
SANDIA REPORT
SAN D2020-6250
Printed March 2020

An Approach to DevOps and
Microservices

Sandia
National
Laboratories

Brandon T. Klein; Gerald J. Giese; Jayson C. Lane; John G. Miner; John J. Jones;
Otoniel Venezuela

This report presents work performed in 2017 and is a reissue of the end-of-year report SAND2018-0240, A
Proof-of-Concept Approach to DevOps and Microservices,Januag 2018, modified for unlimited release.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Offlce of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@osti.gov
http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
Nadonal Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone:
Facsimile:
E-Mail:
Online order:

(800) 553-6847
(703) 605-6900
orders@ntis.gov
haps://classic.ntis.gov/help/order-methods/

NeSA
bErbkvaadMeN.r$,Icem*Admin4.,km



ABSTRACT

This report describes the approach, investigation, and prototyping efforts to create an API
management solution and automated deployment pipeline for REST-based microservices.
Additionally, it reviews: the microservices created for testing purposes; our experiences and
results in using an open-source API management tool; and future plans.

3



ACKNOWLEDGEMENTS

We would like to acknowledge our student intern team for their valuable contributions in developing
a proof-of-concept and exploring the technology stack we chose to evaluate. Their work was
invaluable in this effort. Our intern team consisted of:

Aaron Comen

Mark Wesley Harris

Nicholas Tiner

Quincy Lee Conduff

We would also like to thank our Sandia collaborators for their technical expertise and resources in
helping us overcome roadblocks and obstacles. Their critical contributions are highly appreciated.
Our Sandia collaborators included:

Brandon Showers

Christopher Nebergall

Jeffrey Forster

Jeremy Dencklau

Jeremy Plake

Joshua Barron

Josiah England

Tom Cleal

4



CONTENTS

1. Introduction 12
1.1. Vision of the Future 12
1.2. DevOps 12
1.3. Microservices Architecture (MSA) 12
1.4. Target Architecture 13
1.5. Roadmap 14

1.5.1. Phase 1 — Experimental Research 15
1.5.2. Phase 2 — Build the Environment 15
1.5.3. Phase 3 — Operational Rollout 15

2. Proof-of-Concept Approach 16
2.1. Exploratory Phase 16
2.2. Technology Identification Phase 16
2.3. Proof-of-Concept Phase 16

3. Exploratory Phase 18
3.1. Desired Features for a Microservices Architecture 18

3.1.1. Enterprise Service Catalog 18
3.1.2. Enterprise API Gateway 18
3.1.3. Containerized Deployments 19

4. Technology Identification Phase 20
4.1. API Management Decision Process 20
4.2. API Management Desired Features 20
4.3. API Management Technologies Evaluated and Selected 21

5. Proof-of-concept phase 22
5.1. DevOps, Agile, and Interns 23
5.2. Containerization and Cloud Infrastructure 23
5.3. Pandamax Application and Service 23
5.4. Cl/CD with GitLab and Jenkins 24
5.5. WS02 API Manager 25

5.5.1. API Catalog 25
5.5.2. API Management 25
5.5.3. Authentication and Authorization 25

6. End State 26
6.1. Leveraging RESTful microservice design for new applications 26
6.2. Documenting microservices with Swagger 26
6.3. Research, select, and deploy a Service Catalog 26
6.4. Research and select an API Gateway 26
6.5. Prototype a microservice architecture to be deployed in Docker Data Center 26
6.6. Promote Continuous Integration/Continuous Testing (fail fast, recover quickly) 26

7. NEXT STEPS 28

LIST OF FIGURES

Figure 1-1. Target Architecture 14
Figure 5-1. Pandamax Architecture Model 22

5



Figure 5-2. Pandamax Application and Services 24
Figure 5-3. Pandamax Cl/CD Pipeline 24

6



ACRONYMS AND DEFINITIONS

Abbreviation Definition

API Application Programming Interface. This defines the operations and data
used to communicate with a piece of software (e.g. an application,
microservice, etc.)

Agile Refers to a group of project management methodologies based on
iterative development and collaboration between self-organizing and
cross-functional teams.

CaaS Containers-as-a-Service. An abstraction service framework designed to
orchestrate, manage, and deploy container based virtual systems
disparately or cohesively.

CD Continuous Delivery. A software development practice where members
of a team produce their work frequently to deliver stable versions at any
moment.

CI Continuous Integration. A software development practice in which
members of a team integrate their work frequently, and the integrations
trigger verification by automated build and test processes.

COTS Commercial Off-The-Shelf Refers to software sold by vendors as ready
to use (with some configuration), as opposed to bespoke software
developed locally by staff.

CRUD Create, Retrieve, Update, Delete. These are atomic transactions that can
be taken on data, as in documents or data in a database.

Container
(software)

A modular, portable, and encapsulated executable software package
containing all the proper files and configurations to work properly and
consistently regardless of the underlying infrastructure.

Docker A platform for software engineers and sysadmins to develop, ship, and
run applications (https://docs.docker.com/glossary/?term=Docker) 

Dockerfile A text document that contains all the commands needed to execute and
build a Docker image. Docker can build images automatically by reading
the instructions from a Dockerfile.
(https://docs.docker.com/glossary/?term=Dockerfile)

Docker EE Docker Enterprise is a standards-based container platform for
development and delivery of modern applications. Docker Enterprise is
designed for application developers and IT teams who build, share, and
run business-critical applications at scale in production.
(https://docs.docker.conVee/)

Docker Datacenter Docker Datacenter is a complete, integrated, enterprise solution for
container deployment and management, tailored for production
environments with a strong emphasis in availability, multi-tenancy and
security. (https://hub.docker.com/bundles/docker-datacenter)

7



Abbreviation Definition

Docker DTR Docker Trusted Registry (DTR) is the enterprise-grade image storage
solution from Docker. You install it behind your firewall so that you can
securely store and manage the Docker images you use in your
applications. (https://docs.mirantis.com/docker-enterprise/v3.0/dockeree-
products/dtr.html)

Docker Engine Daemon process running on the host which manages images and
containers. (https://docs.docker.com/glossary/?term=Docker)

Docker Hub A cloud-based registry service which allows access to code repositories,
Docker images, and links to Docker Cloud. It provides a centralized
resource for container image discovery, distribution and change
management, user and team collaboration, and workflow automation
throughout the development pipeline. (https://docs.docker.com/docker-
hub/)

Docker Image The basis of containers, it is an ordered collection of root filesystem
changes and the corresponding execution parameters for use within a
container runtime. An image typically contains a union of layered
filesystems stacked on top of each other. An image does not have state
and it never changes. (https://docs.docker.com/glossary/?term=image)

Docker Stack Docker command that allows the deployment of a complete application
stack to the Docker swarm (https://docs.docker.com/engine/swarm/stack-
deploy/)

Docker Swarm A standalone native clustering tool for Docker. Docker Swarm pools
together several Docker hosts and exposes them as a single virtual
Docker host.
(https://docs.docker.com/glossary/?term=Docker%20Swarm)

Docker UCP Docker Universal Control Plane (UCP) is the enterprise-grade cluster
management solution from Docker. (https://docs.mirantis.com/docker-
enterprise/v3.0/dockeree-products/ucp.html)

Git An open source version control system for file management

GitLab An open source, web-based, Git repository platform offering an array of
tools and services for software development

JAX-RS Java API for RESTful Web Services. Part of the Java programming
language API specification used in creating web services according to
the REST architectural pattern.

Java Spring A software development framework for the Java programming language.

JSON JavaScript Object Notation. A structured, human-readable text document.

Kerberos An authentication protocol developed by Massachusetts Institute of
Technology that allows symmetric key cryptography network
communication between client and server applications.

8



Abbreviation Definition

LDAP Lightweight Directory Access Protocol. A software protocol for locating
organizations, individuals, and other resources on a network, and
identifying specific metadata about them, e.g. roles or group
membership.

Microservice An independently deployable, reusable software component that fills a
specific function through a defined API.

MSA Microservices Architecture. An architectural style characterized by
independently deployed stateless services (components), typically
organized around a business concept and using significant infrastructure
automation.

Node.js A JavaScript runtime build on Google Chrome's V8 JavaScript engine. It
is lightweight and efficient with a large ecosystem of open-source
software packages available through an online repository with a standard
interface.

OAuth A standard protocol based on token access delegation for authorization
over a network.

OpenId An authentication protocol used over a network standardized by the
OpenId Foundation.

REST Representational State Transfer. An abstraction of the architectural
elements within a hypermedia system that ignores the details of
component implementation and focuses on the roles of components and
their interpretation of significant data elements. Commonly used to refer
to web-based APIs using HTTP verbs GET, POST, DELETE, PUT
against a URI and exchanging JSON documents or other media.

SAML Security Assertion Markup Language. An Extensible Markup Language
(XML) standard that allows secure network communication between two
entities to share authentication and authorization data.

Sandia Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA0003525.

Scrum An Agile framework for completing complex projects a product owner
creates a prioritized wish list called a backlog, and a team takes one or a
few items from the backlog to complete over a very short period (weeks).
Each period is called a Sprint, which begins with planning and ends with
a sprint review (including demonstration) and retrospective. Larger
teams may have a Scrum master to help with focus and organization.

SDLC Software Development Life Cycle. Describes the full-lifecycle process of
planning, creating, testing, and deploying an information system.

9



Abbreviation Definition

Swagger Part of the OpenAPI Specification, it defines a standard, language-
agnostic interface to RESTful APIs allowing both humans and computers
to discover and understand the capabilities of the service without access
to source code, documentation, or through network traffic inspection. A
Swagger definition can be used to generate code, documentation, tests,
and more.

WSO2 WS02 is a software vendor specializing in API Management,
Integration, Identify & Access Management, Analytics, and Internet of
Things (IoT). Many of WS02's products are available as open source
software.

XP Extreme Programming. A software development methodology intended
to improve software quality and responsiveness to changing customer
requirements. Most known for the concept of "pair programmine where
two software engineers share a computer, one typing and one peer
reviewing "on the fiy".

10



1. INTRODUCTION

This paper provides a narrative to document a proof-of-concept approach to DevOps and
Microservices that Sandia National Laboratories undertook in FY17.

The selection process for these architectural decisions was derived through the explicit knowledge of
an increased return on investment for the business with accelerated time to market and time to value
for Sandia's enterprise information systems.

This will describe a subset of Sandia's enterprise information systems vision, the methods employed
to make progress toward the vision, and the end state as the fiscal year closed. This serves two
purposes: 1) to state Sandia's intentions for planners and architects to consider, and 2) document the
end state at the close of FY17, so that a future project team may continue with the approach.

1.1. Vision of the Future

Sandia has formally adopted three key changes to how applications and solutions for the enterprise
are to be built: DevOps, Container-as-a-Service (CaaS), and Microservices Architecture (MSA).

In the future, a DevOps-style automation pipeline for microservices-based APIs would be required
due to the complexity and quantity of moving parts in an MSA ecosystem. Automation of the
pipeline to transition from development to deployment to operation would leverage tools like:
Docker containers in a CaaS environment; Swagger/OpenAPI to auto-generate documentation,
code and interfaces; automatic testing and monitoring of the APIs; and registration in an API
catalog.

The benefits of an automated pipeline are: simplification and acceleration of microservices creation;
the ability to find and utilize microservices; and confidence in the qualities of the ecosystem from an
architecture standpoint, supporting maintainability, availability, performance, and security.

1.2. DevOps

"DevOps, a clipped compound of "development" and "operations", is a software development and
delivery process that emphasizes communication and collaboration between product management,
software development, and operations professionals. It supports this by automating and monitoring
the process of software integration, testing, deployment, and infrastructure changes by establishing a
culture and environment where building, testing, and releasing software can happen rapidly,
frequently, and more reliably" [1].

Sandia intends to adopt DevOps practices over time, emphasizing automation of complex
architecture styles (e.g. MSA) and rapidly provisioned monitoring of components (e.g.
Microservices) in a finer-grained manner. Continuous Integration and Continuous Delivery (Cl/CD)
are the core of DevOps and form a pipeline for moving software from code to operation.

1.3. Microservices Architecture (MSA)

The Microservices Architecture style, or pattern, is used to enable high scalability, availability, and
performance of software components. Industry luminary Martin Fowler defmes this style in his
article "Microservices: a definition of this new architectural term" [2], as having certain
characteristics:

• Componentization via Services

11



• Organized Around Business Capabilities

• Products, not Projects

• Smart Endpoints and Dumb Pipes

• Decentralized Governance

• Decentralized Data Management

• Infrastructure Automation

• Design for Failure

• Evolutionary Design

One can deduce from these characteristics that a Microservice is meant to be self-contained and of
restricted scope, enabling it to be decoupled to provide robustness and flexibility as it changes.

While a microservice is composed of many small parts, the users see it as a "black box" through its
Application Programming Interface (API). Sometimes articles and discussions will use the words
API and microservice interchangeably. In this paper, an API is defined solely as the interface, and
microservice as a deployable software component.

Sandia intends to adopt the MSA style and patterns for use in enterprise applications and solutions.
In addition, Sandia is standardizing primarily on REST [4] and JSON for the APIs.

1.4. Target Architecture

An initial analysis of stakeholder needs yielded the following set of Target Architecture Drivers.

• Provide a common deployment pattern for enterprise applications

• Support DevOps automated deployment pipelines so that development teams can keep up with
the needs of business

• Enable sharing of services and functionality across enterprise applications

• Provide constructs for high availability and scalability at little cost to development teams

• Emphasize Continuous Integration/Continuous Testing reducing time to market and errors

• Provide guidance/preferences for Commercial Off-The-Shelf (COTS) solutions which have
their own inherent architecture

Research into the MSA style and DevOps automation was then synthesized into an initial target
architecture.

12



Automated
Deployment
Pipeline

Enterprise Container
Management System

Application
Containers

Enterprise
Service
Catalog
Container

COTS
Containers

Enterprise AP l Gateway
Container

Logic
Microseivice
Containers

Legend

Registration

Data Flow

Enterprise Provided

Solution Provided

Data
M icroseivice
Co nta in ers

COTS
Microserv ice
Containers

Enterprise
Databases

Figure 1-1. Target Architecture

C
i
i
i
d
~
1
1
J
 La

.`
13
 

Enterprise
Monitoring

Logging

Specific standards referenced in the Target Architecture include:

• Microservices shall be designed to be lightweight, independently deployable, stateless, and
discoverable

• Microservices shall be RESTful and support the JSON format

• Microservices shall have published Swagger API documentation

1.5. Roadmap

In the spirit of Agile development, and in an attempt to buy down architectural risk, a phased
approach was adopted, with each phase expected to be about 6 months in duration. Funding for
Phase 1 was established for FY17 and expected to complete at the end of the fiscal year. Funding
for Phase 2 and 3 in FY18 is TBD.

13



1.5.1. Phase 1 - Experimental Research

Phase 1 goals:

• Leverage RESTfuI microservice design for new applications

• Document microservices with Swagger

• Research, select, and deploy a Service Catalog

• Research and select an API Gateway (for a proof-of-concept)

• Prototype a microservice architecture to be deployed in Docker Data Center

• Promote Continuous Integration/Continuous Testing (fail fast, recover quickly)

This report is a status update for Phase 1.

1.5.2. Phase 2— Build the Environment

Phase 2 goals:

• Build an institutionally supported Continuous Integration Pipeline for microservices

• Begin doing automated microservice deployments in Docker containers

• Research, select (or develop) and deploy an API Gateway (for production)

• Adopt "Design for Failure and "Design to Scale" best practices

• Monitor full solution stacks with Enterprise Monitoring

• Deployment/Undeployment of services and applications includes automated registration/de-
registration from Enterprise Monitoring

1.5.3. Phase 3 — Operational Rollout

Phase 3 goals:

• All new applications use the Target Architecture and leverage Cl/CD practices

• Selection (and purchase) process for COTS products gives preference to technologies, standards
and patterns found in the Target Architecture (e.g. RESTful services, containerized deployment)

• COTS services are accessed through the API Gateway

14



2. PROOF-OF-CONCEPT APPROACH

Sandia established a project in FY17 to explore the MSA style, identify supportive technologies, and
test them. A proof-of-concept application and microservices called "Pandamax" was created to learn
about and exercise the MSA style, DevOps and Containerization technologies.

The phases were not purely sequential but overlapped and were managed through an Agile process
as new information was discovered, discussed, and the product owner made decisions.

2.1. Exploratory Phase

During the exploratory phase, it became clear that complexity and increased numbers of
microservices along with their deployments would become an issue if not managed. To mitigate the
risks associated with the MSA style, DevOps practices were deemed necessary. The concept of
encapsulating microservices in a modular, portable containerized state enabled effective
management over the complexity as well.

2.2. Technology Identification Phase

A technology scan for MSA tools and technologies led to the identification of three key technologies
types that were determined as needed in our Microservices Target Architecture.

1. Service Catalog — a way for software engineers to find available APIs/services

2. API Gateway — the "front dooe' for a service or set of services, providing authentication,
security, transformation, routing and more.

3. Containerized Deployments — using an Enterprise Container Management System

2.3. Proof-of-Concept Phase

To explore these concepts and technologies, a small team of staff and summer interns tasked to
create the Pandamax application and services, and to establish a pipeline to build and deploy them.

The Pandamax application designed a file management utility, which can upload, update, and delete
files, as well as return statistics on an uploaded file. It was created to test multiple common web
application features and do so in a way that would also test the API Gateway. The microservices
support "delay" parameters to simulate various load and performance issues that may be
experienced when leveraging a centralized API management solution. The application features and
service API essentially mirror each other, with the API Gateway mediating between services to
explore the gateway functionality.

This proof-of-concept will help us understand and build the infrastructure services necessary to
support a larger ecosystem.

15



This page left blank

16



3. EXPLORATORY PHASE

During the Exploratory Phase, it became clear that the desired Enterprise Service Catalog and
Enterprise API Gateway fall under a category called API Management. Some vendors have all-in-
one offerings, while others take a suite approach and offer tools or platforms for each capability.

3.1. Desired Features for a Microservices Architecture

Three main features were identified to alleviate the complexity of API management and
microservice deployment in an MSA: an API service catalog for internal software engineers; an API
gateway to control access to microservices; and containerized microservice deployments.

1. Enterprise Service Catalog

o Provides a user-friendly view of available microservice APIs and information on how to
consume them.

o Swagger, also known as OpenAPI, is a tool for defining microservice APIs and supports
automatic generation of API documentation.

2. Enterprise API Gateway

o Creates a virtual layer in front of microservice APIs, insulating clients from changes at
the service layer. Can provide a centralized point for authentication, security, traffic
control, logging, transformations, load balancing, analytics and more.

3. Containerized Deployments

o Docker technology is heavily used in industry and creates a very lightweight and portable
container, analogous to a virtual machine, in which to deploy a software component and
its dependencies.

o Docker Swarm provides orchestration of Docker containers, while Docker EE adds a
registry, security and management functionality. Docker EE is being evaluated by the
Enterprise Cloud Services (ECS) team at Sandia.

3././. Enterprise Service Catalog

Sandia's intended usage for a Service Catalog is as a catalog for software engineers to identify
available services and get the information necessary to understand their functionality and begin using
them. Some vendors call the Service Catalog a Service Registry or an API Marketplace. Many
vendors target this functionality as a business-to-business or business-to-consumer tool for
monetization purposes, where one company sells access to its API to another company. Sandia is
not currently pursuing this type of functionality as its users are purely internal.

3.1.2. Enterprise API Gateway

Microservices are developed independently, so cross-cutting concerns are dealt with by other layers
in the software stack. The API gateway is one of those layers.

Here is a list of common concerns handled by API gateways:

• Authentication

17



• Application service subscription

• Transport security

• Load-balancing

• Request dispatching (including fault tolerance and service discovery)

o Including aggregation of multiple requests results

• Dependency resolution

• Transport transformations (protocol and/or format)

3.1.3. Containerized Deployments

During the exploratory phase, several team members interviewed software development teams
already using Docker and Docker swarm for deployments. Based on the encouraging results they
had experienced, the team researched robust management tools and platforms that would support
multi-tenant deployments of Docker containers with more automation and administrator support
functionality.

18



4. TECHNOLOGY IDENTIFICATION PHASE

As a result of the Exploratory Phase, it was determined that the team should focus on selecting an
API Management technology that could utilize Sandia's CaaS prototype for the proof-of-concept.
This section describes the process and how it was executed.

4.1. API Management Decision Process

The process for determining which API Management technology to prototype with was as follows:

1. Determine Sandia's desired features for an MSA API management tool suite.

2. Quickly identify products that appear at a glance to be candidates, leveraging both open-source
and COTS products identified as industry leaders in the Gartner Magic Quadrant for API
Management tools.

3. Capture information (website, email, etc.) for each product that show how it meets, or does not
meet, the desired features.

4. Create a Decision Analysis and Resolution (DAR) Report. The DAR template used was made in
Excel and consisted of 4 tabs:

o Report — an executive summary outline of the problem, desired features, scoring, and result.

o Decision Matrix — the evaluation attributes, weights, scores, and results chart

o Result — notes on how the products achieved (or not) each evaluation attribute

o Enterprise Architecture — a yes/no 'supports' matrix for higher-level desired attributes of the
larger enterprise architecture

5. Hold a short series of meetings to collaboratively fill in the DAR with scores for each product,
while discussing the features to share knowledge and insight.

6. Review the results with the team to make a fmal selection.

4.2. API Management Desired Features

The following features were brainstormed based on needs and research performed in the
Exploratory Phase:

• Inexpensive — e.g. cost per 300,000 calls

• Authentication — OAuth 2 and SAML

• Authorization

• Input Validation/Endpoint Protection

• Traffic Control

• Open Source and Support Model both offered

• Scalability

• Availability

19



• On Premises Deployment Available

• Testability

• Discovery API and Web Interface

• Messaging Support — e.g. Websockets/JMS/AMQP/STOMP

• Portability/Architecture

• Performance/Throughput — e.g. nominal deployment architecture is 2 sets of 2 nodes

• Logging/Audit/Analytics — e.g. Splunk and ELK

• Open API Support

• Development Support — e.g. discovery via Eclipse and Visual Studios plugins

• Simplicity

4.3. API Management Technologies Evaluated and Selected

The API Management technologies were evaluated based on the criteria listed in section 4.2; WSO2
was selected.

20



5. PROOF-OF-CONCEPT PHASE

The proof-of-concept was meticulously crafted to model proven methodologies regarding
Microservices Architecture, DevOps and Containerization. The initial technologies selected were:
WSO2, Docker, Git, GitLab, Jenkins, and internal Sandia cloud resources. The end goal was an
orchestrated, managed, and automated Cl/CD containerized ecosystem consisting of a tailored API
manager configuration and custom engineered microservices to serve as a proof-of-concept for the
Enterprise.

Dockerfile:
- FROM: node:boron
- EPOSE: 8081

Frontend

+ POST — upload a tile

Uses---1"
+ GET -- get file statistics of a tile
in the database

+ PUT -- update a file in Me
database

Admin Writes + DELETE — delete a file in the
database

+ DELAY -- sleep The thread
betore execution

updates
Swagger Fil
- VERSION: 2.D
- RESPONSES:
> 200: OK
> 404: ERROR

Swagger
Codegen

Generates

Testing

API Gateway:
WS02

Backend

+ POST — /upload

+ GET — lgetstats

+ PUT — /update

+ DELETE — /destroy

+ DELAY — optional parameter

Dockerfile:
- FROM: openjac:8-jre-alpine
- EXPOSE: 8080

Figure 5-1. Pandamax Architecture Model

21



5.1. DevOps, Agile, and Interns

The Pandamax team selected the adaptive SDLC approach for the project's framework with
incorporation of DevOps and Agile methodologies. Scrum and XP were implemented as the Agile
methodologies for the duration of the project.

Additionally, summer internship positions were extended to four college students to partake in the
project's engineering endeavor. The interns had little to nil prior experience with containerization,
MSA and DevOps; however, the interns were able quickly learn and contribute to the effort.

5.2. Containerization and Cloud Infrastructure

Containerization and cloud computing were technology choices selected by the Pandamax team due
to the major engineering and business advantages they provide to production: accelerated time to
market and time to value. Docker was the selected container technology due to its industry adoption
size, market share, and capabilities. Internal Sandia cloud resources offered by the ECS team were
selected for the cloud infrastructure due to the perceived affordance of in-house cloud.

The Docker capabilities leveraged for the project included: Docker Engine, Docker Swarm, Docker
Stack, Dockerfile, and Docker Hub. The Pandamax project leveraged Docker resources from the
ECS team as well. The ECS team offered supported Enterprise Docker Swarm on RHEL 7 virtual
machines. Thus, four virtual instances were created and clustered via Docker Swarm. The Docker
Swarm served as a deployment location for the project. Additionally, the Pandamax team partook in
the initial offering of the ECS team's CaaS prototype leveraging Docker EE.

5.3. Pandamax Application and Service

Microservices were needed to test the WS02 API Manager as well as the deployment methodology.
Ergo, the development team decided to create two custom individually containerized REST based
microservices. The selected Microservices were trivial in nature; however, their functionality fulfilled
an archetypical business need — CRUD operations.

The first microservice was a frontend service for Pandamax written in Node.js and HTML with
GET, POST, PUT, DELETE functionality. The functions of the frontend service had the option to
be delayed as well. The second microservice was a backend service for Pandamax written in Java
separately with Java Spring and JAX-RS for testing purposes; Swagger-Codegen auto generated
server code. The backend service accepted files (ingress) and shared (egress) information associated
with them; the files were stored locally on the backend service container.

The frontend service connected to the backend service and vice versa through WS02. An access
token was used to communicate with an API or a logical collection of associated APIs within the
WS02 API Manger.

Figure 5-2 depicts the Pandamax application as tested.

22



7>
Fronten.d Microservice

POST — load a fils
GET — gei3tats o- 'le
PUT— update a file n DE
!DELETE — delete a fLe in DB
CELAY —sleep thread

Direct Testing

WS°2
API

Gateway

Backend Microservice

PDST —
GET— igetS:::e
PUT — incate
DELETE — idestroy
DELAY — optional parameter

Figure 5-2. Pandamax Application and Services

5.4. Cl/CD with GitLab and Jenkins

The Cl/CD pipeline for Pandamax was implemented via GitLab CI and Jenkins, depicted in Figure
5-3. All code associated to the project was managed on the internal Enterprise GitLab. The
Enterprise GitLab managed the CI via GitLab's Webhook event triggers. The GitLab CI built and
tested images triggered by a code push to the master branch of the projeces code repository on the
Enterprise GitLab. The CI pipeline created two different versions of the Docker images: ̀tese and
`production' during the Build stage. The Test stage ran unit tests against the 'test' images.
Meanwhile, the Deployment stage deployed 'production' images to the GitLab container registry.

The Jenkins application performed the CD as a Docker container residing in the projeces Docker
Swarm cluster. Jenkins pulled the projeces code from the GitLab repository contingently based on
confirmation from GitLab CI that the repository indeed changed. Jenkins then deployed a Docker
Stack to the projeces Docker Swarm cluster. For deployment to the ECS Docker EE offering,
Jenkins did not interact directly with the deployment; instead, it built and pushed all images to the
DTR needed for the Docker Stack. The ECS Docker EE offering used an intermediate process to
launch the Docker Stack and updated any pre-existing services after the images were pushed to the
DTR.

)

(EB=B3a\

Developer

pushes code

GitLab

Webhooks

CI Events

Build & Push Docker Images

to GitLab Container Registry

111111111.

Deploy

Docker

Stack

Docker Swarm

enkins

Deploy

Docker

Images

Docker Registry

Figure 5-3. Pandamax Cl/CD Pipeline

23



5.5. WSO2 API Manager

The WS02 API Manager was selected as the API Manager for the Pandamax proof-of-concept.
WS02 released its source code on GitHub and produced scripted methodologies to containerize
their API Manager into Docker images. Due to WS02's portable and modular design, integration
with the Pandamax project's Docker Stack required minimal effort.

5.5.1. API Catalog

The WS02 API Manager — API Store served as the API catalog. The API Store hosted published
APIs and allowed for API discoverability, subscription, and registration of applications. WS02's
API Store leverages the Swagger API definitions to provide detailed documentation on the API's
utilization. This can be leveraged by software engineers as a one-stop-shop to search and discover
APIs.

5.5.2. API Management

APIs were managed through the WS02 API Manager — API Publisher. The API Publisher enabled
the creation, development, publication, examination, documentation, and management of APIs. API
Publisher supports Swagger integration for API design and documentation.

5.5.3. Authentication and Authorization

To test the viability of the API Manager for the Enterprise, authentication and authorization were
deemed appropriate configuration requirements. Thus, the team ventured integrating the API
Manager with the Sandia Enterprise systems via LDAP/Kerberos, SAML, OAuth, and Openld.

24



6. END STATE

This section presents the results for each objective for Phase 1 of the Target Architecture at the
close of FY17:

6.1. Leveraging RESTful microservice design for new applications

This objective was completed through posting and communicating the Target Architecture, and
through feedback given in mandatory reviews in the Director's Architecture Working Group, a part
of the Solutions Deployment Lifecycle (SDL).

6.2. Documenting microservices with Swagger

Prototyping this technology was trivial, and the Pandamax application's use of Swagger verified the
utility and simplicity of Swagger. This objective was further completed through posting and
communicating the Target Architecture, and through feedback given in mandatory reviews in the
Director's Architecture Working Group, a part of the SDL.

6.3. Research, select, and deploy a Service Catalog

This objective was only partially met. Deployment and testing of the service catalog was successful;
however, due to time and human resource constraints, population of the API Store with existing
Enterprise microservices was incomplete.

6.4. Research and select an API Gateway

This objective was completed and WS02's API Management toolset was selected and prototyped.
At the time of this writing, software engineers are smoothing out the security model, but the core
functionality has been verified and tested using the Pandamax application.

6.5. Prototype a microservice architecture to be deployed in Docker Data
Center

This objective was completed. The project successfully tested the management of Docker images
through the ECS DTR and the deployment of Docker Stacks to the ECS Docker UCP. There were
configuration and methodologies learned from the experience which were beneficial to both the
Pandamax team as well as the ECS team.

6.6. Promote Continuous Integration/Continuous Testing (fail fast, recover
quickly)

This objective was completed through posting and communicating the Target Architecture, and
through feedback given in mandatory reviews in the Director's Architecture Working Group, a part
of the SDL. In addition, a prototype Cl/CD pipeline was created to deploy WS02's API
Management solution and the Pandamax application.

25



This page left blank

26



7. NEXT STEPS

As FY17 ended, some minor work was left unfinished, but this work falls neatly into the initial work
needed for Phase 2.

Several tasks are needed for the transition from Phase 1 to Phase 2:

• Complete integration of WS02's API Management solution with Sandia's Shibboleth single-
sign-on. There are a few minor outstanding issues documented in the Pandamax's GitLab
project repository.

• Complete integration of WS02's API Management solution with Sandia's OpenID Connect
authentication service. There are a few minor outstanding issues documented in the Pandamax's
GitLab project repository.

• Deploy WS02's "Pattern 3" API Management architecture to prototype high availability and
scalability of the API Manager.

• Perform load testing against WS02's "Pattern 3" API Management architecture.

• Populate the API service catalog with several microservices so they are visible in the deployed
WS02 API Manager — API Store; verify capabilities and usability for Sandia software engineers.

• Apply the lessons learned from implementing the WS02 API Gateway proof-of-concept and
revisit the API Management DAR, including the addition of PESTLE and SWOT analyses.

27



This page left blank

28



REFERENCES

[1] Wikipedia contributors, "DevOps," Wikipedia, The Free Engdopedia. Accessed September 5, 2017
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=797774921 

[2] Fowler, Martin. "Microservices." Martinfowler.com. Accessed September 05, 2017.
https://martinfowler.com/articles/microservices.html.

[3] 011iffe, Gary. "Guidance Framework for Evaluating API Management Solutions." Technology
Research. November 16, 2015. Accessed August 25, 2017.
https://www.gartner.com/doc/3168517/guidance-framework-evaluating-api-management.

[4] Fielding, Roy Thomas. "Architectural Styles and the Design of Network-based Software
Architectures." Doctoral dissertation, University of California, Irvine, 2000.

29



DISTRIBUTION

Email—lnternal

Name Org. Sandia Email Address

Technical Library 01977 sanddocssandia.gov 



This page left blank

31



Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International inc. for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.


