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Abstract
A four-state diabatic potential energy matrix (DPEM), H?, for the description of the nonadiabatic
quenching of OH(A *X*) by collisions with H; is reported. The DPEM is constructed as a fit to
adiabatic energies, energy gradients, and derivative couplings obtained exclusively from
multireference configuration interaction wave functions. A four-adiabatic-electronic-state
representation is used in order to describe all energetically accessible regions of the nuclear
coordinate space. Partial permutation-inversion symmetry is incorporated into the representation.
The fit is based on electronic structure data at 42882 points, described by over 1.6 million least
squares equations with a root mean square (mean unsigned) error of 178 (83) cm™'. Comparison
of ab initio and H? determined minima, saddle points, and energy minimized points on Cay, Cs,

C

[v?

and C1 (noncoplanar) portions of two conical intersection seams are used to establish the

accuracy of the H’.



I. Introduction

The central role of hydrogen abstraction by the hydroxyl radical in combustion
environments' (a chain propagation step in the ignition of hydrocarbons) and atmospheric
environments” (the oxidation of trace gases) is well established, making the concentration of the
hydroxyl radical an important measure of reaction kinetics in atmospheric and combustion
chemistry. Laser induced fluorescence (LIF) based on the well-characterized A2X*-X°IT band is
most often used for such analysis; however, collisional quenching of the target molecule, in this
case OH(A?X"), by collisional partners reduces the accuracy of LIF measurements.! To
determine the ground-state population, an understanding of these nonradiative quenching
processes is required.

The collisional quenching of OH(A?X*) by molecular hydrogen has become an
archetypical system for studying nonadiabatic quenching. The reaction proceeds via one of two
pathways: nonreactive quenching

OH(A%x*) + H, —» OH(X?II) + H, (1a)
or reactive quenching

OH(A%x*%) + H, - H,0(X*A;) + H (1b)
where seams of conical intersections facilitate nonadiabatic transitions from OH(A%X%) + H, to
the ground electronic state.*> LIF experiments by Lester and coworkers, probing the OH A — X
transition of the products, have shown (1b) is the favored pathway, accounting for >80% of
quenching events.®’ Additionally, Doppler spectroscopy of H atom products, also by the Lester
laboratory, showed two channels for (1b): hydrogen abstraction and insertion.®” Experiments
colliding deuterated hydroxyl and molecular hydrogen found the abstraction pathway favored by
a 3:1 ratio.!® Crossed molecular beam experiments by Davis et al., colliding hydroxyl and
molecular deuterium at higher collision energies, showed direct hydrogen abstraction is the
dominant reactive pathway.!! Lester, Alexander and coworkers provided a combined

experimental/computational study of the nonreactive quenching channel, including the spin-orbit

splitting and the A -doublet propensity in OH(X’IT ) ©Q=3/2,1/2."* The small spin-orbit



coupling in OH(XZHQ) which is quenched in the H>O product channel is not included in this

work.

Significant theoretical work has been applied towards the understanding and reproduction
of the aforementioned experimental results. Yarkony and coworkers mapped the seams of same-
symmetry conical intersections responsible for nonadiabatic transitions involving the (1a) and
(1b) pathways.*® Gradient-directed paths started at these crossings indicated that dynamics
would favor nonreactive quenching. Classical trajectory simulations on the ground state potential
energy surface (PES) by Bowman et al. starting from the conical intersections reported by
Yarkony and Hoffman found a reactive to non-reactive quenching ratio of 2.3:1'% or 70:30.'* Han
and coworkers performed quantum scattering calculations on PESs for the A’ ground and first
excited states and reported branching ratios for reactive and nonreactive quenching of 5:1 at a
collision energy of 0.06 eV and 3:1 at a collision energy of 0.4 eV.!> The omission of the A"
state, and in the case of Han’s study the exclusion of out-of-plane motion, may have had a
significant effect on these results.

Zhang and coworkers presented coupled PESs for the three lowest states of OH + H,
using a quasi-diabatic potential energy matrix (DPEM)'® based on modified Shepard
interpolation.!” Surface hopping classical trajectories began on the OH(A2Z*) + H, state,
however, showed the dominant product channel to be (1a). A detailed presentation of the seams
of conical intersection coupling the 12A and 2?A states and 22Aand 3?A states of OH+H> was
reported by Dillon and Yarkony.'® They showed that a significant non-planar portion of the 2°A
- 32A seam is below the OH(A%Z ™) + H, state asymptote, providing energy-accessible pathways
for nonadiabatic transitions. Such out-of-plane intersections had been omitted from all previous
studies. A second study by Dillon and Yarkony, using linear-synchronous transit (LST) paths,
posited that an out-of-plane, complex-forming, pathway for insertion was a main channel for
reactive quenching.!” This pathway would be absent from previous dynamics studies, and, if it

were a significant contributor to H,O + H products, it would help resolve the discrepancies



between theoretical and experimental results; however, the want of full-dimensional
nonadiabatic dynamics precludes certainty.

Full-dimensional quantum dynamics requires global PESs that are accurate in all energy-
accessible and chemically relevant regions of the nuclear coordinate space.?’?! It is essential that
the PESs reliably describe the energies, gradients, and nonadiabatic couplings; as well as
minima, saddle points, and seams of conical intersections. Recently, Truhlar and coworkers have
reported a three-state diabatic representation of the 1, 2, 3?A states.?? In addition to the obvious
difference of 3 versus 4 diabatic states, which will be addressed in Section II, this report differs
in the electronic structure method used and the diabatization and fitting procedure employed.
Thus, there is much to be learned from the comparison of these two coupled-state representations
and the ensuing nonadiabatic dynamics. This will be the subject of future work.

A robust fitting-while-diabatizing procedure®® previously applied to ammonia,?*?
phenol,>* 2% and hydroxymethyl*” is employed here to construct a DPEM describing the collision
of the hydroxyl radical and molecular hydrogen. The global, four-state, coupled diabatic
representation, the 1, 2, 3, 4 2A states H%, reported here is built from high-level, multi-reference
ab initio data in all relevant regions of the nuclear coordinate space. The representation will
enable full-dimensional dynamics simulations at an accuracy not attainable via on-the-fly
methods. Section II of this work describes the ab initio electronic structure treatment. It also
outlines the challenges in describing the OH + H, system. Section III provides an overview of
the representation, H®. Section IV discusses the accuracy of H%, and explains how well it
reproduces the underlying ab initio data, previous theoretical results, and experimental results
where possible. Section IV summarizes and discusses future directions.

IIL. Electronic Structure

The description of the bimolecular collision of OH with H> requires a flexible, multi-
reference electronic structure treatment of the system wavefunctions. To construct the multi-
reference single and double excitation configuration interaction (MR-SDCI) expansion, the

reference space at and reaction paths from high symmetry (Dsn and Czy) OH3 geometries are



considered. The oxygen 1s orbital is doubly-occupied throughout the nuclear coordinate space.
The ground electronic state configuration is (excluding the oxygen 1s orbital) three doubly-
occupied OH o bonding orbitals, ggy, one doubly-occupied nonbonding oxygen lone pair (2p:)
orbital, ng, and one singly-occupied Rydberg orbital 3s. The first, second, and third excited
states are excitations from the 3s orbital into 3p,, 3p, , and 3p, orbitals, respectively.
Continuing, as any OH bond may be broken, all three o)y orbitals must be included. It is
required then that the MR-SDCI reference space includes eleven orbitals and nine electrons. In
this work, an additional orbital is added for increased flexibility. The three reactant OH states,
X2TI(...40%1m3) and A%X*(...401n%), at the OH+H, asymptote are well described by this
reference space. The question then arises whether to truncate the reference space at the three
states as suggested by the reactant channel or add another orbital/state to the reference space. The
choice of four states was made on the basis of the work by Dillon and Yarkony (DY1),!” which
showed that in the above noted high symmetry region the 3p. Rydberg state is 7388 cm™ (9179
cm’! in this work) below the OH(A?X*) + H, asymptote. The consequences of this decision are
discussed below.

A restricted active-space (RAS) scheme is employed to reduce the computational cost.
Two active spaces are defined (parentheses indicate the result of allowed excitations): a four-
orbital, eight (seven)-electron space; and an eight orbital, one (two) electron space. The orbitals
are constructed from cc-pVTZ bases, with 3s (¢ = 0.032) and 3p (¢ = 0.028) orbitals added to
oxygen, and are optimized within the reference space by a five-state averaged (equal weights)
multiconfiguration self-consistent field (SA-MCSCF) procedure. From this reference space,
single and double excitations into virtual orbitals build the MR-SDCI wavefunction of 6 846 859
configuration state functions (CSFs). Despite its small size, the expansion is flexible and robust,
and describes well all regions of the relevant OH + H; configuration space.

Unless otherwise noted all electronic energies are given in cm™' relative to the reactant

Hz(lZ;) and OH(A%Z") at their equilibrium geometries. All electronic structure calculations

employed the COLUMBUS suite of electronic structure codes.®



II1. Form of H
A. General
Electronic energies E“’™ (R), energy gradients, and derivative couplings are
determined from the adiabatic electronic Schrodinger equation
[H'(R)-1E“"(R)]d’ (R) =0. ()
HYR) the diabatic N*“ x N* Hamiltonian (here N*“ = 4), is the key product of this work. It

has the form

N¢ —
Hd(R) — D L Vl[PK(u(1),v(1))g(l)]Bu(l).v(1) (3)

where B*" is an N*“¢x N*“'¢ gymmetric matrix with the (,v) and (v,u) elements 1 and the rest 0.
The V; are the N€ linear coefficients determined by the least-squares fitting procedure. P*is a
group theoretical projection operator for the kth irreducible representation of the complete
nuclear permutation-inversion (CNPI) group.?

B. Selection of g)(R)

The monomials, g”’(R) are constructed as products of elementary stretch, angle, out-of-
plane, and dot product functions of the nuclear positions, R. See Table SI1 in Supporting
Information (SI). The values of their (nonlinear) parameters are given in Table SI2 in SI. The
atomic numbering used in Table SI2 and throughout this work is given in Figure 1. The choice of
these elementary functions, and the rules for forming the products, g”(R) are critical for a proper
global fit.

The local regions of a PES can be easily described by quadratic expansions. The
challenge in a global fit is fitting the multiple local, quadratic regions with polynomials that may
vary from local region to local region in scaling or origin, or both. Increasing the order of the
polynomials to third order or fourth order is one solution. However, both increase flexibility at
computational cost. The solution is limiting all stretch and angle functions to second order, as it
is reasonable to assume these functions can describe any local quadratic region, and introduce

“partitioning” functions, tanh(x) and exp[-x?], that are multiplied with the second-order



polynomials to make third-order polynomials capable of describing multiple, separate quadratic
regions.

C. CNPI

The CNPI symmetry group allows for a global description of the nuclear geometries.
Each diabatic state carries an irreducible representation of the CNPI group for the molecular
system. With three equivalent atoms, the CNPI group of the bimolecular collision OH + H, has
twelve symmetry operations. This group is called D3, = S3 X I (where S; is the symmetric
group of order 3 and / is the inversion group), since it is isomorphic to the nonabelian point-
group of the same name. The two-dimensional irreducible representations of D3, denoted E’ and
E", complicate the construction of H%, a consequence of the flexible product form of the
monomials, g, in H?. Each P*g" carries an irreducible representation of the CNPI symmetry
group. In the case of nonabelian groups, such as D5, distinct linear combinations of the same
g® carry different irreducible representations. For this reason, an abelian subgroup of Dsj,, G4
(with 2 equivalent atoms and isomorphic to Cay), is used.

A consequence of using the Gs subgroup operations is that to obtain the full Ds
symmetry missing permutations must be incorporated “by hand”.3® OHs has three equivalent
hydrogen atoms, denoted by the triple (a, b, ¢ - see Fig. 1). The standard ordering is defined in
this work as (a, b, ¢c) = (1, 2, 3). The S3 group operations are the identity, e; 3 transpositions,
[a,b], [a,c] [b,c]; and two cyclic permutations, [c, a, b] and [b, c, a]. They act on the ordered
triple (1, 2, 3) and generate the hydrogen atom permutations: (1, 2, 3), (2, 1, 3), (3,2, 1), (1, 3, 2)
(3, 1,2),and (2, 3, 1). The G4 group (S> x ) operations treat only hydrogens a and b equivalently
and thus generate two permutations, (1, 2, 3) and (2, 1, 3), from the standard ordering. To obtain

the four remaining permutations, the ab initio geometries and the associated gradients and



couplings are reordered so (a, b, ¢) = (3, 2, 1) and (a, b, ¢) = (1, 3, 2). The G4 group operations
generate the remaining permutations, yielding the six permutations of D3, required for OHs. The
6 S3 permutations are partitioned into three subsets: the standard ordering S1, comprised of (1, 2,
3)and (2, 1, 3); S2 comprised of (3,2,1) and (2,3,1); and 3 comprised of (1, 3, 2) and (3,1,2).

D. Selection of R"

For clarity, the nuclear coordinate space is divided into five regions following DY1: the
entrance channel (OH+H> structures), the valence region (HO-H> structures), the linking region
(which connects the valence and Rydberg regions and where significant changes in molecular
orbital character take place), the Rydberg or exchange region (H3O structures), and the product
channel (HOH+H structures).

The nuclear coordinates, R, at which ab initio data are computed and then fit are
composed of two sets: skeletal data (critical points and linear-synchronous-transit paths between
critical points) and trajectory-generated data. The skeletal data builds the initial description of the
DPEM, and, as the DPEM is grown from this initial set of data points, the skeletal data set has
the largest influence on the final fit. The skeletal data set for OH + H, has 4035 (1345 unique)
points

The trajectory-generated R are taken from surface-hopping trajectories’! based on Tully’s
fewest switches method*? with a total electronic energy less than 4000 cm™!.: The selected R,
include the 1°A and 3%A van der Waal minima in the entrance channel, 1?°A and 2°A saddle
points in the interaction region, the 1A OH3 minimum in the exchange region, and a “reactive-
type” geometry (R(HO-H2)=2.18 A, with O facing H>) in the entrance channel, allowing for the
exploration of, and fitting of points from, exclusively energetically relevant regions.

When a trajectory attempts to explore outside the region of the nuclear coordinate space
where HY reliably reproduces the ab initio data (a defined distance from previously fit
geometries) the trajectory is halted and several data points along this path are chosen to be added

to the fit. This procedure has been outlined in greater detail previously.??



E. Sign Issues

There are two classes of sign issues to be dealt with in determining H’. First at fixed R,
the sign of the ab initio and H? determined derivative couplings must agree. This discrepancy
arises from and can be resolved by altering the phases of the eigenvectors of HY. This sign
adjustment must be performed at each geometry and geometric continuity is of no help. The
second issue reflects the fact that there does not exist a one-to-one mapping from the matrix
elements of H” to its spectrum. Changing the sign of one of the diabatic basis states changes the
sign of one or more of the elements of H? without changing the energies or derivative couplings.
This change of basis states would lead to a discontinuous change in the linear coefficients of HY,
but this is precluded by our polynomial representation.
IV. Accuracy of H%: General Metrics

Table I presents the basic metrics of the fit. The number of data points is the total number
after performing the tripling procedure outlined in Section IIIC. As explained in Section IIIC, to
describe exchange of three identical particles in the G4 CNPI group, two additional permutations
of the atoms must be generated “by hand.” Thus, although the results at symmetry equivalent
points should be identical there is fitting error introduced by the least squares procedure. Tables
reporting critical point information will also present the results at symmetry equivalent
structures. In general, the agreement of the 51, $2, and S3 results in equivalent local region
parallels the local accuracy of the fit. Throughout the text, where applicable, results are
presented as follows: ab initio (S1) [52, $3] or ab initio (S1) when $2, 3 are not reported.

H¢ is constructed from 42882 nuclear geometries, R". It is fit to the energies, energy
gradients, and derivative couplings at each geometry, subject to a fitting cutoff threshold (E£°*°f):
states with energies above E®°T = 5000 cm™ are reduced in weight. The calculated error is
reported for energies and gradients below this threshold. Two measures of the fitting error are
reported. The root mean square (RMS) error which emphasizes the R for which the differences
between H? and the ab initio data are large and thus does well describing the fit surfaces’

maximal error. The mean-unsigned (MU) error is an evenly-weighted average of all errors, so the



maximal errors are averaged out. Reporting both the RMS and MU errors offers a more complete
picture of the quality of the fit representation. The RMS energy error for all states is 177.57 cm™!
and the RMS gradient error is 7.29% (See Table I). The MU error for all four states and gradients
is 83.49 cm! and 3.79%, respectively. Table II reports the RMS and MU errors for each state. In
Table II, the results from the representation presented here are compared with the results of the
representation reported by Truhlar and coworkers.??

Figure 2 shows the contribution of data points within an energy range to the
accumulating error (RMS and MU errors) for each adiabatic state, and the density of data points
at a given energy. The errors, both RMS and MU, for states 1°A and 2?A increase gradually up to
the EU°, The RMS error increases sharply for the 3?A state between -10000 cm™ and -5000 cm™
I: however, the stable MU error and low point density indicate that this increase in RMS error is
due to a small number of data points in this energy region. The total RMS error of the 3?A state
decreases beginning at -2000 cm™'. This corresponds to a large spike in the density of 3?A state
data points at 0 cm™. This is the entrance channel, and H¢ reproduces these data points well. The
majority of the 4%A state data points occur well above E°°T but there is a significant density of
points below E®T as far down as -9000 cm™. This is the Rydberg 3p. state in the hydrogen
exchange, or Rydberg, region.

V. Accuracy of H’: Regions of Nuclear Coordinate Space

Sections VA through VE present minima, saddle points, and intersections for states 1A,
22A, 3%A, and 4°A for the five regions of the nuclear coordinate space defined in Section IIID,
and analyze the performance of H? at these critical points. In all regions except for the Rydberg
region, the agreement between 1, S2, and S3 results - denoted respectively H4(1), H4(2),
and H4(3) - is quite good. In the Rydberg region some larger differences are found and
discussed. Where possible, H predictions — points not included in the 42882 point data set —are
compared with ab initio determinations and the results of previous work. This predictive

performance is an important measure of any analytic representation.
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Amplitude transfer between adjacent electronic states can be facilitated by any geometry
near the seam space. Thus, a global DPEM suitable for nonadiabatic dynamics must reproduce
not only the minimum energy crossing (MEX) points but also the energetically accessible points
near seams of intersections. The 22A-3%A and 12A-22A seams of conical intersections in the
valence region play the largest role in the nonadiabatic quenching of OH. In Section VB, we
present the 22A-3%A and 1?A-2%A seams determined from H“ and compare with ab initio and
previous theoretical results where possible.

A. The Entrance Channel

The entrance channel contains the asymptotic reactant structures and the van der Waals
complexes on both the ground (12A) and excited (3?A) state. The correct description of these
structures including bond distances and harmonic frequencies is required for reliable collision
dynamics, as the impact of initial conditions on nuclear dynamics cannot be overstated. Table
SI3 reports the ab initio and H? determined critical point structures and the results of previous
theoretical and experimental studies where possible. Table SI4 reports vibrational and energetic
information. Appendix A discusses the asymptotic entrance channel behavior of stretching the
OH and HH bonds.

H¢ reproduces the ab initio asymptotic OH(X) and OH(A) minima structures to within
0.001 A. Vibrational frequencies are within 4 cm™ of the ab initio values, and these values are in
good agreement with previous results. The energy of the OH(X)+H> asymptotic minimum
structure is -33468 (-33399) [-33428, -33428] cm™!, and the energy of the A state is 0 (0) [-10, -
10] cm™. The agreement between S1, 52, and S3 asymptotes is an important result: if the
permutationally equivalent minima at the asymptotes differed greatly, then the surface would in
effect be tilted, favoring one hydrogen exchange pathway over another.

At decreased intermolecular distances, there exist T-shaped (H pointing towards the
midpoint of Hz) ground state and excited state van der Waals minima. The ground state
minimum occurs at an intermolecular distance (distance from O to the midpoint of HH, denoted

R(OH-H>)) of 3.279 (3.292) [3.303, 3.303] A. This agrees reasonably well with the MRCI results
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of Hoffman and Yarkony (HY)’ (3.309 A), but less well with the fited CCSD(T) PES of Ma et
al. (MKAAD)* (3.216 A). The HY reported intermolecular distances agree well with the
calculated ab initio values. The D, is 152 (231) [202, 202] cm™!, lower than previous results of
HY and MKAAD, which both reported 220 cm™'; however, fortuitously, H? overestimates the ab
initio result. The geometric parameters of the individual moieties, OH and HH bond distances,
reported by H? are within 0.001 A of the ab initio values of 0.966 (0.967) A and 0.744 (0.744) A,
respectively, with the HY results presented in parentheses.

The intermolecular distance of the 3?A state van der Waals minimum is 2.180 (2.183)
[2.190, 2.190] A and the D, is 2793 (2774) [2759, 2759] cm’!. HY reported an intermolecular
distance of 2.174 A and a D, of 2511 cm’'. The ab initio and H values agree for 57 while for S2
and S3 minima the intermolecular distances are larger by 0.007 A and the difference in D, is 15
cm’!. Additionally, from Table SI3 it is evident that while the ab initio S1 and HY structures
exhibit Coy symmetry, the 52 and 53 minima exhibit slight C>y symmetry breaking. All three $7
(i = 1,2,3) reproduce the vibrational frequencies of the 3°A state van der Waals minimum.

B. Valence Region

The valence region is characterized by the interaction of OH and H> moieties. OH and
HH bond lengths are near to, or exactly at, their asymptotic values. The 3°A adiabatic PES is
attractive and barrierless from the entrance channel to 2°A-3?A and 12A-2°A seams of conical
intersections, facilitating radiationless decay of the excited OH(A?X*) state. These conical
intersection seams were studied extensively by Dillon and Yarkony'® denoted DY2. The ab initio
and H? results are compared with that work.

There exist two high-symmetry 2>A-3A local MEXs in the valence region: a Coy MEX
(Figure 3) and a C  (colinear -Figure 4) MEX. Figure 3 presents g and h vectors for the Cay
2?A-32A MEX. The branching space of the 22A-3?A seam at the Coy MEX is entirely planar.
These two conical intersections are connected by a Cs seam of conical intersection, shown in
Figure 5. The internal coordinate connecting the Coy 2°A-3>A MEX with the colinear 2°A-3%A

MEX is the ZOH?HP angle. Constraining this angle and optimizing the five remaining internal
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N coordinates yields a curve of 22A-3?A degeneracies in the nuclear coordinate space from the
Caoy 2°A-32A MEX to the colinear 2?A-32A MEX. The C»y MEX occurs at -10317 (-10331) [-
10347, -10347] cm’!, in good agreement with the DY2 reported value of -10448 cm™. The
geometry of the 22A-32A C»y MEX agrees well with DY2. (See Table SIS.) The largest
difference is +0.005 A in the HH distance. The colinear MEX is the lowest energy point on the
22A-32A seam. The energy of the MEX is -15471 (-15598) [-15598, -15577] cm™'. The ab initio
determined value agrees well with the DY2 reported value of -15321 cm™'; however, the H?
determined value differs by ~120 cm™. Although H“ correctly reproduces the directions of
vectors g and h (shown in Figure 4) and ||g||, it does not correctly reproduce ||/h||. See Figure 5.

Table SI5 also reports the Cay 12A-22A MEX energy which is -10689 (-10697) [-10710, -
10710] em™. It is ~370 cm™ below the Cay 22A-32A-MEX, and the structures are similar,
excepting the intermolecular distance (shorter) and HH bond distance (longer). The agreement
between H? and ab initio determined structures is excellent. The g and h vectors for the Cay 12A-
22A MEX are presented in Figure 3, where the g vector directions are seen to be largely the
same, for the 1°A-2°A and 22A-3’A MEXs. This relation between the 12A-2?A and 2°A-3%A
MEXs is emphasized in Figure 6 which shows displacements along g and h from the 2°A-3%A
Coy MEX. The proximity of the 1°A-22A seam to the 2°A-3?A seam and parallel g vectors
facilitate transitions to the ground state from the excited 3?A state. Upon exiting a 2°A-3%A
conical intersection, nuclear motion is routed along the in-plane g and h vectors (see Figure 3) on
the 2°A state. As the h vector for the 1°A-22A seam is out-of-plane, the 12°A-22A seam must be
entirely in-plane; and so, a wavepacket on the 3?A state that approaches the 2°A-3?A seam is
expected to transition to the 12A state via 2°A-3?A and 1?A-2°A conical intersections.

The 12A-22A crossing seam as a function of R(OH?) distance is presented in Figure 7.
The agreement between ab initio and H determined results is excellent.

The accurate reproduction of the out-of-plane portions of the 22A-3?A seam is critical for
any reliable nonadiabatic dynamics study. Figure 8 presents the 2°A-3?A seam as a function of

an out-of-plane angle,
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¢ = 90 — cos™* [R(OHC) - (R(OH%) x R(OH?) )/ (IIR(OH)]| - ||(R(OH) x R(OHM))||) |-
C. Linking Region

The linking region connects the valence region to the OH3; Rydberg region on the 2,3%A
states , and the exchange,'® region and the H,O+H product channel on the group state PES as
discussed in ref !°. Here, there are two saddle points to consider: the 1?A saddle point and the
more challenging to describe 22A saddle point. The 2?A saddle point, see Figure 9, a non-
coplanar structure, exhibits a significantly stretched HH bond and directs molecular motion
towards the C3v Jahn-Teller region. DY'1 proposed this pathway as the dominant mechanism for
H,O products. The 1°A saddle point links reactants to the product channel on the ground state
surface. See Figure 10. Table SI9 reports geometry information for the two saddle points, while
Table SI10 presents the energy and vibrational frequencies.

The energy of the 2°A saddle point is 1962 (1841) [1946, 1946] cm™, DY report a value
of 706 cm™!, and therefore accessible at experimental energies. Although DY results and the
results presented here differ by more than 1000 cm™, the structures agree well. For this reason,
the barrier height discrepancy can be addressed by shifting the A state diabat, reducing the
barrier height relative to the OH(A2X*)+H, asymptote. A study of this shift, which has worked
well in the past,??” will be part of a future work including nonadiabatic dynamics. 4b initio and
HY determined vibrational modes agree well with the values reported by DY1; however, Sl
overestimates the v» mode by almost 400 cm™ and underestimates the imaginary mode, vs by 640
cm’!, while the 52 and S3 structures accurately reproduce the ab initio determined v> and ve
frequencies. The cause of this discrepancy may be an improper scaling of the coordinate basis
functions reported in the SI. The impact of these differences (fitting errors) will be assessed by
starting the dynamics calculations with the initial conditions in each of S1, $2, and S3.

The 1?A saddle point has been studied extensively.** We compare our results, both ab
initio and H, to the single state ground state PES of Yang, Zhang, Collins, and Lee (YZCL).?*
The OHP distance of 1.348 (1.346) [1.348, 1.346] A is in good agreement with the distance of
1.356 A reported by YZCL. The OH® distance of 0.967 (0.967) [0.967, 0.967] A and the H*H®
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distance of 0.822 (0.823) [0.821, 0.823] A are in excellent agreement with the YZCL values of
0.970 A and 0.819 A, respectively. The ab initio and H? determined classical barrier height 2269
(2207) [2245, 2214] cm’! is in reasonable accord with the result of YZCL being 2006 cm’!
relative to the OH(X)+ Hz asymptote This overestimation would affect the reaction rate at a
given energy, but the agreement between vibrational modes of YZCL and the results presented
here should only affect the total flux up to a small, energetic shift. And, much like the 22A, if
need be, the responsible diabat can be shifted to match the adiabatic barrier height with
experimental, or in this case theoretical, values. The reasonably good reproduction of the ground
state PES is a good indication of the accuracy of this DPEM.

D. Rydberg Region

The Rydberg, or exchange,'® region of the PES is of critical importance although it
constitutes a small region of nuclear coordinate space. From this region OH3s, has access to three
permutationally equivalent product channels and three permutationally equivalent reactant
channels. It is for this reason that symmetry-equivalent data must be included in the fit. There are
several critical points in the Rydberg region that merit attention: the ground state C3y minimum;
the ground state Dsn saddle point connecting the Csy minima; the Jahn-Teller crossing of states
22A and 3%A; the minimum of the 4%A state; as well as the saddle points leading to the product
channel.

Table SI11 reports the geometric parameters and Table SI12 reports the energy and
vibrational information for the minima and saddle points of the Rydberg region. The ground
electronic state in the Rydberg region is the OH3" cation with a single electron occupation of the
Rydberg 3s orbital. The local minimum has Csy symmetry and is connected by a D3n saddle point
to its symmetry-equivalent structure. The ab initio (H?) determined energy of the minimum is -
32433 (-32468) cm™ and that of the saddle point is -30670 (-30897) cm™. The agreement
between the ab initio (H?) energies is satisfactory. However, the DY1 computed minimum is
significantly higher at -30742 cm™'. The ab initio and H? determined PES captures approximately

the Csy geometry of the local minimum, as the ab initio (H?) determined OH bond distances are
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found to be 1.014 (1.016), 1.014 (1.016), and 1.016 (1.015) A; the bond lengths differ slightly
from the 1.025 A reported by DY1. The ab initio (H?) determined energies capture (capture
approximately) the D3n symmetry of the saddle point between Csy minima, Since the distortions
are small, they should have a negligible effect on dynamics. The H? determined PES reproduce
the ab initio vibrational frequencies satisfactorily with the exception of the v» mode of the
ground state minimum which differs from the ab initio results by 230 cm™ All other frequencies
are reproduced within 100 cm™.

The 2,3%A states form a Jahn-Teller pair. Table SI13 reports geometry information for
Csvand Dsh conical intersections. In this work we are more interested in the interstate couplings
also reported in Table SI13. For a more complete discussion of this Jahn-Teller system see
Appendix B.

The barrier to ground state HOH+H products from the Rydberg region is 1037 (950)
[956, 956] cm’!, in satisfactory agreement with the DY value of 1210 cm™. The saddle point is
non-planar. The OHC distance is 1.213 (1.212) [1.210, 1.210] A. DY1 report a somewhat longer
bond distance of 1.225 A. The out of plane angle is 109.52 (108.92) [109.85, 109.85]°. The
OH'!/OH? distances are 0.985/0.985 (0.986/0.986) [0.986/0.985, 0.985/0.986] A. Vibrational
frequencies are well reproduced by H? See Table SI12.

H¢ is capable of making correct predictions. The ab initio (H) determined Csv 4°A
minimum occurs at -9179 (-9182) ecm™. The OH bond distances are 0.972 (0.971), 0.971 (0.971),
and 0.972 (0.971) A, shorter than those of the Csy 1?°A minimum. Vibrational frequencies are
well reproduced. The agreement between the ab initio and H? determined quantities is especially
satisfying as no data for the 42A minimum has been included in the fitting procedure. For this
critical point, the minimum was first located on the final HY constructed PES, and this structure
was used to begin the ab initio minimum search, providing an illustration of the usefulness of
the analytic DPEM.

E. The Product Channel
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The product channel contains the asymptotic H>O+H structures. In this region the
energies of states 2°A, 3?A, and 4°A are 19804, 22976, and 36466 cm™'.Consideration of the
excited states in the product channel is not necessary for the reaction under study. The H,O
ground electronic state minimum has bond lengths of 0.958 (0.957) [0.957, 0.957] A, agreeing
well with experimental results. See Table SI14. The HOH angle is 104.07 (103.77) [104.20,
104.20]°, also agreeing well with established experimental results.’® The H.O ground state
minimum is -39010 (-38989) [-39036, -39036] cm™!, agreeing well with the DY 1 result of -38989
cm’. Minimal differences between the product asymptotes of each set ensures equal treatment of
all accessible reaction paths. Agreement between ab initio, H, and DY1 and experimental

vibration frequencies is excellent.

The ab initio determined reaction energy, (including zero-point energies) for OH(X *TT) +
H> — H>0 + H is -4896 cm™. For reactants beginning in S1, the H? derived reaction energy (-

4950) [-4957, -4957] cm™! in satisfactory agreement with the experimental result of -5161 cm™!.%’

VI. Derivative Couplings and the Diabatic Representation

The least-squares procedure defines the diabatic states as a geometry-dependent rotation
that minimizes the residual couplings in a least squares sense. Figure 11 shows linear
synchronous transit paths from the entrance channel to the product channel. The upper panel
shows ab initio, H? adiabatic energies, and the H? diabatic energies (the diagonal matrix
elements and the lower panel shows the magnitude of the derivative coupling, f/ for i,j=1,2,3.
Couplings with the 4%A state are omitted as there are no crossings relevant to the current study.
The open symbols denote data points not included in the fitting data set. Three cusps are present
in the lower panel of Figure 11: the first cusp is 2 at the Cay 2%A, 3°A-MEX, the second is f'2 at
the Cav 1°A, 22A-MEX, and the third cusp is 2 at the C3y 2%A, 3°A-MEX.

VII. Summary and Conclusions
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This report presents and analyzes a four-state diabatic representation of the coupled 1, 2,
3 2A adiabatic potential energy surfaces relevant to the collisional quenching of OH(A%Z™) by
Ha. The representation is based on high-level, multi-reference ab initio wavefunction data. The
agreement between this ab initio data and the representation, H?, is largely very good, reporting a
total RMS (MU) error of 178 (83) cm™!. H? is shown to accurately reproduce relevant critical
points on, and conical intersections coupling among, 1, 2, 3, and 4%A states. Additionally, it
performs well at geometries outside of the generative data set, essential for dynamical
simulations.

It is expected that the DPEM reported in this work will allow multistate quantum
dynamical calculations, which will provide a greatly improved understanding of the mechanism

behind the collisional quenching of OH(A%X") by Ha.
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Appendix A. Entrance Channel Asymptotic Behavior

In this appendix the non-intuitive behavior of the fit 4°A state energy in the entrance
channel as a function R(H-H) is described and explained. Figure Al plots the 1, 2, 3, 4’A ab
initio and H? determined adiabatic energies against R(O-H) at an intermolecular distance of 20.0
au. Here potential energy curves (PECs) look, as one would expect, like two energetically
displaced doubly degenerate OH(X) PECs. The agreement between H? and ab initio determined
energies is good for short R(O-H) but deteriorates somewhat as R(O-H) becomes larger however,
this occurs for energies (1) above E®°T and (2) energetically inaccessible in the low-energy
collisional experiments studied here.

Figure A2 plots the ab initio and H? determined 1, 2, 3, 4?A adiabatic states against R(H-
H) displacements at the intermolecular distance of 20.0 au. The agreement between ab initio and
H determined energies for R(H-H)=1.0...5.0 is excellent. At small R(H-H) the 32A, state which
corresponds to OH(A?2X*)+Hx(R(H-H)) is well separated from the 1A and 22A states which
correspond to the OH(X) +H2(R(H-H)) states, and the 4°A state, which represents an excited
state of OH+ Ha(R(H-H)). The shape of these PECs is not intuitive. 1, 22A and 3°A states reflect
the Morse form, as one expects, of the PECs as a function of R(H-H) until R(H-H) ~ 2.5 au.
Here, the 4°A state, which at this point represents excitation into the anti-bonding ojyyy orbital,
has decreased significantly in energy and becomes degenerate with the 32A state. Differences
between ab initio and H energies are the result of the 32A and 4%A being above £~ =5000 cm’
!, and once the adiabatic energies are below this fitting threshold the agreement improves
significantly. At large R(H-H) there are two sets of degenerate states representing the two

degenerate OH(X) states and the two degenerate °S states of H and H.*® Both sets of degenerate
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states are below E®°T and are energetically accessible from the OH(AZZ*)+H, asymptote

although there is a significant barrier.
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Appendix B. The 22A-32A Jahn-Teller System

In the Rydberg region the 2°A and 32A states comprise a Jahn-Teller system (See Figure
Bl). Ab initio calculations in C;-symmetry are unable to precisely describe the FE-state
degeneracy of the C3y MEX. For this reason, an optimized intersection near the C3y MEX was
determined for a constrained OH bond distance (1.058 A). Two similarly constrained MEXs are
generated via the hydrogen permutations, and the surface interpolates between all three
intersections. This interpolated C3y MEX compares well with the reported results of DY 1; albeit,
with slight symmetry breaking. The OH bond distance of 0.988 A is in excellent agreement with
the DY1 value of 0.987. The energy of the Jahn-Teller 2,3-MEX is -14378 cm™'. This is
approximately 2000 cm™' below the reported values of DY 1. The 2°A-3?A seam extends from
Csv to Dsn. A similar method of using nearby non-symmetric intersections to interpolate and
describe the high-symmetry degeneracy was applied to the D3y 2,3-MEX. The planar MEX is
885 cm™! above the Csy MEX, which compares well with DY1 value of 881 cm™. However, the
OH bond distances are 0.975, 0.975, and 0.989 A, making the structure slightly Ca,. This
distortion is similar to that of the ground state D3, saddle point discussed in Sec. VD.

A Csy-symmetric Jahn-Teller system should have three minima and three saddle points
equidistant from one another, forming two equilateral triangles. The H? reported structures for
22A minima and saddle points are reported in Table SI15. Vibrational frequencies of these
critical points are reported in Table SI16. Figure B2 displays the positions of the six critical
points in the g-h plane with respect to the Csy 22A-3’A MEX point. This plot quantifies the

limited symmetry breaking.
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Table 1. Fitting Statistics

Data Points 42882
Total symmetrized basis matrices 34729
Independent symmetrized basis matrices 33230
Total least squares coefficients 1645168
RMS Energy Error (cm™) 177.57
RMS Gradient Error (%) 7.29
MU Energy Error (cm™) 83.49
MU Gradient Error (%) 3.79
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Table I1. Root-mean-square (RMS) error and mean unsigned (MU) error for four adiabatic states

of HY. The results reported in Ref. 2 are italicized.

State RMS Error (cm™) MU Error (cm™)
42A 100.50 67.26
™ 185.82 6724i.3()95
2A 170.55 28;0..153
12A 181.18 48297..1497
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Figure 1. OH + H, structure with atom labeling used in this work.
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Figure 2. (a) Left ordinate: RMS (solid line) and MU (dashed) electronic energy errors in cm’!
for individual states as a function of electronic energy. (b) Right ordinate: density of R in

arbitrary units.
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Figure 3. Mass-weighted g and h vectors for Cay 2°A-3?A and 1?°A-22A MEXSs in the valence

region. Clockwise from top left: g, h?* h!%, g'2.
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Figure 4. Mass-weighted g and h vectors for C,, 2°A-3°A MEX in the valence region. From left

to right: g?*, h%.
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Figure 5. Plot of the 22A-3%A crossing seam from the 22A-3?A MEX(Ca,) to the colinear 2?A-

32A MEX. Red markers are MEX’s. Solid and dashed lines are H? results. Symbols are ab initio

results.
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Figure 6. The 2°A-3A C>y MEX. x and y represent coordinates in the g-h plane (in atomic
units), where x = g/||g|| and y = h/||h]].

-10000

-10500

E(cm-1)—11000 n32A(Hd)
22 A (K
11500 0.005 212A:H";
-0.002
y (au)

-0.005

30



Figure 7. The 1°A-2°A seam at constrained R(OH?) distances. Distances are in A.
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Figure 8. Plot of 22A-3A crossing seam from 2>A-3?A MEX (Cay) along the out-of-plane angle,
¢ =90 — cos™* [R(OH) - (R(OH?) x R(OH?) )/ (IIR(OH)|| - ||(R(OH®) x R©ORM))|[)] .

where R(OX) denotes the vector from O to X. OH“? bond distances are held fixed at 2°A-3%A

MEX (Cy) values.
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Figure 9. Reaction coordinate vector of the 2°A linking region saddle point.
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Figure 10. Reaction coordinate vector of the 12A linking region saddle point.
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Figure 11. Cuts through the PESs from the entrance channel to the H + H>O product channel.
Circles represent ab initio values. Closed symbols are included in the fitting data set. Open
symbols are not included in the fitting data set. Top panel: Dashed lines are HY adiabatic PES.
Solid lines are diagonal elements of H¢. Black dashed line represents value of E“°T. Bottom

panel: Solid lines represent f/ of HY.
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Figure Al. Plot of the 1, 2, 3, 4%A states at entrance channel asymptote (R(O-H2)=20 au) for the

O-H dissociation.

Energy (cm™ )

30000 ¢
20000 |
10000}

-10000¢
-20000 ¢
-30000 ¢

1.5 20 25 30 35 40 45 50
R(O-H) (au)

36

-

- 4°2A(ab)
— 42A(HY)
- 32A(ab)
— 32A(HY)
- 22A(ab)
— 22 A (HY)
- 12A(ab)

— 12A(HY)

\

v,




Figure A2. Plot of the 1, 2, 3, 4%A states at entrance channel asymptote (R(O-H2)=20 au) for the

H-H dissociation.

30000
20000 |
10000

~10000

Energy (cm™ )

-20000

-30000 ¢

3 4
R(H-H) (au)

37

”~

.« 42 A (ab)
— 42 A (HY)

- 3%A(ab)
— 32A(HY)

- 22A(ab)
22 A (HY)

« 12A(ab)

— 12A(HY)

~

S




Figure B1. The 2°A-3?A C3y MEX. Displacements are along g and h. Zero is energy of MEX,
E(MEX)=-14372.8 cm™!, relative to OH(A2X ") + H, asymptote.
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symbols represent minima, and orange symbols represent saddle points. Angles of triangle
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symbols (saddle points): 40.47°, 69.47°, 70.03°.
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