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Abstract

This paper describes AutoParBench, a framework to test OpenMP-
based automatic parallelization tools. The core idea of this frame-
work is a common representation, called a “JSON snapshot", that
normalizes the output produced by auto-parallelizers. By converting—
automatically—this output to the common representation, AutoPar-
Bench lets us compare auto-parallelizers among themselves, and
compare them semantically against a reference collection. Cur-
rently, this reference collection consists of 99 programs with 1,579
loops. AutoParBench produces graphic or quantitative reports that
lead to fast bug discovery. By investigating differences in snapshots
produced by separate sources, i.e., tool-vs-tool or tool-vs-reference,
we have discovered 3 unique bugs in ICC, 2 in DawnCC, 4 in Au-
toPar and 2 in Cetus. These bugs have been acknowledged, and at
least one of them was repaired as direct consequence of this work.
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1 Introduction

The growing prominence of OpenMP [11] has contributed to the
appearance of many automatic parallelization tools. By annotating
C, C++ or Fortran programs with OpenMP directives, said tools are
able to generate parallel code without having to deal with minu-
tiae of computer architectures. Examples of automatic parallelizers
based on OpenMP include Intel Compilers (ICC), DawnCC [21, 22],
AutoPar [18], Mercurium [6], Pluto [8], TaskMiner [27] and Ce-
tus [3]. The existence of so many tools of similar purpose should, in
principle, aid development: by comparing their outputs, developers
can find correctness or efficiency issues in their implementations.
However, as we explain in Section 2, such is not the case. Each
parallelizer produces code that, even when semantically equivalent,
can use very different syntax. Furthermore, tools like ICC and Pluto
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might change the program before annotating it. Also, not every
tool is source-to-source—ICC, for instance, produced binary code.
Our Thesis. We claim that it is possible to design a common rep-
resentation that normalizes the output of OpenMP-based paralleliz-
ers; hence, allowing automatic comparison between the annotated
programs that they produce.
Our Contributions. To support our thesis, we have designed a rep-
resentation that normalizes programs annotated with OpenMP 4.5
pragmas. This representation, described in Section 3.2, is based on
the JavaScript Object Notation (JSON); thus, we call it a JSON snap-
shot. Centered around this normalized representation, described in
Section 3, we built a test framework called AutoParBench.
AutoParBench contains the infrastructure necessary to compare
the output of different automatic parallelization tools. We have also
augmented it with a reference collection of annotated programs,
which developers can use as the ground-truth when debugging auto-
parallelizers. Thus, AutoParBench allows the direct comparison
between tools, or the comparison between a tool and the reference
collection. In this process, a set of benchmarks is selected as the
baseline, and is used to classify the output of the other. As we will
explain in Section 3.4, this classification includes true negatives
and positives, plus false negatives and positives. The combination
of our concrete test infrastructure and the techniques used during
its craft brings forward the following contributions:

1 -Reference collection (Sec. 3.1): AutoParBench provides devel-
opers with a collection of 99 programs, with 1,579 loops, which have
been manually annotated with OpenMP directives. These bench-
marks were taken from well-known suites, such as NAS [5, 28],
Rodinia[10] and DataRaceBench [17]. All the loops have been man-
ually classified as either positive, i.e., parallelizable, example, or
negative, i.e., examples which should not be parallelized.

2 -Infrastructure: AutoParBench provides parsers to convert
C/C++ sources or ICC’s reports into JSON snapshots (Sec. 3.3). It
also provides evaluators to semantically compare JSON snapshots
(Sec. 3.4). From this comparison, AutoParBench generates graphic
or quantitative reports (Sec. 3.5).

3 —Protocol (Sec. 4.2): in the effort to debug auto-parallelizers,
we have designed a protocol to use AutoParBench. This protocol
reduces the amount of user intervention necessary to validate warn-
ings, and sorts warnings by relevance. Developers never have to
annotate programs to use AutoParBench.

4 —Results (Sec. 4.3): the above protocol was used to discover 3,
2, 4 and 2 bugs in ICC, DawnCC, AutoPar and Cetus, respectively.
These bugs have been acknowledged as true problems. At least one
bug, in DawnCC, has been fixed. Additionally, AutoParBench allows
a direct comparison between the quality of the code produced by
the auto-parallelizers (Sec. 4.4).

Software AutoParBench is publicly available at https://github.com/
LLNL/AutoParBench, under the BSD 3-Clause License.
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2 Challenges

Having a common framework that allows testing different auto-
matic parallelization tools is difficult, because tools may generate
very different outputs—some not even in textual format. Although
distinct, they might represent correct parallelizations of the same
program. In this section, we list the major challenges we face when
creating AutoParBench.

Challenge 1. A program may be amenable to different paralleliza-
tion strategies.

There exist different parallel patterns, e.g., data and task paral-
lelism. Target devices can also vary, e.g., CPUs and GPUs. As an
example, Listing 1 shows how different targets lead to different
parallelizations of the same program.

Listing 1. Loop parallelization using two different strategies: vec-
torization or GPU acceleration.

void CPU_vectorization(int *a, int len) {

1

2 #pragma omp simd

3 for (int i=0; i<len; i++)
4 alil= i;

s

6 void GPU_parallelization(int *a, int len) {
7 #pragma omp target map(from:a[@:len])

3 #pragma omp teams distribute parallel for
9 for (int i=0; i<len; i++)

10 alil= i;

o}

The programs in Listing 1 are semantically different: the loop
in CPU_vectorization will be vectorized, whereas the loop in
GPU_parallelization will be accelerated in a GPU. Nevertheless,
both are correct; hence, both should be acceptable by an automatic
validation tool. Key to solve this challenge is a categorization of
potential parallelizations of a program, which we shall discuss in
Section 3.1.2.

Challenge 2. Code might be amenable to conditional or multi-
versioning parallelization.

Pointer aliasing might hinder parallelization due to potential
dependencies. Dependencies occur when pointers dereference over-
lapping memory regions. A combination of code versioning and con-
ditional checks is a technique adopted by tools like ICC, DawnCC
and the LLVM’s code vectorizer [1] to avoid dependencies at run-
time. As an example, Listing 2 shows code produced by DawnCC.

Listing 2. Conditionalized Parallelization

void foo (int *dest, int *src, int n) {
char ovrlp = ((voidx)(dest)<(void*)(src+n));
ovrlp &= ((voidx)(src)<(voidx)(dest+n));
#pragma omp parallel for if(!ovrlp)
for (int i = 0; i < n; i++)
dest[i] = src[il;

P Y R,

}

Function foo contains a loop that is parallel, as long as the two
arrays, dest and src, do not overlap. The guard using !ovrlp, at
line 4, only allows parallel execution when the two arrays cover
disjoint memory regions. Thus, the program in Listing 2 is correct,
as long as the guard is present. Section 3.2.1 explains how we
evaluate multi-versioned loops.

Challenge 3. Nested loops might be parallelized in a combinatorial
number of ways.
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Although a loop might be parallelizable, this transformation
might not be profitable. This phenomenon happens, for instance,
when the work in the loop body is not enough to pay off the cost
of creating threads or offloading data. Nested loops may contain
multiple levels of parallelizable loops. The cost model of a tool
might lead to the parallelization of one, or several of these loops.
Thus, the fact that a tool might leave some loops untouched does
not necessarily imply that the tool has not been able to identify
the potential parallelism. Listing 3 illustrates this issue with an
example. In Section 3.2.1 we explain how we represent loops at
different granularities, and in Section 3.1.3 we discuss how to deal
with unprofitable parallelization.

Listing 3. Nested loops can be parallelized in different ways.

1 void both_parallel (int **a, int len) {
2 int i, j;

3 #pragma omp parallel for private(j)

4 for (i=0; i< len; i++)

#pragma omp parallel for simd

6 for (j=0; j<len; j++)

7 alilljl = (1 * len + j + 0.5);

8 3

9 void outer_parallel (int **a, int len) {
10 int i, j;

11 #pragma omp parallel for private(j)

12 for (i=0; i< len; i++)

13 for (j=0; j<len; j++)

14 alilljl = (1 * len + j + 0.5);
15}

Challenge 4. There are multiple data mapping variants for accel-
erator offloading.

When parallelizing codes for accelerators, data often need to be
transferred between locations. OpenMP provides various directives
to specify such data transfers; however, the data mapping pragmas
may not be syntactically associated with the offloading directive.
Listing 4 illustrates this issue.

Listing 4. Data mapping variants for target directives

1 void target_loop (int *a, int len) {

2 int tmp, i;

3 #pragma omp target parallel for private(tmp) map(al@:1len])
4 for (i=0;i<len;i++) {

5

; tmp =alil+i;

6 ali] = tmp;

7 3

8 3

9 void target_context (int *a, int len) {
10 int tmp, i;

11 #pragma omp target data map(al@:len]) {
12 #pragma omp target parallel for private(tmp)
13 for (i = 0; i < len; i++) {

14 tmp = ali] + i;

15 alil = tmp;

16 }

17 }

18}

Function target_loop in Listing 4 contains one loop paral-
lelized with the target directive combined with a map clause. Func-
tion target_context, in turn, sets up GPU parallelization in two
steps, via a combination of directives “target data" and “target
parallel for". A verification tool needs to match the semantics
of these two ways of data offloading to a device, as we explain in
Section 3.2.2.



AutoParBench: A Unified Test Framework for OpenMP-based Parallelizers

Challenge 5. OpenMP clauses can use expressions parameterized
by different program symbols.

Several OpenMP clauses are parameterized by program sym-
bols, i.e., user-defined name. For example, the map and the depends
clauses receive an array name followed by a memory range. mem-
ory ranges are expressions that use program symbols. These ex-
pressions complicate the verification of OpenMP clauses because
they can be written in an unbounded number of ways, all of which
encode a similarly correct semantics.

Listing 5. map clauses with variables

void symbolic_map (int *a, int n) {

1

2 int len = 100, i;

3 #pragma omp target data map(al@:len])

4 #pragma omp target parallel for private(i)
5 for (i = 0; i < len; it++) {

6 alil++;

7 3

8 3

9 void numeric_map (int *a, int n) {
10 int len = 100, i;
11 #pragma omp target data map(tofrom: a[@:100])

12 #pragma omp target parallel for private(i)
13 for (i = 0; i < len; i++) {

14 alil++;

15 }

16}

Listing 5 illustrates this challenge. The expressions len and 100
are semantically equivalent. A reference output for this program
cannot simply settle for one of them, because a tool might use the
other, and still deliver correct code. In Section 3.4 we explain how
AutoParBench handles differences in symbols.

Challenge 6. Auto-parallelization tools can apply transformations
in programs, such as loop-splitting and loop-coalescing.

There is a long list of code transformations that can be used to en-
able automatic parallelization [30]. Such transformations may ren-
der the parallel program very different than its original —sequential-
version. Therefore, to be effective, a verification tool must be able to
match the original and transformed programs. Listing 6 illustrates
this issue.

Listing 6. Example of loop amenable to coalescing
int b[10001[1000];

1

2 void original_loop(int n, int m) {
3 for (int i=0; i<n; i++)

4 for (int j=0; j<m; j++)

5 b[i1[j] = @.5;

6 3

7 void coalesced_loop(int n, int m) {
3 #pragma omp parallel for

9 for (int index=0; index<(n * m); index++) {
10 int i = index / n;

11 int j = index % m;

12 b[i]J[j] = 0.5;

13 }

u 3}

The second routine in Listing 6, the function coalesced_loop
is produced by ICC, via loop coalescing [24]. A common format that
allows using function coalesced_loop as the reference output
for the parallelization of function original_loop (Listing 6) must
provide hooks to match these two different programs. In Section 3.3
we elaborate on how we deal with such transformations.
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Challenge 7. Auto-parallelization tools can produce outputs in
different formats.

Automatic parallelization tools can be source-to-source or source-
to-binary. The former provide information about the parallelization
in source files, via human-readable OpenMP annotations. The lat-
ter implement parallelization directly into the binary code. For
instance, AutoPar, Cetus and DawnCC are source-to-source: they
generate a C/C++ program annotated with OpenMP pragmas. ICC,
in turn, produces binary code plus an optional report with debug-
ging information. Listing 7 shows an example of such a report.

Listing 7. Example of optimization report produced by ICC

1 LOOP BEGIN at DRB@20-privatemissing-var-yes.c(60,3)

2 remark #17109: LOOP WAS AUTO-PARALLELIZED

3 remark #17101: parallel loop shared={ .2 } private={ }
firstprivate={ len a i } lastprivate={ } firstlastprivate
={ } reduction={ }

4 remark #15540: loop was not vectorized: auto-vectorization is
disabled with -no-vec flag

5 remark #25439: unrolled with remainder by 2

6 LOOP END

The report in Listing 7 contains the information necessary to
recover the transformations that ICC has carried out in a given
program. A comprehensive test framework should be able to handle
different output formats to enable comparison among them. We
explain how we deal with different output formats in Section 3.3.

3 The Design of AutoParBench

AutoParBench consists of a reference collection of benchmarks,
an intermediate representation (IR) of parallel code, software that
translates annotated programs into the IR, a harness that compares
tools by normalizing their outputs via the IR, and configurable
scripts and reports. This section discusses each one of these parts.

3.1 The Reference Collection

The reference collection is a set of ready-to-use C/C++ benchmarks
intended to serve as the ground-truth for automatic paralleliza-
tion tools. Currently, this collection contains 85 micro-kernels, plus
fourteen larger programs from Rodinia and NAS. The provenance
of these benchmarks is detailed in Section 4.1, Page 7. The larger
benchmarks let AutoParBench compare the performance of parallel
programs. However, AutoParBench’s main goal is to find correct-
ness bugs in auto-parallelizers, not to measure their performance.

Programs in the reference collection contain a sequential and a
parallel version, the latter annotated with OpenMP 4.5 pragmas.

Annotations are for correctness, not for efficiency; hence, even
small loops, when data-race free, are annotated. We compare results
of the two versions and run each annotated program with Intel
Inspector1 to ensure correctness. Most of the annotations were
already present in the original benchmarks. We had to annotate
race-free loops in the fourteen large programs—details are described
in AutoParBench’s public distribution.

Notice that users of our framework do not have to generate
a reference collection manually. As already hinted in Section 1,
AutoParBench allows the direct comparison between two tools.
One of them will be considered the reference, when counting false
positives and negatives. Indeed, we have used ICC as the reference
in some experiments. We provide a reference collection because

Lhttps://software.intel.com/en-us/inspector
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Categories Example OpenMP Directives

CPU Threading

for, parallel, parallel for, task, task loop

CPU SIMD simd, for S{md, parallel for simd
task loop simd

target parallel for, teams distribute
GPU Threading target te-am.s distribute parallel for
teams distribute parallel for

target teams distribute

target simd
target parallel for simd
GPU SIMD target teams distribute simd

teams distribute parallel for simd

target teams distribute parallel for simd

Table 1. Categories of parallel strategies.

we realized that some decisions of ICC could be improved to ease
debugging. As we shall explain in Section 4.3, with the new refer-
ence collection, we have reported three bugs in ICC that were later
confirmed.

3.1.1 Extending the Reference Collection. We have designed
AutoParBench to allow easy acceptance of external contributions
from the community. The addition of new benchmarks to the refer-
ence collection is a desirable consequence of this design. To support
the addition of new benchmarks, AutoParBench’s reference collec-
tion is partitioned into self-contained programs. Thus, the addition
of new programs does not cause modifications in the structure or
composition of the framework. In other words, benchmarks and
scripts already there remain untouched. To add a new program to
the reference collection, users can either start with a plain-C/C++
program, and annotate it, either manually or via a trusted paral-
lelizer; or they can start with an annotated program, and strip its
annotations off, to obtain the sequential version. AutoParBench
provides users with a correctness step, which uses Intel Inspector,
plus output comparison, to check if the new addition is sound.

3.1.2 Parallelization Strategies. Automatic parallelization tools
may apply different parallelization strategies. For example, AutoPar
and Cetus deal with multi-core parallelization (CPU Threading);
DawnCC targets accelerators (GPU Threading). ICC, in turn, sup-
ports both, albeit not at the same time. To accommodate these
differences, benchmarks in the reference collection are grouped
into the four categories seen in Table 1. Categorization lets us use
AutoParBench to verify the output of tools that target different soft-
ware/hardware features. For instance, the categories “CPU SIMD"
and “GPU SIMD" contain the same benchmarks. However, in the
first category, benchmarks are annotated with vectorizing pragmas
for CPUs; in the second, they target accelerators. This categoriza-
tion helps AutoParBench provide a solution to Challenge 1.

3.1.3 Unprofitable Parallelization. The reference collection is
not performance-focused. We have strived to annotate every loop
that could be parallelized, even when such annotations are clearly
unprofitable. We try our best to configure each tool to parallelize
as many loops as possible without considering profitability. If a
tool, for any reason, refuses to parallelize one of these loops, then
AutoParBench reports a false negative. False negatives are not nec-
essarily bugs, although they might account for inefficiencies. This
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approach, combined with the possibility to execute the program,
lets AutoParBench provides a best-effort solution to Challenge 3.

3.2 The Intermediate Representation

The core equipment that AutoParBench uses to compare the out-
put of different tools is an intermediate representation using JSON
snapshots. A snapshot is a file that represents the parallelization
decision of a code region within a benchmark program. Thus, the
application of a parallelizer onto a program might yield multiple
snapshots—each one representing a particular code region in that
program. Snapshots are produced by a translator, i.e., a piece of
software that parses the output of a tool, and produces the cor-
responding JSON snapshots. As we shall explain in Section 3.3,
currently AutoParBench provides two translators: a general one,
that reads C/C++ programs augmented with OpenMP pragmas, and
another specific to ICC, which is not a source-to-source compiler.
Figure 1 illustrates how snapshots are produced.

Sec. 3.3 Sec. 3.2 Sec. 3.5
ICC—>|108 —=ICC-Trans—s{ilog
Ltxt json

L

AutoPar—s{atPr atpr
.C \ /json

- —h
s 5 B B 3

Cetus—> TS| > 525 Trans— tus|s. Eval
json (Sec. 3.4)
DawnCC—> dawn
. json
L
Human—> hman
(Sec. 3.1) - C json

Figure 1. Production and evaluation of Snapshots for C/C++.

3.2.1 Snapshot Objects. A JSON snapshot, that is, the normal-
ized representation of a code region potentially annotated with
OpenMP pragmas, is a human-readable text file that contains mul-
tiple objects. We consider two categories of code regions: loop vs.
non-loop regions. The loop regions represents C/C++ loops such
as while, do-while and for. Figure 2 shows common features for
both types of regions, as well as loop-specific features.

Example 3.1. Figure 3 shows an example of a loop object, together
with two different programs that lead to it. Notice that, except
for the fields file and line, the identical object represents both
programs.

Non-loop objects represent code regions that can be annotated
with OpenMP pragmas, but that are not loops. Example 3.2 shows
code that produces this kind of object. We have opted to separate
loop and non-loop objects to allow comparing tools’ results at a
granularity smaller or larger than loop blocks. This strategy lets
AutoParBench’s evaluator pinpoint the parts of a parallel loop that
are identical across tools, and the parts that differ.

Example 3.2. Figure 4 shows the objects extracted from a single
loop. The non-loop object denotes the invocation of the printf
function, which has been annotated with the ordered directive.
The atomic directive, not shown in this example, can also be a
source of non-loop objects.



AutoParBench: A Unified Test Framework for OpenMP-based Parallelizers

Common Features

id | Unique object identifier
file | Location: benchmark name
function | Location: function name
line | Location: line number
column | Location: column number
category | Category of parallel strategy
type | Type of OpenMP pragma
parent | Enclosing code region, if any
children | Links to nested code regions
clauses | Encoding associated clauses

4&

Loop Features

map | Data mapping information
multiv | True if loop is versioned
indvar | Loop induction variable
access | private(i), firstprivate(i), etc
reduction | Reduction (+/*,min/max, etc)

Figure 2. Fields for JSON snapshot objects.

1void main() {

2 int *a = (int*)malloc(400); fidn_lll"{
3 #pragma omp parallel "filé""'-"
4 #pragma omp for "function”: "main"
5 for (int i=0; i<100; i++) { "line""'—" !

. _ . . r
3 ) a[i] = 1; "column":"3",

"cat ":"CPU Thr.”

6 () category r.”,

"type":"parallel for",
"multiv":"false”,

1void main() { "indvar”:"i”"

2 int *a = (int*)malloc(400); } (c)
3 #pragma omp parallel for

4  for (int i=0; i<100; i++) {

5 a[i] = 1;

6 }

7} (®)

Figure 3. (a-b) Two semantically equivalent parallelizations of the
same program. (c) The corresponding loop object.

Notice that our choice of JSON as the intermediate represen-
tation is based mostly in our personal taste. We could have used
other textual representations that support encoding hierarchical
structures, such as XML or YAML, for instance. The advantage of us-
ing JSON, over, for instance, designing a domain specific language,
is the availability of tools to parse and serialize it in mainstream
languages such as Python, Ruby, Java and JavaScript.
Multi-Versioning. The multiv field of a JSON object indicates
that a loop has been replicated by the auto-parallelizer. Conditional
parallelization, as seen in Listing 2, falls into this category. Every
loop object that describes one of the multiple versions of the same
code has the same id field. When evaluating tools, the evaluator (to
be discussed in Section 3.4) compares only the parallel version of a
multi-versioned loop. This approach provides us with a pragmatic
solution to Challenge 2.

3.2.2 Semantic Equivalences. JSON snapshots enable the nor-
malization of syntactically different codes into semantically equiva-
lent classes of annotations. The need for such normalization stems
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#pragma omp parallel for ordered private(i)

for (i=0; i<len; i++)

#pragma omp ordered

printf("sd\n", a[i]); |
/ {"id":"l",
{"id”:"2", "file":"INEE",
"file":"| NN ", "function":"main",

"line":"70",

"column":"3",
"category":"CPU Threading",
"type":"ordered", "type":"parallel for",
“parent”:"”1" “children”:[“2"],

} “clause”:[“ordered”],
"multiv":"false",
"indvar":"i",
“access”:"private(i)”

}

"function":"main",
"line":"72",
"column":"13",

Figure 4. JSON snapshots extracted from a C program representing
a loop and a non-loop object.

from the different syntaxes that the OpenMP standard accepts to
represent the same parallelization concept. Presently, we consider
four classes of normalizations:

e Joining separate constructions. For instance, “omp parallel”
and "omp for" are combined into “omp parallel for", as
seen in Example 3.1, or, similarly, “omp target data" and
“omp target" give “omp target data". This helps AutoPar-
Bench deal with Challenge 4.

Making explicit every implicit data-sharing clause. For in-
stance, AutoParBench sets as private the loop index vari-
able, unless this variable is explicitly annotated with a dif-
ferent data-sharing mode.

Reduction operator “minus” is normalized into the “plus”
operator since they are semantically the same.

Constant variables are replaced with their values whenever
possible: e.g. 1en is replaced with 100 in the snapshot that
represents Listing 4.

We use the relative position of a code region within its enclosing
function to assign IDs in a snapshot. For example, the first loop
in a function will get the ID 1, regardless of its line number. This
approach helps matching regions in files produced by tools with
those in the reference collection. JSON snapshots also tolerate posi-
tional syntactic differences for variables in OpenMP directives, e.g.,
“to a, from b"vs “from b, to a", as each one of the occurrences
become individual fields within the JSON file.

3.3 The Translators

Translators are needed by AutoParBench to convert the output
of an automatic parallelizer into a JSON snapshot. Currently, Au-
toParBench provides two translators. The first is used by tools
that perform source-to-source code annotation, such as DawnCC,
AutoPar and Cetus. The second is exclusive to ICC. ICC does not
annotate source code; instead, it produces parallel binary code. Ad-
ditionally, ICC can produce a textual optimization report when
used with proper options turned on. Our ICC translator parses
this textual report, and produces the JSON snapshot out of it. The
translators collectively help address Challenge 7.
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The source-to-source translator is implemented as a clang plugin.

The ICC translator is implemented as a standalone parser. Both
these tools recognize most OpenMP 4.5 clauses; however, at the
time of this writing, task-oriented pragmas [2] are not fully sup-
ported. This decision was pragmatic: none of the benchmarks in the
reference collection contain task-oriented pragmas. Furthermore,
the only task annotator that we are aware of is TaskMiner [27], still
a research artifact limited to small programs.
Dealing with Loop Transformations. AutoParBench also deals
with Challenge 6 during this translation step. Out of all the tools
currently evaluated with AutoParBench, only ICC performs a trans-
formation: loop coalescing. Coalescing consists in merging into a
single loop two successive loops that have a common trip count.
When parsing ICC’s reports, AutoParBench identifies the loops
that have been coalesced. By reading the original input file, the
translator recovers the identifier of the eliminated loop, as well as
its location (line and column). A snapshot is created for each loop
that has been eliminated. This object is written in a way to denote
the same parallel semantics of the coalesced loop.

3.4 The Evaluator

AutoParBench defines positive and negative tests in the context of
automatic parallelization. A positive test contains a parallelizable
code region (mostly a loop); a negative test contains a code region
that should not be parallelized. For a given comparison, a tool can
generate the results below. Notice that these results are relative
to a reference. This reference can be the reference collection of
Section 3.1, or it can be the output of another automatic parallelizer.

o True Positive (TP): a tool parallelized code that is syntactically
or semantically equivalent to the reference parallel code.

o False Positive (FP): a tool parallelized code that is not marked
as parallel in the reference.

o True Negative (TN ): a tool avoided parallelizing code that is
not parallel in the reference.

o False Negative (FN): a tool did not parallelize code, although
it is parallelizable in the reference.

o Different Parallelization (DP): code produced by a tool is
parallel; however, AutoParBench does not (yet) recognize it
as semantically equivalent to the reference.

o Crash: A tool crashes when parallelizing the code.

These results let us compute four standard metrics for every tool
that AutoParBench evaluates: precision = TP/(TP + FP), recall =
TP/(TP+FN), accuracy = (TP+TN)/(TP+ TN + FP+FN) and the F1-
score = 2 X precisionX recall [ (precision+ recall). JSON objects in the
“different parallelization” and “Crash" categories are not included in
these metrics. Warnings reported as different parallelization give us
ameans to continually evolve AutoParBench. By investigating these
warnings, we can refine them further as either true positives or
wrong parallelizations (e.g. missing an indispensable data-sharing
clause).

Different Parallelizations. Semantic equivalence and positional
independence let AutoParBench match many syntactically different
annotations as true positives. However, there are annotations that
AutoParBench cannot yet classify as equivalent or different. To aid
debugging, when reporting an occurrence of “different paralleliza-
tion", AutoParBench also specifies the type of difference to enable
manual investigation. The investigation may lead to a verdict of
either true positive or wrong parallelization. An example of wrong
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parallelization occurs when a tool correctly parallelizes a loop, but
misses the insertion of a reduction clause.

Warnings of different parallelization are often due to symbolic
expressions. Symbolic expressions specify ranges of data, such as
the intervals [a:1len] and 0:100 at lines 3 and 11 of Listing 4.
Proving that general range expressions are equivalent amounts
to solving Diophantine Equations, an undecidable problem. To
mitigate this issue, AutoParBench compares the program variables
used in each expression. Hence, it can report that syntactically
different arithmetic expressions are built on the same symbols. This
is the strategy currently used to deal with Challenge 5.

3.5 Configurable Scripts and Reports

AutoParBench provides a collection of configurable scripts to eval-
uate auto-parallelizers. The baseline of evaluation is configurable,
because it is possible to use the output of a tool as ground-truth.
In other words, although AutoParBench provides a reference col-
lection, which we use as the ground-truth when hunting for bugs,
nothing hinders developers from using the output of a trusted tool
as the baseline. Such comparisons lead to actionable items, that is,
indications of bugs or inefficiencies that developers can investigate.
The result of a comparison is either a textual or a graphical report.
The latter gives developers an easy-to-see idea on how close or
distant is the output produced by different tools.

Example 3.3. Figure 5 shows a graphical report produced by Au-
toParBench. Each cell in the matrix on the right represents the
comparison result between the outcome of a parallelizer and the
corresponding ground-truth reference. Results are either TP, TN,
FP, EN, or DP, indicated by different grayscale shades. Similar re-
ports can be generated for any pair of parallelizers, by treating one

of them as the reference.

void main() {
int *a = (int*)malloc(400);
#pragma omp parallel
#pragma omp for
for (int i=0; i<100; i++) {
a[i] = 1;

}

} - VS -

void main() {
int *a = (int*)malloc(400);
#pragma omp parallel for
for (int i=0; i<100; i++) {

a[i] = 1;
}
}
Different False False True True
Parallelization Negative Positive Negative Positive

Figure 5. A graphical report produced by AutoParBench. Program
on top was produced by auto-parallelizer; program on the bottom
is part of the reference collection.

4 Experiments

This section describes the experiments used to evaluate AutoPar-
Bench Version 1.0. In particular, we:
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e provide overall statistics about the benchmarks included in
AutoParBench in Section 4.1;
e compare the output produced by different parallelizers in
Section 4.2;
o demonstrate that AutoParBench is able to uncover bugs in
both research and industry tools in Section 4.3;
e carry out a performance comparison between different par-
allelization approaches in Section 4.4.
Compilers and Tools Selected. We use AutoParBench to evaluate
three source-to-source tools: AutoPar (0.9.10.235), DawnCC (3.7.0),
and Cetus (1.4.4), and one source-to-binary tool: ICC (19.0.4.243).

Runtime Setup. Results were produced on an 8-core Intel(R) Core(TM)

i7-6700T at 3.6GHz with 8GB of RAM running Ubuntu 18.04, fea-
turing a GPU Intel HD Graphics 530.

4.1 The Framework

Provenance. Currently, AutoParBench’s reference collection con-
tains 85 programs taken from DataRaceBench v1.2.0, plus 6 pro-
grams from the NAS Parallel Benchmark Suite v3.0 and 8 programs
from Rodinia v3.1. Together, these 99 programs give us 1,579 loops.
Loops are classified as positive or negative. Positive examples are
amenable to parallelization via one of the strategies that AutoPar-
Bench recognizes (as seen in Table 1). Negative examples are loops
which should not be parallelized due to data dependencies.

Size of Benchmarks. Figure 6 (top) groups benchmarks per line
of code. Each bucket in the X-axis indicates a range. For example
bucket “< 100" includes benchmarks with less than 100 lines of
source code. The Y-axis indicates how many benchmarks fall into
a given range. Most of the benchmarks are small; however, some
performance oriented programs have more than 1,000 lines of code.
Figure 6 (bottom) shows a histogram of the number of positive and
negative loops per benchmarks. Eight benchmarks contain only
one loop. Our largest benchmark, SP, contains 317 loops.
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Figure 6. Lines of code and loops per benchmarks.

4.2 Comparing the Output of Tools

Standard Metrics. To generate the metrics defined in Section 3.4,
we compare the four auto-parallelizers with the reference collec-
tion. Table 2 shows how the tools fare in terms of precision, recall,
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Tool Prec. | Rec. | Acc. F1
AutoPar 0.85 0.89 | 0.85 | 0.87
Cetus 092 | 093 | 0.95 | 0.93
ICC Cost 0.91 0.28 | 0.61 | 0.43
ICC Full 0.91 0.83 | 0.88 | 0.87
DawnCC 1.00 | 0.30 | 0.73 | 0.46 17/63/63 0.46
ICC Simd | 1.00 | 0.59 | 0.65 | 0.74 17/63/63 0.74
Table 2. Summary of results. Pr = number of programs; Lp = num-
ber of loops properly handled; Tt = total of loops given to the tool;
WF1 = Weighted F1-Score. The higher, the better.

Pr/Lp/Tt | WF1
99/1381/1579 0.76

99/430/1579 | 0.25
99/1579/1579 | 0.43
99/1579/1579 0.87

accuracy and F1-score. It also shows how many programs (Pr) and
loops (Tt) were given to each tool, and how many loops (Lp) were
properly analyzed without causing a tool to crash or generate er-
ror messages. The number of loops analyzed per tool differs in
Table 2 for two reasons. First, some benchmarks are specific to
particular targets. For instance, DawnCC and ICC-Simd work on
data parallel programs. Second, some benchmarks cause crashes in
the parallelizer, and their loops are not analyzed.

Table 2 considers three different uses of the Intel compiler. ICC-
Full parallelizes every loop that ICC deems parallel, regardless of
potential runtime benefits. ICC-Cost uses the compiler’s default cost
model to only parallelize profitable loops. ICC-Simd adds vector-
ization on top of ICC-Cost. These tools are used with the following
flags:

e AutoPar -c -w -rose:verbose 0
e DawnCC -writelnFile -stats -Emit-GPU=false -Run-Mode= false
-Emit-Parallel=true -Emit-OMP=1 -Ptr-licm=true -Ptr-region=true
-Restrictifier=true -Memory-Coalescing=true
e Cetus -parallelize-loops=2 -ompGen=2 -profitable-omp=0
e ICC-Cost -no-vec -fno-inline -parallel -qopt-report-phase= all -
qopt-report=5
o ICC-Full -par-threshold0 -no-vec -fno-inline -parallel -qopt-report-
phase=all -qopt-report=5
e ICC-Simd -par-threshold0 -qopt-report-phase=all -qopt-report=5
-vec-threshold0 -fno-inline -parallel
For AutoPar, we used the default flags and enabled warnings. For
DawnCC and Cetus, we enabled the available optimizations. For
ICC-Full uses the compiler’s default set of flags and disables the
cost model (-par-threshold). ICC-Cost enables the cost model
instead. ICC-Simd does not use the cost model, and enables vector-
ization whenever possible (-vec-threshold0).

The tools do not use all the same baseline, i.e., the same subset

of the reference collection. ICC-Full, ICC-Cost, AutoPar and Cetus
use, as baseline, the 1,579 loops that, in the reference collection,
are in the category CPU Threading (see Table 1). ICC-Simd uses as
reference the category CPU SIMD, and DawnCC uses GPU SIMD.
These categories comprise 63 loops from 17 programs. These differ-
ences are due to the nature of these tools: whereas DawnCC and
ICC-Simd transform programs to be used in SIMD-like accelerators,
the other tools target multi-core CPUs.
The Weighted F1-Score. The last column of Table 2, WF1, is a
weighted F1-score. This number, for a given tool, is defined as WF1 =
F1x T /Ly, where Ly is the total of loops given to the tool, and T;
is the number of programs that the tool was able to handle. This
weighted version of the F1-score gives us a measure of how close
the output of a tool is from the reference collection. Example 4.1
illustrates its importance.
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Example 4.1 (Weighted F1-Score). Although Cetus and ICC-Full
receive the same set of 1,579 loops from the CPU Threading cate-
gory, the former analyzes only 430 of them. Cetus’ F1-score, in this
universe of 430 programs, is 0.93. Thus, its weighted F1-score is
0.93%x430/1,579 = 0.25. ICC-Full’s weighted score is 0.87, the same
as its F1-score, because this tool analyzed all the input programs.
Thus, ICC-Full is closer to our ground-truth than Cetus.

The WF1-score points out which tool is closer to the reference
collection; however, it is not an indication of which tool is better, or
more likely to present bugs. A tool that refuses to parallelize every
loop will have a WF1-score of zero, but will be bug-free. Precision
(Prec. in Table 2) is a better sign of potential for bugs, as it takes
the number of false positives in consideration. As we shall see in
Section 4.3, false positives mark loops that are likely to expose a
tool’s bugs.

Example 4.2. ICC-Cost refuses to parallelize several loops, which
are deemed unprofitable by its cost model. Such abstentions lead
to numerous false negatives; hence, low recall; however, they do
not compromise ICC-Cost’s precision, which remain high (0.91).

Graphical Comparison. Figure 7 provides a graphical compar-
ison between tools. Each part of the figure is a grid; each cell of
this grid is the result of the comparison between the output of a
tool and the annotated baseline. We use light grayscale shades to
represent true positives and true negatives; thus, the lighter the
grid, the closer is the tool’s output to the baseline. False positives
and different parallelization strategies might demand investigation
from developers. These outcomes receive darker shades in Figure 7.
Thus, the darker the figure, the larger its potential to present bugs.

A) ICC-Full - 1579 samples B) AutoPar- 1381 samples
) DawnCC - 63 samples ) ICC-Simd - 63 samples

) ICC-Cost - 1579 samples F) Cetus - 430 samples

Different False False True True
Parallelization Negative Positive Negative Positive

Figure 7. Graphical comparison between tools and baseline.
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4.3 Actionable Results

Aided by AutoParBench, we have reported several bugs to devel-
opers of compilers and tools. At the time of this writing, we have
acknowledgements of 3 bugs uncovered in ICC, 2 bugs uncovered
in DawnCC, 4 bugs uncovered in AutoPar, and 2 bugs uncovered
in Cetus. We expect that more bugs will emerge, as we are still
investigating warnings.

A protocol to investigate results. We have adopted a method-
ology to rank warnings. Said methodology aims to improve the
debugging process, as it prioritizes bugs that are more likely to
be fixed by tool developers. We rank suspicious results as follows:
15 tier: tool crashes; 2 tier: parallel program produces wrong
result (Example 4.3); 3" tier: false positive reports (Examples 4.5
and 4.4); 4t" tier: reports of the different parallelization category
(Example 4.6); and 5! tier: false negative reports (Example 4.7).

Tool 157 tier | 279 tier | 377 tier | 477 tier | 57" tier
ICC-Cost 0 0 18 126 491
ICC-Full 0 1 45 217 96
ICC-Smid 0 0 0 8 19
Cetus 11 1 11 8 9
AutoPar 5 1 111 33 81
DawnCC 0 0 0 10 14
Total 16 3 185 402 710

Table 3. Number of suspicious results grouped by tiers.

Table 3 shows the number of occurrences of suspicious results
in the different tiers, considering the six experiments graphically
reported in Figure 7. As it would be natural to expect, most of
the warnings are concentrated in the less pressing tiers of the
investigation protocol. Consequently, developers can focus on more
serious bugs, leaving less severe warnings for posterior inspection.
Notice that the number of warnings is not correlated with the
number of bugs that we have reported, because the same bug may
cause warnings in several different benchmarks.

Examples of confirmed bugs. Below we describe some of the
confirmed bugs that we have reported.

#pragma omp parallel \
for private(i) \
reduction(+: c[i+])

for (i=0; i<len; i ++ ) {

}C[i+i]+=(a[i]*b[i]);

void main(int argc, char *argv[]) {

inti, len = argc;
intx=argc>27?len-2:0;
int* a = (int*)malloc(len * sizeof(int));
for (i=0;i<len;i++){

a[x] = i; x=i;

j+=len;

for (i=0;i<len-1;i++) (©

printf("%d ", ali]);
printf("x=%d",x);

} (2)

for (i=0;i<len;i++) { for (i=0;i<len;i++) {
cfil+=alil"bil; c[jl+=ali]"b[i];
j++; j++;

} (b) |} (d)

#pragma omp parallel \
for private(i) linear(j)

Figure 8. (a) Program that caused a false positive in ICC. (b) Se-
quential program that uncovered bug in Cetus. (c) Code produced
by Cetus. (d) Code in reference collection.
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Example 4.3 (Parallel program crashes). Figs. 8(b-d) show a bug
that was discovered in Cetus. Cetus, when given the program in
Figure 8 (b), produces the code in Figure & (c). Cetus extracts variable
j from the loop, and transforms it into a reduction. Said reduction
causes a runtime crash.

Example 4.4 (False Positive in ICC). ICC parallelizes the first loop
in the program in Figure 8 (a). However, when argc is greater than
2, a race condition occurs in a[len-2], caused by a primary race
in x. This race condition has been found by Intel Inspector when
the variable len is assigned a value of 16.

Example 4.5 (False Positive in DawnCC). DawnCC has paral-
lelized a doubly nested loop containing the dependence b[i][j] =
b[i-11[j-11]; hence, leading to a data race. Interestingly, the tool
correctly avoids the parallelization when the matrix b is given in
linear format, i.e., b[i*n+j].

Example 4.6 (Different parallelization in ICC). The variable sum
in the loop for (int i=0; i<100; i++) sum+=1;

was marked as firstlastprivate by ICC; however, that construc-
tion should be a reduction.

Example 4.7 (False Negative in AutoPar). The same program seen
in Figure 8 (b) gives us a false negative when submitted to AutoPar.
This tool refuses to annotate this loop. However, arrays a, b and
c are allocated statically; hence, it is trivial to show that aliasing
cannot occur in this case.

4.4 Performance Comparison

The current distribution of AutoParBench has been designed to
uncover bugs. However, AutoParBench includes benchmarks taken
from the Rodinia and NPB suites, which can be used to evaluate
the performance of compilers and hardware. AutoParBench pro-
vides a driver to execute these programs. We have used this frame-
work to compare the speed of the code produced by two different
auto-parallelization tools: ICC and AutoPar. Figure 9 shows the
result of this comparison for six NPB benchmarks, and five Rodinia
benchmarks that run when compiled with AutoPar, ICC-Full and
ICC-Cost, namely BFS, BPT=B+Tree, , E3C=Euler3D, E3C= Euler3D
(Double), and HTW=Heartwall.
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Figure 9. Performance comparison. We use the following keys: 103
= sequential code compiled with ICC -O3, MAN = manual OpenMP
annotations in the original benchmarks, REF = the reference collec-
tion (every loop annotated), ATP = AutoPar, CST = ICC-Cost, FLL =
ICC-Full.
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The original benchmarks (MAN) have been annotated by their
developers with OpenMP pragmas. This is generally the fastest
code. In some cases, e.g., E3C and EP, MAN is over 5x faster than
the fastest code automatically produced. The reference collection
has not been conceived for performance: we have annotated ev-
ery loop that is parallelizable. Nevertheless, except for NPB’s SP,
the reference is still faster than automatically annotated programs.
ICC-Cost improves the runtime of ICC-Full, the unrestricted paral-
lelizer, by using a cost model that rules out potentially unprofitable
parallelizations. Such improvement can be dramatic: about 37x for
Rodinia’s BPT. There is no clear winner between AutoPar and ICC-
Cost. The former yields statistically significant faster code in three
cases; the latter in five. In every case, differences can be elastic:
AutoPar’s version of Rodinia’s E3C is 1.8x faster; ICC-Cost’s version
of NPB’s BT is 5.3x faster.

5 Related Work

Benchmarks for Compilers and Tools. The construction of
benchmark suites has been a staple of compiler and tool develop-
ment since its early years. Testimony of this importance is the fact
that a few benchmark collections, namely from the SPEC CPU fam-
ily [16], have been a fundamental guiding force behind the design
and implementation of static analyses and program optimizations
for C, C++ and Fortran compilers, as thoroughly discussed in Pat-
terson and Hennessy’s classic textbook [15]. Similar role DaCapo
has fulfilled for the Java programming Language and the JVM
virtual machine [7]. And, even today, we watch the rise of new
suites [26, 29], or the re-edition of old ones [19, 20] to fill niches
not yet covered by well-established collections.

Support for the Development of Auto-Parallelizers. AutoPar-
Bench contains a reference collection of annotated programs that
is similar to other benchmarks for parallel programming. Among
those, we count Linpack [13], Rodinia [10], Parsec [4] (and its
task-based extensions [9]), NAS [5, 28], SHOC [12] and BOTS [14].
There are also frameworks to evaluate the performance of auto-
parallelizers, such as PETRA [23]; however, automatic evaluation
is centered on runtime. Recently, Prema et al. [25] have pointed out
the need for supporting comparisons oriented towards correctness,
like the one AutoParBench provides.

Several programs in the reference collection were taken from
public suites, namely NAS and Rodinia. The main difference be-
tween the present work, and these previous benchmarks is the
fact that we provide a program representation that unifies the
methodology used to test and verify compilers and tools related to
automatic parallelization of programs. All our infrastructure, in-
cluding programs and their harnesses, have been designed around
this intermediate representation. Said representation is built as a
meta-language on top of the JSON format. Thus, in contrast to pre-
vious benchmark suites, AutoParBench lets us compare different
tools using the same framework.

DataRaceBench. A closely related benchmark related to the
present paper is DataRaceBench [17]. The goal of DataRanceBench
is to test data-race detection tools; hence, this suite contains sam-
ples without or with known data-races. it only needs to check a
tool’s output against a simple true or false reference answer for
a given OpenMP input loop. AutoParBench uses OpenMP bench-
marks from DataRaceBench and other benchmark suites. However,
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the objective of AutoParBench is to provide a unified representation
to the output of parallelizers. These tools output programs that,
although syntactically different, can be correct parallelizations of
the original input code. Thus, AutoParBench uses an intermedi-
ate representation to unify the testing process. Such intermediate
representation is not part of the design of DataRaceBench.

6 Conclusion

This paper has presented AutoParBench, a framework that allows
semantics-aware, quantitative comparison of the output of different
automatic parallelization tools. AutoParBench is engineered around
a unified representation of OpenMP-based parallel programs, in
the JSON format. A suite of supporting translators and evaluator
are developed to enable semantics-aware comparison of programs
produced by auto-parallelizers and by humans. We have evaluated
AutoParBench by applying it onto four parallelizers. AutoParBench
has allowed us to discover several bugs in these tools, many of which
were acknowledged by their developers. Several more warnings
are still left to be confirmed. As future work, we plan to augment
AutoParBench’s reference collection with more benchmarks, in-
cluding SPEC OMP and SPEC ACCEL. We also intend to add to
AutoParBench’s intermediate representation the ability to encode
OpenMP-based Task Directives.
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