

# ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels

Hyunguk Kwon <sup>a,†</sup>, Aditya Lele <sup>b,†</sup>, Junqing Zhu <sup>c</sup>, Charles S. McEnally <sup>c</sup>, Lisa D. Pfefferle <sup>c</sup>,  
Yuan Xuan <sup>b</sup> and Adri C.T. van Duin <sup>a,b,\*</sup>

<sup>a</sup> Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

<sup>b</sup> Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

<sup>c</sup> Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA

\*Corresponding authors: acv13@psu.edu (A.C.T. van Duin)

<sup>†</sup>Authors contributed equally.

Accepted for publication in Fuel

25

26      **Abstract**

27      This work investigates the initial stages of the pyrolysis of HtH-1 ( $C_{18}H_{32}$ ;  
28      2,2,7,7,8a,8b-hexamethyl-dodecahydronaphthalene) and HtH-2 ( $C_{18}H_{34}$ ; 1,1',3,3,3',3'-  
29      hexamethyl-1,1'-bi(cyclohexane)), which are bio-derived polycyclic alkanes and potential jet  
30      fuels, using ReaxFF force field based molecular dynamics (MD) simulations. Global Arrhenius  
31      parameters, such as activation energies and pre-exponential factors, are calculated and used to  
32      analyze the overall decomposition kinetics of the fuels. HtH-1 decomposes faster than HtH-2  
33      at the same temperature and density conditions, and they have a faster decomposition rate  
34      compared to some existing jet-fuels, such as JP-10. A systematic reaction analysis framework  
35      developed in this work is applied to determine a temperature-dependent decomposition  
36      mechanism. At lower temperature, the central C-C bond connecting the two cyclohexane rings  
37      is dominantly broken in both HtH-1 and HtH-2. However, C-CH<sub>3</sub> bond breaking becomes  
38      dominant with increasing temperature due to the large increase in entropy during this reaction.  
39      Major products from HtH-1 are C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub>, and those from HtH-2 are C<sub>4</sub>H<sub>8</sub> and C<sub>2</sub>H<sub>4</sub>. The  
40      major products predict that HtH-1 has a higher sooting tendency than HtH-2, which is  
41      consistent with measurements. The impact of HtH-2 on the pyrolysis of HtH-1 is also  
42      investigated in their binary mixtures. HtH-1 and HtH-2 decompose by unimolecular reactions,  
43      and they rarely interact with each other during the pyrolysis of the mixtures. This work  
44      demonstrates that ReaxFF can be used to investigate pyrolysis and combustion chemistry of  
45      existing or future fuels and to contribute to the development of their chemical kinetic models  
46      without any *a priori* input and chemical intuition.

47      *Keywords:* *Molecular dynamics, ReaxFF reactive force field, Pyrolysis, Bio-derived jet fuel*

48

49

50

51     **1. Introduction**

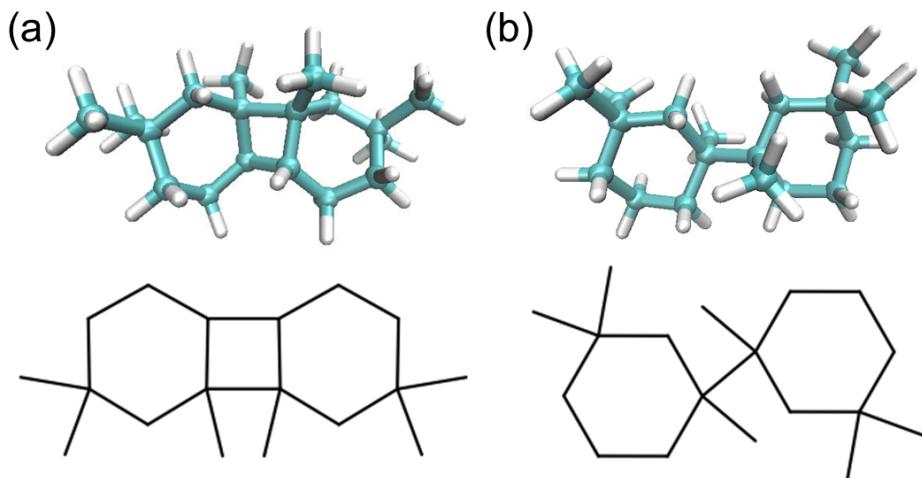
52         For ground transportation, there is an ongoing push to replace conventional vehicles  
53         powered by internal combustion engines with electric vehicles, due to the environmental  
54         benefits. However, such a strategy is not yet practical for aviation applications, since electric  
55         aircraft still have much more limited payload and flight range compared to conventional jets  
56         [1]. Therefore, there is considerable interest in utilizing fuels derived from biomass for future  
57         sustainable aviation applications which can alleviate environmental concerns from traditional  
58         fuels, such as global warming and pollutant emissions [2-6].

59         High energy density is an essential property required for aviation fuels to ensure the  
60         range and payload of volume-limited air vehicles [1, 7]. To afford high energy density, for  
61         example, current rocket and jet fuels, such as RP-1 and JP-10, contain highly strained multi-  
62         cyclic hydrocarbons [8]. In response, many researchers have made an effort to synthesize  
63         energy-dense bio-fuels containing polycyclic hydrocarbons from a variety of biomass-derived  
64         platform chemicals [7]. For example, isophorone, which is a  $\alpha$ ,  $\beta$ -unsaturated cyclic ketone,  
65         has been regarded as a promising feedstock [9-12]. Related literature shows that the  
66         hydrodeoxygenation of isophorone can produce high energy density fuels, such as 1,1,3-  
67         trimethylcyclohexane [9] and dimers of isophorone [10]. Substituted cyclohexanes derived  
68         from isophorone and furanic aldehydes have been also shown as high energy density fuels [11].  
69         In addition, a recent experimental study reported a new synthesis route of promising aviation  
70         fuels from upgrading bio-acetone via isophorone [12]. A cyclobutene dione was produced from  
71         isophorone, and hydrodeoxygenation of the dione yielded a mixture of head-to-head polycyclic  
72         alkanes (HtH-1 and HtH-2; see structures in Figure 1). The energy density of the mixture (38.0  
73         MJ L<sup>-1</sup>) is significantly higher than the energy density of Jet-A (34.0 MJ L<sup>-1</sup>) [12].

74         To use the proposed polycyclic hydrocarbon fuels for aviation applications, it is  
75         necessary to understand their combustion chemistry, which could help to predict important

76 combustion properties, including ignition, extinction, heat release, and formation of potential  
77 pollutants. There has been extensive experimental and theoretical literature on pyrolysis and  
78 combustion behaviors of monocyclic alkanes, such as cyclohexane [13], methylcyclohexane  
79 [14], ethylcyclohexane [15], *n*-propylcyclohexane, 1,3,5-triisopropylcyclohexane [16], and *n*-  
80 butylcyclohexane [17], and representative polycyclic alkanes, such as decalin [18, 19] and JP-  
81 10 [20-23]. However, there have been no studies of compounds such as HtH-1 that contain  
82 four-membered carbon rings fused with other rings. There are also very few studies of  
83 compounds like HtH-2 that contain cycloalkyl rings joined by a carbon-carbon single bond.  
84 Yue *et al.* studied the thermal decomposition kinetics of 1,1'-bicyclohexyl, which has two  
85 separated cyclohexyl rings, in a batch-type reactor and carried out quantum calculations to  
86 explain the product distribution [24]. They found that the major initial product of 1,1'-  
87 bicyclohexyl is cyclohexyl radical due to the relatively low energy of the C–C bond connecting  
88 the two cyclohexyl rings. Despite this previous study, there is still a significant lack of  
89 understanding of decomposition mechanism and kinetics of HtH polycyclic alkanes.

90 Understanding the reaction dynamics of a fuel species typically involves coordinated  
91 efforts involving combustion kinetics-based experiments as well as quantum mechanics (QM)  
92 calculations. QM-based methods have been extensively used to investigate combustion and  
93 pyrolysis chemistry of fuels by calculating reaction energies and activation barriers [25]. The  
94 kinetic parameters calculated from QM methods also have greatly contributed to the  
95 development of detailed chemical kinetic models required to simulate practical combustion  
96 devices [25]. However, the methods have limitations in system size and time scale due to the  
97 high cost for computation. Moreover, QM calculations require that the reactions of interest be  
98 provided *a priori*, and the reaction pathways suggested can depend on the user's chemical  
99 intuition. This greatly increases the efforts required to investigate the reaction chemistry of the  
100 fuel of interest, especially for fuels which do not show close structural proximity with existing,


101 well studied fuels such as *n*-alkanes, alkenes, etc. This makes it challenging to deal with  
102 chemical processes of complex and large fuel molecules, such as polycyclic alkanes.

103 As an alternative to QM, ReaxFF reactive force field based molecular dynamics (MD)  
104 can be a powerful computational tool to simulate complex reactive systems [26-28]. The  
105 ReaxFF reactive force field is mainly trained against QM data and the ReaxFF methodology  
106 describes chemically reactive events through the interatomic potential within a bond-order  
107 formalism, thus describing bond formation and breaking without expensive QM calculations.  
108 Since ReaxFF requires significantly lower computational cost than QM, it can simulate reaction  
109 processes over longer time and larger scales. Additionally, ReaxFF does not require any user  
110 intuition for possible reaction processes beyond its initial training, thus enabling it to simulate  
111 complex reactive systems, such as combustion. This greatly facilitates the investigation of fuel  
112 chemistry.

113 In the present work, we investigate, using ReaxFF-MD methods, the high-temperature  
114 pyrolysis of the HtH polycyclic alkanes recently synthesized experimentally by Ryan *et al.* [12].  
115 The synthesis method led to a mixture of 91.2 % of cyclobutane moiety ( $C_{18}H_{32}$ ; 2,2,7,7,8a,8b-  
116 hexamethyl-dodecahydrobiphenylene, termed HtH-1), as the desired product, and 8.8 % of an  
117 impurity ( $C_{18}H_{34}$ ; 1,1',3,3,3',3'-hexamethyl-1,1'-bi(cyclohexane), termed HtH-2), which is a  
118 cyclobutane ring-opening product (see structures in Figure 1). This work examines the  
119 pyrolysis of both these compounds. As mentioned earlier, these compounds with high energy  
120 density are potential fuels for the aviation industry, however, neither experimental nor  
121 theoretical studies on combustion chemistry of these compounds have yet been reported. The  
122 specific objectives of the present paper are three-fold. First, this work seeks to investigate fuel  
123 decomposition kinetics in pyrolysis of HtH-1 and HtH-2. Arrhenius parameters for fuel  
124 decomposition are calculated from the ReaxFF simulations and are compared with those of  
125 existing jet-fuel components. Second, we aim to elucidate the initial decomposition mechanism,

126 and identify the product distribution resulting from the decomposition. Our third goal is to  
127 examine the pyrolysis behavior in mixtures of HtH-1 and HtH-2 to analyze the impact of the  
128 impurity (HtH-2) on the pyrolysis of the desired product (HtH-1). The results reported in this  
129 work provide important atomistic insights on the pyrolysis of HtH polycyclic alkanes, a  
130 candidate fuel for aviation applications.

131



132

133 **Fig. 1.** Molecular structure of (a) HtH-1 ( $C_{18}H_{32}$ ; 2,2,7,7,8a,8b-hexamethyl-  
134 dodecahydrobiphenylene) and (b) HtH-2 ( $C_{18}H_{34}$ ; 1,1',3,3,3',3'-hexamethyl-1,1'-  
135 bi(cyclohexane)). Cyan and white spheres represent carbon and hydrogen atoms respectively.

136

## 137 **2. Simulation details**

### 138 **2. 1. ReaxFF reactive force field method**

139 The ReaxFF reactive force field based molecular dynamics method allows bond  
140 formation and bond breaking during simulation, which enables us to describe complex reactive  
141 systems [26-28]. Briefly, in the ReaxFF methods, reactive events are described through a bond-  
142 order concept, where the bond order is calculated directly from interatomic distance using an  
143 empirical formula that contains the single, double, and triple bond order contributions. The  
144 bond order is updated at every iteration, which allows ReaxFF to describe bond formation and

145 bond breaking. Non-bonded interactions, such as van der Waals and Coulomb, are calculated  
146 between every pair of atoms and they are independent from the bonded-interactions. Atomic  
147 charges are calculated using a geometry-dependent charge calculation scheme, Electronegative  
148 Equalization Method (EEM) [29]. The ReaxFF methods calculate the energy on each atom  
149 using the following equation.

150 
$$E_{\text{system}} = E_{\text{bond}} + E_{\text{over}} + E_{\text{under}} + E_{\text{lp}} + E_{\text{val}} + E_{\text{tor}} + E_{\text{vdWaals}} + E_{\text{Coulomb}}. \quad (1)$$

151 In the above equation,  $E_{\text{bond}}$  (bond energy),  $E_{\text{over}}$  (over-coordination penalty energy),  $E_{\text{under}}$   
152 (under-coordination penalty energy),  $E_{\text{lp}}$  (lone pair energy),  $E_{\text{val}}$  (valence angle energy),  $E_{\text{tor}}$   
153 (torsion angle energy) are bond-order-dependent terms.  $E_{\text{vdWaals}}$  (van der Waals energy) and  
154  $E_{\text{Coulomb}}$  (Coulomb energy) are non-bonded terms. A more detailed description can be found in  
155 previous ReaxFF-related papers [26-28].

156 Chenoweth *et al.* developed the first version of the combustion force field (CHO-2008)  
157 [27], and it has been extensively applied to pyrolysis and combustion studies of single  
158 component fuels, such as *n*-heptane [30], *n*-dodecane [31], toluene [32], 1,6-dicyclopropane-  
159 2,4-hexyne [33], and JP-10 [27] as well as hydrocarbon mixtures, such as RP-1 [34] and RP-3  
160 [35]. Initial oxidation reaction of a 24-component model bio-oil was also studied [36] using  
161 the DREIDING force field [37]. Recently a new version of the CHO-2008 force field has been  
162 developed by Ashraf *et al.* (CHO-2016) [38] to improve upon the C1 chemistry. The recent  
163 combustion force field has also shown good capability to describe the pyrolysis and the  
164 combustion of single component fuels [22, 38-41] or fuel mixtures [22, 42, 43]. In the current  
165 work, the CHO-2016 force field is used for all the simulations.

166

167 **2. 2. ReaxFF MD simulations**

168 In this work, we investigate the pyrolysis of HtH-1, HtH-2, and mixtures of HtH-1 and  
169 HtH-2. For single component systems, 40 energy-minimized molecules of each type are placed

170 in a cubic box with a dimension required to produce the desired densities (0.1, 0.2, and 0.3  
171 kg/dm<sup>3</sup>). For mixture systems, the total number of fuel molecules is kept at 40, but the mixture  
172 composition is changed by changing the amount of HtH-1 and HtH-2 molecules. We define the  
173 ratio between the number of HtH-1 molecules and the total number of fuel molecules as  $\alpha$ , and  
174 this study considers three mixtures with  $\alpha = 0.9, 0.7$ , and  $0.5$  to assess the effects of the impurity  
175 (HtH-2). As demonstrated in earlier ReaxFF studies [22, 27, 38], the selected number of fuel  
176 molecules and system density are sufficient to investigate the reaction channels of hydrocarbon  
177 initial pyrolysis and to estimate reasonable Arrhenius parameters.

178 For pyrolysis studies using ReaxFF, a well-established simulation framework is  
179 followed here [22, 27, 38]. A system is prepared by randomly placing the desired number of  
180 fuel molecules in their energy minimized structures in a periodic simulation box. The prepared  
181 system is then equilibrated through NVT-MD simulations at 1500 K. Here, NVT-MD  
182 simulation indicates that the number of atoms (N), volume (V), and temperature (T) are kept  
183 constant during the simulations. The total time for the equilibrium simulations (2.5 ps) is short  
184 enough that no fuel molecules thermally decompose at the chosen temperature. The Berendsen  
185 thermostat [44] with a temperature damping constant of 100 fs is used to control the  
186 temperature. Once the system is equilibrated, NVT-MD simulations are performed at different  
187 temperatures ranging from 1500 K to 3000 K using a time step size of 0.1 fs. To get statistically  
188 meaningful results, the simulations are performed with 10 independent starting configurations  
189 at a given condition, and the results are ensemble-averaged.

190 In general, reaction events happen less frequently at lower temperatures for a given  
191 simulation time, which makes it difficult to access low temperatures with regular MD  
192 simulations due to the high computational expense. For NVT-MD simulations at 1500 K,  
193 therefore, the control variable driven hyper-dynamics (CVHD) method [45, 46] is used to  
194 accelerate the simulation. The CVHD method applies a biased potential in the potential energy

195 surface of a system, filling energy minima and consequently lowering the reaction barrier. The  
196 method has shown good agreement with experiments and existing chemical kinetic models for  
197 pyrolysis and oxidation of hydrocarbons [22, 45, 46]. At very high simulation temperatures  
198 (e.g., 3000 K), simulations with a smaller time step size of 0.05 fs are also performed and  
199 shown to give almost identical results, which confirms that a time step size of 0.1 fs provides  
200 the appropriate temporal resolution. These comparisons can be found in the supplementary  
201 material (S1). The reaction dynamics of hydrogen atoms are typically very fast, and hence it is  
202 essential to verify the temporal resolution especially for high temperature pyrolysis of  
203 hydrocarbons.

204

### 205 **2. 3. Potential energy surface calculations using ReaxFF**

206 Along with the pyrolysis reaction mechanisms obtained using the ReaxFF-MD  
207 simulations, we also report free energies for the reactant, transition state, and product  
208 complexes to get further insight into the reaction kinetics and its temperature dependence. The  
209 decomposition reactions are first identified using an in-house reaction analysis code based on  
210 the results of NVT-simulations. The reaction dynamics of these reactions including the order  
211 and location of bond breaking is traced using the ReaxFF-MD simulation trajectories. This  
212 information is then utilized in ReaxAMS modelling suite, which is a part of the ADF software  
213 [47], to obtain the potential energy surface (PES) for the reactions. The transition state  
214 geometries are identified by the presence of one imaginary frequency and further confirmed by  
215 performing intrinsic reaction coordinate (IRC) calculations to ensure the correct transition state  
216 is found for the corresponding reactant and product complexes. More details and an example  
217 study for a sample hydrocarbon, cyclohexane [48], can be found in the supplementary material  
218 (S2).

219

220 **2. 4. Quantum mechanical calculation**

221 Density functional theory (DFT) calculations are performed for HtH-1 and HtH-2 to  
222 calculate bond dissociation energy (BDE) using the Jaguar software package [49]. All  
223 geometries are calculated using a hybrid method employing Becke's three-parameters approach,  
224 B3LYP [50], and the 6-311G\*\* basis sets [51], which were also used in the development of the  
225 CHO-2016 force field [38].

226

227 **3. Results and discussions**

228 **3. 1. Analysis of bond dissociation energy (BDE)**

229 BDE, the energy required to break a chemical bond, is first calculated to provide  
230 insight into the thermal decomposition via unimolecular reactions. Table 1 lists all the BDEs  
231 relevant to the most important decomposition reactions identified by ReaxFF using both  
232 ReaxFF and DFT. Additionally, various C-H BDEs are also calculated for reference. The  
233 agreement between ReaxFF and DFT BDE results is in the acceptable range, similar to those  
234 reported in previous studies [38]. Note that this ReaxFF parameter set was trained to reproduce  
235 experimental atomization energies for hydrocarbons, which resulted in a systematically lower  
236 BDE energy compared to DFT methods [38], since DFT methods tend to over-estimate  
237 atomization energies [52, 53].

238 As expected, the C-C bonds have smaller BDEs than the C-H bonds, which implies  
239 that thermal decomposition of the fuels should primarily involve C-C bond fissions. In HtH-1,  
240 the connected cyclohexyl rings make a highly strained cyclobutyl structure in the middle. This  
241 makes it easy to break the C<sup>g</sup>-C<sup>j</sup> bond composed of two quaternary carbon atoms, and hence it  
242 has exceptionally low BDE. This implies that C<sup>g</sup>-C<sup>j</sup> bond fission is likely to initiate thermal  
243 decomposition of HtH-1, which will be confirmed in the next section. In comparison, the C<sup>a</sup>-  
244 C<sup>c</sup>, C<sup>b</sup>-C<sup>c</sup> and C<sup>g</sup>-C<sup>i</sup> bonds have much higher BDEs.

245 In HtH-2, ReaxFF and DFT results show that the C<sup>g</sup>-C<sup>j</sup> bond has the lowest BDE, since  
 246 the bond is formed between two quaternary carbon atoms. However, the BDE for the C<sup>g</sup>-C<sup>j</sup>  
 247 bond is only around 16 kcal/mol less than that for C<sup>g</sup>-C<sup>i</sup> in HtH-2, compared to a much larger  
 248 difference of 66.3 kcal/mol in HtH-1. ReaxFF predicts similar BDEs (~60.0 kcal/mol) for the  
 249 C<sup>a</sup>-C<sup>c</sup>, C<sup>b</sup>-C<sup>c</sup> and C<sup>g</sup>-C<sup>i</sup> bonds, although DFT predicts that the C<sup>a</sup>-C<sup>c</sup> and (78.1 kcal/mol) C<sup>b</sup>-C<sup>c</sup>  
 250 (76.9 kcal/mol) bonds have a slightly larger BDE than the C<sup>g</sup>-C<sup>i</sup> bond (69.4 kcal/mol). In  
 251 general though, the DFT and ReaxFF results are very similar, which demonstrates that the  
 252 CHO-2016 force field employed in this study can be used to describe the complex polycyclic  
 253 compounds, HtH-1 and HtH-2.

254

255 **Table 1.** Bond dissociation energies (BDE) calculated for HtH-1 and HtH-2 using ReaxFF and  
 256 DFT. The values are reported in kcal/mol. Carbon “a” is defined as being out-of-the-plane in  
 257 the same direction as carbon “i”.

| Bond                           | HtH-1  |       | HtH-2  |       |
|--------------------------------|--------|-------|--------|-------|
|                                | ReaxFF | DFT   | ReaxFF | DFT   |
| C <sup>a</sup> -C <sup>c</sup> | 65.5   | 76.7  | 60.0   | 78.1  |
| C <sup>b</sup> -C <sup>c</sup> | 65.4   | 76.7  | 60.0   | 76.9  |
| C <sup>g</sup> -C <sup>i</sup> | 67.3   | 78.7  | 59.7   | 69.4  |
| C <sup>g</sup> -C <sup>j</sup> | 1.0    | 10.8  | 43.7   | 49.0  |
| C <sup>a</sup> -H              | 98.0   | 105.3 | 97.8   | 106.8 |
| C <sup>d</sup> -H              | 86.8   | 102.7 | 87.0   | 102.5 |
| C <sup>e</sup> -H              | 81.3   | 99.9  | 82.9   | 101.4 |
| C <sup>f</sup> -H              | 77.3   | 101.2 | 81.5   | 100.6 |
| C <sup>h</sup> -H              | 83.2   | 97.7  | 83.5   | 98.7  |

|                   |      |       |      |       |
|-------------------|------|-------|------|-------|
| C <sup>i</sup> -H | 92.3 | 102.8 | 92.6 | 102.2 |
|-------------------|------|-------|------|-------|

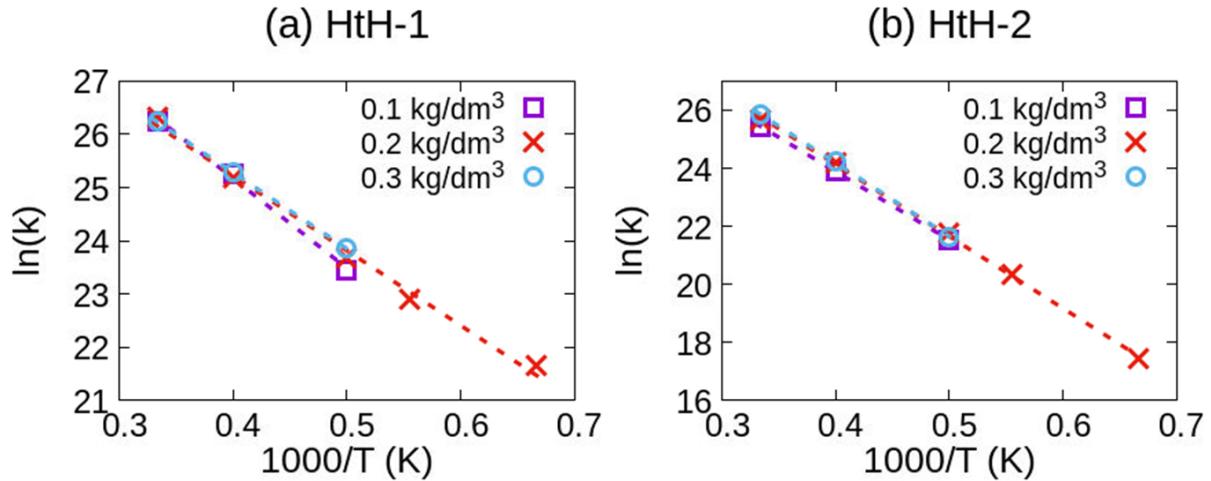
258

259 **3. 2. Pyrolysis in single component systems**

260 **3. 2. 1. Fuel decomposition rates**

261 Gas-phase reactivity at combustion temperatures is important for determining the  
 262 location of combustion events and combustion efficiency in practical combustion devices.  
 263 Therefore, we investigate the thermal decomposition kinetics of HtH-1 and HtH-2 in this  
 264 section. The fuel decomposition rates extracted from the NVT-MD simulations performed over  
 265 a wide temperature range (1500-3000 K) are used to obtain global Arrhenius parameters for  
 266 each fuel investigated assuming irreversible unimolecular fuel decomposition. To calculate the  
 267 Arrhenius parameters, a well-established method widely used in previous ReaxFF papers [22,  
 268 31-33, 38, 54] is employed. The rate constant is determined at each temperature using the  
 269 following integrated first order-rate law equation,

270 
$$\ln(N_0) - \ln(N_t) = kt, \quad (2)$$


271 where  $N_0$  is the initial number of molecules,  $N_t$  is the number of molecules at any time  $t$ , and  $k$   
 272 is the rate constant. The time evolution of the number of fuel molecules is shown in the  
 273 supplementary material (S3).  $\ln(N_0) - \ln(N_t)$  computed using the ReaxFF simulation results  
 274 is found to vary linearly with time, which suggests that the first-order irreversible unimolecular  
 275 fuel decomposition is a reasonable approximation. The time required for 50% fuel consumption  
 276 is used to calculate the rate constants ( $k$ ) at 1800-3000 K. Since a very long simulation time is  
 277 required to consume 50% of the fuel at 1500 K even using the CVHD method, the rate constant  
 278 at 1500 K is calculated with the time required for 25% fuel consumption. The Arrhenius  
 279 equation

280 
$$k = A e^{\frac{-E_a}{RT}} \quad (3)$$

281 is then fit to these rates to obtain the pre-exponential factor ( $A$ ) and the activation energy ( $E_a$ )  
282 values where  $R$  is the universal gas constant. The rate constants are determined using 50% (or  
283 25%) fuel consumption to make sure that the fuel decomposition stays linear with respect to  
284 temperature or in the simple Arrhenius form as specified above. The calculations are performed  
285 at 3 different densities (0.1 kg/dm<sup>3</sup>, 0.2 kg/dm<sup>3</sup>, and 0.3 kg/dm<sup>3</sup>).

286 Figure 2 shows the logarithm of reaction rate constant plotted against the inverse of  
287 temperature. It is observed that first-order kinetics fit very well to the Arrhenius equation above.  
288 It also demonstrates that the methodology we are using which averages over 10 independent  
289 ReaxFF simulations with 40 fuel molecules in each simulation is able to produce reaction rates  
290 with minimal statistical uncertainties.  $E_a$  and  $A$  at 0.2 kg/dm<sup>3</sup> extracted from Fig. 2 are 27.97  
291 kcal/mol and  $2.51 \times 10^{13}$  1/s for HtH-1 and 49.20 kcal/mol and  $5.99 \times 10^{14}$  for HtH-2. System  
292 density doesn't affect the first-order kinetics of the fuels significantly, as shown in Fig. 2 and  
293 Table 2. Although the pre-exponential factor is about one order of magnitude higher in HtH-2  
294 than HtH-1, HtH-1 has higher decomposition rates due to the significantly low activation  
295 energy.

296 As the fuels investigated in the current study were only successfully synthesized  
297 recently [12], there is a lack of any kind of experimental data for validation. To compare the  
298 reactivity of HtH-1 and HtH-2 with existing fuels, therefore, Table 2 also lists the Arrhenius  
299 parameters calculated for other jet fuels or jet fuel surrogates from previous ReaxFF studies  
300 [22, 54], which showed excellent agreement with their respective experimental data. Both HtH-  
301 1 and HtH-2 have higher reactivity compared to the *n*-alkane, *iso*-alkane and aromatic  
302 components representative of the jet fuel components. HtH-2 has similar reactivity as JP-10  
303 (tetrahydronyclopentadiene) with its activation energy of decomposition approximately 5  
304 kcal/mol lower than JP-10. HtH-1 is clearly the most reactive largely due to the highly strained  
305 cyclobutane moiety, which is discussed later.



306

307 **Fig. 2.** The logarithm of the global reaction rate constant ( $\ln(k)$ ) plotted against the inverse of  
 308 temperature ( $1000/T$ ) in the thermal decomposition of (a) HtH-1 and (b) HtH-2 with system  
 309 densities of  $0.1 \text{ kg/dm}^3$ ,  $0.2 \text{ kg/dm}^3$ , and  $0.3 \text{ kg/dm}^3$ .

310

311 **Table 2.** Fitted Arrhenius parameters for the thermal decomposition of HtH-1 and HtH-2. The  
 312 reaction rates ( $k$ ) calculated based on these parameters at 2000 K using the Arrhenius equation  
 313 are shown in the last column. The parameters for other fuel components are obtained from  
 314 previous ReaxFF papers.

| Molecule                | Density<br>(kg/dm <sup>3</sup> ) | $E_a$<br>(kcal/mol) | $A$ (1/s)             | $k_{2000\text{K}}$ (s) |
|-------------------------|----------------------------------|---------------------|-----------------------|------------------------|
| HtH-1                   | 0.1                              | 31.92               | $6.75 \times 10^{13}$ | $2.19 \times 10^{10}$  |
|                         | 0.2                              | 27.97               | $2.51 \times 10^{13}$ | $2.20 \times 10^{10}$  |
|                         | 0.3                              | 28.41               | $2.90 \times 10^{13}$ | $2.28 \times 10^{10}$  |
| HtH-2                   | 0.1                              | 43.92               | $1.74 \times 10^{14}$ | $2.76 \times 10^9$     |
|                         | 0.2                              | 49.20               | $5.99 \times 10^{14}$ | $2.52 \times 10^9$     |
|                         | 0.3                              | 50.33               | $7.99 \times 10^{14}$ | $2.53 \times 10^9$     |
| JP-10 [22]              | 0.2                              | 54.33               | $1.56 \times 10^{15}$ | $1.80 \times 10^9$     |
| <i>n</i> -dodecane [22] | 0.2                              | 60.94               | $9.50 \times 10^{15}$ | $2.08 \times 10^9$     |
| <i>iso</i> -octane [54] | 0.14                             | 60.22               | $1.23 \times 10^{15}$ | $3.23 \times 10^8$     |
| toluene [22]            | 0.2                              | 95.71               | $2.83 \times 10^{17}$ | $9.82 \times 10^6$     |

315 **3. 2. 2. Initial fuel decomposition channels**

316        ReaxFF is well suited for the investigation of fuel decomposition chemistry, especially  
317    for fuels with complex molecular structures. A standard framework is proposed in this work  
318    and applied to systematically determine the initial fuel decomposition chemistry and its  
319    energetics for the two fuels. First, all reaction events that occur during the NVT-MD  
320    simulations are identified at every temperature using an in-house reaction analysis code. The  
321    in-house code considers that a reaction event occurs when formulaically different chemical  
322    species are identified. Such reaction events are identified in each and every simulation, and  
323    their occurrence is then averaged over the number of simulations at a given temperature. Table  
324    3 shows the important initial reactions identified at different temperatures during the pyrolysis  
325    of HtH-1 and HtH-2. It should be noted that these reactions are not necessarily elementary as  
326    clarified later. Second, trajectories of the key reactions are visualized and tracked to elucidate  
327    the bond breaking sequence in the elementary reactions involved. Third, the information is used  
328    to calculate free energies of reactants, TS structures, and products in elementary reactions  
329    following the methodology described in Section 2.3. This procedure can provide free energy  
330    profiles, as shown in Figs. 3 and 4, and can be used to energetically understand the  
331    decomposition mechanism identified by NVT-MD simulations. Considering the lack of  
332    significant effects of density on the reactivity of the fuels as shown in Fig. 2, results are shown  
333    only for the simulations at 0.2 kg/dm<sup>3</sup> in the following.

334

335 **3. 2. 2. 1. HtH-1 decomposition**

336 **Table 3.** Initial decomposition mechanism of HtH-1 and HtH-2 in the single component  
337 systems at different temperatures. Typical statistical error for these results is  $\pm 5\%$ .

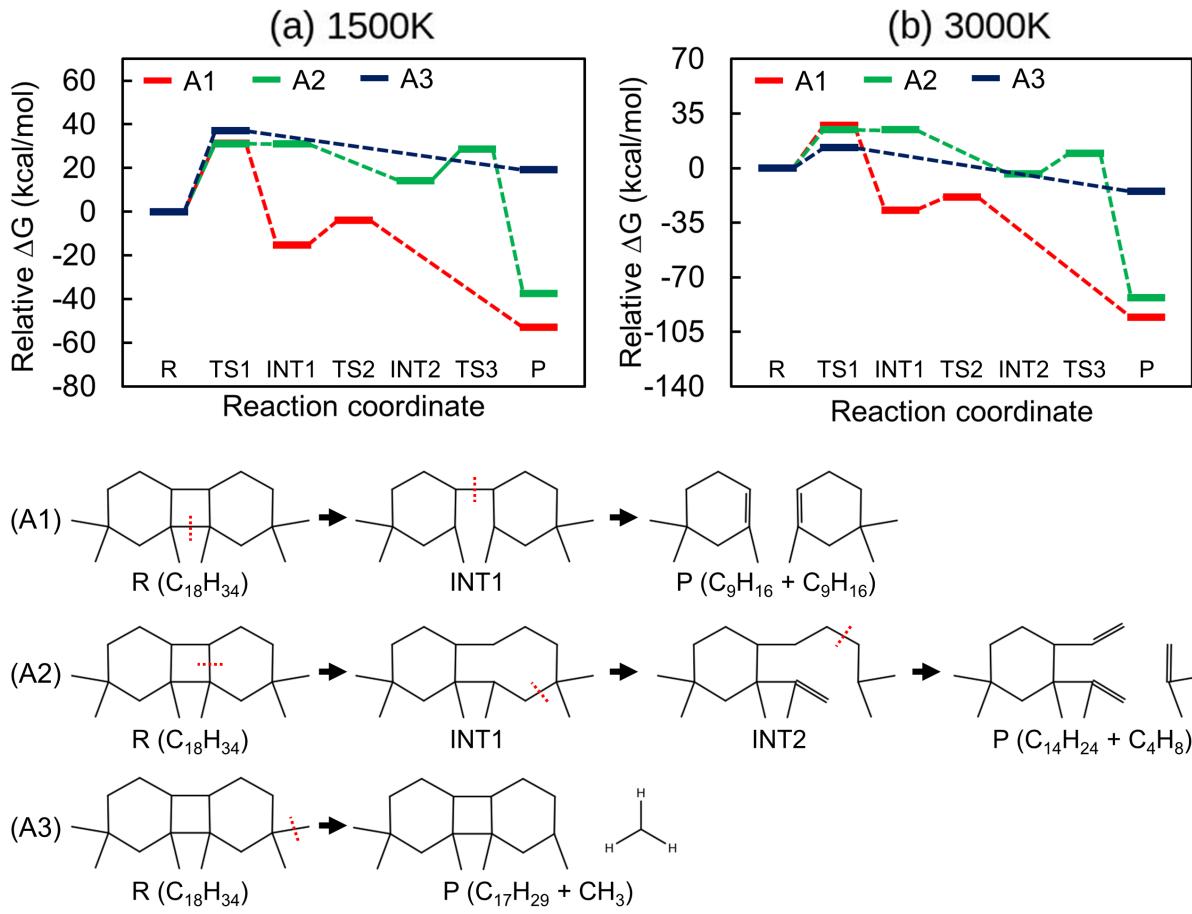
---

| Reactant | Initial Products | Percentage |
|----------|------------------|------------|
|----------|------------------|------------|

---

|                                          |                                                                       | 1500 K | 1800 K | 2000 K | 2500 K | 3000 K |
|------------------------------------------|-----------------------------------------------------------------------|--------|--------|--------|--------|--------|
| HtH-1 (C <sub>18</sub> H <sub>32</sub> ) | (A1) C <sub>9</sub> H <sub>16</sub> + C <sub>9</sub> H <sub>16</sub>  | 81%    | 72%    | 61%    | 53%    | 40%    |
|                                          | (A2) C <sub>14</sub> H <sub>24</sub> + C <sub>4</sub> H <sub>8</sub>  | 14%    | 18%    | 16%    | 17%    | 15%    |
|                                          | (A3) C <sub>17</sub> H <sub>29</sub> + CH <sub>3</sub>                | 1%     | 2%     | 3%     | 10%    | 16%    |
| HtH-2 (C <sub>18</sub> H <sub>34</sub> ) | (A4) C <sub>9</sub> H <sub>17</sub> + C <sub>9</sub> H <sub>17</sub>  | 26%    | 18%    | 20%    | 17%    | 10%    |
|                                          | (A5) C <sub>17</sub> H <sub>31</sub> + CH <sub>3</sub>                | 19%    | 26%    | 25%    | 37%    | 36%    |
|                                          | (A6) C <sub>12</sub> H <sub>22</sub> + C <sub>6</sub> H <sub>12</sub> | 16%    | 11%    | 16%    | 12%    | 11%    |
|                                          | (A7) C <sub>14</sub> H <sub>26</sub> + C <sub>4</sub> H <sub>8</sub>  | 8%     | 11%    | 10%    | 10%    | 10%    |

338


339        ReaxFF simulations predict that HtH-1 decomposes mainly through 3 different  
 340 channels (Table 3). As discussed earlier in Section 3.1, the highly strained central cyclobutane  
 341 moiety is the easiest to break based on the BDE analysis. Consistently, reaction A1 is the  
 342 primary fuel decomposition pathway at all the temperatures. The reaction A2 seemingly  
 343 involves the breaking of multiple bonds and results in the formation of C<sub>14</sub>H<sub>24</sub> and C<sub>4</sub>H<sub>8</sub>.  
 344 Another important pathway is the breaking of the CH<sub>3</sub> groups attached to the rings. Breaking  
 345 of all the CH<sub>3</sub> groups is grouped together for the comparison purpose. An interesting trend to  
 346 note here is that the CH<sub>3</sub> breaking only becomes important at higher temperature at the expense  
 347 of central ring breaking. However, the BDEs alone cannot completely explain this trend.

348        Therefore, these reactions are further investigated to obtain their energetics following  
 349 the methodology described in Section 2.3. As mentioned above, the ReaxFF MD simulation  
 350 trajectories for reactions A1, A2, and A3 are extracted first to identify the bond breaking  
 351 sequence in each reaction. In reaction A1, as shown in Fig. 3, the central ring breaking in HtH-  
 352 1 takes place in two steps. First the C-C bond attaching the quaternary C atoms breaks followed  
 353 by the breaking of the C-C bond attaching the tertiary C atoms. It should be noted that, for  
 354 verification, the breaking of the tertiary C-C bond followed by the quaternary C-C bond is also  
 355 investigated, and this reaction sequence is found to be energetically less favorable due to higher

356 barrier (not shown here). Reaction A2 involves the breaking of the C-C bond part of the  
357 cyclohexyl ring followed by ring opening and breaking resulting in C<sub>4</sub>H<sub>8</sub> and C<sub>14</sub>H<sub>24</sub>. A notable  
358 feature of the HtH-1 decomposition is that the products of reactions A1 and A2, which account  
359 for the majority of fuel decomposition, are stable species rather than radicals. In reaction A3,  
360 the CH<sub>3</sub> group attached to C<sup>c</sup> atom is found to preferentially dissociate from HtH-1.

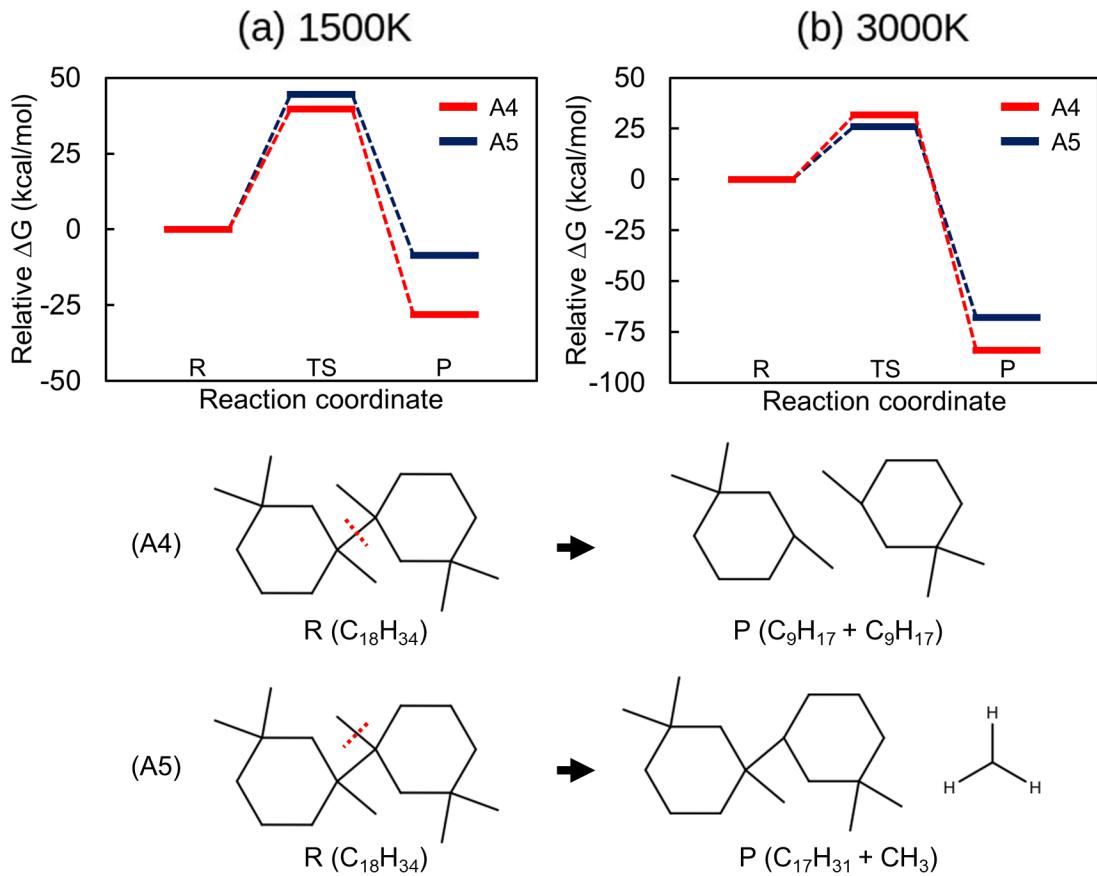
361 To explain the temperature dependence of these reactions, the relative Gibbs free  
362 energy ( $\Delta G$ ) diagrams for reactions A1, A2, and A3 at the two extremes of the temperatures  
363 investigated (1500 K and 3000 K) are plotted in Fig. 3. Note that the percentages of the A3  
364 reaction in Table 3 result from the breaking of C<sup>a</sup>-C<sup>c</sup>, C<sup>b</sup>-C<sup>c</sup>, and C<sup>g</sup>-C<sup>i</sup> bonds as mentioned  
365 above; however, the energy diagram in Fig. 3 only shows the C<sup>a</sup>-C<sup>c</sup> bond dissociation pathway  
366 for simplicity. The reactant is set to have a Gibbs free energy of 0. At 1500 K, reactions A1 and  
367 A2 have a similar initial energy barrier. In reaction A2, however, the barrier for the backward  
368 reaction is negligible, leading to a significant portion of the first intermediate formed (INT1)  
369 to convert back to the reactant. Therefore, despite having similar energy barriers, reaction A1  
370 is strongly favored over reaction A2. Figure 3 also shows that reaction A3 has a quite high  
371 reaction barrier, resulting in the negligible occurrence of this reaction at 1500 K. This scenario  
372 changes at 3000 K especially for reaction A3. At 3000 K, reaction A3 has the lowest energy  
373 barrier due to a huge increase in entropy during the dissociation of CH<sub>3</sub>. Hence, the fraction of  
374 fuel decomposition through reaction A3 increases significantly compared to that of 1500 K but  
375 it is not the most dominant reaction (A1) despite having a smaller barrier due to the much larger  
376 reaction energy. The free energy diagrams clearly explain the trends observed in the number of  
377 occurrences of the reactions for the decomposition of HtH-1 with temperature.

378



379 **Fig. 3.** Gibbs free energy profiles for HtH-1 decomposition reactions A1, A2, and A3 at 1500  
 380 K and 3000 K. The reactant (HtH-1) is labeled as “R”. The intermediates are labeled as “INT1”  
 381 and “INT2”. The transition states are labeled as “TS1”, “TS2”, and “TS3”. The products are  
 382 labeled as “P”.  
 383

384


### 3. 2. 2. HtH-2 decomposition

386 The same analysis is applied to the HtH-2 decomposition reactions. Figure 4 shows  
 387 the free energy diagrams as well as elementary reaction sequences for reactions A4 and A5 that  
 388 are the most important reactions in HtH-2 decomposition. Although reaction A5 has three  
 389 possible pathways via the breaking of C<sup>a</sup>-C<sup>c</sup>, C<sup>b</sup>-C<sup>c</sup>, and C<sup>g</sup>-C<sup>i</sup> bonds, we only show the C<sup>g</sup>-C<sup>i</sup>  
 390 bond dissociation pathway in Fig. 4 for simplicity. As shown in Fig. 4, reaction A4 occurs  
 391 through the breaking of the C<sup>g</sup>-C<sup>j</sup> bond. Energetically, reaction A4 has a lower barrier at 1500

392 K while reaction A5 has the lower barrier at 3000 K. Previously, Yue *et al.* reported that the  
393 thermal decomposition of 1,1'-bicyclohexyl, structurally similar to HtH-2, is mainly initiated  
394 through the dissociation of the C-C bond connecting the two cyclohexyl rings at 683-713 K  
395 [24], consistent with our results. The BDEs given in Table 3 indicate that the central C-C bond  
396 breaking should be favored over the bond breaking of the C-CH<sub>3</sub> bond. However, a large  
397 increase in entropy makes the C-CH<sub>3</sub> bond breaking more favorable at higher temperatures as  
398 seen in Fig. 4. This result explains the temperature-dependent initial products observed in the  
399 NVT-MD simulations shown in Table 3.

400 The systematic reaction analysis framework using ReaxFF discussed above provides  
401 a reliable way to investigate the fuel decomposition chemistry without any manual intervention  
402 and any *a priori* information at a fraction of the computational cost of equivalent QM  
403 calculations. This strategy is particularly useful for the current fuels as there are no structural  
404 equivalents to them which have been investigated with either QM calculations or experiments.

405



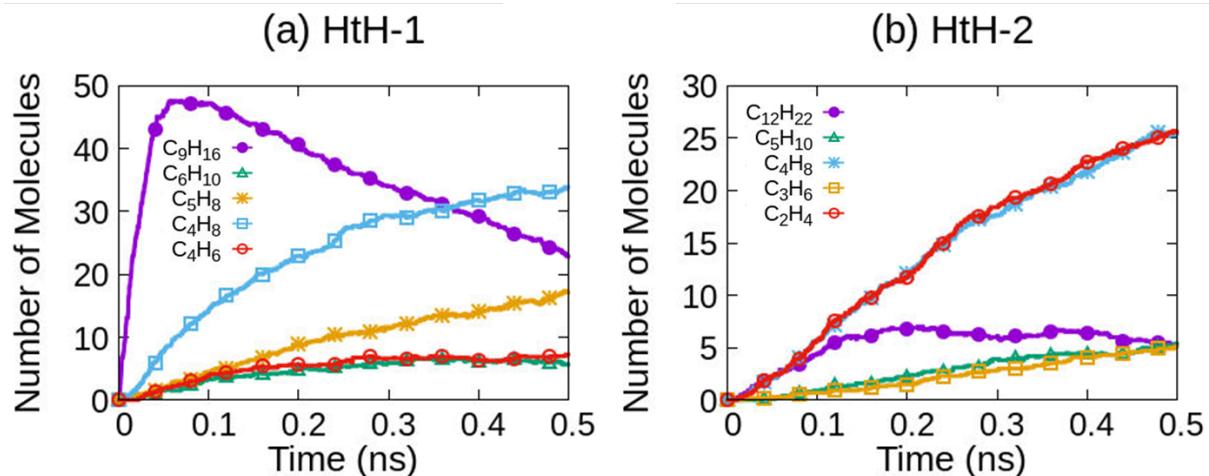
406

407 **Fig. 4.** Gibbs free energy profiles for reactions A4 and A5 at 1500 K and 3000 K. The reactant  
 408 (HtH-2) is labeled as “R”. The transition state is labeled as “TS”. The products are labeled as  
 409 “P”.

410

### 411 3. 2. 3. Product distribution

412 The product evolution during the pyrolysis of HtH-1 and HtH-2 is tracked and  
 413 averaged from 10 independent simulations at each different temperature. The 10 species with  
 414 the highest concentration at the end of the simulation (0.5 ns) are shown at each temperature in  
 415 the supplementary material (S4). Figure 5 shows a comparison at 2000 K, where only  
 416 hydrocarbon species ( $> \text{C}_2$ ) with more than 5 molecules (on average) existing at any given time,  
 417 termed major species, are plotted. Other (minor) species are not shown here, because their  
 418 concentrations are too small and are subject to large statistical uncertainties, which makes it


419 difficult to draw a clear trend from them. However, it should be noted that the list of major and  
420 minor species identified from the criteria can change over the simulation time and with  
421 temperatures, until the system reaches an equilibrium state. As discussed earlier, HtH-1 directly  
422 decomposes to two molecules of C<sub>9</sub>H<sub>16</sub> at 2000 K (reaction A1), therefore, its concentration  
423 initially increases quickly up to 0.05 ns. Since C<sub>9</sub>H<sub>16</sub> decomposition leads to the formation of  
424 C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub> by unimolecular C-C bond fission, C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub> keep increasing over the  
425 entire simulation time. Given that 23 C<sub>9</sub>H<sub>16</sub> molecules are still remaining at 0.5 ns (our  
426 simulation time), the number of C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub> would continue to increase beyond this time.  
427 However, the detailed analysis with longer simulation time is not the aim of the current study.  
428 As shown in Fig. 5a, C<sub>4</sub>H<sub>8</sub> is produced about twice as much as C<sub>5</sub>H<sub>8</sub>, indicating that there are  
429 other important pathways that produce C<sub>4</sub>H<sub>8</sub>. As shown in Table 3, HtH-1 decomposition  
430 produces C<sub>14</sub>H<sub>24</sub> and C<sub>4</sub>H<sub>8</sub> (reaction A2), and sequentially two pairs of products, C<sub>10</sub>H<sub>18</sub> + C<sub>4</sub>H<sub>6</sub>  
431 and C<sub>8</sub>H<sub>14</sub> + C<sub>6</sub>H<sub>10</sub> are produced from C<sub>14</sub>H<sub>24</sub>. Further unimolecular decomposition of C<sub>10</sub>H<sub>18</sub>  
432 and C<sub>8</sub>H<sub>14</sub> leads to the formation of C<sub>6</sub>H<sub>10</sub> + C<sub>4</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub> + C<sub>4</sub>H<sub>6</sub>, respectively.

433 In HtH-2 decomposition, C<sub>12</sub>H<sub>22</sub>, C<sub>5</sub>H<sub>10</sub>, C<sub>4</sub>H<sub>8</sub>, C<sub>3</sub>H<sub>6</sub>, and C<sub>2</sub>H<sub>4</sub> are identified as major  
434 intermediates or products (Fig. 5b), and they are produced through various pathways. As shown  
435 in Table 3, C<sub>17</sub>H<sub>31</sub> and CH<sub>3</sub> radicals are the major initial products from HtH-2 decomposition  
436 (reaction A5) at 2000 K, and C<sub>17</sub>H<sub>31</sub> further breaks down to smaller fragments, such as C<sub>16</sub>H<sub>28</sub>  
437 + CH<sub>3</sub>, C<sub>13</sub>H<sub>23</sub> + C<sub>4</sub>H<sub>8</sub>, C<sub>12</sub>H<sub>22</sub> + C<sub>5</sub>H<sub>9</sub>, and C<sub>12</sub>H<sub>21</sub> + C<sub>5</sub>H<sub>10</sub>, by unimolecular decomposition  
438 reactions. HtH-2 decomposition can be also initiated by reaction A4 which produces two C<sub>9</sub>H<sub>17</sub>  
439 radicals, and sequentially the C<sub>9</sub>H<sub>17</sub> radicals easily decompose to C<sub>5</sub>H<sub>9</sub> + C<sub>4</sub>H<sub>8</sub>, C<sub>7</sub>H<sub>13</sub> + C<sub>2</sub>H<sub>4</sub>,  
440 and C<sub>4</sub>H<sub>7</sub> + C<sub>5</sub>H<sub>10</sub>. The produced C<sub>5</sub>H<sub>9</sub> and C<sub>7</sub>H<sub>13</sub> are further decomposed to C<sub>2</sub>H<sub>4</sub> + C<sub>3</sub>H<sub>5</sub>, and  
441 C<sub>3</sub>H<sub>5</sub> + C<sub>4</sub>H<sub>8</sub> and C<sub>3</sub>H<sub>6</sub> + C<sub>4</sub>H<sub>7</sub>, respectively. HtH-2 decomposition initiated by reaction A6  
442 produces C<sub>12</sub>H<sub>22</sub> and C<sub>6</sub>H<sub>12</sub>, and their further decomposition leads to the formation of C<sub>11</sub>H<sub>19</sub> +

443 CH<sub>3</sub> and C<sub>2</sub>H<sub>4</sub> + C<sub>4</sub>H<sub>8</sub>, respectively. The final decomposition route (reaction A7) generates  
444 C<sub>14</sub>H<sub>26</sub> and C<sub>4</sub>H<sub>8</sub> as shown in Table 3, and C<sub>14</sub>H<sub>26</sub> breaks down to C<sub>12</sub>H<sub>22</sub> and C<sub>2</sub>H<sub>4</sub>.

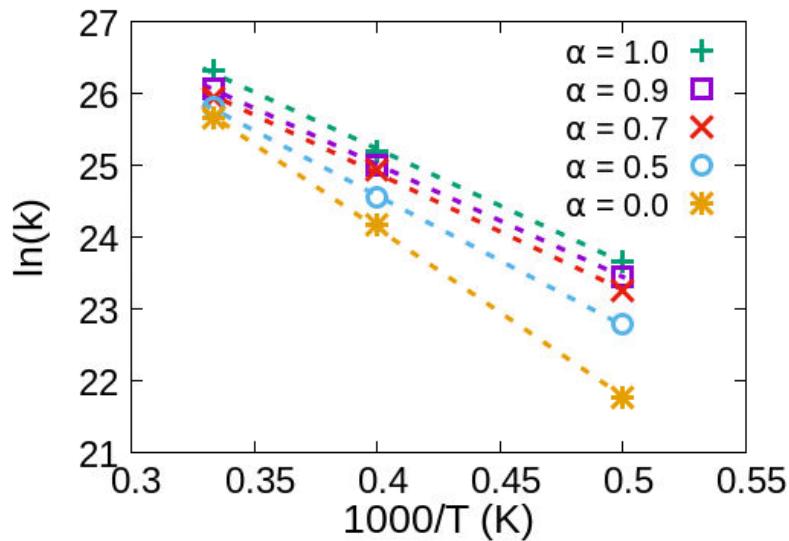
445 One of the important fuel properties for aviation applications is the sooting tendency,  
446 and the Yield Sooting Index (YSI) is a well-established and widely-used metric for sooting  
447 tendency quantification based on soot yield [55, 56]. YSIs have been determined for HtH-1 and  
448 HtH-2 to be 248 and 173, respectively, ([12]; details in the supplementary material S5), which  
449 means that HtH-1 has a much higher tendency to form soot during combustion than HtH-2,  
450 even though they have the same number of carbons. Our ReaxFF simulation results of the  
451 product spectrum from HtH-1 and HtH-2 agree qualitatively with the experimentally measured  
452 YSI trend. As shown in Fig. 5, major products from HtH-1 are C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub>, and those from  
453 HtH-2 are C<sub>4</sub>H<sub>8</sub> and C<sub>2</sub>H<sub>4</sub>. The unsaturated hydrocarbons are generally regarded as key soot  
454 precursors leading to the formation of the first aromatic ring and consequently soot. However,  
455 their effectiveness in forming soot is different. C<sub>2</sub>H<sub>4</sub> is a relatively inefficient soot precursor,  
456 because slow growth reactions are required to produce C<sub>3</sub> species that are key species for  
457 benzene formation [57-59]. In contrast, C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub> are more effective soot precursors, since  
458 they can produce not only C<sub>3</sub> species by fast C-C fissions but also additional C<sub>1</sub> or C<sub>2</sub> species  
459 [57, 60, 61]. Therefore, the ReaxFF results suggest that HtH-1 has a higher sooting tendency  
460 than HtH-2, which is consistent with the experimental YSI trend for the two compounds.

461 Moreover, the ReaxFF pathways are consistent with the absolute sooting tendency of  
462 HtH-1. The group-contribution method we developed earlier [55] predicts that YSI = 121.2 ±  
463 14.7 for 1,5,5-trimethylcyclohexene (the C<sub>9</sub>H<sub>16</sub> isomer formed by (A1)). ReaxFF indicates that  
464 at the temperatures where the fuel is consumed in the YSI flames – which is below 1500 K [62]  
465 – the dominant process (> 81%; Table 3) is HtH-1 → 2 C<sub>9</sub>H<sub>16</sub>. Therefore, ReaxFF predicts that  
466 the YSI of HtH-1 is ≈ 2 × 121 = 242, which agrees well with the measured value of 248.



469 **Fig. 5.** Time evolution of the major products observed during the pyrolysis simulations of (a)  
470 HtH-1 and (b) HtH-2 at 2000 K. Results are averaged from 10 independent simulations. Only  
471 species with more than 5 molecules (on average) existing at any given time are plotted. For  
472 clarity, markers are only shown for every 400<sup>th</sup> data point.

474 **3.3. Pyrolysis of HtH-1 and HtH-2 mixtures**


475 **3.3.1. Decomposition rates**

476 As mentioned in Section 1, the synthesis method by Ryan et al. [12] produced a mixture  
477 of 91.2 % HtH-1 (desired product) and 8.8 % HtH-2 (impurity). Given that the compounds are  
478 hard to separate, real jet fuels based on HtH-1 are likely to contain similar or higher levels of  
479 HtH-2. Therefore, this section investigates the impact of HtH-2 on pyrolysis of HtH-1 in three  
480 different mixture systems with mixing ratio  $\alpha = 0.9, 0.7, \text{ and } 0.5$  as defined in Table 5. Since  
481 there are no significant density effects on the decomposition kinetics as shown in Fig. 2, these  
482 simulations are performed only with a density of  $0.2 \text{ kg/dm}^3$ . Figure 6 shows the global fuel  
483 decomposition rate constant plotted against the inverse of temperature, similar to Fig. 2. It is  
484 shown that the fitted straight lines shift downwards with decreasing mixing ratio of HtH-2,

485 indicating that the decomposition rate of the mixtures decreases when more HtH-2 molecules  
 486 with less reactivity are added into the mixture. The effects of adding HtH-2 is more remarkable  
 487 at lower temperatures, similar to previous ReaxFF results for other binary mixtures [22]. In  
 488 single component systems, as shown in Fig. 2, the decomposition rate decreases more rapidly  
 489 in HtH-2 than HtH-1 with decreasing temperature, which makes the fitted lines for HtH-1 and  
 490 HtH-2 mixtures more divergent at lower temperatures in Fig. 6.

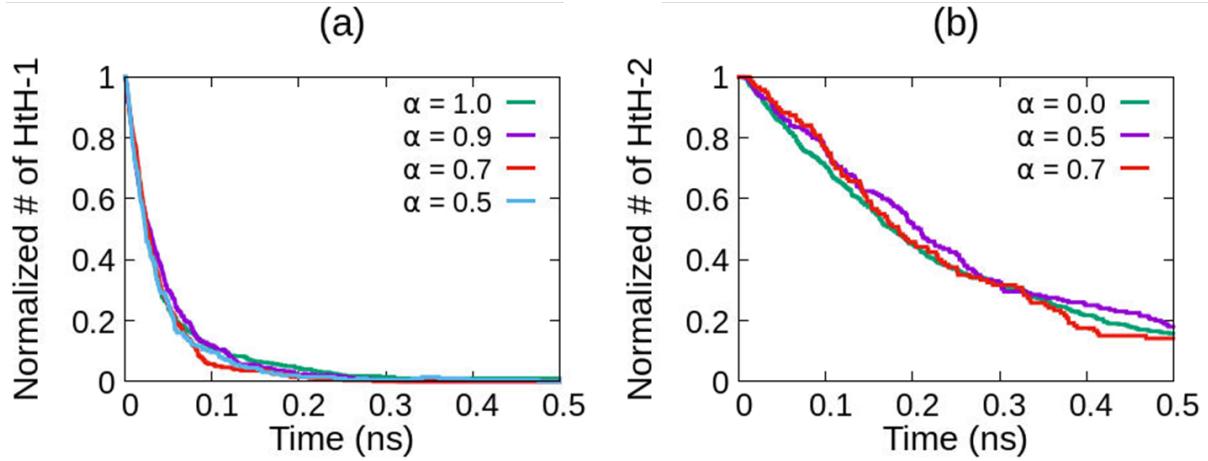
491 Based on the Arrhenius plot shown in Fig. 6, the activation energy and pre-exponential  
 492 factor for the thermal decomposition of mixtures are calculated (using Eq. (2)) and shown in  
 493 Table 5. The activation energy increases with higher fraction of HtH-2 in the mixture system,  
 494 since HtH-2 (49.20 kcal/mol) has a higher activation energy than HtH-1 (27.97 kcal/mol) as  
 495 shown in Table 2. The pre-exponential factor is about an order of magnitude higher for HtH-2  
 496 ( $5.99 \times 10^{14}$  1/s) than for HtH-1 ( $2.51 \times 10^{13}$  1/s) in single component systems, leading to an  
 497 increase in pre-exponential factor when more HtH-2 is blended into the mixture.

498



499  
 500 **Fig. 6.** The logarithm of the global reaction rate constant ( $k$ ) plotted against the inverse of  
 501 temperature ( $1000/T$ ) in thermal decomposition of fuel mixtures with mixing ratio  $\alpha = 1.0, 0.9,$   
 502  $0.7, 0.5$ , and  $0.0$  and a density of  $0.2$  kg/dm $^3$ .

503 **Table 5.** Arrhenius parameters for thermal decomposition in HtH-1 and HtH-2 mixtures with  
 504 mixing ratio  $\alpha = 0.9, 0.7$ , and  $0.5$ . The Arrhenius parameters for HtH-1 ( $\alpha = 1.0$ ) and HtH-2 ( $\alpha$   
 505 =  $0.0$ ) in the single component systems are extracted from Table 2 and added for comparison.


| Mixture ratio ( $\alpha$ ) | Mixture composition |       | $E_a$ (kcal/mol) | $A$ (1/s)             |
|----------------------------|---------------------|-------|------------------|-----------------------|
|                            | HtH-1               | HtH-2 |                  |                       |
| 1.0                        | 100%                | -     | 27.97            | $2.51 \times 10^{13}$ |
| 0.9                        | 90%                 | 10%   | 31.12            | $3.84 \times 10^{13}$ |
| 0.7                        | 70%                 | 30%   | 32.25            | $4.26 \times 10^{13}$ |
| 0.5                        | 50%                 | 50%   | 35.96            | $6.60 \times 10^{13}$ |
| 0.0                        | -                   | 100%  | 49.20            | $5.99 \times 10^{14}$ |

506

### 507 3.3.2. Initial reaction mechanism

508 To understand the underlying mechanism of the reduced decomposition rate by HtH-  
 509 2 blending, we plot the number of HtH-1 (or HtH-2) molecules normalized by the initial  
 510 number of HtH-1 (or HtH-2) molecules as a function of time in single component and mixture  
 511 systems. Figure 7(a) shows that the normalized number of HtH-1 over time has a very similar  
 512 behavior in all systems. These results suggest that the decomposition rate of mixtures is reduced  
 513 simply by the replacement of the more reactive HtH-1 by the less reactive HtH-2, but there is  
 514 no significant synergistic effect of HtH-2 addition on the initial thermal decomposition kinetics  
 515 of HtH-1. This conclusion is further confirmed by Fig. 7(b) which shows the normalized  
 516 number of HtH-2 in single component ( $\alpha = 0$ ) and mixture systems ( $\alpha = 0.5$  and  $0.7$ ). Since the  
 517 mixture system with  $\alpha = 0.9$  contains only 4 molecules of HtH-2, it is excluded from this  
 518 comparison. Figure 7(b) shows that HtH-2 decomposition kinetics is almost the same in all  
 519 cases, which indicates that HtH-1 and HtH-2 do not interact with each other in thermal  
 520 decomposition.

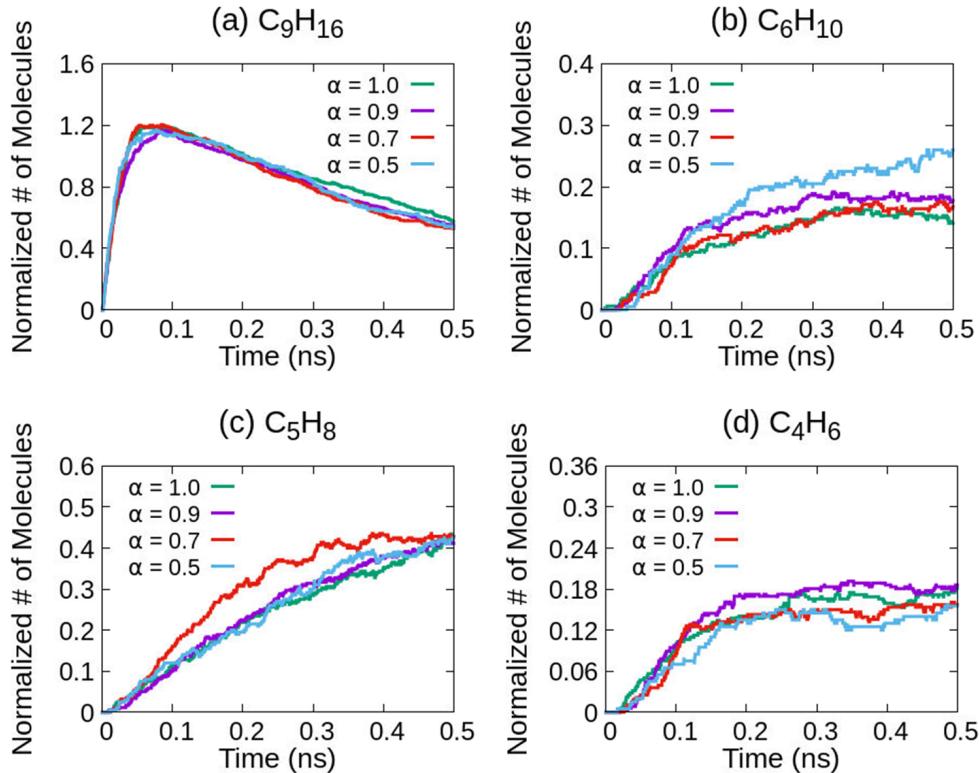
521



522 **Fig. 7.** Normalized number of (a) HtH-1 and (b) HtH-2 at 2000 K in single component and  
 523 mixture systems. A mixing ratio of  $\alpha = 1.0$  corresponds to the single component HtH-1 case,  
 524 and a mixing ratio of  $\alpha = 0.0$  corresponds to the single component HtH-2 case.

526  
 527 Next, the important initial reactions are identified in the three different mixtures using  
 528 the same analysis described in Section 3. 2. 2. Table 6 shows the major initial reactions and  
 529 their relative percentages observed in mixtures at 2000 K. Note that in each mixture system the  
 530 relative percentages of reactions A1-A3 and reactions A4-A7 are calculated as the number of  
 531 occurrences of these reactions normalized by the initial number of HtH-1 and HtH-2,  
 532 respectively. In single component systems, A1-A3 and A4-A7 are the major initial reactions  
 533 observed in the decomposition of HtH-1 and HtH-2, respectively, and they are still the most  
 534 important reactions in mixture systems. In addition, Table 6 shows that the relative percentages  
 535 of reactions A1-A7 stay almost the same for all three mixing ratios. These results indicate that  
 536 there is no significant interaction between HtH-1 and HtH-2 during their thermal  
 537 decomposition, since each fuel is primarily decomposed by unimolecular reactions. Although  
 538 here we only show the results at 2000 K, the same conclusion is also observed at different  
 539 temperatures.

541 **Table 6.** Initial decomposition reaction channels in fuel mixtures at 2000K.


| Reactant                               | Initial Products                                            | Percentage     |                |                |
|----------------------------------------|-------------------------------------------------------------|----------------|----------------|----------------|
|                                        |                                                             | $\alpha = 0.9$ | $\alpha = 0.7$ | $\alpha = 0.5$ |
| HtH-1 ( $\text{C}_{18}\text{H}_{32}$ ) | (A1) $\text{C}_9\text{H}_{16} + \text{C}_9\text{H}_{16}$    | 64%            | 68%            | 66%            |
|                                        | (A2) $\text{C}_{14}\text{H}_{28} + \text{C}_4\text{H}_8$    | 20%            | 16%            | 16%            |
|                                        | (A3) $\text{C}_{17}\text{H}_{29} + \text{CH}_3$             | 4%             | 4%             | 5%             |
| HtH-2 ( $\text{C}_{18}\text{H}_{34}$ ) | (A4) $\text{C}_9\text{H}_{17} + \text{C}_9\text{H}_{17}$    | 20%            | 19%            | 18%            |
|                                        | (A5) $\text{C}_{17}\text{H}_{31} + \text{CH}_3$             | 26%            | 31%            | 33%            |
|                                        | (A6) $\text{C}_{12}\text{H}_{22} + \text{C}_6\text{H}_{12}$ | 9%             | 14%            | 10%            |
|                                        | (A7) $\text{C}_{14}\text{H}_{26} + \text{C}_4\text{H}_8$    | 20%            | 10%            | 10%            |

542

543 **3. 3. 3. Product distribution**

544 This section investigates whether the addition of HtH-2 affects the major product  
 545 evolution for the pyrolysis of fuel mixtures. We plot the number of  $\text{C}_9\text{H}_{16}$ ,  $\text{C}_6\text{H}_{10}$ ,  $\text{C}_5\text{H}_8$ , and  
 546  $\text{C}_4\text{H}_6$  molecules normalized by the initial number of HtH-1 molecules in the single component  
 547 system ( $\alpha = 1.0$ ) and mixture systems ( $\alpha = 0.9$ , 0.7, and 0.5). The four species are selected since  
 548 they are the main products derived from HtH-1 decomposition. Figure 8 shows that the time  
 549 history of the normalized numbers of product molecules are very similar although HtH-2 is  
 550 added up to 50% in the mixture system. These results demonstrate that decomposition of the  
 551 HtH-1 derived species occurs via unimolecular reactions, and is hardly affected by HtH-2 or  
 552 the HtH-2 derived species. However, it should be noted that further decomposition or growth  
 553 reactions of the HtH-1 products over longer time-scales might be influenced by the presence  
 554 of HtH-2 derived products, because it would provide different intermediates or radicals which  
 555 will potentially participate in bimolecular reactions. However, this is outside the scope of the  
 556 current work.

557



558

559 **Fig. 8.** Number of product molecules derived from HtH-1, including (a)  $\text{C}_9\text{H}_{16}$ , (b)  $\text{C}_6\text{H}_{10}$ , (c)  
560  $\text{C}_5\text{H}_8$ , and (d)  $\text{C}_4\text{H}_6$ , in single component system ( $\alpha = 1.0$ ) and mixture systems ( $\alpha = 0.9$ , 0.7,  
561 and 0.5). Profiles are normalized by the initial number of HtH-1 molecules in the system.

562

#### 563 **4. Conclusions**

564 The initial pyrolysis chemistry for HtH-1, a potential fuel candidate for aviation  
565 applications, and HtH-2, which acts as an impurity produced by fuel synthesis, was investigated  
566 in this work using ReaxFF based molecular dynamics (MD) simulations. The bond dissociation  
567 energies (BDE) for important bonds were calculated using both ReaxFF and density function  
568 theory (DFT) calculations to provide insight into fuel decomposition via unimolecular  
569 reactions and to validate the force field employed in the study. ReaxFF-MD simulations were  
570 performed at different densities ( $0.1 \text{ kg/dm}^3$ ,  $0.2 \text{ kg/dm}^3$ , and  $0.3 \text{ kg/dm}^3$ ) and temperatures  
571 ( $1500 \text{ K}$ ,  $1800 \text{ K}$ ,  $2000 \text{ K}$ ,  $2500 \text{ K}$ , and  $3000 \text{ K}$ ) to investigate the initial decomposition kinetics  
572 and decomposition mechanism during the pyrolysis of HtH-1 and HtH-2.

573 Global Arrhenius parameters, such as activation energies and pre-exponential factors,  
574 were calculated, and used to analyze the overall decomposition kinetics of the fuels. It was  
575 found that HtH-1 has a faster decomposition rate than HtH-2, and both fuels have higher  
576 reactivity compared to several existing jet-fuel components, such as JP-10, *n*-dodecane, *iso*-  
577 octane, and toluene. A temperature-dependent initial decomposition mechanism was also  
578 elucidated using a systematic reaction analysis framework developed in this work. It was  
579 shown that the central C-C bond connecting the two cyclohexane rings preferentially  
580 decomposes at lower temperature in both HtH-1 and HtH-2 fuels. However, initial  
581 decomposition via C-CH<sub>3</sub> bond breaking becomes important with increasing temperature due  
582 to the large increase in entropy during this reaction. We also identified the product distribution  
583 during the pyrolysis process. HtH-1 mostly produces C<sub>5</sub>H<sub>8</sub> and C<sub>4</sub>H<sub>8</sub>, while HtH-2 produces  
584 C<sub>4</sub>H<sub>8</sub> and C<sub>2</sub>H<sub>4</sub>. These results were consistent with the higher sooting tendency of HtH-1 than  
585 HtH-2 observed in experimental measurements. To investigate the effects of HtH-2 on the  
586 pyrolysis behavior of HtH-1, the same analyses were also performed in their binary fuel  
587 mixtures. The ReaxFF results demonstrated that HtH-1 and HtH-2 decompose by unimolecular  
588 reactions, and there is no significant interaction between the two fuels during the pyrolysis of  
589 the mixtures.

590 It is worth reemphasizing that the analysis performed using ReaxFF offers a reliable  
591 way to investigate hydrocarbon fuel chemistry at a fraction of the computational cost of the  
592 equivalent DFT calculations without any *a priori* input and chemical intuition. The ReaxFF-  
593 based systematic reaction analysis shown in this work can be used as a standard framework to  
594 understand pyrolysis and combustion chemistry of existing or future fuels and to contribute to  
595 the development of their chemical kinetic models.

596

597

598 **Acknowledgments**

599 This research was funded by the U.S. Department of Energy's Office of Energy Efficiency and  
600 Renewable Energy (EERE) under the Bioenergy Technologies Office (BETO) and Vehicle  
601 Technologies Office (VTO) Program Award Number DE-EE0007983. AL and ACTvD also  
602 acknowledge funding from AFOSR grant FA9550-17-1-0173.

603

604 **References**

605 [1] Wei H, Liu W, Chen X, Yang Q, Li J, Chen H. Renewable bio-jet fuel production for  
606 aviation: A review. *Fuel* 2019;254:115599.

607 [2] Kandaramath Hari T, Yaakob Z, Binitha NN. Aviation biofuel from renewable  
608 resources: Routes, opportunities and challenges. *Renewable and Sustainable Energy  
609 Reviews* 2015;42:1234-44.

610 [3] Gutiérrez-Antonio C, Gómez-Castro FI, de Lira-Flores JA, Hernández S. A review  
611 on the production processes of renewable jet fuel. *Renewable and Sustainable Energy  
612 Reviews* 2017;79:709-29.

613 [4] Chiaramonti D, Prussi M, Buffi M, Tacconi D. Sustainable bio kerosene: Process  
614 routes and industrial demonstration activities in aviation biofuels. *Applied Energy*  
615 2014;136:767-74.

616 [5] Kosir ST, Behnke L, Heyne JS, Stachler RD, Flora G, Zabarnick S, et al.  
617 Improvement in jet aircraft operation with the use of high-performance drop-in fuels. *AIAA  
618 Scitech 2019 Forum*. American Institute of Aeronautics and Astronautics; 2019.

619 [6] Holladay J, Abdullah Z, Heyne J. Sustainable aviation fuel: Synthesized  
620 recommendations from three workshops. *Pacific Northwest National Laboratories  
621 2019;PNNL-28815*.

622 [7] Zhang X, Pan L, Wang L, Zou J-J. Review on synthesis and properties of high-  
623 energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. *Chem  
624 Eng Sci* 2018;180:95-125.

625 [8] Chung HS, Chen CSH, Kremer RA, Boulton JR, Burdette GW. Recent developments  
626 in high-energy density liquid hydrocarbon fuels. *Energy Fuels* 1999;13(3):641-9.

627 [9] Tang H, Li N, Li S, Chen F, Li G, Wang A, et al. Synthesis of jet fuel rang  
628 cycloalkane from isophorone with glycerol as a renewable hydrogen source. *Catal Today*  
629 2017;298:16-20.

630 [10] Wang W, Liu Y, Li N, Li G, Wang W, Wang A, et al. Synthesis of renewable high-  
631 density fuel with isophorone. *Scientific Reports* 2017;7(1):6111.

632 [11] Xie J, Zhang L, Zhang X, Han P, Xie J, Pan L, et al. Synthesis of high-density and  
633 low-freezing-point jet fuel using lignocellulose-derived isophorone and furanic aldehydes.  
634 *Sustainable Energy & Fuels* 2018;2(8):1863-9.

635 [12] Ryan CF, Moore CM, Leal JH, Semelsberger TA, Banh JK, Zhu J, et al. Synthesis of  
636 aviation fuel from bio-derived isophorone. *Sustainable Energy & Fuels* 2020;4(3):1088-92.

637 [13] Billaud F, Chaverot P, Berthelin M, Freund E. Thermal decomposition of  
638 cyclohexane at approximately 810.degree.C. *Industrial & Engineering Chemistry Research*  
639 1988;27(5):759-64.

640 [14] Kim J, Park SH, Lee CH, Chun B-H, Han JS, Jeong BH, et al. Coke formation during  
641 thermal decomposition of methylcyclohexane by alkyl substituted C<sub>5</sub> ring hydrocarbons  
642 under supercritical conditions. *Energy Fuels* 2012;26(8):5121-34.

643 [15] Dai Y, Zhao W, Xie H, Guo Y, Fang W. Pyrolysis kinetics and mechanism of  
644 ethylcyclohexane. *J Anal Appl Pyrolysis* 2020;145:104723.

645 [16] Gough RV, Widegren JA, Bruno TJ. Thermal decomposition kinetics of 1,3,5-  
646 triisopropylcyclohexane. *Industrial & Engineering Chemistry Research* 2013;52(24):8200-  
647 5.

648 [17] Yu J, Eser S. Thermal decomposition of jet fuel model compounds under near-critical  
649 and supercritical conditions. 1. n-butylbenzene and n-butylcyclohexane. *Industrial &*  
650 *Engineering Chemistry Research* 1998;37(12):4591-600.

651 [18] Yu J, Eser S. Thermal decomposition of jet fuel model compounds under near-critical  
652 and supercritical conditions. 2. decalin and tetralin. *Industrial & Engineering Chemistry*  
653 *Research* 1998;37(12):4601-8.

654 [19] Chae K, Violi A. Thermal decomposition of decalin: An ab initio study. *The Journal*  
655 *of Organic Chemistry* 2007;72(9):3179-85.

656 [20] Xing Y, Fang W, Xie W, Guo Y, Lin R. Thermal cracking of JP-10 under pressure.  
657 *Industrial & Engineering Chemistry Research* 2008;47(24):10034-40.

658 [21] Chenoweth K, van Duin ACT, Dasgupta S, Goddard III WA. Initiation mechanisms  
659 and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. *J Phys Chem A*  
660 2009;113(9):1740-6.

661 [22] Ashraf C, Shabnam S, Jain A, Xuan Y, van Duin ACT. Pyrolysis of binary fuel  
662 mixtures at supercritical conditions: A ReaxFF molecular dynamics study. *Fuel*  
663 2019;235:194-207.

664 [23] Gao CW, Vandeputte AG, Yee NW, Green WH, Bonomi RE, Magoon GR, et al. JP-  
665 10 combustion studied with shock tube experiments and modeled with automatic reaction  
666 mechanism generation. *Combust Flame* 2015;162(8):3115-29.

667 [24] Yue L, Qin X, Wu X, Guo Y, Xu L, Xie H, et al. Thermal decomposition kinetics and  
668 mechanism of 1,1'-bicyclohexyl. *Energy Fuels* 2014;28(7):4523-31.

669 [25] Curran HJ. Developing detailed chemical kinetic mechanisms for fuel combustion.  
670 *Proc Combust Inst* 2019;37(1):57-81.

671 [26] van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: A reactive force field  
672 for hydrocarbons. *J Phys Chem A* 2001;105(41):9396-409.

673 [27] Chenoweth K, van Duin ACT, Goddard WA. ReaxFF reactive force field for  
674 molecular dynamics simulations of hydrocarbon oxidation. *J Phys Chem A*  
675 2008;112(5):1040-53.

676 [28] Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, et al. The ReaxFF  
677 reactive force-field: development, applications and future directions. *Npj Comput Mater*  
678 2016;2:15011.

679 [29] Mortier WJ, Ghosh SK, Shankar S. Electronegativity-equalization method for the  
680 calculation of atomic charges in molecules. *J Am Chem Soc* 1986;108(15):4315-20.

681 [30] Castro-Marcano F, van Duin ACT. Comparison of thermal and catalytic cracking of  
682 1-heptene from ReaxFF reactive molecular dynamics simulations. *Combust Flame*  
683 2013;160(4):766-75.

684 [31] Wang Q-D, Wang J-B, Li J-Q, Tan N-X, Li X-Y. Reactive molecular dynamics  
685 simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane.  
686 *Combust Flame* 2011;158(2):217-26.

687 [32] Cheng X-M, Wang Q-D, Li J-Q, Wang J-B, Li X-Y. ReaxFF molecular dynamics  
688 simulations of oxidation of toluene at high temperatures. *J Phys Chem A*  
689 2012;116(40):9811-8.

690 [33] Liu L, Bai C, Sun H, Goddard WA. Mechanism and Kinetics for the Initial Steps of  
691 Pyrolysis and Combustion of 1,6-Dicyclopropane-2,4-hexyne from ReaxFF Reactive  
692 Dynamics. *J Phys Chem A* 2011;115(19):4941-50.

693 [34] Han S, Li X, Zheng M, Guo L. Initial reactivity differences between a 3-component  
694 surrogate model and a 24-component model for RP-1 fuel pyrolysis evaluated by ReaxFF  
695 MD. *Fuel* 2018;222:753-65.

696 [35] Zhao P, Han S, Li X, Zhu T, Tao X, Guo L. Comparison of RP-3 Pyrolysis Reactions  
697 between Surrogates and 45-Component Model by ReaxFF Molecular Dynamics  
698 Simulations. *Energy Fuels* 2019;33(8):7176-87.

699 [36] Liu X, Li X, Nie F, Guo L. Initial Reaction Mechanism of Bio-oil High-Temperature  
700 Oxidation Simulated with Reactive Force Field Molecular Dynamics. *Energy Fuels*  
701 2017;31(2):1608-19.

702 [37] Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for  
703 molecular simulations. *J Phys Chem* 1990;94(26):8897-909.

704 [38] Ashraf C, van Duin ACT. Extension of the ReaxFF combustion force field toward  
705 syngas combustion and initial oxidation kinetics. *J Phys Chem A* 2017;121(5):1051-68.

706 [39] Arvelos S, Abrahão O, Eponina Hori C. ReaxFF molecular dynamics study on the  
707 pyrolysis process of cyclohexanone. *J Anal Appl Pyrolysis* 2019;141:104620.

708 [40] Kwon H, Shabnam S, van Duin ACT, Xuan Y. Numerical simulations of yield-based  
709 sooting tendencies of aromatic fuels using ReaxFF molecular dynamics. *Fuel*  
710 2019;262(15):116545.

711 [41] Feng M, Jiang XZ, Mao Q, Luo KH, Hellier P. Initiation mechanisms of enhanced  
712 pyrolysis and oxidation of JP-10 (exo-tetrahydronaphthalene) on functionalized  
713 graphene sheets: Insights from ReaxFF molecular dynamics simulations. *Fuel*  
714 2019;254:115643.

715 [42] Chen Z, Sun W, Zhao L. Combustion mechanisms and kinetics of fuel additives: A  
716 ReaxFF molecular simulation. *Energy Fuels* 2018;32(11):11852-63.

717 [43] Chen Z, Sun W, Zhao L. Initial mechanism and kinetics of diesel incomplete  
718 combustion: ReaxFF molecular dynamics based on a multicomponent fuel model. *The  
719 Journal of Physical Chemistry C* 2019;123(14):8512-21.

720 [44] Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular  
721 dynamics with coupling to an external bath. *J Chem Phys* 1984;81(8):3684-90.

722 [45] Bal KM, Neyts EC. Merging metadynamics into hyperdynamics: Accelerated  
723 molecular simulations reaching time scales from microseconds to seconds. *Journal of*  
724 *Chemical Theory and Computation* 2015;11(10):4545-54.

725 [46] Bal KM, Neyts EC. Direct observation of realistic-temperature fuel combustion  
726 mechanisms in atomistic simulations. *Chemical Science* 2016;7(8):5280-6.

727 [47] te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA,  
728 Snijders JG, et al. *Chemistry with ADF. J Comput Chem* 2001;22(9):931-67.

729 [48] Kiefer JH, Gupte KS, Harding LB, Klippenstein SJ. Shock tube and theory  
730 investigation of cyclohexane and 1-hexene decomposition. *J Phys Chem A*  
731 2009;113(48):13570-83.

732 [49] Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, et  
733 al. *Jaguar: A high-performance quantum chemistry software program with strengths in life*  
734 *and materials sciences. Int J Quantum Chem* 2013;113(18):2110-42.

735 [50] Becke AD. Density-functional thermochemistry. III. The role of exact exchange. *J*  
736 *Chem Phys* 1993;98(7):5648-52.

737 [51] Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital  
738 methods. XX. A basis set for correlated wave functions. *J Chem Phys* 1980;72(1):650-4.

739 [52] Csonka GI, Ruzsinszky A, Tao J, Perdew JP. Energies of organic molecules and  
740 atoms in density functional theory. *Int J Quantum Chem* 2005;101(5):506-11.

741 [53] Nachtigall P, Sauer J. Chapter 20 - Applications of quantum chemical methods in  
742 zeolite science. In: Čejka J, van Bekkum H, Corma A, Schüth F, editors. *Studies in Surface*  
743 *Science and Catalysis*. Elsevier; 2007, p. 701-XXI.

744 [54] Wang E, Ding J, Qu Z, Han K. Development of a reactive force field for  
745 hydrocarbons and application to iso-octane thermal decomposition. *Energy Fuels*  
746 2018;32(1):901-7.

747 [55] Das DD, St. John PC, McEnally CS, Kim S, Pfefferle LD. Measuring and predicting  
748 sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified  
749 scale. *Combust Flame* 2018;190:349-64.

750 [56] McEnally CS, Das DD, Pfefferle LD. Yield sooting index database volume 2:  
751 Sooting tendencies of a wide range of fuel compounds on a unified scale. Harvard  
752 Dataverse, V1 2017.

753 [57] McEnally CS, Pfefferle LD, Atakan B, Kohse-Höinghaus K. Studies of aromatic  
754 hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. *Prog  
755 Energy Combust Sci* 2006;32(3):247-94.

756 [58] McEnally CS, Ciuparu DM, Pfefferle LD. Experimental study of fuel decomposition  
757 and hydrocarbon growth processes for practical fuel components: heptanes. *Combust Flame*  
758 2003;134(4):339-53.

759 [59] Kwon H, Etz BD, Montgomery MJ, Messerly R, Shabnam S, Vyas S, et al. Reactive  
760 Molecular Dynamics Simulations and Quantum Chemistry Calculations To Investigate  
761 Soot-Relevant Reaction Pathways for Hexylamine Isomers. *J Phys Chem A*  
762 2020;124(21):4290-304.

763 [60] McEnally CS, Pfefferle LD. Fuel decomposition and hydrocarbon growth processes  
764 for oxygenated hydrocarbons: butyl alcohols. *Proc Combust Inst* 2005;30(1):1363-70.

765 [61] Jin H, Wang G, Wang Y, Zhang X, Li Y, Zhou Z, et al. Experimental and kinetic  
766 modeling study of laminar coflow diffusion methane flames doped with iso-butanol. *Proc  
767 Combust Inst* 2017;36(1):1259-67.

768 [62] McEnally CS, Xuan Y, St. John PC, Das DD, Jain A, Kim S, et al. Sooting tendencies  
769 of co-optima test gasolines and their surrogates. *Proc Combust Inst* 2019;37(1):961-8.

770