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Abstract

Nuclear weapons alteration (ALT) and life extension programs (LEP) are of primary in-
terest to the mission of Sandia National Laboratories. These programs continue to require
experimental exploration and computational simulation of ductile failure scenarios to ad-
dress qualification. Therefore, we invest in generating understanding about ductile failure as
demonstrated though experimental procedures and computational simulation of engineering
environments. In particular, we study an approach to ductile failure that incorporates the
notion of phase-field fracture into our models of inelasticity appropriate for structural al-
loys. This report covers the formulations of the constitutive model and fracture models used
within the phase-field approach and provides some numerical examples highlighting features
and the state of the capability.
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Chapter 1

Introduction

Nuclear weapons alteration (ALT) and life extension programs (LEP) are of primary
interest to the mission of Sandia National Laboratories. These programs continue to require
experimental exploration and computational simulation of ductile failure scenarios to address
qualification. Many weapons system mechanical analyses probe the margins of component
or system failure, drawing upon expertise and understanding in the ductile behavior of struc-
tural alloys up to and including failure. This expertise and understanding is demonstrated
through experimental exploration, as well as through the development and usage of modeling
and simulation. Accurate ductile failure modeling requires several capabilities to robustly
work together, including the finite element solver, ductile constitutive model and failure
model, regularization method, and potentially a surface creation method. The purpose of
this report is the exploration of a ductile failure theory based on the phase-field fracture
school of thought.

The phase-field model for fracture is distinguished by its clear derivation from an energy
functional wherein the surficial energy of Griffith fracture is replaced by a volumetric term
that represents a crack diffusively. The corresponding Euler-Lagrange equations define a
continuum damage model in which the damage field has a finite length scale. Consequently,
the phase-field model is solved by evolving damage to minimize the energy functional [6, 4].
As a continuum damage model, the phase-field approach can intrinsically represent arbitrary
crack nucleation, growth, branching, and coalescence without the need for front-tracking or
extension algorithms [12]. From this perspective, the phase-field approach presents as a scion
of the gradient-damage class of models [19, 11].

The advantages of the phase-field fracture model, in particular its simplicity of implemen-
tation, have drawn much attention in the scientific community, and the model has become
more widespread in application. The first generation of phase-field models was primarily
applied to brittle and quasi-brittle materials, in which the material response is elastic until
failure [5, 8]. From this application, two formulations have emerged as dominant: the clas-
sical model and threshold model. The classical model uses a quadratic damage potential
in the fracture energy definition and tends to damage more diffusively though the domain,
damaging minutely even from low stresses. In contrast, the threshold model uses a linear
damage potential and diffuses damage in a region more proximate to a crack, evolving dam-
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age only once a given stress- or energy-based threshold is reached [2].

Some researchers have sought means to link gradient-damage and phase-field models
to cohesive models through particular choices of the damage degradation function and the
volumetric fracture energy definition [13, 23, 22]. By adding a second length scale, these ap-
proaches alleviate the paradox of having the regularization length be interpreted as a physical
length scale by some and as a numerical parameter by others. More recently, researchers have
explored the application of a phase-field fracture model to ductile failure problems through

the consideration of plastic strain and plastic work as contributing factors to damage growth
2, 3, 16, 1].

In this study, our objective is to formulate and implement a phase-field model for ductile
failure into Sandia National Laboratories’ primary finite element code for solid mechanics,
Sierra/SM. In Chapter 2, the theoretical framework for a hyperelastic plasticity model and
phase-field model are provided. Implementational details are discussed in Chapter 3. Demon-
strations of the phase-field model and model verification efforts are presented in Chapter 4.
Lastly, Chapter 5 provides a summary of our work and an outlook for the future.
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Chapter 2

Theory

The primary effort of this study is the implementation of a phase-field fracture model
that is appropriate for application to ductile materials. The theoretical framework of this
model is described in this chapter, while the implementation is discussed in Chapter 3. First,
the governing equations and constitutive framework are presented, then the details of the
hyperelastic plasticity model FeFp and the phase-field fracture model. Together these are
implemented in Sierra/SM as PhaseFieldFeFp, a hyperelastic ductile plasticity model with
phase-field failure representation.

Kinematics

We consider a solid body that is deforming (and possibly fracturing) under the action of
external loads. We assume isothermal conditions. Let x(X,t) be the deformation map at
time ¢ from the material point X in the reference configuration By C R? to the spatial point
x in the current configuration B, C R®. We denote the deformation gradient by F' = Vx,
where here and in the following the operator V indicates differentiation with respect to X.

Plastic deformation is modeled through the framework of the multiplicative decomposi-
tion
F = F°F".
We refer to F° and F? as the elastic and plastic distortions. The plastic distortion F”
evolves according to the flow rule!

FPFr—t — 27 NP, (2.1)

wherein &° specifies the magnitude of plastic flow, and N? the flow direction. The tensor
NP is subject to the constraints

NP =0, NP:NP— g (2.2)

1'We use Newton’s overdot notation to signify the material time derivative, i.e., the time derivative taken
holding X fixed.
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which ensure that plastic flow is isochoric, as is commonly assumed for metal plasticity, and
that the scale of IN? is such that & can be interpreted as the uniazial equivalent plastic
strain rate. Plastic deformation is assumed irreversible, thus the unilateral constraint

>0 (2.3)
is imposed.
Fracture is modeled in a diffuse manner with a macroscopic scalar damage field
o(X, 1), L], (2.4)

where a value of zero signifies virgin material, and a value of one indicates that the material
point has lost all capacity to carry load. We refer to this field interchangeably as the phase
or the damage. Damage is regarded as an irreversible process, thus the phase field evolution
is subject to the constraint

¢ >0, (2.5)

In some of the considered models, the driving force for the phase field diminishes as ¢ — 1,
and the upper bound need not be imposed as a constraint. In models where this is not the
case, we additionally require

p=0 ifp=1 (2.6)

The local thermodynamic state at time ¢ of any material point X is taken to be fully
specified by the set of variables

U= {x(X,t),0(X,1),e"(X,t), F*(X,1)},
We use the notation ' ‘
V= {Xa ¢7ép7 Fp}
to refer to the set of generalized velocities, which constitute the set of primary unknowns

for the problem. Due to the flow rule (2.1), Fr may also be replaced with IN? as a primary
unknown.

The deformation and phase fields are subject to Dirichlet boundary conditions

X=X, on 0Dy,
¢ = (Z)v on a(bBO?

where 0, By C 0By, and 05 C 0By. For quasi-static problems, 0, By must be non-empty for
the problem to be well posed.

(2.7)

Governing equations

Our goal in this section is to write the balance laws of the system in weak form, which
can then be used as the basis for discretization with finite elements. Phase-field methods for
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fracture in brittle elastic solids are firmly established; we cite a few representative examples
[6, 4, 5, 8]. The theoretical framework for brittle fracture enjoys a variational structure,
and in particular derives from a minimization principle. This is a great advantage, both in
theory and practice, as it allows use of powerful tools from mathematical optimization. We
shall seek to preserve a variational structure for phase-field fracture with dissipative material
behavior.

The weak form of the problem is constructed though the principle of virtual power. The
expenditure of power in the body is assumed to depend on V through the fields

A= {FFpgp &, Vé} , (2.8)

which we collectively refer to as the set A for notational convenience. The power expenditure
assumption over any part P C By takes the mathematical form

iPim(V):/P(P:VX+EP:FP+Y5p+fd3+£-V¢5>dV, (2.9)

in which

F={P,f,&Y X},
denotes the set of generalized forces conjugate to A. Correspondingly, we assume that
external agencies can drive power expenditure according to the equation

fPext(\?):/ t-di+/b-xdv+ ChdA, (2.10)
oP B 0B

where t is a surface traction, b is a body force, and ( is a generalized surface traction
that consumes power through the phase-field rate. The generalized velocities &7 and F? are
considered internal variables, which cannot be directly driven by external causes, and thus
do not appear in the external power.

In order to apply the principle of virtual power, let us define admissible variations of the
generalized velocities. Imagine that the generalized velocities are perturbed at any given
fixed time ¢, in a manner consistent with the constraints (2.1), (2.2), (2.6) and such that
the perturbation is null where there are prescribed Dirichlet boundary conditions. We write
these spatial variations as

V- {i aé’ﬁ} (2.11)

The principle of virtual power states that the actual generalized velocity fields V adopted by
the system at time t are those such that

G(V,V) =0, for all admissible V; (2.12)

GV, V) = / (P(V): VX +S2(V): Fo+ Y (V)& + f(V)3+£(V) - V) dV — Pexs(7),
0 (2.13)
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where we have indicated the possible functional dependence of the generalized forces on the
velocities. (Note that the generalized forces also depend on U, but these are considered fixed
parameters at the given time ¢).

For the purpose of finite element discretization, the weak statement of the balance laws
in the form of Equation (2.12) is all that is required. However, for completeness, we record
the implied strong form:

V:-P+b=0
-V:&E+f=0 in By (2.14)
(ZPFPTY NP +Y =0
Pn=t ond,B

. (2.15)

E&-n=C( ononB
Equation (2.14)a is recognized as the classical force balance for static equilibrium. Equa-
tion (2.14)b is an additional balance law imposed on the phase field; as we shall see, for
typical choices of the constitutive relations, this balance law takes the form of an Allen-
Cahn equation in which the damage field plays the role of the unconserved order parameter.
The balance law (2.14)c represents the yield function. Note that (2.14)c contains no spatial
derivatives and therefore is local in nature.

Equations (2.15) represent the natural boundary conditions. The boundary subsets ap-
pearing therein are subject to the standard restrictions

atBO U 6XBO = 830, 8,530 N aXB() = @
6<BO U 8¢BO = 0B, 8¢Bo N a¢Bo = ()

If one can find a density function w(Vx, ¢, V¢, &, F?) such that each of the generalized
forces is equal to the partial derivative of w with respect to the conjugate generalized velocity;,
then the principle of virtual power (2.12) is the stationary point of the functional

V) = /B (VX 6, Vb, &, FP) AV — P (V). (2.16)

which furnishes the sought variational structure. Such a density function can be found by
application of the method of variational constitutive updates [18].

Constitutive framework

To close the system, constitutive equations must be specified for each of the generalized
forces in J and the flow direction IN?. To proceed, we first deduce the restrictions the laws
of thermodynamics and frame invariance place on the form of the constitutive equations.
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Let ¢ be the free energy density (per unit volume in the reference configuration). Under
isothermal conditions, the first and second laws of thermodynamics reduce to the free energy
imbalance

Pext (V) — /PQ/}dV > 0.

From the first law of thermodynamics, we have
fPext(’\?) = Tint(v)y (217)
SO we may write
Pint (V) — / $dV > 0.
P

Since this inequality must hold for any arbitrary part P, this result may be localized to yield
the dissipation inequality

D=P:Vx+XP: FP+ Y&+ fop+£-Vd—1) >0. (2.18)

Concomitant with our assumptions of power expenditure (cf. (2.8)), we assume that the
local thermodynamic state depends on the degrees of freedom U through the set
A = {F7 Fp? gp’ ¢7 V¢} * (2'19)
We consequently assume constitutive relations of the form
= (A . P=P(\);
= 90: P =P o
E=EA); XF =3XFA)

As we wish to consider rate-dependence of plastic deformation and fracture in the theory,
we assume that the generalized forces Y and f may be separated additively into equilibrium
and non-equilibrium parts via

Y =Y*(A) + Y™(EP; A) = fo(A) + f(g; A). (2.21)

The equilibrium forces depend only on the current thermodynamic state, while the non-
equilibrium forces depend on the conjugate rate variables. The constitutive relations for the
non-equilibrium forces must vanish as their respective rates tend to zero.

The time derivative of the free energy function may be expanded to

L) o 000, 00 L, OO | 3(A)
= - F . F? P .
V= T om T e St e 0 v
Inserting this identity into the dissipation inequality (2.18) and applying the Coleman-Noll

procedure leads to the conclusions

Vo. (2.22)

) - 81&(1\) y B aw(A) ~ - (91&(/\)
P == W =3 V=355 (2.23)
fea(n) = &g—(ﬁ)’ nd P = 7
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With these identities, the dissipation inequality reduces to
D = YI(EP; A)EP + f7°4(d; A)g > 0. (2.24)

As we wish to maintain a variational structure for the theory, we assume the existence
of differentiable dual kinetic potentials I1*(¢7; A) and A*(¢; A), which determine the non-
equilibrium forces through

O 4) preng ) = 22008

Y"eU(eP A) =
(8 Y ) 851) ’ a¢

(2.25)

The material is assumed to be strictly dissipative in the sense of Gurtin et al. [7], namely,

(2.26)

Yreagr > 0, if & £ 0;
freag >0, if ¢ #£0.

Satisfaction of the dissipation inequality is then ensured if the each of the dual kinetic
potentials obey the following conditions:

(C1) the dual kinetic potential is convex in its rate variable (for every A);

(C2) the dual kinetic potential achieves its minimum (for every A) when the rate variable is
zero.

This may be demonstrated as follows. Convexity of II* means that

OIT* (%)

(&) > (&) + (& — &)

b

for all nonnegative &2 and &°. Let us take &2 = 0. Then by (C2), II* reaches the minimum
value at &7, which we denote by II* . . and we have

min?

oI+ (&)
RS

el > 1I*(eP) — 1T,
or

YRedgP > ().
An identical proof holds for the dual kinetic potential A*((]B; A

In the constitutive relation development we shall confine ourselves to dual kinetic poten-
tials with properties (C1) and (C2), so that compliance with the dissipation inequality is
guaranteed.

18



Specification of the constitutive relations

The free energy is partitioned into a mechanical part, which represents the stored energy
of elastic and plastic work, and a fracture part, which represents the energy of creating new
surface. The partition has the additive form

1[} = ﬁmech(Fv va épa ¢> + lﬁfrac<¢7 VQS)

The dependence of the mechanical part on the phase field is included to allow the stress
to relax as the damage increases. In particular, the mechanical free energy must vanish as
¢ — 1.

In the following two sections, we respectively specify the constitutive functions for the
mechanical behavior and for the damage process.

Mechanical constitutive equations

It is convenient to first propose constitutive laws for the virgin material, as they take
standard forms, and subsequently to augment them to account for the damage process. Let
1) be the free energy of the virgin material.> This energy is split into elastic and plastic parts
as o .

= We(F°) + WP(eP), (2.27)

where it is recalled that the elastic distortion is a derived quantity of the primitive variables

F and F? through F° = FF?'. Frame invariance requires that the elastic free energy
depends on F* only though C¢ = FeTFe = Fp~TCFr~1,

For W¢ we choose the isotropic Hencky strain energy function

A
W = pe®: e+ 5 tr(e), (2.28)

where 1
e = 5 log(F* F*)

is the elastic Hencky strain (i.e., logarithmic strain), and g > 0 and A > 0 are the elastic
Lamé parameters. For the virgin plastic energy we choose Voce hardening, which is defined
by the potential

~ A
WP = (A+ o0,) & + — exp(—néP), (2.29)
n
in which o, > 0 is the yield strength, A > 0 is the maximum increase in flow stress, and

n > 0 is a dimensionless parameter that controls the rate of hardening with accumulated
plastic strain.

2We shall follow the convention of placing a tilde over quantities associated with the virgin material.
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The virgin material is taken to have power law rate sensitivity, defined by the dual kinetic

potential
m+1

i mo éo &0 m

with m > 0 the rate sensitivity and £y > 0 a reference strain rate.

Next, we address the effect of damage on the mechanical constitutive behavior. Concep-
tually, damage is defined as a reduction of the capacity of the material to store energy. This
process is represented by pre-multiplying the virgin material response with a degradation
function, g(¢): [0,1] — [0,1] so that®

Dneen (F, F7,27,6) = g(0)8 = 9(9) [We(F, F7) + Wr(er)] (2:31)

In choosing this multiplicative form, we have retained the traditional form of continuum
damage models, and in particular phase-field models of fracture [12, 1]. To be consistent
with the notion of damage, the degradation function should be monotonically decreasing
with the limits

9(0) =1, g9(1) =0 (2.32)

Thus, as the damage progresses from zero to one, the capacity of the material to store energy
reduces and vanishes.

Just as the material loses elastic energy storage capacity with damage, it is reasonable to
expect plastic dissipation to cease in damaged material points. We modify the virgin dual
kinetic potential for plastic rate sensitivity in a similar fashion to obtain

(&7, ¢) = g(¢)II* (&%) (2.33)

where II*(27) is given in equation (2.33). It bears noting that the rate potential meets the
conditions (C1) and (C2) specified above to ensure thermodynamic consistency.

From these constitutive relations we can derive the expressions for the generalized forces.
Let T° denote the stress conjugate to the elastic Hencky strain. For isotropic materials, it
can be shown that T is equivalent to the stress measure [15, 9]

M = F"PF?T (2.34)

which is sometimes referred to as the Mandel stress, a nomenclature we adopt. Evidently,
the Mandel stress and the elastic Hencky strain are related through

M = g(¢) [2pue® + A tr(e)1]. (2.35)
From equations (2.23) and (2.29) the equilibrium flow stress is given by

g(¢){ay + A(l — exp(nép))}

3The most common choice in the literature is g(¢) = (1 — ¢)?. We examine this choice in the present

report and identify several others we wish to investigate further in the future; see Table 2.1.

Ye(e)
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The constitutive equation for the rate sensitive, non-equilibrium part of the flow stress is

- (2)]

Next we address the constitutive equation for IN?. The flow direction is determined by
appealing to the postulate of maximum dissipation. First, note that the constitutive function

~

Y(F,F? &, ¢) depends on F and FP only through F¢ = FF?~'. Using this we can derive
the identities

P = % = _FeTg_;/; =_FTp (2.37)

The dissipation due to plastic flow is given by Y™®4£?. Using the balance law (2.14)c, one
finds

yred = —(PFPTY . NP - Y
= (FTPFPT): NP — Y™

and therefore the plastic dissipation due to plastic low may be written
[M : NP —Y*9) P

where we have used the definition of the Mandel stress (2.34). Since £¥ > 0, dissipation is
clearly maximized if N? has the same direction as M. Using this fact and enforcing the
constraints (2.2) gives

3 dev (M)

2 ||dev (M)
where the operator dev(-) takes the deviatoric part of its argument. Equation (2.38) is the
sought constitutive relation for the flow direction tensor.

NP = (2.38)

With these constitutive relation choices in place, the balance law (2.14)c—i.e., the yield
equation—can be written in the familiar form

c—-Y =0
where we have defined the effective stress
=M :N?
= V(3/2)|[dev M,

which is the finite deformation counterpart of the Mises equivalent stress from classical
small-strain J, plasticity theory.
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Fracture constitutive equations

The fracture energy is taken to have the form

Urac(6,99) = 2= (h(6) + 21 V9P) (2.39)
Ch
The function h(¢) : [0,1] — R, which we refer to as the damage potential, controls the local
part of the energy spent in the fracture process. The gradient term in (2.39) is responsible for
regularization, preventing spurious localization of the damage into vanishingly small bands
as the mesh is refined. The parameter ¢ > 0 (dimensions of length) controls the length scale
over which crack is smeared, while the parameter G. > 0 (dimensions of energy per unit
area) represents the critical energy release rate of the material. The pre-factor ¢, is given by

o= [ Vi@,

and is introduced to ensure that the fracture energy per unit area predicted by the model
comes out as G; it is not an adjustable parameter.

Rate sensitivity is introduced into the damage evolution as a numerical technique for
regularizing problems with unstable crack growth. For this purpose, simple linear kinetics
suffices. Hence we use the dual kinetic potential

A*(¢) = gde, (2.40)

where 1 > 0 is a rate constant with dimensions of energy x time x length ™.

The generalized forces conjugate to the phase field follow from the Coleman-Noll relations
(2.23) and the constitutive equations (2.39) and (2.40) as

f = g'(o) (We+ W) + H(g) (2:41)
£ =né (2.42)
From Equations (2.23) and (2.39) the constitutive equation for the force conjugate to V¢ is
Gl
= Vo. 2.43
£= v (2.43

Substituting the chosen constitutive equations into the balance law (2.14)b yields

Gl_, 0
=4 Y5

Gl
4Ch

no

(VB F20.0) + S2000)) (2.44)

which is an Allen-Cahn equation for ¢. However, unlike typical applications of the Allen-
Cahn equation which use a double-well potential, the local free energy density in the present
case (the term in parentheses) has only a single minimum.
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Particular phase field models are specified by choices of the dimensionless functions g(¢)
and h(¢). Several options have appeared in the literature; we have implemented the first two
in Table 2.1. Both models are compared later in this report. Note that the Tupek and Lorentz
models introduce additional adjustable parameters (1 in both models, and additionally p
in the Lorentz model). These additional parameters grant them a richer representation of
fracture physics that include not just a fracture energy, but also a critical strength. This
grants them an interpretation as regularizations of cohesive models of fracture. These models
are not investigated further in this report, but will be examined in future work.

Table 2.1: Some phase-field models and their degradation functions and damage potentials.

Model — g(¢) h(¢) cn

Classical (1 — ¢)? o 1/2

Threshold (1 — ¢)? o) 2/3

(1-¢)?

L t 2/3

orentz o %ic/f(l s /
1-¢

Tupek 2/3

e
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Chapter 3

Implementation

Overview

The ductile failure models using a phase-field approach described in Chapter 2 are imple-
mented into Sierra/SM as a material model within Sierra’s Library of Advanced Materials
for Engineering (LAME ) [20]: PhaseFieldFeFp. This class contains the initialization and
stress calculation methods that Sierra/SM calls to determine the material state at every
integration point. Several aspects of the implementation are discussed in this section.

Instead of the damage field ¢, the implementation is phrased in terms of its complement
c = 1—¢. We refer to this field as the coherence. Both conventions are used in the literature;
as this represents a simple substitution, the equations that define the phase-field model are
only slightly changed when posed in terms of coherence.

Phase field update

In the Sierra/SM phase-field implementation, the implicit phase-field solves are per-
formed using a reaction-diffusion solver that predated this effort. The solver is evaluated at
nodes within element blocks specified in the input files, and solves scalar reaction-diffusion
partial differential equations of the form:

Rec— DV?c= S8 (3.1)

where R indicates the reaction coefficient, D indicates the diffusion coefficient, and S
indicates the source term. The coefficients derive from the substitution of specific degrada-
tion functions and damage potentials (presented in Table 2.1) into Equation (2.44) and are
presented in Table 3.1, where ¢ < 1 represents a small conditioning coefficient and where we
have defined the quantity ¥ = 3G./(16£) for convenience. In Sierra/SM , these coefficients
R, D, S are further scaled by inverse cube of the length scale 1/¢% to maintain a predictable
system conditioning.
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Table 3.1: Coefficients of reaction-diffusion solver for implicit phase-field update.

Model R D S

Classical (W“‘Gil(l_e) + 1) 42 1

Threshold (Wﬂw;;——%ﬁm_e)ﬂ) 42 1

crit

As noted in Chapter 1, there are constraints on the coherence field that should be con-
sidered in the implementation. The constraint ¢ > 0 is naturally satisfied by the models
considered in this report, in the sense that the fracture driving force defined in the models
vanishes in the limit ¢ — 0. This is demonstrated in Chapter 4 in the context of a homo-
geneous deformation, where it is seen that the coherence approaches zero asymptotically.
Thus, this constraint need not be externally imposed, at least in quasi-statics or implicit dy-
namics simulations. The constraint 1 > ¢ is automatically satisfied by the Classical model,
but the not by the Threshold model (as the name implies, damage begins upon attainment
of a critical condition). This constraint is handled in an approximate manner introduced by
Miehe et al. [17], wherein Macaulay brackets are introduced in the reaction term to ensure
that damage grows only after the energetic threshold ). is reached.

When using explicit dynamics, the satisfaction of the phase bound constraints can no
longer be guaranteed through the form of the driving forces, and additional precautions
must be taken.! In the implementation, the phase field is bounded as 0 < ¢ < 1 within the
explicit integration operator such that phase values that exceed the bounds after the time
step update are immediately reset to the corresponding bound before proceeding to the next
time step.

The final type of constraint, damage irreversibility, is not explicitly accounted for in
this Sierra/SM implementation of the phase-field models. Thus, in the current state, this
capability should only be used for monotonic loading. We will address this in future work.

Time integration

Several temporal integration schemes have been implemented in the Sierra/SM phase-
field capability:

e Implicit mechanical solution, implicit phase-field solution (“implicit/implicit”)

IThis is a typical feature of applying explicit time integration in the presence of unilateral constraints,
as the driving forces are defined from the previous time step, and there is no global iteration to ensure that
the external and internal driving forces at the updated time step are in balance. This behavior is also seen,
for example, with contact.
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e Explicit mechanical solution, implicit phase-field solution (“explicit/implicit”)

e Explicit mechanical solution, explicit phase-field solution (“explicit/explicit”)

The initial implementation employs the Sierra/SM reaction-diffusion equation solver to
perform the phase-field update, making the phase-field solution implicit. This pairs espe-
cially well with the implicit time integration of the mechanical solution that allows analysts
to take large timesteps to complete the simulation efficiently. In each timestep, the mechan-
ical update is performed, followed by the phase-field update — a staggered solution scheme
for the coupled system (see Figure 3.1). This integration has been performed with the phase
rate constant 7 set to zero. It is conceptually convenient to think of n as a phase viscosity.

Figure 3.1: Diagram showing the staggered solution scheme that performs the mechanical
(M) then phase-field (PF) solves in sequence within each timestep.

However, many Sierra/SM users prefer to use explicit time integration, a choice driven
by the model size as well as higher reliability and support for explicit analysis in Sierra/SM ,
especially for large models with contact. This motivates the inclusion of explicit time in-
tegration as a solution option. The explicit/implicit option represents the usage of explicit
time integration for the mechanics combined with the reaction-diffusion solve for the phase
field every timestep. This approach works, but is quite expensive; the explicit mechanical
solution requires a great many timesteps that are each relatively inexpensive to compute;
in contrast, the reaction-diffusion solve requires the solution of a matrix system, which is
relatively costly. This combines to an approach with very many timesteps that are each
relatively time-consuming. In an effort to reduce this expense, the reaction-diffusion solver
does have an user-input option to reduce the frequency of the phase-field solve.

Another option to reduce computation time when using explicit time integration is to use
an explicit phase-field solution as well. Our implementation follows the approach of Tupek
[22] which employs a non-zero phase rate constant 1 > 0 to regularize the the problem. This
term allows the phase balance law (2.44) to be solved explicitly:

n (¢n+1 - ¢n)

0
Atn = Cv2¢n - 8_ (wmech(Fna Fpm 5—27 ¢n) + h(¢n))7 (32)

¢
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Aty

¢n+1 = ¢n +

0
(Cv2¢n - 8_¢('¢}mech(Fn; Fpn7 gfm ¢n) + h(¢n))) : (33)

This enables the explicit/explicit approach to proceed using the critical timestep from
the mechanical solve and without requiring a matrix phase-field solve at each timestep. This
approach is implemented and available as part of the PhaseFieldFeFp model in Sierra/SM.
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Chapter 4

Numerical Examples

Local behavior in homogeneous deformations

Some light can be shed onto the phase-field models in Table 2.1 by examining their
behavior in the simple case of uniaxial tension. Being a homogeneous deformation, the
gradients of all fields vanish, and consequently the balance law for the phase (2.14)b reduces
to

f=0.
To attain additional simplicity, we suppress the rate sensitivity of the phase kinetics, so that
the balance law simplifies even further to

Fo4=g'(d)ih + H(¢) = 0.

This is a local equation that may be solved explicitly for ¢ as a function of the applied stretch
and internal variables.

Taking each phase-field model in turn, we substitute the constitutive equation for Jmech
and the appropriate constitutive equations for g(¢), h(¢). In the case of the classical phase-
field model, we arrive at

(classical) == L4 o (4.1)
Y+ 3
Effecting the same for the threshold model gives
(threshold) p=1-— wgt’ (4.2)

where we again refer to the quantity ., = 3G./(16£) for convenience. In order to respect
the phase bounds (2.4), Eq. (4.2) is only valid for QZ > ey, demonstrating the physical sig-
nificance of 1 as an energetic threshold for damage growth. This inequality is reflected in
the implementation by the use of Macaulay brackets in the reaction term (refer to Table 3.1).
Note that in both models, the parameters G, and ¢ only appear together in the ratio G.//¢
for homogeneous deformations, which we consider here as a single material parameter.

Under the present focus of isotropic material behavior, the deformation gradient at each
step is necessarily diagonal. Assuming that the imposed uniaxial deformation is in the X;
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direction, the deformation gradient has the form F = diag(\, Ajag, Alat), where Ap, is the
lateral Poisson stretch required to maintain the stress-free conditions in the X, and X3
directions. The uniaxial loading condition can be imposed simply by a simulation with a
single hexahedral element.

The direct normal component of the Mandel stress in the direction of loading is given
by My, = (1 — ¢)?Ee®, while all other components vanish. Any other desired stress tensor
for output can be obtained by the appropriate transformation. We will use the Kirchhoff
stress for output as it is equal to the Mandel stress in uniaxial loading and is conjugate to
the logarithmic strain.! In uniaxial tension, the logarithmic strain, the elastic logarithmic
strain, and the Kirchhoff stress are related in exactly the same way as the strain, plastic
strain, and Cauchy stress in the classical small-strain J, flow theory.

First, let us consider the case of phase-field models applied to a virgin material model
that is purely elastic. The material modulus is taken to be £ = 200 MPa. The elastic
logarithmic strain appearing in the stress-strain relation reduces to the total logarithmic
strain € = log A\, and the axial Kirchhoff stress is given by

7= (1— ¢)°Ee. (4.3)

For the classical model, we choose three values of G./¢ and plot the response in Figure
4.2. The virgin material stress-strain relationship is shown in a broken line for comparison.
Increasing G./{ raises the peak stress attained; thus, as expected from fracture mechan-
ics, increasing the toughness or reducing the fracture process zone size increases the local
strength. The peak stress 7. can be expressed analytically by finding the critical point of
(4.3); the result of this calculation is

G _ 2567

l 27T E°

The values of G./¢ used to make Figure 4.2 are such that peak stress is 400 MPa, 500 MPa,
and 600 MPa. From Figure 4.1b, it is seen that the phase field begins to grow immediately.
This is an essential feature of the classical model. By substituting in the expression in (4.1)
for the phase into the stress-strain relation (4.3), it is seen that the stress goes as 7*
large strains. This results in a rather gradual decay, as is evident in Figure (4.1a).

at

Next, we turn our attention to the threshold model. As the name implies, damage does
not initiate immediately, but rather requires the attainment of a critical condition. Recall
that the phase field is subject to the constraint ¢ > 0. Thus Eq. (4.2) determines the phase
field only when J(F, EP) > t)eit; otherwise, the constraint is active and the damage is held
fixed at zero. The response of the threshold model is illustrated in Figure 4.2. For ease of
comparison, we have chosen values of G./¢ such that peak stresses are approximately equal

In general, the Kirchhoff stress is conjugate to the spatial logarithmic strain; in the special case of null
rotation (as in uniaxial tension), the referential and spatial logarithmic strains coincide and it is not necessary
to distinguish between them.
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Figure 4.1: Behavior of classical phase-field model in uniaxial tension with an elastic consti-
tutive model. (a) Stress-strain response. (b) Evolution of phase (i.e., damage) with strain.

to the classical model example (400 MPa, 500 MPa, and 600 MPa). The peak stress is
attained at the point of damage initiation. For uniaxial tension, this point is
2 3

Tc . 2
ﬁ - @Dcm 1600/6

Substituting in (4.2) for the phase in the stress-strain relation (4.3) reveals that the stress
goes as € 2 once the threshold is met. Thus the damage decays significantly faster than the
classical model, which is evident when comparing Figures 4.1a and 4.2a (note the scales of

the strain axes are not equal).
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Figure 4.2: Behavior of threshold phase-field model in uniaxial tension with an elastic
constitutive model. (a) Stress-strain response. (b) Evolution of phase (i.e., damage) with
strain. The thresholding of the phase evolution inherent to this model is apparent.
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We examine elastic-plastic virgin material behavior next. In order to simplify the com-
parison to its essence, we suppress plastic rate sensitivity (in addition to the suppression of
phase field kinetics as above). The parameters of the Voce hardening model are set to ap-
proach simple linear hardening. The specific values of the elastic-plastic material properties
given in Table 4.1.

Table 4.1: Material model parameters for uniaxial material point simulation.

FE Ty A n
200 GPa 400 MPa 40 GPa 0.01

For the classical model, we select the values G./¢ = {1 x 10°,2.5 x 10*,10 x 10°} x 0 / E.
The response is plotted in Figure 4.3. It is evident that damage significantly affects the stress-
strain behavior at even small strains close to yield strain. This is contrary to expectations
for metal plasticity, where experience shows that plastic deformation due to dislocation glide
is well described by plasticity model alone. Any damage process should intervene rather
suddenly near final failure point. Very large values of G./{ are needed to even approach the
virgin, undamaged response at modest strains. For a given G, this requires small values
of ¢ to get reasonable behavior, which in turns requires finer spatial discretization. The
slow unloading of the classical model (also observed in the elastic case) is also problematic.
In opposition to the demand for large G./¢ to obtain reasonable material behavior, the
slow decay of the stress with strain is exacerbated by increasing G./¢. These contrary
requirements are difficult to balance. For example, although the largest chosen value of G, /¢
is only able to provide reasonable elastic-plastic behavior at strains of at most a few percent,
the stress remains significant at a log strain of 3 (which corresponds to a stretch of 20!). One
can conjecture that in non-homogeneous deformations, appreciable damage is likely to occur
even in regions remote from crack tips unless very small length scales are used.

The threshold model is examined next with elastic-plastic behavior. The values of G./¢
are chosen such that damage initiates at approximately ¢ = {0.1,0.2,0.3}.? This computa-
tion is made by assuming that the elastic energy is negligible in comparison to the plastic
work, and thus G./¢ can be estimated as e ~ 0,7 + 0.5Hy&P?. The undamaged elastic-
plastic behavior is preserved until the threshold is crossed. As a consequence, the plasticity
parameters can be characterized in an conventional manner from tension tests, uncoupled
from the damage evolution. The stress decay in the damage phase still goes as €73 as in
the elastic case, and unloading occurs much more rapidly than in the classical model. For
these reasons, the threshold model is recommended over the classical model for elastic-plastic
problems.

Due to the thresholding behavior, damage can be isolated to the desired crack regions
in non-homogeneous deformations by setting ¢ small enough. In some problems, this can be
accomplished with reasonable values of /; we will demonstrate an example in a later section.
However, by analogy with cohesive zone modeling of ductile fracture, we anticipate that

*For comparison with the classical model, this corresponds to G./¢ ~ {280,590,920} x o, /E.
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response. Note very large strains are required for stress to decay (b) Same stress-strain
response, view restricted to smaller strain. (c¢) Evolution of phase (i.e., damage) with strain.
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Figure 4.4: Behavior of threshold phase-field model in uniaxial tension with an elastic-plastic
constitutive model. (a) Stress-strain response. (b) Evolution of phase (i.e., damage) with
strain.

independent characterization of the peak strength, the fracture energy, and the unloading
curve shape may prove useful in some large-scale yielding problems. Such concerns motivate
the use of cohesive zone-type phase field models [13, 14], which we endeavor to examine in
future work.

Demonstration problem: compact tension specimen

In order to more rigorously test this phase-field models implemented, we developed a se-
ries of tests based on the ASTM compact tension specimen [10] made of 6061-T6 aluminum.
These tests evaluate the model performance over all three time integration techniques dis-
cussed in Chapter 3: implicit mechanics/implicit phase-field, explicit mechanics/implicit
phase-field, and explicit mechanics/explicit phase-field with viscous regularization.

The specimen geometry was developed according to ASTM standard E1820-17a at the
smallest allowable thickness b/w = 4 for computational efficiency. Also to reduce simulation
time, symmetry is employed to reduce the simulation domain to one-quarter the original,
cutting the domain horizontally through the notch and through the thickness as shown in
Figure 4.5. One version of the mesh was developed with a sharp crack tip, and another
was developed with a rounded crack tip. These meshes are presented in Figure 4.6 and 4.7,
respectively. The geometric parameters are provided in Table 4.2.

To avoid having to consider contact, the loading pins are modeled as half-circles meshed
in the pin-holes and fully connected to the compact tension specimen. Free rotation around
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Table 4.2: Compact tension specimen geometric parameters.

Parameter Variable USCS Value Unit SI Value Unit
specimen width w 4.0 in 101.6 mm
specimen thickness b 1.0 in 25.4 mm
pin radius P 0.5 in 12.7 mm
initial crack-length/width ratio  ag/w [0.2,0.5] - [0.2,0.5] -

(a) Full mesh (b) Symmetry model

Figure 4.5: Mesh of compact tension specimen.

) 20 elem. /in. (b) 40 elem. /in. ) 80 elem. /in. ) 160 elem. /in.

Figure 4.6: Compact tension specimen symmetry model with sharp crack tip.

) 20 elem. /in. (b) 40 elem. /in. ) 80 elem. /in. ) 160 elem. /in.

Figure 4.7: Compact tension specimen symmetry model with rounded crack tip.
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the pin is approximated by applying vertical displacements only along a nodeset at the pin
centroid. This permits the pin material to rotate around the nodeset. These boundary condi-
tions are not perfect, but decently approximate the loading conditions in a computationally
inexpensive way. The pin material is set to be artificially strong (yield stress o, = 10°° Pa)
such that it does not develop damage. In dynamics, the density is scaled by 10° to ensure
that the pin does not control the critical timestep, though this may have implications for
the dynamic response of the specimen — the validity of this choice will be further explored
in the future. Unless otherwise mentioned, the specimen material being modeled in these
test simulations is aluminum 6061-T6. The material parameters were fit from a calibration
to the plasticity model described in Chapter 2, implemented in Sierra/SM as the LAME
material model FeFp. The aluminum was fit to a Voce hardening model with the flow stress
o defined as [20]:

(&) = o, + A (1 — exp(—néP)). (4.4)
The material and model parameters for this are presented in Table 4.3.

Table 4.3: Compact tension specimen material and model parameters.
Parameter Variable USCS Value Unit SI Value Unit
density p 0.0975 1bf/in3 2700 kg/m?
Young’s modulus E 10000  ksi 69 GPa
Poisson’s ratio v 0.33 - 0.33 -
fracture toughness Ko 26.4  ksi-in'/? 29 MPa-m?/?
toughness G. 69.6 1bf/in 12188 J/m?
yield strength 2y 40.35 ksi 278.2 MPa
Voce hardening modulus A 8.868  ksi 61.14 MPa
Voce hardening exponent n 26.34 - 26.34 -
length scale l 0.0667 in 1.693 mm
conditioning coefficient € 1074 - 107% -

Implicit Integration

The first capability demonstrated with the compact tension specimen is crack nucleation
and propagation across the entire specimen in an artificially ductile material. The coherence
¢ and plastic strain &? fields are presented Figures 4.8 & 4.9. A threshold of ¢ > 0.5 is used in
these visualizations to give the appearance of an opening crack. This is necessary as the phase
field fully damages the material (¢ = 1, ¢ = 0) very rarely, but yet a fracture localization
certainly exists. Albeit subjective, a visual threshold provides the discontinuity expected
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from a fracture model. From Figure 4.9, it is evident that the plasticity has localized to a
narrower band than the fracture length scale.

Figure 4.8: Symmetry model of a compact tension specimen using the classical phase-field
model using a rounded-tip mesh showing deformed results with a visual threshold at ¢ > 0.5

(6 < 0.5).

(a) ¢ (b) ¢ (close-up) (c) e? (d) &” (close-up)

Figure 4.9: Symmetry model of a compact tension specimen using the classical phase-field
model using a rounded-tip mesh showing undeformed results with and without a visual
threshold at ¢ > 0.5 (¢ < 0.5).

Mesh convergence

Using the same artificial material, the mesh is refined from 20 elements per inch to 40 and
80 elements per inch. This is presented in Figure 4.10 and demonstrates clear convergence
of the force/displacement history. The fracture energy (2.39) converges but at a slow rate
as the crack propagates.

Toughness test / temporal convergence

Next, in an effort to verify whether the crack is nucleating at the expected force, the
classical and threshold models are each evaluated using the 6061-T6 aluminum material
properties. In this exercise, the peak applied force is interpreted as corresponding to the crack
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Figure 4.10: Mesh convergence study of compact tension specimen with ag/w = 0.3 using
rounded-tip meshes and a fixed timestep with the classical phase-field model.

driving force just overcoming the resistance to extend the crack further into the material.
This peak force is compared to the expected force as can be estimated from the ASTM
E1820-17a’s stress intensity factor relation for the compact tension specimen: Equations
(A2.2) & (A2.4) [10]. This stress intensity factor estimate is reproduced here:

P
K = mf(a/w)a (4.5)
_ 2 3 _ 4
(@) = (24 x) (0.886 + 4.64921 _1:?;)?;3237 +14.722° — 5.6x ) (4.6)

A similar estimate can be found in the Stress Analysis of Cracks Handbook [21]. This
relation can be inverted to yield the critical force at which crack propagation occurs:

b _ Kby

Flaoju) (4.7)

Substituting the geometric and material parameters from Tables 4.2 & 4.3 yields P., =
24.4 kN. The classical and threshold models were evaluated at a variety of timesteps for
this toughness test, with the base timestep set as At = 1.0 ms and refined thrice by half.
These results are presented in Figures 4.11 & 4.12, respectively. Both models tend toward a
critical force for crack propagation very near to the analytical prediction (4.7).

The results appear to be temporally convergent, but nonetheless reveal a strong sensitivity
to the timestep. As this problem employs implicit time integration, the base timestep of
At = 1.0 ms was prescribed, rather than deriving from a physical characteristic. This
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sensitivity means that an analyst would be prudent to consider the role of the selected
timestep when using implicit integration. The source of this sensitivity was further explored
by considering a “local” phase-field model (i.e. disabling the gradient term, C' = 0). We
conclude that this sensitivity stems from the usage of the staggered integration scheme of the
coupled system, as discussed in Chapter 3, and believe that if the mechanical and phase-field
solves were to iterate within the timestep, that this sensitivity would be greatly reduced.
This follows the “alternate minimization” technique described by Bourdin et al. [4] and now
common to the phase-field community. Another possibility is to solve the coupled system
simultaneously, though this does not seem to be widely performed.

Force vs. Displacement Fracture Energy vs. Displacement
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Figure 4.11: Temporal convergence study of compact tension specimen with ag/w = 0.5
using the 40 elem./in. sharp-tip mesh with the classical phase-field model. The analytical
prediction of critical force for crack propagation is plotted as a dashed black line.

Mixed Integration

The next case tested is mixed time integration, that is explicit time integration for the
mechanical system and implicit time integration for the phase evolution system. For this
case, the timestep is governed by the critical timestep of the conventional mechanical system.
Each timestep, the mechanical system is integrated explicitly. At a frequency selected by
the user, the phase-field updates via implicit reaction-diffusion solve after the mechanics. As
discussed in Chapter 3, this might result in a fantastically slow simulation, as the implicit
solve is quite expensive and might be called very often. A potential method of time savings,
therefore, is to update the phase-field less often than the mechanical system. This case com-
pared the results between updating the phase field every timestep against updating it every
two, four, eight, 10, 100, or 1000 timesteps.

This was evaluated on the aluminum compact tension specimen described above, using an
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Figure 4.12: Temporal convergence study of compact tension specimen with ag/w = 0.5
using the 40 elem./in. sharp-tip mesh with the threshold phase-field model. The analytical
prediction of critical force for crack propagation is plotted as a dashed black line.

additional mass scaling factor of 10 on the aluminum’s density. These results are presented
in Figure 4.13. The timing study presented in Figure 4.13c demonstrates the time savings
realized in this problem by altering the phase-field solve frequency. For this problem, the
approaches only visiblly diverge between the 10 and 100 frequencies, indicating that great
time savings may be realized at negligible accuracy loss. It is worth noting that the explicit
timestep for this problem is approximately 55 ns, so increasing the phase-field solve frequency
to every 550 ns or 5.5 us is still far below the implicit timesteps explored in the previous
section.

Explicit Integration

The final case evaluated is explicit time integration for both the mechanical and phase-
field updates. The explicit phase-field update (3.3) takes advantage of the phase viscosity
term (2.40) by using a non-zero phase viscosity parameter n. The stability of the temporal
integration depends on the phase viscosity parameter chosen and can be determined by
identifying the highest derivative terms of Equation (2.44), ¢ and V2¢, and replacing them
with differential terms: 1/Atpr and 1/(Az)?.

1 1
> 4.
nAth - C(ACC)Q ( 8)

This creates an estimate for the stable timestep Atpp of the parabolic phase-field update
partial differential equation. It is convenient to have the explicit timestep calculated by
Sierra/SM for the mechanical system At); be the smallest timestep, so that it governs the
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Figure 4.13: Phase-field solve frequency study of compact tension specimen with ag/w = 0.5
using the 20 elem./in. sharp-tip mesh with the explicit/implicit classical phase-field model.
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system stability:

Aty < Atpp < g(Aa;)Q. (4.9)

Inverting this relation gives an estimate for the minimum value of the phase viscosity
parameter that ensures stability of the phase field update. Recognizing that the critical
mechanical timestep Aty relates to the minimum length scale Az and the solid wave speed
U, the minimum viscosity can be written in terms of those quantities:

1> ((af = ss) (@10

As the partial differential equation governing the phase field update is parabolic, the
critical viscosity value does depend on the mesh size Az. This may detract from the mesh
convergence of the explicit time integration scheme, as the simulation may be unstable with
a constant parameter value and refined mesh or might be non-convergent with a changing
parameter value. The rate-dependence and dissipative effects that this viscosity parameter
have yet to be quantified.

Considering the scaled system in the reaction-diffusion template form that has been
implemented, D /(3 replaces C' as the gradient-term coefficient.

(P 4 (4.11)
1= Cu Az (\/E]pAx '

Substituting the material properties presented in Table 4.3 and mass scaling of 10 yields
a critical viscosity value of n > 14806 s/ m®. To provide a margin of safety, a value of
n = 30000 s/ m” has been selected for this example.

The explicit/explicit results at two different levels of phase viscosity 7 are presented and
compared to an explicit/implicit result for the classical and threshold phase-field models
in Figures 4.14 & 4.15, respectively. Additionally, an explicit/explicit result with a non-
increasing timestep is also considered. The result show a close agreement between the two
integration methods for both phase-field models. The responses diverge only slightly for
the higher viscosity parameter. These results show that the implemented explicit/explicit
integration scheme is a promising option going forward. More testing is needed to quantify
the mesh convergence of this method and further explore the sensitivity to the phase viscous
parameter 7).
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Figure 4.14: Phase viscosity study of compact tension specimen with ag/w = 0.5 using the
20 elem./in. sharp-tip mesh with the classical phase-field model.
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Figure 4.15: Phase viscosity study of compact tension specimen with ag/w = 0.5 using the
20 elem. /in. sharp-tip mesh with the threshold phase-field model.
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Chapter 5

Discussion

Summary of work done

In the 2018 fiscal year, we began by conducting a literature review on regularized models
for ductile failure that exist in the scientific literature. A promising and very active ap-
proach is the phase-field method for fracture, a continuum model that diffuses damage in
the neighborhood of a crack according to a length-scale parameter. This approach derives
from an energy functional in which the Griffith-type surface energy terms are approximated
by a volumetric term that is a function of the damage gradient and the length scale.

We implemented the phase-field model for fracture into Sierra/SM using a reaction-
diffusion solver and a hyperelastic plasticity model. Two distinct phase-field models are
included in this implementation: the classical model and the threshold model. Using this
phase-field implementation, we developed single-element tests to verify the model response
in elastic (brittle) and elastic-plastic (ductile) materials. The model was then applied to a
compact tension specimen, a common mode-I fracture problem with overwhelmingly tensile
fields, to further evaluate the model behavior. With a tensile loading, the phase-field model
successfully localized and propagated damage in the expected fracture field. Mesh conver-
gence and temporal convergence of the models were confirmed using the compact tension
specimen. The apparent toughness of the compact tension specimen, as measured by the
maximum force required to propagate a crack, was convergent to the material toughness
given as a simulation input.

Our subsequent efforts were to extend the implicit time integration of the phase field
evolution to explicit time integration. First, a mixed integration scheme was developed in
which the mechanical system is integrated explicitly and the phase field is updated implicitly.
It was found that performing the phase field update less frequently than the explicit time
integration greatly reduced the runtime at minimal cost of simulation quality. Then, the
phase-field models were extended to fully explicit time integration by employing a viscous
regularization of the phase-field update. We briefly discussed the estimation of a stable
regularization parameter and found that the explicitly integrated results compared well to
the mixed-integration results.
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Outlook and future work

We believe that the phase-field fracture model is poised to be an effective and robust
failure model that can be used for Sandia’s production-level analysis of abnormal mechanical
environments. At this point, there are many opportunities of this work to improve the
capability and credibility of the phase field models implemented. These include:

e Timing study of the explicit time integration compared to mixed time integration

e Mesh refinement study of explicitly integrated model, with a focus on evaluating any
consequences of the viscous regularization

e Toughness verification using explicit time integration, perhaps using a simplified geom-
etry with specific boundary conditions applied into order to eliminate dynamic effects

e Revising the coupling of the mechanical and phase field solves to iterate within the
staggered solution, commonly referred to as “alternate minimization” in the phase-field
community [4]

e Assessment of phase-field model on representative problems from Sandia weapons sys-
tems groups

e Extension of the phase-field update to handle the solution nonlinear partial differential
equations, to allow implementation of a cohesive phase field model

e Intelligent consideration of phase-field constraints such as damage bounding and irre-
versibility

e Modularization of the phase-field models so that they can be coupled with any material
model implemented in Sierra/SM

This group looks forward to addressing these points in the 2019 fiscal year.

46



References

1]

[7]

8]

[9]

[10]

[11]

[12]

[13]

Roberto Alessi, Marreddy Ambati, Tymofiy Gerasimov, Stefano Vidoli, and Laura
De Lorenzis. Comparison of phase-field models of fracture coupled with plasticity. In
Advances in Computational Plasticity, pages 1-21. Springer, 2018.

Roberto Alessi, Jean-Jacques Marigo, and Stefano Vidoli. Gradient damage models cou-
pled with plasticity and nucleation of cohesive cracks. Archive for Rational Mechanics

and Analysis, 214(2):575-615, 2014.

Marreddy Ambati, Tymofiy Gerasimov, and Laura De Lorenzis. Phase-field modeling
of ductile fracture. Computational Mechanics, 55(5):1017-1040, 2015.

Blaise Bourdin, Gilles A. Francfort, and Jean-Jacques Marigo. Numerical experiments
in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48(4):797—
826, 2000.

Blaise Bourdin and Jean-Jacques Francfort, Gilles A .and Marigo. The variational
approach to fracture. Journal of Elasticity, 91(1-3):5-148, 2008.

Gilles A. Francfort and Jean-Jacques Marigo. Revisiting brittle fracture as an energy
minimization problem. Journal of the Mechanics and Physics of Solids, 46(8):1319-1342,
1998.

Morton E. Gurtin, Eliot Fried, and Lallit Anand. The Mechanics and Thermodynamics
of Continua. Cambridge University Press.

Vincent Hakim and Alain Karma. Laws of crack motion and phase-field models of
fracture. Journal of the Mechanics and Physics of Solids, 57(2):342-368, 2009.

Anne Hoger. The stress conjugate to logarithmic strain. International Journal of Solids
and Structures, 23(12):1645-1656, 1987.

ASTM International. Standard test method for measurement of fracture toughness.
Technical standard E1820-17a, ASTM International, West Conshohocken, PA, 2017.

Milan Jirasek. Nonlocal models for damage and fracture: comparison of approaches.
International Journal of Solids and Structures, 35(31-32):4133-4145, 1998.

Jean Lemaitre. A continuous damage mechanics model for ductile fracture. Journal of
Engineering Materials and Technology, 107(1):83-89, 1985.

Eric Lorentz, Sam Cuvilliez, and Kyrylo Kazymyrenko. Convergence of a gradient
damage model toward a cohesive zone model. Comptes Rendus Mécanique, 339(1):20—
26, 2011.

47



[14]

[15]

[16]

[18]

[19]

Eric Lorentz, Sam Cuvilliez, and Kyrylo Kazymyrenko. Modelling large crack propaga-
tion: from gradient damage to cohesive zone models. International Journal of Fracture,
178(1-2):85-95, 2012.

Jean Mandel. Equations constitutives et directeurs dans les milieux plastiques et vis-
coplastiques. International Journal of Solids and Structures, 9(6):725-740, 1973.

Christian Miehe, Fadi Aldakheel, and Arun Raina. Phase field modeling of ductile
fracture at finite strains: A variational gradient-extended plasticity-damage theory. In-
ternational Journal of Plasticity, 84:1-32, 2016.

Christian Miehe, Martina Hofacker, and Fabian Welschinger. A phase field model for
rate-independent crack propagation: Robust algorithmic implementation based on oper-
ator splits. Computer Methods in Applied Mechanics and Engineering, 199(45-48):2765-
2778, November 2010.

Michael Ortiz and Laurent Stainier. The variational formulation of viscoplastic con-
stitutive updates. Computer Methods in Applied Mechanics and Engineering, 171(3-
4):419-444, 1999.

R.H.J. Peerlings, R. De Borst, W.A.M. Brekelmans, and J.H.P. De Vree. Gradient en-
hanced damage for quasi-brittle materials. International Journal for Numerical Methods
in Engineering, 39(19):3391-3403, 1996.

William M. Scherzinger and Brian T. Lester. Library of Advanced Materials for Engi-
neering (LAME) 4.48. SAND Report SAND2018-3231, Sandia National Laboratories,
Albuquerque, NM and Livermore, CA, 2018.

Hiroshi Tada, Paul C. Paris, and George R. Irwin. The Stress Analysis of Cracks
Handbook. Technical report, Del Research Corporation, 1973.

Michael R. Tupek. Cohesive phase-field fracture and a PDE constrained optimization
approach to fracture inverse problems. SAND Report SAND2016-9510, Sandia National
Laboratories, Albuquerque, NM and Livermore, CA, 2016.

Clemens V. Verhoosel and René de Borst. A phase-field model for cohesive fracture.
International Journal for numerical methods in Engineering, 96(1):43-62, 2013.

48



DISTRIBUTION:

g VI VG A G A G

MS
MS
MS
MS
MS
MS
MS
MS

9042
9042
0840
9042
0840
0845
0845
0899

Arthur Brown, 8752

Jay Dike, 8752

Brian Lester, 1554

Scott Peterson, 8343

William Scherzinger, 1554

Jesse Thomas, 1542

Michael Tupek, 1542

Technical Library, 8944 (electronic copy)

49



50



o1

v1.40



@ Sandia National Laboratories

52



