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1. Introduction

The behavior of plasmas in configurations with magnetic null points is of potential interest for a
number of systems. Such nulls, sometimes referred to as X-points, a name strictly valid only for well-
separated nulls where magnetic separatrices cross at a right angle, may occur in only one component of
the magnetic field, such as the poloidal field in a tokamak. Numerical simulations are often used to study
and predict turbulence and transport in such systems. For cases with strong magnetic field such that the
ion and electron gyro-frequencies are much larger that particle collision frequencies, there is a strong
anisotropy in the plasma transport along the magnetic field compared to across the field. Because of the
strong anisotropy, it is often advantageous for simulations to use a coordinate system based on magnetic
flux surfaces together with a coordinate orthogonal to the flux surfaces. This report presents the
topological considerations needed to construct the mapping on an orthogonal flux-surface mesh onto a
logically rectangular domain often used in simulation codes of the divertor region of tokamaks having
two nearby X-points, thus extending the mapping now common single-null or well-separated double null-
point cases with one null located at the top and bottom of the device. This extension is especially relevant
to study the capability of snowflake divertors in tokamaks for reducing the peak heat flux of exhaust
plasma on the target plates [1-3].

The analysis presented here follows the analytic description of the poloidal magnetic field, B, near
two closely-spaced X-points given by Ryutov [1-3]. This analysis is applicable to experimental devices
where the two X-points are generated by distributed poloidal field coils and the plasma core current. This
analytic description is used to identify topological features of an orthogonal mesh. A key parameter that
specifies the various topology changes is the poloidal angle between the primary X-point and the second
X-point, and the changes are associated with a set of critical angles. Understanding these changes leads
to the final step in the mesh construction by identifying the locations of various regions or patches in
configuration space and in a corresponding logically rectangular index space.

UEDGE [4] and other 2-D fluid plasma simulation codes [5-7] describe the edge plasma of toroidally
symmetric tokamak configurations with one or more X-points in a divertor region. The 2-D spatial mesh
is usually based on a magnetic configuration produced by an MHD equilibrium code such as EFIT and
written out as one or more “eqdsk” files. As illustrated in Fig. 1, the domain of the simulated plasma
consists of several flux tubes bounded by poloidal magnetic flux surfaces. The number and spacing of the
flux surfaces defines the “radial” resolution of the mesh. The “radial” direction is locally orthogonal to
flux surfaces; the “poloidal” direction is locally parallel to flux surfaces. The “poloidal” resolution of the
mesh is defined by the number of cells in the poloidal direction between adjacent flux surfaces. For
boundary plasma transport codes used for tokamak configurations such as UEDGE it is convenient,
though not necessary, to assume that all flux tubes have the same number of poloidal cells so the mesh is
logically rectangular in index space, but does possess internal boundaries linking different sub-rectangles



in the computational domain. The following sections of this report describe indexing schemes that map
tokamak magnetic configurations with one or more x-points in the divertor region(s) onto a rectangular
index space. Simulation results from the UEDGE code illustrate the schemes for a few configurations.

2. Single-null and up/down double-null configurations

As an introduction to the index mapping typically used for the boundary region of magnetically
diverted tokamaks, we consider a lower single-null divertor as shown in Fig, 1. The edge plasma is
bounded radially by three flux surfaces: (1) an outer poloidal flux surface connecting the inboard and
outboard divertor target plates; (2) an inner poloidal flux surface just inside the separatrix; and (3) a flux
surface in the “private” flux (PF) region below the x-point. The edge plasma is bounded poloidally by
inboard (P1) and outboard (P2) divertor plates.

The radial mesh cells are indexed from 1 to ny along the inboard divertor plate starting at the PF
corner and ending at the outer wall. There are two orthogonal surfaces through the x-point; the segments
in the core and PF regions define the “cut” surfaces where the poloidal indexing of the mesh is
discontinuous.

The poloidal mesh cells in the common-flux region (SOL) are indexed from 1 to nx along the outer
wall flux surface starting from the inboard divertor plate P1 and terminating on the outboard divertor plate

to
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Fig. 1. Poloidal indexing of the cells in the PF region and core region is discontinuous at the “cut” defined
by the orthogonal surface that originates in the PF region between plates P1 and P2 and terminates in the
core region. Same colors denote the same regions in both the physical and logically rectangular domains.
Upper single-null is the same as lower single-null, but with the observer position rotated 180° about the
outer midplane.



The simplest double-null geometry is that where one X-point each is formed at the top and bottom of
the core plasma region and are thus well separated. There are now four divertor plates shown as P1, P2,
P3, and P4 in Fig. 2, where two difference magnetic flux surfaces (separatrices) pass through the two X-
points. For the mesh indexing, the inner portion of the domain is represented in the left-hand rectangular
domain in Fig. 2, and the outer portion of the domain is represented by the right-hand rectangle. The
various indices shown in the lower figure denote values of ix and iy that internal boundaries separating the

different colored regions in the physical domain
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Fig. 2. Poloidal indexing of the cells in the PF region and core region is discontinuous at the “cut” defined
by the orthogonal surface that originates in the PF region between plates P1 and P2 and terminates in the
core region. Upper single-null is the same as lower single-null, but with the observer position rotated 180

degrees about the outer midplane.

The question address in this report is how the index mapping shown in Fig. 2 for well-separated
up/down X-points changes when the two X-points are close together as in a snowflake divertor [1]. Here
we detail the distinct mappings applied to orthogonal coordinates related to the snowflake-plus and snow-

flake-minus configurations presented in Refs. [1-3]



3. General features of orthogonal coordinates for systems with two closely-spaced X-points

Classification of various snowflake configurations is conveniently done using a power series
expansion [2,3] of the poloidal magnetic flux function when two X-points are close together. As shown
in these references, the topological features of snowflake flux surfaces can be characterized in terms of a
single dimensionless parameter 6, which is an angle of rotation between the two X-points. However, this
angle is defined in a special (x,z) orthogonal coordinate system whose origin is at the primary X-point.
The (x,z) coordinate system is also rotated by another angle, say, ¢, with respect to the standard (R,Z)
orthogonal coordinate system used to describe the equilibrium poloidal flux function in tokamaks, where
R is the major radius, and Z is the vertical height [1]. The degree of rotation (¢) between the (x,z) and
(R,Z) coordinates depends on the details of the overall tokamak magnetic equilibrium that are not
addressed here. We restrict ourselves to understanding the various mappings from the physical domain to
a logically rectangular ix-iy index space representation commonly used for simulating edge plasmas in
tokamaks as 6 is varied. This procedure identifies the full range of different mappings possible and
facilitates the appropriate choice of the relevant map for a given magnetic equilibrium having two nearby
X-points.

Orthogonal surfaces through the X-points define the “cut” surfaces where discontinuities may occur
in the poloidal indexing of the cells. There are four branches of the orthogonal surface through each X-
point, but only two of these branches are “cut” surfaces. We tentatively identify these orthogonal surfaces
with labels that correspond to the PF regions through which they pass.

There are six topologically different configurations for the orthogonal surfaces in the range 0° < 8 <
180°, one for each 30° increment. There are also special snowflake configurations when 6 is an exact
multiple of 30°, but these are topologically unstable and will not be addressed here.

A mathematical description of the poloidal flux function in a region of two magnetic X-points is
presented in Ref. [2] and extended in Ref. [3]. The model in Ref. [2] serves as the basis of the analysis
presented here on how the different magnetic topologies can be represented on logically rectangular,
ordered 2D flux-surface meshes in the poloidal plane often used for simulating edge plasma physics in
tokamaks. Even 3D edge plasma codes often use such representations for variations in the poloidal plane.

In the region including the two X-points, following [2], an
orthogonal (x, z) coordinate system is used as shown in Fig. 3. The
location of first X-point, (x4,z;) is taken as at the origin, i.e., (0,0)
and the second X-point is at (x,,2z,). The variation of the poloidal
flux function W is then expressed as [2]

W= ¢[(32, — 62)x? + 6x,xz — 32,2% + 223]+¢c,, (1)

where c; is a constant set to unity here that depends on the details of
the poloidal field generation, and ¢, is simply an additive constant

set to zero here; neither constant impacts the topological
considerations examined in this paper. This quadratic equation gives  Fig. 3. Magnetic geometry considered

two values of x for a given z. The shaded area above the primary X-  with X-points at (x,z) = (0,0) and (x2,2,).

point at (0,0) denotes the core plasma region of a tokamak  Red curvesare separatrices and shaded

area corresponds to core-plasma region.



configuration.

The equation for the orthogonal surfaces can be obtained by differentiating Eq. (1) with respect to x to
find the relation for dz/dx. Then make the replacement dz/dx — — dx/dz to form the differential
equation for the surfaces orthogonal to W, specifically

dx/dz = (z,x + X,z — 2x2)/(Xpx — 2,2 — x% + z2). 2)

This equation could be simply integrated numerically to generate the second orthogonal coordinate for a
flux-surface mesh based on Eq.(1). However, it turns out that Eq. (2) can be solved directly by
inspection to give the algebraic relation

Y = (3x, — 6x)z? + 62z,xz — 3x,x% + 2x5, 3)

where Y is a constant that labels the orthogonal surfaces. The constant of integration is also set to zero.
This quadratic equation reverses the roles of (x, z) compared to that for W in the sense that now there are
two values of z for a given x. Thus, Egs. (1) and (3) form a set of analytic functions for constructing an
orthogonal flux-surface mesh in the vicinity of two X-points.

The separatrices shown in Fig. 3 (in red) correspond to W; = 0 that passes through the origin and
W, = z,(3x% — z2) that passes through the second X-point, where we use ¢; = 1, ¢, = 0 without loss of
generality. The corresponding orthogonal surfaces (not shown in Fig. 3) that pass through the two X-
points are Y; = 0 at the origin and Y, = x,(3z% — x2).

The position of the second X-point (x,,2z,) can conveniently be written in a polar representation
introduced in Ref. [2] as x, = d cos 6 and z, = —d sin 6 using the distance between the X-points d =

V(x5 + z2) and the angle 8 shown in Fig. 3. Using new expressions for x, and z,, the equations for the
flux surfaces becomes

Y = —(3dsinf + 62)x? + 6d cos @ xz + 3z%d sin 9 + 2z3, (4)
and for the orthogonal surfaces,
Y = (3d cos§ — 6x)z% — 6xd sin6 z — 3d cos 6 x? + 2x3. %)

This polar representation allows one to easily identify orientation that result in a topological change
of the flux surfaces as done in Ref. [2], which is augmented here by also considering the orthogonal
surfaces, both of which have consequences for the mesh construction and utilization. These changes
occur when the values of W coincide for both X-points, and also, when the values of Y coincide. Recall
that the first X-point values are (W, Y';) = (0,0). From Egs. (4-5), the second X-point values are

(W,,Y,) = d3[sin (4 sin?8 — 3), —cos 6(4 cos?6 — 3)]. (6)

Consequently, there will be a topological change for ¥ when sin 6(4 sin?6 — 3) = 0, correspond to 6 =
0°,60° and 120° as noted by Ryutov [2]. Similarly, there are topological changes to the orthogonal
surfaces when cos 6(4 cos?6 —3) = 0, corresponding to 8 = 30°,90°, and 150, which also impacts the
mapping of the physical domain to logically rectangular computation domains.

Details of the changing topologies are shown in a series of plots in Fig. 4 for a fixed d = 1 as the
angle 0 varies takes on the set of critical angles identified in the previous paragraph. Thus, each case



shown corresponds to a change in the topology of either the flux surfaces or the orthogonal surfaces. Note
that the case for & = 180° corresponds to 8 = 0° with the two X-points interchanged.

For 0° < 8< 60° or 180° < O < 120°, the configuration is termed “snowflake-minus” in Refs. [1-3]
where the separatrix of the 2" X-point approaches the confined-plasma region. For 60° < < 120°, the
2" X-point separatrix is well separated from the confined-plasma region, and this configuration is termed
“snowflake-minus” Ref. [1-3].

Fig. 4. Solutions showing the topology changes for flux surfaces (red) from Eq. (4) and
orthogonal surfaces (blue) from Eq. (5) as the angle 0 in Fig. 4 is varied. Here (W, Y,) =
(0,0) and the values of (¥,, Y',) corresponding to ¥, = 0 for 8=0°, 60°, and 120°, and to Y, =
0 for 6=30°, 90°, and 150°.
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nearby orthogonal surfaces that traverse the core region (shaded) for 8= 29° shifts to a region below z =0
for 8= 31°, leaving only one orthogonal surface that traverses both an X-point and the core region. Next,
consider the dashed curves that are also solutions for the two values of W and two values of Y for each 6,
but they typically do not pass through the X-points and were thus omitted in Fig. 5 plots. These surfaces
can be deduced from the fact that each W equation is quadratic in x and each Y equation is quadratic in z.
However, the extra flux surfaces do merge into a portion of the flux surfaces shown for 8= 0° 60°, and
120° and likewise the extra orthogonal surfaces merge into a portion of the orthogonal surfaces for
0=130° 90° and 150°. As discussed in the next section, this type of shift changes the location of various
regions of the logically rectangular mesh for the orthogonal coordinate system.

4. Mapping the orthogonal mesh to a rectangular domain

Index space mapping ground rules are: (1) poloidal indexing is monotone increasing in a clockwise
sense around the core plasma, but elsewhere discontinuities can occur at “cut” surfaces; (2) divertor target
plates are numbered in a clockwise sense starting with P1 at the innermost plate (closest to the toroidal
symmetry axis) and P2 at the outermost plate; (3) radial indexing is monotone increasing at every poloidal
position, e.g., from the innermost edge plasma flux surface (nearest the core) to the outermost edge
plasma flux surface (nearest the vessel wall).

a) Mapping of physical to rectangular domains for 0° < 8 <90°:

The first configuration covers the range 0° < 8 < 30°, which we illustrate by the 8=15° case in the
left frame of Fig. 6. The heavy blue line corresponds to the orthogonal surface through each X-point,
referred to as “cuts”. One “cut” surface is the orthogonal through the primary X-point that originates in
the core region and terminates in the PF region between plates P1 and P4; the other “cut” surface is the
orthogonal through the secondary X-point that originates in the PF region between plates P2 and P3 and
terminates in the core region.

2 e , 2
2

Core plasma

Core plasma

P3

R ———

Radial index —»
Radial index —»
Radial index —

Poloidal index —» Poloidal index —» Poloidal index —»

Fig. 6. Mapping of domains for orthogonal coordinates to logically rectangular domains for cases when
the angle between X-points is in the range 0° < 8 < 90°.
7



For the second configuration with the range 30° < 6 < 60°, we show the 8= 45° case in center frame
of Fig. 6. One “cut” surface is the orthogonal through the primary x-point that originates in the core
region and terminates in the PF region between plates P1 and P4; the other “cut” surface is the orthogonal
through the secondary X-point that originates in the PF region between plates P2 and P3 and terminates in
the PF region between plates P1 and P4.

For the third configuration with the range 60° < 8 <90°, we show the 8 =75° case in the right frame
Fig. 6. One “cut” surface is the orthogonal through the primary x-point that originates in the core region
and terminates in the PF region between plates P1 and P4; the other “cut” surface is the orthogonal
through the secondary X-point that originates in the PF region between plates P2 and P3 and terminates in
the PF region between plates P1 and P4.

b) Mapping of physical to rectangular domains for 90° < 6 < 180°:

These set of mappings can be obtained by a simple horizontal reflection of the three cases shown
above for 0° < 8 < 90°. Nonetheless, to be explicit about the different regions for the mappings to the
rectangular domain, we also show the three cases in Fig. 7. The fourth configuration covers the range 90°
< 8 < 120°, with the 8=105° case given in the left frame. One “cut” surface is the orthogonal through
the primary X-point that originates in the core region and terminates in the PF region between plates P2
and P3; the other “cut” surface is the orthogonal through the secondary X-point that originates in the PF
region between plates P2 and P3 and terminates in the PF region between plates P1 and P4.

Core plasma

] 2y ‘ ]
a) | 5 ‘ 0 =165° a) |

Core plasma

PARBEEE: S L e e T 2
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Radial index —»
Radial index —»
Radial index —

Poloidal index —» Poloidal index —» Poloidal index —»

Fig. 7. Mapping of domains for orthogonal coordinates to logically rectangular domains for cases when the
angle between X-points is in the range 90° < 6 < 180°.

The fifth configuration applies to the range 120° < 8 < 150°, which is illustrated by the 8 =135° case
in the center frame of Fig. 7. One “cut” surface is the orthogonal through the primary X-point that
originates in the core region and terminates in the PF region between plates P2 and P3; the other “cut”
surface is the orthogonal through the secondary X-point that originates in the PF region between plates P2
and P3 and terminates in the PF region between plates P1 and P4.



Finally, the sixth configuration applies to the range 150° < 6 < 180°, which is illustrated by the
0=165° case in right frame of Fig. 7. One “cut” surface is the orthogonal through the primary X-point
that originates in the core region and terminates in the PF region between plates P2 and P3; the other
“cut” surface is the orthogonal through the secondary X-point that originates in the PF region between
plates P1 and P4 and terminates in the core region.

5. Summary

This report provides a systematic scheme for mapping difference regions that can be identified for an
orthogonal flux-surface mesh representation of a geometry with two magnetic X-points. The procedure
utilizes the analytic representation of the flux-surfaces developed in Refs. [1-3] to describe the structure
of the two X-point snowflake divertor. An equation is obtained for the surfaces orthogonal to the flux
surfaces to aid in identifying when the mapping topology to a logically rectangular mesh changes as the
angle 6, describing an angular rotation of the X-points is varied.

The topology of the flux surfaces described in Refs. [1-3] have three distinct regions as 0 is varied
from 0° to 180°. For 0° < 8 < 60°, one has the snowflake-minus configuration; for 60° < 6 < 120°, itis a
snowflake-plus configuration; and for 120° < 8 < 180°, it is back to a snowflake-minus. On the other
hand, the mappings to a logically rectangular mesh have six distinct patterns over this range of 6, which
arises because the orthogonal surfaces have topological changes in addition to the flux-surfaces. The is a
connection between the two sets of mappings for 6 < 90° and 8 > 90°, in that the latter can be obtained
by a reflection of the first set about the 8 = 90° axis.

Finally, it is emphasized that the orientation of 8 = 0 with respect to the physical (R,Z) coordinate
system will depend on the nature of the poloidal flux function of the main core plasma and the primary X-
point. For example, a magnetic equilibrium with high triangularity where the primary X-point is located
at a significantly smaller value of R than the magnetic axis, the x-z axes will be rotated clockwise with
respect to the R-Z axes. The connection between these coordinate systems can be greatly facilated by
utilizing the powerful complex variable approach described in Ref. 3, by that is beyond the scope of this
report.
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Appendix I: The gridue file generated and/or used by UEDGE

Data for an externally generated mesh can be read into UEDGE via a text file “gridue”. Header

information in this file gives the location of the special surfaces in ix-iy index space according to the

following scheme for all snowflake configurations:

First line:
Next line:
Next line:
Next line:

Next line:

nx
iycutl
ixplatel
iycut3

ixplate3

ny nxpt

iycut2

ixcutl unused ixcut2 ixplate2
iycut4

ixcut3 unused ixcut4 ixplate4

All variables in this header information are integers. The poloidal dimension of the mesh is nx; the

radial dimension is ny. The number of X-points in the domain is nxpt; for snowflake configurations this
is always equal to 2. The divertor target plate index ixplate* is the poloidal index of the cell whose EAST

face is the interface between the plasma and the “guard” cell representing each plate. The four “cut”
surfaces are numbered sequentially from left to right in the poloidal direction in index space. The indices
ixcut* and iycut* identify the cell whose NORTH-EAST corner coincides with the X-point at the upper
terminus of each “cut” in ix-iy index space.

When this header data is read from a gridue file it is stored in variables with the following somewhat

non-intuitive names (appropriate for full double-null configurations):

First line:
Next line:
Next line:
Next line:

Next line:

nx
iysptrx1(1)
ixIb(1)
iysptrx1(2)
ixlb(2)

ny nxpt

iysptrx2(1)

ixptl(1) unused ixpt2(1) ixrb(1)
iysptrx2(2)

ixptl(2) unused ixpt2(2) ixrb(2)

Indirect addressing in the poloidal (ix-direction) of the mesh in UEDGE is implemented by defining
the arrays ixml(ix,iy) and ixpl(ix,iy). The radial (iy-direction) of the mesh does not use indirect

addressing.
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