
LA-UR-20-24473
Approved for public release; distribution is unlimited.

Title: Jayenne GPU Strategy Update

Author(s): Long, Alex Roberts

Intended for: Share with outside collaborators and computer vendors

Issued: 2020-06-22

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Jayenne GPU Strategy Update

Alex Long

Jayenne Team: Kelly Thompson, Matt Cleveland, Ryan
Wollaeger, Kendra Long, Ben Ryan, Tim Kelley, Alex

Long

Special thanks to Tim Burke in XCP-3
May 19. 2020

ASC GPU Meeting

NOTE:
This is
the lab

color
palette.

Several design questions drove our work on GPU
porting

6/1/20 Los Alamos National Laboratory

• Groundwork: How should the code structure of Jayenne change
for accelerator driven Monte Carlo transport?

• Data: Do we need to change our data layout?
• Portability strategy: Can we reuse the basic transport components

between CPU and GPU?

• Monte Carlo on GPUs, a brief literature review and some discussion
with peers at other labs

• Early gains: Definitely do these things!
• Current performance numbers
• Event-based vs. history-based and how to optimize further

2

NOTE:
This is
the lab

color
palette.

Brief overview of IMC transport—flowchart and
memory inderiction

6/1/20 Los Alamos National Laboratory 3

NOTE:
This is
the lab

color
palette.

Large code design changes were made at the transport
level

6/1/20 Los Alamos National Laboratory

• My personal philosophy—use convenient code features and libraries
for driver and data initialization, use more thread-safe and less state-
owning design in critical parts of code

• Contractor model -> functional model
• Contractor model

– All contractors owned mutable and non-mutable state (e.g. a shared pointer
to tally, opacity)

– Contractors also stored convenience values like the most recent calculated
distance to event, to be used later in event processing

•  Functional model
– Use flat functions instead of classes with methods
– pass particle and (const) mesh data, return distance, determine event, pass

particle and event distance, return particle fate

4

NOTE:
This is
the lab

color
palette.

Code structure changes were also driven by need for
shared functionality with CPT

6/1/20 Los Alamos National Laboratory

• Code called during transport was moved to its own directory
– “imc_solver” contains “distance_to_collision”, “apply_collision_event”,

“random_walk_elligible”, etc.
– “imc_solver” contains 7k lines of code, something we can reason about!
– “low_mc” contains “get_distance_to_boundary”, “next_cell”, functions

required for mesh based tracking (shared with CPT)
– “low_mc” contains 10k lines of code, woohoo for sharing!

• Splitting directories has already served its purpose, team asks “will
this code change effect GPU transport” when working in this directory

• On the topic of sharing, I’m very interested in using shacl surfaces—
4x4 matrix to describe all surfaces used in Jayenne. Already used in
GPU code!

5

NOTE:
This is
the lab

color
palette.

Additions of “Worker model” and changes to Particle
class made GPU port simpler

6/1/20 Los Alamos National Laboratory

• An MPI rank can now asynchronously manage “workers” while still
doing particle work

• Right now, workers are threads under MPI rank
• Worker model breaks the “one transporter, one worker” paradigm—

one transporter can manage multiple workers of different types (e.g.
CPU, GPU)

• Ready to take full advantage of mixed node architectures
• Particle now owns all RNG state (4 uint64_t), eliminating need to try

to spawn and or save RNG state of threads (a reproducibility
nightmare)
– Two downsides: particle state is now tied to RNG state, which is

conceptually strange, particle size bumped from two cache lines to three L

6

NOTE:
This is
the lab

color
palette.

Moving from several SOAs to a single AOS for
transport data simplifies movement

6/1/20 Los Alamos National Laboratory

• Mesh data owns array of vertices, array of neighbors, Opacity
class owns vector of vectors, mat state owns arrays

• Original motivations
•  We don’t access these data fields in a stride-one way during transport
•  Moving mesh data needed for transport requires many gathers instead of a

single large send
•  It’s easy to copy transport data to device
•  CPU Prefetching is greatly simplified

• Move all of this data into a single contiguous block on a rank, store
offsets for a given cell in an object

• AOS Complications: we want stride-one access across GPU
threads and in CPU event-based vector lanes, harder to debug,
unstructured complications

• Also, currently not looking at “mesh pulling” as parallel solution
7

NOTE:
This is
the lab

color
palette.

GPU strategy is CUDA for transport

6/1/20 Los Alamos National Laboratory

• Now transport code is split off from sourcing and cycle initialization
• What does it take to make a CUDA transporter?

– NVCC flag “experimental-const-expr” absolutely indispensable, allows me to
mark Draco (shared code between TRT packages) functions constexpr
without having to introduce GPU specific decorators

– Add CMake defined macros for “__device__” and “__host__” decorators to
all functions and member functions

– “std::vector” -> “std::array”, Tim Burke did the legwork of making a
“constexpr” variant of std::array. Accessors are not marked as constexpr in
C++ 14, C++17 fixes that issue, introduces a host of others

– Now we can combine device functions into a single CUDA kernel

8

NOTE:
This is
the lab

color
palette.

Building woes

6/1/20 Los Alamos National Laboratory

• At first, I tried to build two libraries—CUDA and C++ compiled
imc_solver and then link the appropriate library if CUDA was enabled
– This introduced an awkward configure step of making two libraries from the

same source code
– Also, the other libraries in Jayenne mostly didn’t care since 80% of the

“imc_solver” code was defined in headers
• Solution: just build CUDA library, put CUDA specific code in “*.cc”

files, everyone else uses functions in “*.hh”
• CUDA libraries built with “separable compilation” (multiple compilation

units) link differently than C++ libraries
•  CUDA runtime libraries are linked when executables are made
•  This created all kinds of strange linking issues, turning off separable compilation

fixed all of them

• Using GCC 7+ on Darwin/RZ Ansel, waiting for NVCC 11 for XL

9

NOTE:
This is
the lab

color
palette.

History-based and event-based GPU transport in the
current literature

6/1/20 Los Alamos National Laboratory

• Hamilton and SHIFT
– Multigroup Monte Carlo on GPUs: Comparison of history- and event-based

algorithms
•  Truncated history reduces runtime when physical properties lead to vastly different

particle histories
•  Atomic add to count event types remove need for index sort
•  For multigroup neutronics, event-based transport is much slower than history-based
•  Coalesced memory access of particle data appears to give history-based an edge

over event-based

• Bleile and Quicksilver
– Thin Threads: An Approach for History-Based Monte Carlo on GPUs

•  Batch sizes of 100,000 or greater work best in GPU transport
– Investigation of Portable Event Based Monte Carlo Transport Using the

NVIDIA Thrust Library
•  Use prefix sum to count events without a sort,

10

NOTE:
This is
the lab

color
palette.

History-based and event-based GPU transport in the
current literature

6/1/20 Los Alamos National Laboratory

• Brantley and Mercury
– IMP (LLNL IMC code) shows 3-4x speedup over CTS nodes for crooked

pipe problem
• Sweezey and MONTERAY

– A Monte Carlo volumetric-ray-casting estimator for global fluence tallies on
GPUs
•  Computing tallies via volumetric-ray-casting is much more effective on the GPU and

can be done asynchronously during CPU transport phase

11

NOTE:
This is
the lab

color
palette.

Transport on GPUs, initial port 15-20x slower, currently
3-4x faster (comparing to CTS-1 nodes)

6/1/20 Los Alamos National Laboratory

•  First cut of the GPU post was very slow, as expected
•  First speedup from marking all functions called by transporter “inline”

– Later, when I turned off separable compilation, this was required anyway
• Second major speedup—use shared memory for particles and global

tallies
– In the “big kernel” approach, particle and global tally data is reused enough

to hide cost of copy to shared memory
– Copying other fields to shared memory has not provided speedup—physics

data is loaded each time a particle moves into a new cell
•  Third and most dramatic speedup: Explicitly copying host to device,

don’t rely on UVM (Note: I wasn’t using cudaMallocManaged before)

12

NOTE:
This is
the lab

color
palette.

Additional improvements from CUDA features and the
literature

6/11/20 Los Alamos National Laboratory

• Use CUDA constant memory for the random walk data tables (about
2k) improved random walk by 2-2.5x

• Remove all global tally operations, these were largely diagnostic and
can be gleaned from individual cell tallies

• Use Hamilton’s “truncated history” to limit thread divergence (20%
improvement in multigroup, thin-thick problems

13

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–The History Based method

6/1/20 Los Alamos National Laboratory

•  Follow a single particle until it dies or reaches census
•  LLNL calls this the “big kernel” approach—all transport functions are

reachable from the kernel launch
•  This includes a “while” loop so some threads will finish earlier than

others and be waiting at __syncthreads()
• Can it work? LLNL has shown some speedup with this approach (3-4x

for IMC)

14

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–The History Based method

6/1/20 Los Alamos National Laboratory

•  The history based method roughly looks like this:

15

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–The History Based method

6/1/20 Los Alamos National Laboratory

• With UVM (bad) results for weak scaling a streaming problem to a full
node of Darwin and RZ Ansel
– Weak scaling in IMC scales the particle count only
– 502 cells for 2D, 503 cells for 3D
– 36 cores of CTS-1 and 4 GPUs both running 12 million particles

16

Problem Runtime (s)
Darwin –Power 9

Runtime (s)
RZ Ansel

Runtime
(s)
CTS-1

1 GPU 2 GPUs 4 GPUs 1 GPU 2 GPUs 4 GPUs 36 cores
XY (2D) 28.2 35.3 34.9 28.59 34.75 35.42 8.51

XYZ (3D) 35.3 49.4 49.2 32.53 45.39 45.97 37.33

RZ (2D) 33.1 37.3 37.6 32.87 35.30 36.04 9.93

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–History Based with “Truncated History”

6/1/20 Los Alamos National Laboratory

•  Limit the number of events a particle can undergo in the history-based
method before the particle is “re-queued”, then launch with transport
kernel again with a smaller number of particles

•  Threads within a warp are less likely to be waiting at a
__syncthreads() because one particle required 1000 events to finish
while everything else was done at 250 events

• Hamilton shows a ~2x speedup for a small 2D reactor core problem
(C5G7 benchmark) with this method

•  For IMC we would expect a similar situation with any kind of
temperature or material variations in a problem

•  I implemented “truncated history” with Thrust to sort inactive particles
from transport queue
– Doing this work showed me a path towards event-based transport

17

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–The History Based method

6/1/20 Los Alamos National Laboratory

• With UVM (bad) results for a highly scattering problem
– 502 cells for 2D, 503 cells for 3D
– Scattering opacity is 100 cm-1

18

Darwin -- Power 9
Problem 1 GPU
XY (2D) 192.9
XYZ (3D) 294.6
RZ (2D) 256.1

CTS-1
Problem 36 cores
XY (2D) 30.28
XYZ (3D) 45.52
RZ (2D) 33.22

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–History Based with “Truncated History”

6/1/20 Los Alamos National Laboratory

•  This is what the algorithm looks like

19

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–History Based with “Truncated History”

6/1/20 Los Alamos National Laboratory

• With UVM (bad) results for the Su Olson “picket fence” problem
– Two opacities, about 0.01 cm-1 and 100.0 cm-1, 64 groups, alternating thick

and thin opacities
– Allow 100 events before a re-sort and re-launch
– One kernel launch becomes about twenty kernel launches with fewer and

fewer particles

20

Darwin -- Power 9
Method 1 GPU Runtime (s)
Standard 205.2
Truncated History 163.9

NOTE:
This is
the lab

color
palette.

Nuts and Bolts–Event-based transport

6/1/20 Los Alamos National Laboratory

•  Instead of following a single particle until it finishes transport in a
“while” loop, determine the next event for all particles, group particles
by event and dispatch events together

•  Fundamentally, transpose this:
 for (particle in all_particles):
 while(particle.alive())

To this:
 while(!all_particles.empty())
 for(particle in all_particles)
 determine_event(particle)

 for(particle in event_buffer)
 dispatch_event(particle)

21

NOTE:
This is
the lab

color
palette.

Event-based transport has better occupancy, better
branch efficiency, worse performance

6/1/20 Los Alamos National Laboratory

•  I used thrust to do event selection, event processing and queue
sorting
– Brief aside: if you can express your loop with a simple lambda, does it

matter what you select for a portability solution? KOKKOS “for_each” could
work here just as well

• Surprisingly easy to implement a first-cut—just reusing the same
components of the transporter in a different order

• Why is event-based slower than history based?
– Hamilton guessed continuous energy had more work than multigroup such

that “processing event” was sped up more in event-based
– Data reordering is likely required
– I need to rerun this with explicit memory management

22

NOTE:
This is
the lab

color
palette.

6/2/2020 Update: Using explicit memory management
gives about 10x improvement

6/11/20 Los Alamos National Laboratory

• UVM was a convenient way to port the code but it was mostly a
temporary solution until I had time to try some other memory
management

• Memory paging with UVM seems like it should hide some memory
motion

• Copy 4 fields to the GPU: geometric/connectivity mesh data, physics
mesh data, particles and tally data

•  This added about 200 lines of code, still easy to port if a language
requires a different way to manage memory needed by accelerator

• Seeing about 4x improvement over CTS nodes for transport
dominated problems (consistent with LLNL and Sweezy’s table)

• Haven’t started optimizing the kernel yet…
• MPI and problem setup look like the next bottlenecks!
 23

NOTE:
This is
the lab

color
palette.

6/2/2020 Update: Improved performance on scattering
problem

6/11/20 Los Alamos National Laboratory

• Results for a highly scattering problem
– 502 cells for 2D, 503 cells for 3D
– Scattering opacity is 100 cm-1

• About 20% transport time

24

Darwin GPU w/ UVM
Problem 1 GPU
XY (2D) 192.9
XYZ (3D) 294.6
RZ (2D) 256.1

CTS-1
Problem 36 cores
XY (2D) 30.28
XYZ (3D) 45.52
RZ (2D) 33.22

Darwin, explicit memory
Problem 1 GPU
XY (2D) 5.64
XYZ (3D) 8.6
RZ (2D) 5.35

This is probably the case with the
most data reuse and thus the best
speedup over CTS-1

~6x speedup over CTS

NOTE:
This is
the lab

color
palette.

6/2/2020 Update: Improved performance on streaming
problem

6/11/20 Los Alamos National Laboratory

• Results for a highly scattering problem
– 502 cells for 2D, 503 cells for 3D
– Scattering opacity is 1 cm-1

• About 12% transport time

25

Darwin GPU w/ UVM
Problem 1 GPU
XY (2D) 28.2
XYZ (3D) 35.3
RZ (2D) 33.1

CTS-1
Problem 36 cores
XY (2D) 8.51
XYZ (3D) 37.31
RZ (2D) 9.93

Darwin, explicit memory
Problem 1 GPU
XY (2D) 5.08
XYZ (3D) 8.49
RZ (2D) 4.78

~2-3x speedup over CTS

No data reuse—streaming
dominated means each thread
always loads a new cell

NOTE:
This is
the lab

color
palette.

6/2/2020 Update: Improved performance on a domain
decomposed problem

6/11/20 Los Alamos National Laboratory

•  Results for the simplified hohlraum problem
–  Run weekly in our performance regression
–  Highly scattering media (particle can have ~100,000 scatters)
–  In the table “DD” means “domain decomposed”

26

Machine and setup Parallel Mode Runtime (s)

CTS-1, 4 ranks, 9 threads/rank DD 697

CTS-1, 4 ranks, dynamic threads DD 501

CTS-1, 36 ranks Replicated 300

Darwin P9, 2 ranks, 2 GPUS DD 157

Darwin P9, 4 ranks, 4 GPUS DD 203

Darwin P9, 1 rank, 1 GPU “Replicated” 71

Darwin P9, 2 ranks, 2 GPUs Replicated 57

Darwin P9, 4 ranks, 4 GPUs Replicated 48
No MPI, 6x
speedup over no
MPI CTS-1 run

With MPI, 4x
speedup over
CTS-1 run

NOTE:
This is
the lab

color
palette.

6/2/2020 Update: Domain decomposed runs give
confidence in speedup in more realistic runs

6/11/20 Los Alamos National Laboratory

• Hohlraum wrap up:
– Hohlraum problem runs 100 cycles, our driver acts as simple “host” and all

transport data is built up every cycle
– Problem is not saturated with particle work and is load-imbalanced,

representing a pessimistic scenario
•  It’d be great to leave particle data on the device—not sure how other

packages feel about that

27

NOTE:
This is
the lab

color
palette.

The Jayenne GPU port is running faster than CTS
nodes with a lot of optimization work remaining

6/1/20 Los Alamos National Laboratory

• Most of last two years spent getting to a place where we could port to
CUDA (where PARTISN started from)
– Starting writing CUDA in the past 9 months
– Started tinkering with performance in the last 3 months

• Our timers show the transport phase is not a dominant cost in our
current tests
– We need better timers to find out where the new bottlenecks are with the

GPU (we want to move to Caliper)
• MPI and load balance issues significantly inhibit performance

– “straggling” problem
– In pure replicated (almost no MPI communication) we see 6x speedup over

CTS-1 node

28

NOTE:
This is
the lab

color
palette.

Looking Forward: Steps to performance on Sierra?

6/1/20 Los Alamos National Laboratory

• After this exercise, we should stop and evaluate
– Gather more metrics—register use, occupancy, memory bandwidth
– What are we doing wrong?
– What can we learn from other codes at LANL? (PARTISN, VPIC)

•  For running large simulations we’ll need to optimize MPI
communications
– direct MPI writes to GPU particle buffer?

• Consider “load balancing” issues above the GPU transport level
– Use our own decomposition, dynamically assign workers to ranks, give

ranks an overlapping mesh domain to limit particle passing

29

NOTE:
This is
the lab

color
palette.

Looking Forward: How do our plans change for El
Capitan?

6/1/20 Los Alamos National Laboratory

• Currently, the CUDA used in the history-based method is simple
enough that the HIPIFY tool (CUDA ->HIP) should generate code for
AMD devices

• As mentioned previously, the Thrust “for_each” + lambda could just as
easily be replace with a KOKKOS “parallel_for” + lambda

• A larger warp size will increase thread divergence in the big kernel
method, should have little effect on the event-based method

•  “leave everything on the GPU” approach means we may have to do
sourcing and initialization all on the GPU. This will require porting
code that is even more reliant on the std library than the transporter

30

NOTE:
This is
the lab

color
palette.

6/2/2020 Update: Domain decomposed runs give
confidence in speedup in more realistic runs

6/2/20 Los Alamos National Laboratory

• Hohlraum wrap up:
– Hohlraum problem runs 100 cycles, our driver acts as simple “host” and all

transport data is built up every cycle
– Problem is not saturated with particle work and is load-imbalanced,

representing a pessimistic scenario
•  It’d be great to leave particle data on the device—not sure how other

packages fee about that

31

