ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-20-24872

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Grad-Shafranov equation for non-axisymmetric MHD equilibria
Burby, Joshua William

Kallinikos, Nikos

MacKay, Robert

Simons foundation hidden symmetries webinar

2020-07-05




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher

recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its

technical correctness.



Grad-Shafranov equation for
non-axisymmetric MHD equilibria

J. W. Burby (LANL)
N. Kallinikos (Warwick)
R. S. MacKay (Warwick)

June 12t 2020
Simons Hour

Supported by LANL LDRD project 20180756PRD4
Based on arXiv:2005.13664



This talk will present a novel structural property of
non-degenerate, smooth 3D MHD equilibria

Definition (Non-degenerate equilibrium)

Let @ C R3 be compact region diffeomorphic to D? x St. A
non-degenerate MHD equilibrium is a pair (B, p), where B is a
smooth vector field on @ that satisfies B-n =0 on 0Q, p is a

smooth function on Q,
(VxB)xB=Vp
V-B =0,

and Vp # 0 except on a single magnetic axis /o C Q.




This talk will present a novel structural property of

non-degenerate, smooth 3D MHD equilibria




Disclaimer
This talk will not establish existence
of smooth non-degenerate 3D
equilibria



Disclaimer
This talk will not establish existence
of smooth non-degenerate 3D
equilibria

But the results may help in such an endeavor
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@ Circle actions
© Averaged metric tensor

© Generalized Grad-Shafranov equation



Circle actions are compact 1-parameter symmetries

Circle actions:

Inputs Outputs
e Apointze Z e A rotated point ®4(z) € Z
@ Anangle ¢ € S =R /277



Circle actions are compact 1-parameter symmetries

Example 1:
C ze'¥ = @(Z)
b %
N.B. @y, 14,(2) = g, (Pg,(2)) J




Circle actions are compact 1-parameter symmetries

Example 2:

p
Ef, @)

Hegp-27-cos?

é, (=)= f—;/w@ (z)

@ : non-lirear penJu.’um J-n:?umcgz
a . pendulum  Fime-advance map




Circle actions are compact 1-parameter symmetries

Definition (Circle action)
A circle action on a space Z is a 1-parameter family of
transformations ®4 : Z — Z such that

o Oy = by, =idz (periodicity)

o &y 14, = Py, 0Dy, (generalized rotation property)
for all ¢1, s € S. ]
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@ Circle actions
@ Averaged metric tensor

© Generalized Grad-Shafranov equation



The metric tensor on R3 defines lengths and angles

The standard metric on R3

g= (5,-J-dxi dx/
Squared length of a vector u Length of a curve ¢
2 _
ul” = g(u. ) L(€) = lim > y/le(tia) — ()
i



The metric tensor can be averaged using a circle action @,

The standard metric averaged using ®, = (x(;,xé,x;)

B 1 2 . .
Squared length of a vector u Length of a curve ¢
2_ — _
lul® =g, u) (<) = lim > /lle(ti1) = (8|
1 e i
= — d
2 s g(ug, uy) do
New squared length is mean squared length
New length is RMS length J




The averaged metric is a bonafide metric

If u0:

2w .
gluu) = o [ dydxy(u) dx(u) do
1 [ 17,12 20,312 37, \12
= ; ([dx¢(u)] + [dx¢(u)] + [dx¢(u)] > do
> 0.

Moreover, if g(u, u) = 0 then [dx}(u)]*> =0, i = 1,2,3, which
implies u = 0. L]

’




Therefore g can be used to define new vector
calculus/algebra operations

Averaged dot product

uv=g(u,v)
= u’?,-jvj
= [u]"[gl[v].



Therefore g can be used to define new vector
calculus/algebra operations
Averaged cross product

uxv-w = /det[glux v-w

OR

[uxv] = \/det[g] [g] ‘[u x v].



Therefore g can be used to define new vector
calculus/algebra operations

Averaged gradient

uNVY =u-Vi
OR

V] = [g] ' [VY].



Therefore g can be used to define new vector
calculus/algebra operations
Averaged divergence

Veu = \/det[g] V- (y/det [g] u)



Therefore g can be used to define new vector
calculus/algebra operations

Averaged curl

Xu vxw =v:V(wu)—w-V(viu)—u-[v,w]

OR

[Vxu] = /et [g] 'V ([guu]).



Averaged vector calculus satisfies the identities you would

expect...

Cohomological identities

Leibniz identities

V:(fu) = u- u
VX (fu)=VfXu+fVXu
Vi(uxv)=v:VXu—u-VXxv
VX (uxv)=uV-v—vV-iu-—u,Vv]




...as well as some that are more remarkable

Lemma

Suppose ®4 is a volume-preserving circle action on Q. Let
u = 6¢¢¢|¢:0. Then
u=Vlul? =
u-Vy/det[g] =
u _—_ u
x V X =
[|ul? ||ulf? )
The vector field u is force-free w.r.t. the averaged metric! J
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The classical Grad-Shafranov equation governs
axisymmetric equilibria

Theorem (Grad, Rubin, Shafranov)

Suppose Q is axisymmetric and that (B, p) is an axisymmetric
non-degenerate MHD equilibrium. There exists a smooth function
¥ 1 Q — R and single-variable functions C(), p(¢) such that

e¢+Vzp><e¢

and

—V - (R72VY) = p'(¥) + R2C(4) C'(v),

where R is the major radius.




We have shown that a similar result holds in general

Theorem (Burby, Kallinikos, MacKay)

Let (B, p) be any smooth non-degenerate equilibrium in a domain
Q ~ D? x S1. There exists a circle action ®4, a smooth function
¥ : Q — R, and smooth single-variable functions C(v), p(¢) such
that

u ViyXu
B = C(wﬁ +PT

and

—pVA(R2pV) + p C(v)(u/R?)*V X (u/R?)
= p'() + R C(¢) C'(¥),

where R? = ||u||?> and p = \/det][g].




The equation for ¢ generalizes the classical GS equation in
many ways

Given a circle action ®4 on Q, the nonlinear elliptic partial
differential equation

—pVA(R2pVip) + p C(¥)(u/R?)*V X (u/R?)
= p'(¥) + R™> C(y) C'(9),

is the generalized Grad-Shafranov (GGS) equation.

All vector calculus operations defined using g, as before )




The equation for ¢ generalizes the classical GS equation in
many ways

Basic properties of GGS equation

e Elliptic with principal symbol p?R~2||€|[?

@ Satisfies a variational principle

o If 9 solves GGS then 14 = 1) o dy4 also solves GGS

@ Solutions exist with 1) = 0 on 0Q under mild hypotheses



The variational principle has a familiar looking Lagrangian

1p°Vy-Vy 1C?
E(wadwvx) = Ep ’i; w - 5 R(;/}) - p(¢)

+ pD()(u/R?)=V X (u/R?)

P
mmz/cwww

Lagrangian = (poloidal magnetic energy) - (toroidal magnetic
energy) - (pressure) + (twist)




Twist term has geometric interpretation

Q: Are there surfaces
perpendicular to u?



Twist term has geometric interpretation

A: Yes if twist vanishes

Proposition (Frobenius)

Fix x € Q. There is a neighborhood of x foliated by surfaces S
perpendicular to u (using g) if and only if

Tu = (u/RA VX (u/R?) =0

near Xx.




Twist term has geometric interpretation

A: Yes if twist vanishes

Corollary

Fix x € Q. There is a neighborhood of x foliated by surfaces S
perpendicular to u (using g) if and only if

VX (u/R?) = 0.

near Xx.

Follows from u/R? = force-free w.r.t. g J




The GGS equation differs from the classical GS equation in
one crucial way

Theorem (Grad, Rubin, Shafranov)
If 1 : @ — R is an axisymmetric solution of the GS equation then

and p = p() satisfy

(VxB)xB=Vp
V-B=0.




The GGS equation differs from the classical GS equation in
one crucial way

Theorem (Grad, Rubin, Shafranov)
If 1 : @ — R is an axisymmetric solution of the GS equation then

and p = p() satisfy

(VxB)xB=Vp
V-B=0.

This result does not hold for the GGS equation! )




The GGS equation differs from the classical GS equation in
one crucial way

Theorem (Burby, Kallinikos, MacKay)
If1 : @ = R is an S'-invariant solution of the GGS equation then

u Viyxu
B = C(w)ﬁ TP

and p = p() satisfy

Note that V - B = 0 w.r.t. the standard metric )




The GGS equation differs from the classical GS equation in

one crucial way

This is not force balance

(VX B)xB = Vp



The GGS equation differs from the classical GS equation in

one crucial way

This is force balance averaged
over ®

(VX B)xB = Vp



This implies a new procedure for constructing 3D equilibria

@ Guess a volume-preserving circle action ®,4 on Q



This implies a new procedure for constructing 3D equilibria
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@ Construct a solution of GGS equation associated with @
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This implies a new procedure for constructing 3D equilibria
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@ Construct a solution of GGS equation associated with @
© Evaluate residual of force balance R=J x B — Vp
Q Adjust @, to make [ |R[*d*x smaller
e e.g. using gradient descent



This implies a new procedure for constructing 3D equilibria

@ Guess a volume-preserving circle action ®,4 on Q
@ Construct a solution of GGS equation associated with @
© Evaluate residual of force balance R=J x B — Vp
Q Adjust @, to make [ |R[*d*x smaller
e e.g. using gradient descent
© Go back to first step



This implies a new procedure for constructing 3D equilibria

@ Guess a volume-preserving circle action ®,4 on Q
@ Construct a solution of GGS equation associated with @
© Evaluate residual of force balance R=J x B — Vp
Q Adjust @, to make [ |R[*d*x smaller
e e.g. using gradient descent
© Go back to first step

Space of solutions of GGS eqn much smaller than (B, p)-space J
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