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This talk will present a novel structural property of
non-degenerate, smooth 3D MHD equilibria

Definition (Non-degenerate equilibrium)

Let Q ⊂ R3 be compact region diffeomorphic to D2 × S1. A
non-degenerate MHD equilibrium is a pair (B, p), where B is a
smooth vector field on Q that satisfies B · n = 0 on ∂Q, p is a
smooth function on Q,

(∇× B)× B = ∇p

∇ · B = 0,

and ∇p 6= 0 except on a single magnetic axis `0 ⊂ Q.



This talk will present a novel structural property of
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Disclaimer
This talk will not establish existence

of smooth non-degenerate 3D
equilibria

But the results may help in such an endeavor
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Circle actions are compact 1-parameter symmetries

Circle actions:
Inputs

A point z ∈ Z

An angle φ ∈ S1 = R/2πZ

Outputs

A rotated point Φφ(z) ∈ Z



Circle actions are compact 1-parameter symmetries

Example 1:

N.B. Φφ1+φ2(z) = Φφ1(Φφ2(z))



Circle actions are compact 1-parameter symmetries

Example 2:



Circle actions are compact 1-parameter symmetries

Definition (Circle action)

A circle action on a space Z is a 1-parameter family of
transformations Φφ : Z → Z such that

Φ0 = Φ2π = idZ (periodicity)

Φφ1+φ2 = Φφ1 ◦ Φφ2 (generalized rotation property)

for all φ1, φ2 ∈ S1.
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The metric tensor on R3 defines lengths and angles

The standard metric on R3

g = δijdx
i dx j

Squared length of a vector u

|u|2 = g(u,u)

Length of a curve c

L(c) = lim
∑
i

√
|c(ti+1)− c(ti )|2



The metric tensor can be averaged using a circle action Φφ

The standard metric averaged using Φφ = (x1φ, x
2
φ, x

3
φ)

g =
1

2π

ˆ 2π

0
δijdx

i
φ dx

j
φ dφ

Squared length of a vector u

||u||2 = g(u,u)

=
1

2π

ˆ 2π

0
g(uφ,uφ) dφ

Length of a curve c

L(c) = lim
∑
i

√
||c(ti+1)− c(ti )||2

New squared length is mean squared length
New length is RMS length



The averaged metric is a bonafide metric

Proof.

If u 6= 0:

g(u,u) =
1

2π

ˆ 2π

0
δijdx

i
φ(u) dx jφ(u) dφ

=
1

2π

ˆ 2π

0

(
[dx1φ(u)]2 + [dx2φ(u)]2 + [dx3φ(u)]2

)
dφ

> 0.

Moreover, if g(u,u) = 0 then [dx iφ(u)]2 = 0, i = 1, 2, 3, which
implies u = 0.



Therefore g can be used to define new vector
calculus/algebra operations

Averaged dot product

u·v = g(u, v)

= uig ijv
j

= [u]T [g ][v ].



Therefore g can be used to define new vector
calculus/algebra operations

Averaged cross product

u×v ·w =
√

det [g ]u × v ·w

OR

[u×v ] =
√

det[g ] [g ]−1[u × v ].



Therefore g can be used to define new vector
calculus/algebra operations

Averaged gradient

u·∇ψ = u · ∇ψ

OR

[∇ψ] = [g ]−1[∇ψ].



Therefore g can be used to define new vector
calculus/algebra operations

Averaged divergence

∇·u =
√

det [g ]
−1
∇ · (

√
det [g ] u)



Therefore g can be used to define new vector
calculus/algebra operations

Averaged curl

∇×u · v×w = v ·∇(w ·u)−w ·∇(v ·u)− u · [v ,w ]

OR

[∇×u] =
√

det [g ]
−1
∇×

(
[g ][u]

)
.



Averaged vector calculus satisfies the identities you would
expect...

Cohomological identities

∇ ·∇×u = 0

∇×∇ψ = 0

Leibniz identities

∇ · (f u) = u ·∇f + f ∇ ·u
∇× (f u) = ∇f ×u + f ∇×u

∇ · (u × v) = v · ∇×u − u · ∇× v

∇× (u×v) = u∇ · v − v ∇ ·u − [u, v ]



...as well as some that are more remarkable

Lemma

Suppose Φφ is a volume-preserving circle action on Q. Let
u = ∂φΦφ|φ=0. Then

u ·∇||u||2 = 0

u ·∇
√

det [g ] = 0
u
||u||2

×∇× u
||u||2

= 0

The vector field u is force-free w.r.t. the averaged metric!
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The classical Grad-Shafranov equation governs
axisymmetric equilibria

Theorem (Grad, Rubin, Shafranov)

Suppose Q is axisymmetric and that (B, p) is an axisymmetric
non-degenerate MHD equilibrium. There exists a smooth function
ψ : Q → R and single-variable functions C (ψ), p(ψ) such that

B = C (ψ)
eφ
R

+
∇ψ × eφ

R

and

−∇ · (R−2∇ψ) = p′(ψ) + R−2C (ψ)C ′(ψ),

where R is the major radius.



We have shown that a similar result holds in general

Theorem (Burby, Kallinikos, MacKay)

Let (B, p) be any smooth non-degenerate equilibrium in a domain
Q ≈ D2 × S1. There exists a circle action Φφ, a smooth function
ψ : Q → R, and smooth single-variable functions C (ψ), p(ψ) such
that

B = C (ψ)
u
R2

+ ρ
∇ψ×u
R2

and

−ρ∇·(R−2ρ∇ψ) + ρC (ψ)(u/R2) ·∇× (u/R2)

= p′(ψ) + R−2 C (ψ)C ′(ψ),

where R2 = ||u||2 and ρ =
√
det [g ].



The equation for ψ generalizes the classical GS equation in
many ways

Definition

Given a circle action Φφ on Q, the nonlinear elliptic partial
differential equation

−ρ∇·(R−2ρ∇ψ) + ρC (ψ)(u/R2) ·∇× (u/R2)

= p′(ψ) + R−2 C (ψ)C ′(ψ),

is the generalized Grad-Shafranov (GGS) equation.

All vector calculus operations defined using g , as before



The equation for ψ generalizes the classical GS equation in
many ways

Basic properties of GGS equation

Elliptic with principal symbol ρ2R−2||ξ||2

Satisfies a variational principle

If ψ solves GGS then ψφ = ψ ◦ Φφ also solves GGS

Solutions exist with ψ = 0 on ∂Q under mild hypotheses



The variational principle has a familiar looking Lagrangian

L(ψ, dψ, x) =
1

2

ρ2∇ψ ·∇ψ
R2

− 1

2

C 2(ψ)

R2
− p(ψ)

+ ρD(ψ)(u/R2) ·∇× (u/R2)

D(ψ) =

ˆ ψ

C (ψ) dψ

Lagrangian = (poloidal magnetic energy) - (toroidal magnetic
energy) - (pressure) + (twist)



Twist term has geometric interpretation

Q: Are there surfaces
perpendicular to u?



Twist term has geometric interpretation

A: Yes if twist vanishes

Proposition (Frobenius)

Fix x ∈ Q. There is a neighborhood of x foliated by surfaces S
perpendicular to u (using g) if and only if

τu = (u/R2)·∇× (u/R2) = 0

near x .



Twist term has geometric interpretation

A: Yes if twist vanishes

Corollary

Fix x ∈ Q. There is a neighborhood of x foliated by surfaces S
perpendicular to u (using g) if and only if

∇× (u/R2) = 0.

near x .

Follows from u/R2 = force-free w.r.t. g



The GGS equation differs from the classical GS equation in
one crucial way

Theorem (Grad, Rubin, Shafranov)

If ψ : Q → R is an axisymmetric solution of the GS equation then

B = C (ψ)
eφ
R

+
∇ψ × eφ

R

and p = p(ψ) satisfy

(∇× B)× B = ∇p

∇ · B = 0.



The GGS equation differs from the classical GS equation in
one crucial way

Theorem (Grad, Rubin, Shafranov)

If ψ : Q → R is an axisymmetric solution of the GS equation then

B = C (ψ)
eφ
R

+
∇ψ × eφ

R

and p = p(ψ) satisfy

(∇× B)× B = ∇p

∇ · B = 0.

This result does not hold for the GGS equation!



The GGS equation differs from the classical GS equation in
one crucial way

Theorem (Burby, Kallinikos, MacKay)

If ψ : Q → R is an S1-invariant solution of the GGS equation then

B = C (ψ)
u
R2

+ ρ
∇ψ×u
R2

and p = p(ψ) satisfy

(∇×B)×B = ∇p

∇ · B = 0.

Note that ∇ · B = 0 w.r.t. the standard metric



The GGS equation differs from the classical GS equation in
one crucial way

This is not force balance

(∇×B)×B = ∇p



The GGS equation differs from the classical GS equation in
one crucial way

This is force balance averaged
over Φφ

(∇×B)×B = ∇p



This implies a new procedure for constructing 3D equilibria

1 Guess a volume-preserving circle action Φφ on Q
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This implies a new procedure for constructing 3D equilibria

1 Guess a volume-preserving circle action Φφ on Q

2 Construct a solution of GGS equation associated with Φφ

3 Evaluate residual of force balance R = J × B −∇p

4 Adjust Φφ to make
´
Q |R|

2 d3x smaller

e.g. using gradient descent

5 Go back to first step

Space of solutions of GGS eqn much smaller than (B, p)-space
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