced with the
help of the low-fidelity model.

IV. NUMERICAL TESTS

For the purpose of visualization, we test the performance of
the proposed approach on 2D and 3D Shekel functions. Shekel
function is a multi-dimensional, multi-modal, continuous func-
tion and is commonly used as a test function for optimization
algorithms [43]. As shown in Figure 3(a), there are 10 local
minima in the Shekel function. The global minimum has a
value of -11.03 and is located at (4, 4). We construct PCE
surrogates as the low-fidelity model of the shekel functions
for the purpose of bi-fidelity inversion. The 2D shekel function
is cheap and only contains 2 input variables, so we construct
full PCE surrogate models of order 30 and 15 using the non-
intrusive method introduced in II-B. The samples used for
PCE construction are generated using the uniform-Legendre
quadrature rule [44]. The surrogate models are shown in Figure
3(b) and Figure 3(c) respectively. When the PCE order is
increased, more local minimum in the high-fidelity model is
captured. Though the approximation error is large at some
points for both surrogate models, the response surface is
smoothed.

We first perform LMA inversion for the 2D Shekel problem
with only the high-fidelity model, which will be referred to
as the single-fidelity inversion. 10 different initial guesses are
generated by the Latin hypercube sampling (LHS) algorithm
and both input parameters are within the range [-15,15]. The
inversion results are shown in Figure 4(a). Only 1 model
converges to the global minimum and the rests converge to
the other 4 local minima. Figure 4(b) shows the inversion
results of using the proposed bi-fidelity method with a 30th
order PCE surrogate model. Compare to the high-fidelity case,
more initial models have converged to the global minimum.
However, there are still some initial models trapped in local
minima. The result of bi-fidelity with a PCE surrogate of 15th
order is shown in Figure 4(c), where all initial models converge
to the global minimum. This example demonstrates that the
fidelity of the surrogate model can have great effect to the bi-
fidelity inversion result. The best choice of low-fidelity model
can be different for different applications. For PCE surrogates,
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Fig. 2: The bi-fidelity LMA inversion workflow.
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Fig. 3: (a) The 2D Shekel function with 10 local minima. (b) The 30th order PCE surrogate of the 2D Shekel function. (c)

The 15th order PCE surrogate of the 2D Shekel function.

we suggest one to start with a surrogate model with higher
fidelity, then gradually reduce the fidelity to find a proper
surrogate model for the bi-fidelity inversion.

Next, we increase the number of initial models to 100 and
the results are shown in Figure 5. In the single-fidelity test
results shown in Figure 5(a), only 7% of the models converge
to the global minimum and many models converge to the local
minima located at (3, 6), (5, 3), (6, 6) and (7, 3.5). The bi-
fidelity inversion result with a 30th order PCE surrogate is
shown in Figure 5(b). In this case, 25% of the models finally
converge to the global minimum. When the 15th order PCE
surrogate is used for the bi-fidelity inversion, all of the models
converge to the global minimum, as shown in Figure 5(c). The
examples shown in Figure 4 and Figure 5 demonstrate that a
proper low-fidelity surrogate model can help to avoid some
local minimum in the bi-fidelity inversion method.

Given the observations from the 2D Shekel example, we
construct full PCE surrogate of order 15 for the 3D Shekel
function. The 3D Shekel problem becomes more difficult to
solve since the dimensionality is increased, thus more initial
models are needed to cover the parameter space. Figure 6
shows the model response of the 3D Shekel function along
the second and the third coordinate when fixing the first
coordinate at 4. With 100 initial models generated by the LHS
algorithm, only 2 models converge to the global minimum
when only using the high-fidelity model. However, with the
help of the low-fidelity model, 83 models converge to the
global minimum. As shown in Figure 7, most of the local
minima are smoothed out by the low-fidelity model and only

the one located at (5, 3, 5) is left.

V. APPLICATION TO THE LWD INVERSE PROBLEM

In this section, we demonstrate the bi-fidelity gradient-
based inversion approach by solving resistivity LWD inverse
problems where the objective is to infer the earth model
parameters (e.g. resistivity of each formation layer, distances
from the logging tool to formation interfaces) based on
downhole LWD measurements. The recent development of
azimuthal EM resistivity LWD tool has greatly extended the
depth of investigation, thus increases the number of unknown
parameters of the LWD inverse problem. Meanwhile, EM
responses are highly non-linear due to multiple transmissions
and reflections between formation interfaces. Being inher-
ently high-dimensional and ill-posed, one needs to perform a
large number of independent gradient-based optimization with
different initial models to obtain an acceptable result. The
problem can also be solved by statistical inference methods
[45], [46]. However, the computation cost is too high to be
used in real-time.

The remainder of this section describes the implementation
details for the bi-fidelity LWD inversion, which includes the
forward model of the ultra-deep EM resistivity LWD tool, the
sparse PCE surrogate construction, and the bi-fidelity inversion
process.

A. The High-fidelity and Low-fidelity Models

In the LWD inversion application, the high-fidelity model
is the forward model that simulates the responses of az-



ar single-fidelity inversion result . s bi-fidelity inversion result s bi-fidelity inversion result
O inversion result O inversion result O inversion result
6 6 6
5 5 5
< 4r [ S o x4 o
3l ° 3 o 3
2t 2 o 2
it o 1 o 1
0 : . : : : . : : 0 : . . : : : : : 0 : . . : : . : :
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
xl Xl )(1
(a) Inversion with the high-fidelity model. (b) Bi-fidelity inversion, PCE order = 30. (c) Bi-fidelity inversion, PCE order = 15.
Fig. 4: Inversion results of the 2D Shekel function with 10 initial models.
ar single-fidelity inversion result ° s bi-fidelity inversion result © s bi-fidelity inversion result
O inversion result O inversion result o inversi ult
7r o A global minimum 7 7 A global minimum
61 ) 6 ° 6
5 5 5
ar ° 4 P ® 4 °
3 o 3 ° 3
2 ° 2 ° 2
it o 1 o 1
0 : : . : : : : . 0 : : : : : . : ; 0 : : : : : . : ;
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
X X Xy
(a) Inversion with the high-fidelity model. (b) Bi-fidelity inversion, PCE order = 30. (c) Bi-fidelity inversion, PCE order = 15

Fig. 5: Inversion results of the 2D Shekel function with 100 initial models.

20

(@ (b)
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Shekel model.
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imuthal EM LWD tools in 1D earth models. Given an n-layer
earth model, the input consists of n resistivity values and
n — 1 depth-to-the-boundaries. Multiple transmitter-receiver
pairs are set at different locations of the tool working at
multiple frequencies (2 kHz, 6 kHz, and 24 kHz used here).
In this paper, we synthesize an azimuthal EM LWD tool
generating 72 measurements at each logging point. We build
a surrogate model for each of the 72 signals, i.e. the low-
fidelity model consists of 72 independent single-output PCEs.
7-layer earth models are assumed in the following numerical
studies. With 13 input parameters, the full representation of
PCE is unfeasible at an acceptable computational cost, for
example, to construct a 5-order PCE surrogate model one
needs to generate (5 + 1)'3 = 1.3e10 quadrature points. In
this work, the Bayesian sparse learning is used to construct
sparse PCEs for the high-dimensional LWD inverse problems.

The resistivity value varies from 0.1 ©-m to 300 €2-m and
is first transformed into the logarithmic scale then re-scale to
[0,1] for the surrogate modeling. The outputs are linearly re-
scaled to [0,1].

Considering the detection scope of the ultra-deep directional
logging tool, we tested earth models with 7 layers in this
investigation. As the drilling tool penetrates bed boundaries,
the model response can be highly nonlinear and difficult to
capture with a global PCE approximation. To avoid this situ-
ation, we split the training data into 7 subsets, corresponding
to 7 scenarios (i.e. the tool is located in the first layer, the tool
in located in the second layer, and so forth). In the following,
we describe the steps to build a piece-wise PCE surrogate for
the LWD forward model.

o Split the training data set into non-overlapping subsets
D;,i =1,2,...,7. * € D; means that the tool is in the
i-th layer.

« Construct sparse PCE g;;(«) using each data set for each

output individually (z = 1,2,...,7, 7 =1,2,...,72).
o Declare piece-wise PCE surrogates
gi(z) = (gi1(x), gi2 (), .., gir2(T))
if xeDi(i=1,2,..,7) (21)

The data in each subset consists of 5 x 10* samples
generated by the LHS algorithm. The surrogate construction
takes 8 hours in total using 6 64-bit Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20GHz processors. The high-fidelity model takes
4 x 1072 seconds for each evaluation and the corresponding
surrogate takes only 3 x 10~3 seconds.

B. The LWD Inverse Problem

TABLE I: Layer resistivities and thicknesses of the synthetic
earth model.

layer # 1 2 3 4 5 6 7
resistivity(Q2-m) | 1 | 20 | 2 | 100 3 50 | 3
thickness(ft) - 10 | 7 40 15 | 20 | -

The synthetic earth model has 7 layers and the parameter
values are shown in Table 1. Consider a drilling process where
the tool keeps drilling down with a dip angle of 82 degrees

and travels through 6 boundaries. The LWD data is collected
every 10 ft and the total working region extends to 800 ft
horizontally. The problem consists of 80 continuous 1D LWD
inverse problems and we solve them independently. Figure 8
shows the structure of the earth model as well as the drilling
trajectory represented by the black dot line.

We perform LMA inversion for each of the 80 LWD inverse
problems using single-fidelity and bi-fidelity inversion meth-
ods, the initial models are randomly generated by LHS and
the parameter range is the same as the range of the surrogate
training data. For the sake of fairness, the initial models for the
single-fidelity and bi-fidelity inversion approach are the same,
and the results are shown in Figure 9. In the single-fidelity
inversion, the resistivity and the locations of layer boundaries
near the borehole can be well inferred in most of the cases.
However, the parameters of layers away from the borehole
can not be accurately estimated due to the existence of local
minima. The reason is twofold: first, signals are reflected by
many boundaries so there may exist multiple solutions that
can cause similar responses; second, signals become weak due
to attenuation. As shown in Figure 9 (left column), with the
number of initial models increasing from 50 to 500, the single-
fidelity inversion results are improved because more models
are initialized around the global minimum. In the bi-fidelity
inversion, tool responses are smoothed out by the low-fidelity
model so that many local minima are skipped. The bi-fidelity
inversion with only 50 initial models performs better than the
single-fidelity inversion with 500 initial models. Though there
is an added one-time cost for the surrogate construction before
inversion, the surrogate models can be used for similar inverse
problems in the future.

To further examine the feasibility of the proposed method,
we perform single-fidelity and bi-fidelity inversion with LWD
data contaminated by synthetic zero-mean Gaussian noises.
The noise standard deviation 0,5 = 0.375 and o4 = 0.0625
are used for phase-shift and attenuation measurements respec-
tively. Figure 10 shows 3 example measurements with and
without noise. We run the inversion algorithms using the same
configurations as those for the clean data example. Recon-
structed 2D earth models are shown in Figure 11. Compare to
the clean data case, both the results for the single-fidelity and
the bi-fidelity inversion are less accurate due to the existence
of noises. However, the bi-fidelity inversion algorithm still
exhibits good capability of inverting noisy data. Similar to the
case without noise, the bi-fidelity inversion result with only
50 initial values achieves similar results as the single-fidelity
inversion with 500 initial values. These observations are also
reflected by the inverted data misfit defined as follows:

To better quantify the inversion accuracy, we compare data
misfits of the two approaches which is defined as follows:

||f real ( 7.nv))||2
o=, IS

Figure 12 shows the average normalized data misfit of the
80 inverse problems by the single-fidelity and bi-fidelity
approach for the clean data and noisy data tests. For both the
clean data and noisy data inversion, the bi-fidelity inversion

(22)
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Fig. 9: Curtain plot of the inversion results of the single-fidelity inversion and the bi-fidelity inversion with different number

of initial models. The number of initial models are increased from 50 to 500.
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Fig. 11: Curtain plot of the inversion results of the single-fidelity inversion and the bi-fidelity inversion where the measurements
are contaminated by synthetic noise. The number of initial models are increased from 50 to 500.



method has a much lower data misfit than the single-fidelity
approach. The bi-fidelity approach with only 50 initial models
obtains a similar inversion accuracy as that from the single-
fidelity method with 1000 initial models, which means that
the bi-fidelity method only requires 5% of the computational
resources to achieve the similar accuracy.

In the single-fidelity approach, the high-fidelity model was
evaluated for 417 times on average for each optimization;
in the bi-fidelity approach, the low-fidelity and high-fidelity
model was evaluated for 35 and 370 times respectively. The
average time cost of the two approaches is shown in Figure
13(a), where the average run time of the bi-fidelity approach
with an extra low-fidelity inversion step is even less than the
single-fidelity approach. Figure 13(b) shows that in the bi-
fidelity inversion, the low-fidelity model evaluation only takes
4% of the total run time, which means the bi-fidelity approach
improves the inversion accuracy with negligible computational
overhead.
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Fig. 12: The average normalized errors of the single-fidelity
and the bi-fidelity inversion methods for both clean data and
noisy data.

VI. CONCLUSIONS

We have presented a bi-fidelity gradient-based inversion
method aiming at solving high-dimensional and non-linear
inverse problems. The key idea is to use a low-fidelity model
that smooths out the forward model responses to find initial
models that are close to the global minimum, the high-fidelity
model is then used to refine the inversion result.

We first apply the proposed method to the 2D and 3D Shekel
optimization problems for the convenience of visualization.
The results show that most of the local minima are avoided
by the PCE surrogate. We then demonstrate the performance
of the bi-fidelity approach with a 13-parameter LWD inverse
problem. Comparing to the single-fidelity gradient-based in-
version, the proposed method significantly improves inversion
accuracy. It can be easily applied to other applications that
require gradient-based inversion.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, and Office go Advanced

Average run time

20 17.96
15.53
s 15
©
c
o
Q
2 10
S~
(0]
=
T s
0
single-fidelity bi-fidelity
()
4%
96%
high-fidelity low-fidelity
(b)

Fig. 13: (a) The average run time for each LMA inversion. (b)
The percentage of the time used for the high-fidelity evaluation
and the low-fidelity evaluation in the bi-fidelity inversion.

Science Computing Research, under Award Numbers DE-
SC0017033. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

REFERENCES

[1] D. H. Rothman, Nonlinear inversion, statistical mechanics, and residual
statics estimation, Geophysics 50 (12) (1985) 2784-2796.

[2] W.R. Gilks, S. Richardson, D. Spiegelhalter, Markov chain Monte Carlo
in practice, Chapman and Hall/CRC, 1995.

[3] D. Xiu, G. E. Karniadakis, The wiener—askey polynomial chaos for
stochastic differential equations, SIAM journal on scientific computing
24 (2) (2002) 619-644.

[4] 1. Kaymaz, Application of kriging method to structural reliability prob-
lems, Structural Safety 27 (2) (2005) 133-151.

[5] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (3)
(1995) 273-297.

[6] A.J. Majda, B. Gershgorin, Quantifying uncertainty in climate change
science through empirical information theory, Proceedings of the Na-
tional Academy of Sciences 107 (34) (2010) 14958-14963.

[7]1 P. Piperni, A. DeBlois, R. Henderson, Development of a multilevel
multidisciplinary-optimization capability for an industrial environment,
AIAA journal 51 (10) (2013) 2335-2352.



[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]
[31]

(32]

Z.-H. Han, S. Gortz, R. Zimmermann, Improving variable-fidelity sur-
rogate modeling via gradient-enhanced kriging and a generalized hybrid
bridge function, Aerospace Science and technology 25 (1) (2013) 177-
189.

B. Peherstorfer, K. Willcox, M. Gunzburger, Survey of multifidelity
methods in uncertainty propagation, inference, and optimization, Siam
Review 60 (3) (2018) 550-591.

M. G. Fernandez-Godino, C. Park, N.-H. Kim, R. T. Haftka, Review of
multi-fidelity models, arXiv preprint arXiv:1609.07196.

L. Yan, T. Zhou, Adaptive multi-fidelity polynomial chaos approach
to bayesian inference in inverse problems, Journal of Computational
Physics 381 (2019) 110-128.

P. Perdikaris, D. Venturi, J. O. Royset, G. E. Karniadakis, Multi-
fidelity modelling via recursive co-kriging and gaussian—markov random
fields, Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 471 (2179) (2015) 20150018.

C. C. Fischer, R. V. Grandhi, P. S. Beran, Bayesian low-fidelity
correction approach to multi-fidelity aerospace design, in: 58th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, 2017, p. 0133.

J. Zheng, X. Shao, L. Gao, P. Jiang, Z. Li, A hybrid variable-fidelity
global approximation modelling method combining tuned radial basis
function base and kriging correction, Journal of Engineering Design
24 (8) (2013) 604-622.

J. A. Christen, C. Fox, Markov chain monte carlo using an approxima-
tion, Journal of Computational and Graphical statistics 14 (4) (2005)
795-810.

E. Laloy, B. Rogiers, J. A. Vrugt, D. Mallants, D. Jacques, Efficient
posterior exploration of a high-dimensional groundwater model from
two-stage markov chain monte carlo simulation and polynomial chaos
expansion, Water Resources Research 49 (5) (2013) 2664-2682.

B. Peherstorfer, B. Kramer, K. Willcox, Combining multiple surrogate
models to accelerate failure probability estimation with expensive high-
fidelity models, Journal of Computational Physics 341 (2017) 61-75.
B. Peherstorfer, T. Cui, Y. Marzouk, K. Willcox, Multifidelity impor-
tance sampling, Computer Methods in Applied Mechanics and Engi-
neering 300 (2016) 490-509.

M. Razi, R. M. Kirby, A. Narayan, Fast predictive multi-fidelity predic-
tion with models of quantized fidelity levels, Journal of Computational
Physics 376 (2019) 992-1008.

A. H. Elsheikh, I. Hoteit, M. F. Wheeler, Efficient bayesian inference
of subsurface flow models using nested sampling and sparse polyno-
mial chaos surrogates, Computer Methods in Applied Mechanics and
Engineering 269 (2014) 515-537.

R. Marti, M. G. Resende, C. C. Ribeiro, Multi-start methods for
combinatorial optimization, European Journal of Operational Research
226 (1) (2013) 1-8.

K. Sargsyan, C. Safta, H. N. Najm, B. J. Debusschere, D. Ricciuto,
P. Thornton, Dimensionality reduction for complex models via bayesian
compressive sensing, International Journal for Uncertainty Quantifica-
tion 4 (1).

0. Tjasan, C. Torres-Verdin, W. E. Preeg, Inversion-based petrophysical
interpretation of logging-while-drilling nuclear and resistivity measure-
ments, Geophysics 78 (6) (2013) D473-D489.

D. Pardo, C. Torres-Verdin, Fast 1d inversion of logging-while-drilling
resistivity measurements for improved estimation of formation resistivity
in high-angle and horizontal wells, Geophysics 80 (2) (2015) E111-
E124.

S. A. Bakr, D. Pardo, C. Torres-Verdin, Fast inversion of logging-while-
drilling resistivity measurements acquired in multiple wells, Geophysics
82 (3) (2017) E111-E120.

B. I. Anderson, Modeling and inversion methods for the interpretation
of resistivity logging tool response.

A. A. Goldstein, On steepest descent, Journal of the Society for
Industrial and Applied Mathematics, Series A: Control 3 (1) (1965)
147-151.

R. Fletcher, Practical methods of optimization, John Wiley & Sons,
2013.

J. J. Moré, The levenberg-marquardt algorithm: implementation and
theory, in: Numerical analysis, Springer, 1978, pp. 105-116.

A. Ranganathan, The levenberg-marquardt algorithm, Tutoral on LM
algorithm 11 (1) (2004) 101-110.

N. Wiener, The homogeneous chaos, American Journal of Mathematics
60 (4) (1938) 897-936.

R. G. Ghanem, P. D. Spanos, Stochastic finite elements: a spectral
approach, Courier Corporation, 2003.

(33]

(38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

M. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos
and stochastic collocation methods for uncertainty quantification, in:
47th ATAA aerospace sciences meeting including the new horizons
forum and aerospace exposition, 2009, p. 976.

R. G. Ghanem, J. Red-Horse, A. Sarka, in: 8th ASCE Specialty
Conference of Probabilistic Mechanics and Structural Reliability, 2000.
A. O’Hagan, Polynomial chaos: A tutorial and critique from a statisti-
cian’s perspective, SIAM/ASA J. Uncertainty Quantification 20 (2013)
1-20.

S. Ji, Y. Xue, L. Carin, et al., Bayesian compressive sensing, IEEE
Transactions on signal processing 56 (6) (2008) 2346.

S. D. Babacan, R. Molina, A. K. Katsaggelos, Bayesian compressive
sensing using laplace priors, IEEE Transactions on image processing
19 (1) (2009) 53-63.

M. E. Tipping, Sparse bayesian learning and the relevance vector
machine, Journal of machine learning research 1 (Jun) (2001) 211-244.
C. Hans, Bayesian lasso regression, Biometrika 96 (4) (2009) 835-845.
M. E. Tipping, A. C. Faul, et al., Fast marginal likelihood maximisation
for sparse bayesian models., in: AISTATS, 2003.

R. T. Haftka, D. Villanueva, A. Chaudhuri, Parallel surrogate-assisted
global optimization with expensive functions—a survey, Structural and
Multidisciplinary Optimization 54 (1) (2016) 3-13.

Y. Jin, Surrogate-assisted evolutionary computation: Recent advances
and future challenges, Swarm and Evolutionary Computation 1 (2)
(2011) 61-70.

M. Molga, C. Smutnicki, Test functions for optimization needs, Test
functions for optimization needs 101.

A. O’Hagan, Polynomial chaos: A tutorial and critique from a statisti-
cian’s perspective, SIAM/ASA J. Uncertainty Quantification 20 (2013)
1-20.

H. Lu, Q. Shen, J. Chen, X. Wu, X. Fu, Parallel multiple-chain dram
memc for large-scale geosteering inversion and uncertainty quantifica-
tion, Journal of Petroleum Science and Engineering 174 (2019) 189-200.
Q. Shen, X. Wu, J. Chen, Z. Han, Y. Huang, Solving geosteering inverse
problems by stochastic hybrid monte carlo method, Journal of Petroleum
Science and Engineering 161 (2018) 9-16.



