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Introduction

I The goal here is to introduce you to the Monte Carlo (MC) method.

I MC is a very powerful simulation technique.

I Very simple examples will be used.

I Potential MC users have diverse backgrounds, but you should see
from the examples how the method could be applied to your field of
study.
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Outline

What is Monte Carlo?
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The Monte Carlo concept

I A Monte Carlo method is an algorithm that estimates the value of
an integral by randomly sampling values within the problem domain.

I The first (known) use of the method was Comte de Buffon in 1777.

I The method was formalized and its applicability to complex physics
problems was established right here at Los Alamos during the
Manhattan Project.

I Mathematical rigor was largely developed in the postwar era.

I The mathematical theory underpinning Monte Carlo is
well-established . . . but this isn’t a math lecture.

I Today the method is used in physics, economics, epidemiology, you
name it.
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Estimation of π

Consider a quadrant of a unit circle inscribed within a square:
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Estimation of π

Select 2 random Cartesian coordinates between 0 and 1. If their radius is
within the circle, keep the point:
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Estimation of π

If it isn’t, reject the point:
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Estimation of π

Over time, as you produce more and more points, you’ll find the fraction
of points you keep approaches the area of the quadrant to the area of the
square, which is just π/4:
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Estimation of π

#! /usr/bin/env python

import random
from math import sqrt as sqrt
from math import pi as pi

# Given a quarter-circle inscribed within a unit square, calculate pi.
# Intentionally inefficient for clarity.
# Python’s random() function returns a real number on [0,1).

for i in range(10):
incircle = 0
for samples in range(1,10**i+1):

x = random.random(); y = random.random(); r = sqrt(x*x + y*y)
if (r <= 1.0):

incircle = incircle + 1
frac = 1.0 * incircle / samples

print "pi estimate for %10d samples = %.9f" % (samples,4.0*frac)
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Estimation of π

pi estimate for 1 samples = 4.000000000
pi estimate for 10 samples = 2.400000000
pi estimate for 100 samples = 3.240000000
pi estimate for 1000 samples = 3.119119119
pi estimate for 10000 samples = 3.165600000
pi estimate for 100000 samples = 3.146351464
pi estimate for 1000000 samples = 3.140928000
pi estimate for 10000000 samples = 3.142132000
pi estimate for 100000000 samples = 3.141690040

This took about 11 minutes to run on a MacBook Pro.
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Estimation of π

I The preceding is an example of what I call “intuitive Monte Carlo”
(just my terminology).

I It feels right.

I It sure looks right.

I Later we’ll discuss why it is right.
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Simple probability and countable events

I Given an elementary event with a countable number n of outcomes,
each outcome Ek , k = 1 . . . n has a probability pk of occurring.

I pk is between 0 and 1, where 0 indicates the outcome cannot
happen and 1 indicates the outcome must happen.

I Probabilities are generally normalized to 1; that is,
∑n

k=1 pk = 1.

I If for every outcome Ek there is an associated value xk , then xk is
said to be a random variable.

I The expectation of the random variable x is
∑n

k=1 pkxk , often
written 〈x〉.

I The expectation is also called the expectation value or the mean.
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Simple probability and countable events

I The expectation of a constant 〈constant〉 = constant.

I If x is a random variable, the real-valued function g(x) is also a
random variable with expectation 〈g(x)〉 =

∑n
k=1 pkg(xk).

I If g(x) is a linear combination g(x) = λ1g1(x) + λ2g2(x), then
〈g(x)〉 = λ 〈g1(x)〉+ λ2 〈g2(x)〉.

I If g(x) is a linear function of x , then 〈g(x)〉 = g(〈x〉).
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Simple probability and countable events

I The nth moment of x is the expectation value of the nth power of
x ; that is, 〈xn〉 =

∑
k pkx

n
k .

I The nth central moment of x is
〈(x − µ)n〉 =

∑
k pk(xk − µ)n =

∑
k pk(xk − 〈x〉)n.

I The second central moment
∑

k pk(xk − 〈x〉)n =
〈
x2
〉
− 〈x〉2.

I This quantity, also called the variance or standard deviation of x , is
a measure of the dispersion of the random variable about its mean
value.
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Continuous random variables

I Let x be a continous random variable: −∞ < x <∞.

I The cumulative distribution function, or CDF, is defined as F (x)
being the probability that a randomly-selected value X < x .

I F (x) is a nondecreasing function of x , with F (−∞) = 0 and
F (∞) = 1.

I The probability distribution (density) function, or PDF, is defined as
dF/dx and is normalized to 1:
(
∫∞
−∞ f (x)dx = F (∞)− F (−∞) = 1).

I The expectation of a continuous random variable is defined as
E (x) =

∫∞
−∞ xf (x)dx .

I Similarly, for a function g(x), E (g(x)) =
∫∞
−∞ g(x)f (x)dx .

I The variances are defined in the same manner.
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Monte Carlo quadrature

I Suppose N random variables x1, x2, . . . xN are sampled from the
PDF f (x).

I Let G =
∑N

n=1 λngn(x).

I The expectation E of G is E (G ) = 〈G 〉 =
∑N

n=1 λn 〈gn(x)〉.

I The variance V of G is V (G ) =
〈
(G − 〈G 〉)2

〉
=
∑N

n=1 λ
2
nV (gn(x)).

I Let all λn = 1
N and all gn(x) = g(xn).

I E (G ) is thus 1
N

∑N
n=1 〈g(x)〉 = 〈g(x)〉.

I Thus, the arithmetic average G has the same mean as g(x). G is an
estimator of 〈g(x)〉.

I Likewise, V (G ) = 1
NV (g(x)).
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Monte Carlo quadrature

I The million-dollar baby of Monte Carlo is therefore:

I An integral
∫∞
−∞ g(x)f (x)dx can be approximated as 1

N

∑N
n=1 g(xn),

where the xn are drawn from the PDF f (x).

I The variance of this estimate decreases as the number of samples
increases.

I The Monte Carlo method thus lets you compute solutions of
integrals with a bounded error estimate, allowing you to determine
when your solution has achieved a desired accuracy.

I For math reasons we more commonly use the empirical variance

σ2 = 1
N−1

(〈
g2
〉
− 〈g〉2

)
, which has value ∞ for a single sample.
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Sampling a random variable

I If we know the PDF f (x), we can calculate the CDF F (x).

I If instead we know F (x), we can calculate f (x).

I Either way, since the range of F is (0, 1), we can generate a random
number R in that range and calculate x = F−1(R), then f (x).
Depending on the form of F or f , this can be easy or painful.

I Most random-number generation routines return a value on [0, 1).
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Estimation of π revisited

I The area of that quarter unit circle is A =
∫ 1

0

√
(1− x2)dx = π

4 .

I If we identify the PDF f (x) = 1 and the function g(x) =
√

(1− x2),

we can approximate the integral as µ = 1
N

∑N
n=1

√
(1− x2

n ).

I The value of the integral lies within µ (1± σ) = µ± ε.

I Since the variance decreases with N, every additional digit of
improvement in the error estimate requires 100× the samples.
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Estimation of π revisited

#! /usr/bin/env python

import random
from math import sqrt as sqrt

# Given a quarter-circle inscribed within a unit square, calculate pi
# as integral(0,1) sqrt(1-x^2) dx.

for i in range(1,9):
the_sum = 0.0; the_sum2 = 0.0
for idx in range(1,10**i+1):

F = random.random(); x = F
g = sqrt(1-x*x)
the_sum = the_sum + g; the_sum2 = the_sum2 + g*g

the_mean = the_sum / idx
the_variance = 1.0/(idx-1)*(the_sum2/idx-the_mean*the_mean)
the_error = sqrt(the_variance)
my_pi = the_mean * 4.0; my_error = the_error * 4.0
print "pi estimate for %09d counts = %.9f +/- %.9f" % (idx,my_pi,my_error)
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Estimation of π

pi estimate for 000000010 counts = 3.419267129 +/- 0.202535995
pi estimate for 000000100 counts = 3.024936474 +/- 0.098122722
pi estimate for 000001000 counts = 3.150753001 +/- 0.028345405
pi estimate for 000010000 counts = 3.138572099 +/- 0.008995848
pi estimate for 000100000 counts = 3.141813753 +/- 0.002825196
pi estimate for 001000000 counts = 3.141734513 +/- 0.000892218
pi estimate for 010000000 counts = 3.141498800 +/- 0.000282275
pi estimate for 100000000 counts = 3.141540350 +/- 0.000089286

This took about 1 minute to run on a MacBook Pro.
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Importance sampling

I Consider the integral I =
∫ 1

0
cos
(
πx
2

)
dx .

I Analytically, we know I = 2
π .

I Let’s use analog Monte Carlo to compute the integral.

I Analog Monte Carlo describes an MC simulation that doesn’t apply
any numerical gimmickry to accelerate its convergence.
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Importance sampling

#! /usr/bin/env python

import random
import time
from math import pi as pi
from math import cos as cos
from math import sqrt as sqrt

tstart = time.time()

random.seed(1999)
exact = 2.0/pi
samples = 0
csum = 0.0; c2sum = 0.0; cerr = 1.0

# Continued on next slide
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Importance sampling

# Continued from previous slide

while (cerr > 1.e-5):

samples = samples + 1
F = random.random()
x = F
val = cos(pi*x/2.0)
csum = csum + val; c2sum = c2sum + val**2

cmean = csum/samples
if (samples > 1):

cvar = 1.0/(samples-1)*(c2sum/samples-cmean*cmean); cerr = sqrt(cvar)/cmean
if (samples % 10000 == 0):

print "%08d %.8e %.8e %.8e" % (samples, cmean, cvar, cerr)

# Continued on next slide
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Importance sampling

# Continued from previous slide

tend = time.time(); dt = tend - tstart; duration = dt
hours = dt // 3600; dt = dt % 3600
mins = dt // 60; secs = dt % 60

print("Samples = %d" % (samples))
print "Integral = %.8f (Exact = %.8f)" % (cmean,exact)
print "Variance = %.8e" % (cvar)
print "Error = %.8e" % (cerr)
print "Calculation took %d hr, %d min, %.3f seconds (%.3e s/sample)." % \

(hours, mins, secs, duration/samples)
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Importance sampling

Samples = 2337099887
Integral = 0.63661544 (Exact = 0.63661977)
Variance = 4.05279220e-11
Error = 1.00000000e-05
Calculation took 0 hr, 32 min, 45.791 seconds (8.411e-07 s/sample).
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Importance sampling

Why so many (2.3B) samples?
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Importance sampling

I Because f (x) = 1, all points x are equally likely, including the ones
near x = 1 that contribute very little to the sum used to
approximate the integral.

I Is there something we can do about that?

I Sure is – it’s calledimportance sampling.

I This probably doesn’t surprise you if you’ve been reading the slide
titles.
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Importance sampling

I Suppose you introduce a function f ∗(x) and rewrite the integral as∫ 1

0
g(x)f (x)
f ∗(x) f ∗(x)dx .

I This has the same value as the original; however, we’re now

sampling a different integrand g(x)f (x)
f ∗(x) with a different PDF f ∗(x).

I If we are judicious, this form will have a smaller variance than the
original and thus you’ll get to a “converged” solution faster.

I f ∗(x) = g(x) would have zero variance, but in order to normalize
f ∗(x) we’d need to calculate the very integral that defined the
problem.

I What if we choose f ∗(x) to be something pretty close to g(x) but
more easily integrated for normalization?
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Importance sampling

I The Taylor series expansion of cos
(
πx
2

)
= 1− π2

2×22 x
2 + . . ., so let’s

try this:

I f ∗(x) = λ
(
1− x2

)
.

I Normalize f ∗(x) to 1; that is,
∫ 1

0
λ
(
1− x2

)
dx = 1 or λ = 3

2 .
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Variance reduction techniques
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Importance sampling

I Whatever x is sampled, g∗(x) will contribute meaningfully to the
sum, driving more rapidly to “convergence”.

I In addition, we are more likely to sample x in regions where g∗(x)
has larger values.

I This practice is called importance sampling.
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Variance reduction techniques

#! /usr/bin/env python

import random
import time
from math import pi as pi
from math import cos as cos
from math import sqrt as sqrt

tstart = time.time()

# Calculate int_0^1 cos(pi * x / 2) dx with importance function f = 3/2(1-x^2)
# F = 3/2(x-x^3/3), so solve x = (x^3+2R)/3 iteratively

random.seed(1999)
samples = 0; csum = 0.0; c2sum = 0.0; cerr = 1.0; third = 1.0/3.0

def rootfind(R):
xold = 0.5; xnew = (xold**3 + 2.0*R)/3.0
while (abs(xnew-xold)>1.e-10):

xold = xnew; xnew = (xold**3 + 2.0*R)/3.0
return xnew

# Continued on next slide
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Importance sampling

# Continued from previous slide

while (cerr > 1.e-5):
samples = samples + 1
F = random.random(); x = rootfind(F)
val = cos(pi*x/2.0) * 2.0/3.0 / (1.0 - x**2.0)
csum = csum + val; c2sum = c2sum + val**2
cmean = csum/samples
if (samples > 1 and cmean > 0.0):

cvar = 1.0/(samples-1)*(c2sum/samples-cmean*cmean); cerr = sqrt(cvar)/cmean
if (samples % 10000 == 0):

print "%08d %.8e %.8e %.8e" % (samples, cmean, cvar, cerr)

tend = time.time(); dt = tend - tstartA; duration = dt
hours = dt // 3600; dt = dt % 3600
mins = dt // 60; secs = dt % 60

print("Samples = %d" % (samples))
print "Integral = %.8f (Exact = %.8f)" % (cmean,2.0/pi)
print "Variance = %.8e" % (cvar)
print "Error = %.8e" % (cerr)
print "Calculation took %d hr, %d min, %.3f seconds (%.3e s/sample)." % \

(hours, mins, secs, duration/samples)
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Importance sampling

Samples = 24439299
Integral = 0.63662582 (Exact = 0.63661977)
Variance = 4.05292430e-11
Error = 9.99999996e-06
Calculation took 0 hr, 1 min, 40.222 seconds (4.101e-06 s/sample).
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Importance sampling

I By using importance sampling, we converge to the proper result
using a hundred times fewer samples.

I “Convergence” here meaning the threshold error of 10−5.

I The grind time in seconds/sample is roughly 5× greater because
we’re doing more work, but the decrease in samples more than
makes up for it.

I Importance sampling is just one of a dizzying array of numerical
techniques that can accelerate convergence to solution, collectively
known as variance reduction.

I Analog MC simulations are quite rare.
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A simple physics application

I Consider the steady-state 1D problem of a slab exposed on its left
side to an incident plane source of monoenergetic particles.

I The particles can scatter isotropically off of atoms in the wall.

I We want to know what fraction of source particles come out the
right side traveling 30 to 45 degrees off-normal.
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A simple physics application

I If the probability of scatter per unit length traveled by a particle in
the wall is Σ, the probability of traveling a distance s before
scattering is 1− exp(−Σs). That’s our first CDF F1, with PDF
f1 = 1

Σ exp(−Σs).

I Since the particle scatters isotropically when it scatters, the CDF for
direction of travel µ on (−1, 1) is F2 = 1

2 and the PDF is
f2 = 1

2 (µ− 1).

I We start throwing particles and tracking them one at a time until it
exits the slab. The left side is non-reentrant, so if the particle exits
to the left, its history ends.

I If it exits to the right, its history also ends, but we check its angle
and tally the particles with the proper angle.

I Keep throwing particles until the answer converges to a desired error.
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A simple physics application

#! /usr/bin/env python

import random
import time
from math import log as ln
from math import sqrt as sqrt
from math import cos as cos

tstart = time.time()

# Given:
# Slab, low-x = 0 cm, high-x = 40 cm
# Sigma = 0.25 cm^{-1} (isotropic)

random.seed(1999)
ptcl = 0; lsum = 0.0; l2sum = 0.0

# Continued on next slide
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A simple physics application

# Continued from previous slide

def trackparticle(particle,l):
(ptcl, x, mu) = particle; (lsum, l2sum) = l
Sigma = 0.25; width = 40.0
cosmax = sqrt(3.0)/2.0; cosmin = sqrt(2.0)/2.0 # cos 30, 45

particle_is_tracking = 1
while (particle_is_tracking):

# We need to track the particle to collision
distance_to_collision = -ln(random.random()) / Sigma
xprime = x + distance_to_collision * mu
if (xprime > width): # Particle exited to the right

if (mu >= cosmin and mu <= cosmax): # Within 30 and 45 degrees
lsum = lsum + 1; l2sum = l2sum + 1

particle_is_tracking = 0
elif (xprime < 0) : # Particle exited to the left

particle_is_tracking = 0
else: # Particle scattered, update location and direction

x = xprime; mu = -1.0 + 2.0*random.random()
return (lsum,l2sum)

# Continued on next slide
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A simple physics application

# Continued from previous slide

lerr = 1.0
while (lerr >= 1.0e-3):

# Initialize particle
ptcl = ptcl + 1; x = 0.0; mu = 1.0; particle = (ptcl, x, mu)
(lsum,l2sum) = trackparticle(particle,(lsum,l2sum))

lmean = lsum/ptcl
if (ptcl > 1 and lmean > 0):

lvar = 1.0/(ptcl-1)*(l2sum/ptcl-lmean*lmean); lerr = sqrt(lvar)/lmean

tend = time.time(); dt = tend - tstart; duration = dt
hours = dt // 3600; dt = dt % 3600
mins = dt // 60; secs = dt % 60

print("\nParticles = %d" % (ptcl))
print "Tally = %.9e, error = %.9e\n" % (lmean, lerr)
print "Calculation took %d hr, %d min, %.3f seconds (%.3e s/sample)." % \

(hours, mins, secs, duration/ptcl)
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A simple physics application

Particles = 23858000
Tally = 4.023006958e-02, error = 9.999796680e-04

Calculation took 0 hr, 3 min, 45.704 seconds (9.460e-06 s/sample).

UNCLASSIFIED

LA-UR-20-XXXXX



What is Monte Carlo? UNCLASSIFIED Slide 44 of 45

More complicated physics applications

I In realistic neutron transport, there are seven independent variables
(3 space, 2 direction, 1 energy, 1 time).

I Many different reaction types occur between neutrons and nuclei.

I Analytic solutions are essentially impossible to find.

I Monte Carlo sampling from a many-dimensional independent variable
space is much more efficient than the usual discretization methods.
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Coming soon

I Tomorrow Avneet Sood will talk about LANL’s flagship code for
neutral-particle transport, MCNP. Many of the concepts of today’s
lecture will be mentioned.

I Questions?
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