

Abstract— Due to the distributed and asynchronous nature of

neural computation through low-energy spikes, brain-inspired

hardware systems offer high energy efficiency and massive

parallelism. One such platform is the IBM TrueNorth

Neurosynaptic System. Recently, TrueNorth compatible

representation learning algorithms have emerged, achieving close

to state-of-the-art performance in various datasets. However, its

application in temporal sequence processing models such as

recurrent neural networks (RNNs) is still only at the proof of

concept level. There is an inherent difficulty in capturing temporal

dynamics of an RNN using spiking neurons which is only

exasperated by the hardware constraints in connectivity and

synaptic weight resolution. This work presents a design flow that

overcomes these difficulties and maps a special case of recurrent

networks called Long Short-Term Memory (LSTM) onto a spike-

based platform. The framework utilizes various approximation

techniques; activation discretization, weight quantization, scaling

and rounding; spiking neural circuits that implement the complex

gating mechanisms, and a store-and-release technique to enable

neuron synchronization and faithful storage. While the presented

techniques can be applied to map LSTM to any Spiking Neural

Network (SNN) simulator/emulator, here we choose the

TrueNorth chip as the target platform by adhering to its hardware

constraints. Three LSTM applications, parity check, Extended

Reber Grammar and Question classification, are evaluated. The

tradeoffs among accuracy, performance and energy tradeoffs

achieved on TrueNorth are demonstrated. This is compared to the

performance on an SNN platform without hardware constraints,

which represents the upper bound of the achievable accuracy.

Index Terms—Spiking Neural Networks, Recurrent Neural

Networks, Long Short-Term Memory, Neuromorphic Hardware

I. INTRODUCTION

In the past few years, artificial neural networks have

achieved close to and beyond human-level performance in

various representation learning tasks such as image

classification and pattern recognition. These neural networks

include processing elements which are inspired by neurons

which are the building blocks of our brain. The representation

learning tasks are carried out by feedforward networks with

varying connectivity (e.g. fully connected, or convolutional

connected) trained on static input data. However, these

feedforward neural networks are unable to build representations

and learn patterns of dynamic data where the series of data have

temporal dependencies. While recurrent neural networks

(RNNs) address this issue with feedback connections, it is

difficult to learn long temporal dependencies using vanilla

RNNs [1]. Long Short-Term Memory (LSTM) improves upon

RNN with a complex gated mechanism, which allows it to

selectively forget, remember and output information [2],

making it effective in capturing long-term temporal

dependencies. Thus, LSTM has become a prominent and

successful model for time-series processing. It has had recent

successes in applications such as machine translation [3], image

captioning [4], image generation [5], video to text [6], etc.

The aforementioned neural network architectures are highly

computationally intensive and power hungry as compared to

our brain. Whereas, spiking neural networks (SNN), which uses

spikes for communication and computations, has the potential

to be very efficient as each neuron works asynchronously in an

event-driven manner with sparse spiking activity. Thus,

converting these neural network architectures to SNNs can

greatly reduce their energy requirements.

However, it is inefficient to implement SNNs on traditional

Von Neumann architecture due to the performance gap between

memory and processor. This has led to the advents of energy-

efficient large-scale neuromorphic hardware that enables low

power implementation of large-scale neural networks for real-

time applications. One of the examples is IBM’s Neurosynaptic

Processor, “TrueNorth”. Operating in the spiking-domain,

TrueNorth has achieved close to state-of-the-art results in

various pattern recognition tasks [7] with very high energy

efficiency. Converting pre-trained network to an SNN has also

produced good results in pattern recognition [8] on platforms

other than TrueNorth. However, almost all of these applications

aim at non-recurrent networks, such as convolutional neural

Amar Shrestha, Khadeer Ahmed, Yanzhi Wang, David P. Widemann, Adam T. Moody, Brian C. Van

Essen and Qinru Qiu, Member, IEEE

Modular Spiking Neural Circuits for Mapping

Long Short-Term Memory on a Neurosynaptic

Processor

A. Shrestha is with the Department of Electrical Engineering and

Computer Science, Syracuse University, NY 13224 USA (email:

amshrest@syr.edu)
K. Ahmed was with the Department of Electrical Engineering and

Computer Science, Syracuse University, NY 13224 USA during the time of

the work (email: kahmed@syr.edu)
Y. Wang is with the Department of Electrical Engineering and Computer

Science, Syracuse University, NY 13224 USA (email: ywang393@syr.edu)

D.P. Widemann, A.T. Moody and B.C. Van Essen are from Lawrence
Livermore National Laboratory, Livermore, CA 94551 USA (email:

widemann1@llnl.gov, moody20@llnl.gov, vanessen1@llnl.gov)

Q. Qiu is with the Department of Electrical Engineering and Computer
Science, Syracuse University, NY 13224 USA (email: qiqiu@syr.edu)

This is an extended version of a conference paper presented in ICCAD
2017 [10].

This work is partially supported by the National Science Foundation under

Grants CNS-1739748.

networks. Capturing temporal dynamics of a recurrent network

using spiking neurons is inherently difficult. With added

hardware constraints in connectivity and synaptic weight

precision, implementing recurrent neural networks (RNNs) for

temporal sequence processing in spike-domain is still at the

proof of concept level [9].

This paper presents a design flow that overcomes the

aforementioned difficulties and maps LSTM, a special case of

RNN, onto a spike-based platform, and implement it using the

TrueNorth processor. The main contributions of this work are

summarized as the following, (1) A modular approach is

presented that converts a standard LSTM to a Spiked-based

LSTM and incrementally maps it onto a neurosynaptic

processor. (2) To have a faithful representation of inputs,

outputs and internal activation of an LSTM in spike-domain,

we adopted an encoding heuristic to maintain the consistency

of spike representation throughout the network. (3) Novel

neural circuit designs are presented that approximate the

sigmoid and hyperbolic tangent functions. The relationship

between stored membrane potential, the random firing

threshold, and the firing rate is analyzed. (4) To synchronize the

gated modules and achieve recurrent processing in the Spike-

based LSTM, we developed a store-and-release mechanism

using locally generated and globally consistent store and release

clock spikes.

This paper is an extended version of [10]. We extend our

previous work by (1) integrating a balanced weight quantization

[11] technique, which rounds to single decimal place in the

training, to minimize the rounding-off error of weights during

the hardware mapping, (2) replacing the scaled-input technique

with scaled-activation technique to prevent reducing input’s

precision during the weight scaling, (3) adding experimental

results of the spiked-based LSTM on an SNN platform with

full-precision weights to analyze the impact of weight

quantization on performance degradation, and (4) adding

experimental results of a new application on question

classification.

The rest of the paper is organized as the following: Section

II provides the necessary background including LSTM and the

TrueNorth architecture; Section III provides the details of the

proposed implementation which includes the temporal behavior

and encoding schemes (Section III.A and III.B), spike-based

constituent modules (Section III.C) and the mapping algorithm

(Section III.D); Section IV discusses the constrain-then-train-

then-approximate workflow and Section V presents the

experimental results and analysis.

II. BACKGROUND

A. LSTM

Recurrent neural networks learn sequential information by

considering the information from previous time steps with the

help of feedback connections. The loop, as shown in Figure

1(a), allows information to be passed from one step of the

network to the next thus allowing the information to persist.

Recurrent networks are trained using backpropagation-

through-time which requires unrolling the recurrent network

over the length of the sequence. The result is a very deep

network where gradients vanish or explode [1] preventing

vanilla RNNs to learn very long sequences. LSTMs circumvent

this problem with their specialized structure of gates which

regulate persistence of current information in the cell state, and

addition or removal of new information to the cell state. The

gates are composed of a sigmoid and a pointwise multiplication

operation and are named input, forget and output gates as per

their purpose to add, remove and output information from the

cell state. This makes LSTM successful in tasks like language

modeling, machine translation, speech recognition,

image/video captioning etc.

There are many variations of LSTM such as Gated Recurrent

Units (GRU) [12], Peephole LSTM [13], etc. In this work, we

aim at a standard LSTM model [2], which is shown in Figure

1(b). A single standard LSTM has forget, input and output

gates, which are sigmoid activations, and hyperbolic tangent

activations to squash incoming inputs and outgoing outputs. Its

output ht is generated based on the equations shown in Figure

1(c), where ft, it and ot are the forget, input and output gate

vectors, ct and ht are cell state and output vectors, and Wf, Wi,

Wo and WC are trained weight matrices.

B. TrueNorth Architecture

This work uses TrueNorth neurosynaptic processor as an

example hardware platform to discuss the mapping of SNN

based LSTM. The TrueNorth processor is a highly efficient,

scalable and flexible neuromorphic hardware. It consists of

4096 cores [14] each with 256 neurons and 256 axons

connected via 256x256 directed synaptic connections, thus

providing 1 million programmable neurons and 268 million

configurable synapses. The communication between those

neurons is in the form of spike events represented as address

event representation (AER). These spike events are sparse in

time. Since the active power is proportional to firing activity,

the event-driven nature of the architecture gives very high

energy efficiency. In the normal mode, membrane potential is

processed, and spike events routed asynchronously inside the

chip within 1 ms timesteps called a tick. A spike generated by

a neuron can target any single axon on the chip. Figure 2(a)

shows a structural view of a TrueNorth core with axons as input

and neurons as outputs and synapses linking them. This

representation is similar to a traditional neural network. Figure

 (a) (b)

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 𝐶′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′𝑡 ℎ𝑡 = 𝑜𝑓 ∗ tanh(𝐶𝑡)

(c)

Figure 1(a)Unrolled RNN (b)Standard LSTM (c) LSTM equations [10]

2(b) shows a functional view of a core as a crossbar where

horizontal lines are axons, cross points are individually

programmable synapses, vertical lines are neuron inputs, and

triangles are neurons. Spikes flow from axons via active

synapses to neurons.

The synaptic connections and their weights between axons

and neurons are captured by a crossbar matrix at an abstract

level where the weight of the corresponding synapse in the

crossbar is selected from 4 possible integers determined by the

axon type at each neuron. A Corelet [15] describes a network

on the TrueNorth cores by encapsulating all details except

external inputs and outputs as shown in Figure 2(c). The

creating, composing and decomposing of corelets is done in an

object-oriented Corelet Language in the programming

paradigm for TrueNorth called Corelet Programming

Environment (CPE). Programming TrueNorth includes creating

corelets with specific neuron behaviors, synaptic connections,

weights and delays to achieve the desired functionalities.

Multiple corelets can be combined through their input and

output connectors.

III. SPIKING NEURAL MODULES FOR LSTM

Most implementations of SNNs [14] [16] [17] including the

TrueNorth processor have event driven neuron operation and

asynchronous inter-core communication. It reduces the

hardware active power, however, also imposes a fundamental

challenge to realize the LSTM. As shown in Figure 1(b), the

inputs and outputs of an LSTM requires synchronization. The

output vector ℎ𝑡−1 in time step 𝑡 − 1 must concatenate with the

input vector 𝑥𝑡 in time step 𝑡 to calculate the new output vector.

This level of synchronization requires special neural circuits on

an event-driven hardware platform. Other challenges include

the difficulty in representing both positive and negative

numerical values with spikes, and a lack of direct support of

non-linear activation functions such as sigmoid and tanh in the

spike domain.

In this section, we address the aforementioned challenges and

present some key techniques that facilitate Spike-based LSTM

and its mapping onto any crossbar-based neurosynaptic

processor. We will first discuss how values are represented

using different spike encoding schemes. Then we will describe

the spike-based constituent modules of LSTM and how to

maintain the temporal relation of these modules’ activities with

specifics for TrueNorth Corelet configurations. Finally, we

present the mapping algorithm.

A. Temporal Behavior of Neurons in LSTM

Synchronization is necessary to maintain the temporal

dynamics of recurrence in a recurrent network. It is also the key

to enable the complex gating mechanism of the LSTM, which

requires the synchronized interactions between inputs, gate

outputs and the cell state feedback. Given the inherent difficulty

in representing this synchronization with asynchronously

spiking neurons, we propose a store-and-release mechanism. It

is implemented with special neural circuits where neurons

operate in two modes, store and release. During the store mode,

the neurons gate their outputs, receives input spikes and

accumulate their membrane potential. During the release mode,

the neurons issue output spikes at an average rate proportional

to its membrane potential either stochastically or in a burst. Two

internal clock signals control when a neuron enters or exits the

store or release modes by applying a high negative or positive

potential respectively. How to configure and connect

asynchronous neurons to form such synchronous neural circuits

will be discussed in Section III.C.

Using the store-and-release mechanism, the entire LSTM

network is divided into three partitions as shown in Figure 3(a)

and (b). They are referred to as input, processing and output

partitions and color-coded using blue, red and green

respectively. The system operation has two phases, processing

phase and I/O phase. Each partition must only generate output

spikes during its designated phase, i.e. processing partition

spikes during the processing phase and input and output

partitions spike during the I/O phases. Please note that during

the I/O phase, if the output partition is working on the ith data,

then the input partition is working on the (i+1)th data.

The output of each functional module is a spike train. These

spike trains are buffered at every partition and then released

during the associated phase. Except for the input partition, all

inputs of the processing and output partitions are buffered using

the store-and-release neurons which are shown as white circles

in Figure 3 (a). The inputs to the processing partition store

during the I/O phase and release in the processing phase, while

the inputs to the output partition store in the processing phase

and release in the I/O phase. For the input partition, one of its

inputs ℎ𝑡−1 is released in the I/O phase, and the other input, 𝑥𝑡,
is an external signal. By careful control, we can make sure that

xt is released only during the I/O phase as well. Thus, we can

essentially overlap the activities of input and output partition in

 (a) (b) (c)

Figure 2(a)Structural view (b)Functional view of a core (c) corelet [10]

the I/O phase. The 𝑥𝑡 and ℎ𝑡−1 go through the input partition

and being buffered at the input of the processing partition

during the I/O phase. During the implementation, the store-and-

release neurons will be merged into their subsequent function

modules and be implemented as store-and-release tanh or store-

and-release sigmoid, as we will present in Section III.C. The

only exception is the store-and-release neurons before the dot

product, which will stay stand-alone.

Figure 3(c) shows how these three partitions operate

alternatively. The duration of each phase is referred as phase

length (PL). The input partition works on the matrix-vector

multiplications to generate the operands for the forget, input

and output gates during the I/O phase. They are buffered by the

store-and-release neurons at the input of the processing

partition. In the processing phase, these neurons release what

they have stored, and the processing partition generates the cell

state (𝐶𝑡) and partial output (𝑜𝑡), which are buffered by the

store-and-release neurons at the input of the output partition. In

the next I/O phase, the 𝐶𝑡 and 𝑜𝑡 is released and used to

calculate the ℎ𝑡, which is then further forwarded to the input

partition to calculate the matrix-vector multiplications again.

The transition of phases are maintained through local clock

(globally consistent) spikes which produce the store and release

spikes for all the store-and-release capable neurons.

B. Encoding and Spike Representation

Since spikes are binary (on-off), they are inherently difficult

to be used to represent both positive and negative values. This

is another challenge as in an LSTM it is difficult to avoid

numerical values (i.e. inputs, outputs and activations) ranging

in both negative and positive directions as the weights learnt

can be negative and also the tanh function outputs values in the

range -1 to 1. A simple solution is to constrain the values during

training by replacing the hyperbolic tangents with ReLUs,

which have no negative range and have an open-ended positive

range. ReLU improves performance of vanilla RNNs [18]

because of to its ability to stop vanishing gradients. However,

vanishing gradients is no longer a problem in LSTM due to its

gating scheme. On the contrary, using unbounded activation

functions like ReLU in an LSTM can cause it to diverge, thus

resulting in worse performance [19]. Therefore, we choose to

keep the Tanh function but solve the data range problem by

using positive and negative channels of spikes respectively.

The inputs and outputs of an LSTM are rate-coded where the

firing rate is determined by the phase length (𝑃𝐿) and the max

value (𝑚𝑥) to be represented in that phase. If we scale up the

trained weights with a scaling factor 𝑠𝑓, the input and output

should be scaled down by the same factor. Therefore, the

number of spikes (nS) needed to represent value 1 can be

calculated as:

𝑛𝑆 = 𝑃𝐿 (𝑚𝑥 ∗ 𝑠𝑓)⁄ .

To represent a numerical value Iv, the spike firing rate is set

to (𝐼𝑣 ∗ 𝑛𝑆) 𝑃𝐿⁄ , and n spikes in a phase represent the value:

𝑅𝑃𝑉𝑎𝑙𝑢𝑒 =
𝑛

𝑛𝑆
 .

The choice of 𝑚𝑥, phase length PL, and scaling factor sf

defines the precision of values that can be represented by

spikes, as the minimum resolution is one spike, which

represents 1/𝑛𝑆 (i.e. (𝑚𝑥 ∗ 𝑠𝑓) 𝑃𝐿⁄) in terms of numerical

value. For example, let the phase length 𝑃𝐿 = 100 and max

value in the phase be 𝑚𝑥 = 5 with scaling factor 𝑠𝑓 = 1. The

number of spikes needed to represent value 1 is 𝑛𝑆 =
100 (5 ∗ 1) = 20⁄ . That means a single spike in that phase

represents a value of 1/20. So, if we want to represent a value

𝑅𝑃𝑉𝑎𝑙𝑢𝑒 = 3, then we expect to have 3 ∗ 𝑛𝑆 = 60 spikes in

the phase. Scaled weights can also be balanced by scaling the

activation which we discuss in Section IV.C.

All internal variables are rate-coded, except 𝐶𝑡 . We found

that the cell state 𝐶𝑡 needs to have more accurate representation,

because any error on this variable will be accumulated due to

the feedback path. The stochastic rate coding is convenient

when implementing multiplication as it requires only an AND

function, however, it introduces not only rounding error but also

random error due to stochastic sampling. Previous work shows

that the spike burst code, where the numerical value is

represented by the number of spikes that burst in a window, has

a much higher correlation with the numerical value to be

represented [20]. Therefore, we encode 𝐶𝑡 using spike burst

code and use spike-burst neurons for the sum function.

C. Spike-based LSTM Constituent Modules

Figure 1(b) shows a general LSTM unit consisting of the

sigmoid gates, hyperbolic tangent, dot products and sum. To

implement a Spike-based LSTM (S-LSTM), we approximate

these modules using spiking neurons. The structure of these

modules can be implemented on any spike-based platform. On

z

(a) (b) (c)

Figure 3. (a) LSTM color coded based on operation phase

(b) LSTM equations color coded to represent operations in specific phases (c) 3 phases and partial pipelining [10]

a crossbar-based neurosynaptic hardware, these modules will

be mapped across cores based on the consideration of the fan-

in and fan-out and other hardware constraints. On TrueNorth,

these modules are in the form of corelets. The corelets will be

further connected to form the full spike-based LSTM (S-

LSTM.)

1) Store-and-Release neurons

Store and release mechanism is implemented using a neuron

with a high negative threshold where it saturates. The store and

release clocks are two inputs associated with large negative and

positive weights respectively. A spike on the store clock turns

on the store mode by pushing the membrane potential to the

negative threshold, during its membrane potential rises as it

accumulates the input spikes. The negative initial state

guarantees that the raised membrane potential is still below the

firing threshold, therefore, no output spikes are generated

during the store mode. A spike on the release clock pushes the

membrane potential to 0 or higher if input spikes are received

during the store mode, and the neuron starts generating output

spikes.

A drawback of the above scheme is that the neuron is unable

to collect negative spike at the beginning of the store mode as

its membrane potential is already at the negative threshold

where it saturates. We get around this problem by issuing a pre-

charge spike on the release clock immediately upon entering the

store mode to push the membrane potential to an intermediate

level between the negative threshold and 0 to allow collecting

negative spikes. Figure 4 shows an example where the neuron

enters the store mode through a negative potential of −250 and

enters release mode through two positive potentials of +100

administered by the store (red), pre-charge (yellow) and release

(blue) clock spikes respectively. Figure 5 shows all the clock

signals in the S-LSTM.

At the beginning of the release phase, the neuron’s

accumulated membrane potential (AMP) equals to the total

number of net input spikes that it collected during the store

mode. This is preserved throughout the release phase. The

𝑅𝑃𝑉𝑎𝑙𝑢𝑒 stored in the neuron can be calculated as 𝑅𝑃𝑉𝑎𝑙𝑢𝑒 =
𝐴𝑀𝑃 𝑛𝑆⁄ . To generate the output spikes, a random number

drawn in the range [0, RThR], where RThR stands for the

random threshold range, becomes the threshold. If this number

is less than the AMP, then an output spike is generated. During

a phase window PL, the expected number of spikes generated

in this way is 𝑃𝐿 × 𝐴𝑀𝑃 𝑅𝑇ℎ𝑅⁄ . When we set RThR to PL, the

number of the output spikes equals to the total number of net

input spikes, and the neuron relays input to the output without

any transformation. In the actual implementation, almost all

store-and-release neurons are merged to its subsequent sigmoid

and tanh gate. 𝑅𝑇ℎ𝑅 should be selected differently due to the

squash and linear transformation of these functions. More

details will be given in Section III.C.3).

2) Input Collection Module (IC Module)

In an LSTM, the inputs to each gate are fully connected. As

in any fully connected layer in a neural network, there is a

matrix-vector multiplication between inputs and the weight

matrices. From the LSTM equations, we see that the weight

matrices 𝑊 for each gate are multiplied by the input vector 𝑥

and the previous time-step’s output vector ℎ𝑡−1 respectively

along with the biases. We develop a parameterized module

called input collection (IC) module to implement such matrix-

vector multiplication. As shown in Figure 6(d), each input and

output are represented using two channels to accommodate both

positive and negative values. Specifically, for TrueNorth,

which allows for maximum four possible integer weights per

neuron in a core, we decide to use 4 axons with weights 1,2,4

and 8 to approximate weights up to +15 in each channel. The

absolute weight is assigned to the positive or negative output

channel based on the resultant sign of the product of input and

axon weight. Given the positive (+) and negative (−) channels

of input x and output y, to calculate y = ax, if a is positive, then

y− will be connected to x−, and y+ be connected to x+.

Otherwise, if a is negative, then y− will be connected to x+, and

y+ be connected to x−. For both cases, the synaptic weights of

the connections are |a|. For example, in Figure 6 (d), the

connection shows the relation that: 𝑜𝑢𝑡1 = 5 × (𝑖𝑛1) , and

𝑜𝑢𝑡2 = (−3) × (𝑖𝑛1). Hence our two-channel weight mapping

with 4 axons is capable of approximating 5-bit signed precision

weights instead of 4-bit precision [21] on the TrueNorth chip.

The above design results in positive and negative outputs in

their respective channels. We use ReLU neurons for the output,

which produces bursts of spikes equal to the accumulated

membrane potential when the threshold is 1. The two-channels

(i.e. positive and negative) are used in every input of the

sigmoid and tanh gates in the processing partition, which is then

be merged to achieve the net results.

This module is also parameterized to accommodate

matrices/vectors [𝑊𝑖 , 𝑊ℎ , 𝑋 , 𝑌] of various sizes and the

mapping scales across multiple cores depending on the sizes of

those matrices/vectors.

3) Gate Modules

Due to minimal cut points and linear interpolation between

those cut points, piece-wise linear functions are

Figure 5. Store and release clock spikes for all gates [10]

 , , , PrCh/Release

 , , , Store

 , PrCh/Release

sum, Store

PL 2PL 3PL 4PL 5PL 6PL
Ticks

Figure 4. Store-and-release mechanism [10]

computationally efficient [22]. And these cut points and

linearity are more conducive than a smooth non-linearity to rate

coding where the spiking rate determines the computed values.

Spiking rates of these gate modules have definite max and min

(0 and 1) and within this range, the rate is linearly proportional

to the number of input spikes or the accumulated membrane

potential of a neuron.

LSTM uses sigmoid gates to allow the flow of input, cell

state and output, and uses tanh to squeeze the inputs and outputs

to a range. To implement this activation function using neurons

with linear responses, we develop modules which produce a

hard sigmoid and a hard tanh behavior with store and release

capability and use them during both training and recall.

The original sigmoid function as shown in Figure 7(a) is

given as

𝜎(𝑥) =
1

1+𝑒−𝑥
 (1)

Equation (1) can be represented as a hard sigmoid using a

piece-wise linear function with slope msig.

𝜎(𝑥) = ax(0, in(1, 𝑥 ∗ 𝑚𝑠𝑖𝑔 + 0.5)) (2)

Similarly, the original hyperbolic tangent function as shown in

Figure 7(b) is given in (3),

𝑡𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
 (3)

We represent (3) as a piece-wise linear function with slope

mtanh given as

𝑡𝑎𝑛ℎ(𝑥) = ax(−1, in(1, 𝑥 ∗ 𝑚𝑡𝑎𝑛ℎ)) (4)

As positive and negative channels are used to represent the

positive and negative values, we rewrite (4) as:

{
𝑡𝑎𝑛ℎ(𝑥)(−) = | ax(−1,𝑚𝑖𝑛(0, 𝑥 ∗ 𝑚𝑡𝑎𝑛ℎ))|,

𝑡𝑎𝑛ℎ(𝑥)(+) = ax(0, in(1, 𝑥 ∗ 𝑚𝑡𝑎𝑛ℎ)) ,
 (5)

During the release mode, spikes generated by the gate

modules are rate-coded. The value of (2) and (4) are encoded

by the firing rates in a phase window. These activation

functions are implemented using stochastic neurons, which

generate stochastic rate-coded output. A stochastic neuron

maintains a membrane potential m, which is the sum of its

weighted inputs plus any possible offset. It firing threshold is

generated as a uniformly distributed random number in the

closed interval [0, RThR], where RThR is the random threshold

range. It is not difficult to see that the probability that an output

spike will be generated can be calculated as

𝑦 =
𝑚

𝑅𝑇ℎ𝑅
 (6)

where y is the firing rate (i.e. the probability of 𝑥 >
𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑟𝑎𝑛𝑑𝑜𝑚(𝑅𝑇𝐻𝑅)) which represents the effective

output of the activation function.

So, from (2) and (6), hard sigmoid can be rewritten as

𝜎(𝑥) = in(1, ax (0,
𝐴𝑀𝑃+𝑜𝑓𝑓𝑠𝑒𝑡

𝑅𝑇ℎ𝑅
)) (7)

where 𝑥 is the RPValue (which equals to 𝐴𝑀𝑃/𝑛𝑆)

accumulated from the input, AMP is the membrane potential

accumulated from neuron inputs and offset is the offset

membrane potential applied. The firing rate saturates at 0 when

𝐴𝑀𝑃 + 𝑜𝑓𝑓𝑠𝑒𝑡 ≤ 0 and 1 when 𝐴𝑀𝑃 + 𝑜𝑓𝑓𝑠𝑒𝑡 ≥ 𝑅𝑇ℎ𝑅 ,
thus producing the piece-wise linear sigmoid activation. Since

𝑥 in (2) is the RPValue (𝑖. 𝑒. = 𝐴𝑀𝑃/𝑛𝑆) accumulated from the

input, by setting 𝑅𝑇ℎ𝑅 = 𝑛𝑠 𝑚𝑠𝑖𝑔⁄ , and 𝑜𝑓𝑓𝑠𝑒𝑡 =

0.5𝑛𝑠 𝑚𝑠𝑖𝑔⁄ , we can ensure that (7) and (2) are equivalent.

Similarly, from (4) and (6), hard tanh can be rewritten as

(a) (b)

(c) (d)

Figure 6. (a) Sigmoid module (b) Tanh module

(c) Dot product module (d) IC module [10]

(a)

(b)

(c)

Figure 7(a) Sigmoid (b) Hyperbolic Tangent activations
(c) Dot product through logical AND of spikes [10]

𝑡𝑎𝑛ℎ(𝑥) = a x (−1, i n (1,
𝐴𝑀𝑃

𝑅𝑇ℎ𝑅
)) (8)

For both channels, the firing rate saturates at 0 when 𝐴𝑀𝑃 ≤
0and saturates at 1 when 𝐴𝑀𝑃 ≥ 𝑅𝑇ℎ𝑅, thus producing the

piece-wise linear hyperbolic tangent activation. By setting

𝑅𝑇ℎ𝑅 = 𝑛𝑠 𝑚𝑡𝑎𝑛ℎ⁄ we can ensure that (8) and (2) are

equivalent.

The choice of RThR for both sigmoid and hyperbolic tangent

depends on the slope of the linear portions of these activation

functions in (4) and (6), and that slope depends on the choice of

steepness and scaling of the activation function. Details of the

choice of RThR are discussed in Section IV.A.1) and IV.C.

4) Dot Product Module

The inputs of the dot product module are two-channeled

inputs 𝐶𝑡 , which is burst coded, and a rate-coded sigmoid as

shown in Figure 6(c). The dot product allows the gating

function to regulate the flow of information. Because the output

of sigmoid function has numerical values between 0 and 1 and

is stochastically rate-coded, we explore the stochastic nature of

the input and perform the multiplication using stochastic

computing. A simple logical AND of the two spike streams is

used as the multiplication.

An example is given in Figure 7(c). In a window of 10 ticks,

there are 5 spikes from the sigmoid, which represents 𝜎 = 0.5,

and 4 spikes in the in1, representing 𝑖𝑛1 = 0.4. The logical

AND produces 2 spikes at the output representing 𝑜𝑢𝑡1 = 0.2.

The logical AND operation can be easily realized using an

integrate and fire neuron with threshold 2, by setting its input

synapses weight and leak to be +1.

D. Mapping Algorithm

In crossbar-based neurosynaptic hardware, the number of fan-

ins and fan-outs are limited for example a single TrueNorth core

consists of 256 neurons and axons. Thus, there is a distinct fan-

in and fan-out constraint. To deal with this constraint and freely

map LSTM networks of arbitrary sizes, we develop an

incremental mapping algorithm. The IC module’s size is

dependent on the number of LSTM units as well as the number

of inputs. Thus, they are mapped and extended across two

dimensions (axons and neurons). Whereas the sizes of other

modules are only dependent on the number of LSTM units.

Thus, these modules are mapped and extended only across one

dimension (axons). As shown in Figure 8, the mapping

algorithms (Algorithm 1 and 2) are incremental. New cores are

added only when the resources of the current core are filled up.

This results in the number of cores and average neuron density

(number of neurons used per core) increasing in steps of the

number of LSTM.

IV. WORKFLOW

The LSTM network can be directly converted to SNN

utilizing the spike-based constituent modules of LSTM, and the

encoding and spike representation schemes described in Section

3. However, the approximations, such as using a piece-wise

linear function to replace original sigmoid and tanh, and using

rate or burst coding to approximate real values, will give

approximation errors. Furthermore, most neurosynaptic

hardware has a precision limitation on the synaptic weights.

This limitation is even more visible in TrueNorth which utilizes

integer weights. Thus, mapping this trained network onto

TrueNorth induces potential rounding errors. It is necessary to

constrain the network before and during training and

accommodate these constraints during implementation. In this

section, we will discuss the “constrain-then-train-then-

approximate” workflow that minimizes potential errors on SNN

conversion and hardware implementation. The discussion is

carried out using TrueNorth as an example hardware platform,

however, the workflow can easily be adapted for other

neurosynaptic chips.

A. Constrain

To avoid potential errors caused by various approximations

during the SNN conversion and hardware implementation, we

will consider these approximations in the training process as

types of constraints. This requires us to set a plan of how to

carry out the approximation before training the network. The

(a) (b)

Figure 8(a) Algorithm 1 (b) Algorithm 2 in action [10]

Algorithm 1. Sigmoid, Tanh, Dot product Mapping Algorithm

h = number of hidden units
addCore
numAxons = 0
for i = 1 to h
 add a respective module with n axons
 numAxons += n
 if numAxons > 256
 addCore
 numAxons = 0

Algorithm 2. IC Module Mapping Algorithm

h = number of hidden units
x = number of inputs
function ExtendCores
 addCore
 numNeurons = 0
 for I = 1 to h
 add 2 neurons each for f, i, o, i_tanh
 numNeurons +=8
 if numNeurons>256
 addCore
 numNeurons = 0

call ExtendCores
numAxons = 0
for i = 1 to (x+h)
 add 8 axons (4 each for +ve and -ve)
 make synaptic connections as per 4 axon

scheme
 numAxons += 8
 if numAxons > 256
 call ExtendCores
 numAxons = 0

plan includes which algorithm to be used for the approximation

and how to set parameters in the algorithm.

1) Steep Activation Functions

The rounding errors introduced by the rounded weights are

especially harmful when it propagates through the activation

functions. The small changes of the input are visible in the

output of an activation function if it falls in its linear operating

region. Thus, a steeper slope of the activation function reduces

the linear range of the input, hence, limits the propagation of

rounding errors.

In (2) and (4), 𝑚𝑠𝑖𝑔 and 𝑚𝑡𝑎𝑛ℎ represent the slopes of piece-

wise linear sigmoid and hard tanh respectively. To maintain the

same linear operating range for the sigmoid and tanh, we must

have mtanh=2*msig. Here, we choose 𝑚𝑠𝑖𝑔 = 1 and 𝑚𝑡𝑎𝑛ℎ = 2

during training and inference such that the linear operating

range for both sigmoid and tanh is from −0.5to +0.5 . The

constrained activation functions shown in Figure 7(a) and

Figure 7(b). For the gate modules in (7) and (8), the change in

the slope changes the choice of 𝑅𝑇ℎ𝑅.

2) Weight Quantization

Binary and ternary integer weights have been used to produce

close to state-of-the-art results for feed-forward network

architectures [23] [24], but both our preliminary work and the

existing research [25] show that it is difficult to train LSTMs

with binary and ternary integer weights. Recently quantization

methods have shown promising results for RNNs [26]. But with

these quantization methods, large performance degradation

occurs when quantizing weights to 2-bit or l-bit numbers. This

is accredited to the unbalanced distribution of the weights

across the quantized values which occurs when these

quantization methods employ uniform quantization on a bell-

shaped distribution of parameters with sporadic large outliers.

As shown in Figure 9(b) for 2-bit quantization, for the original

weights in Figure 9(a), there is a huge discrepancy between the

number of weights in the two middle quantized values and the

two outer quantized values. Thus, we utilize a balanced

quantization approach as proposed in [27] [11] which focuses

on producing balanced distributions of quantized values of data

rather than preserving the outliers. The goal is to produce

weights uniformly distributed across the quantized values as

shown in Figure 9(c).

Consider a random variable w in a close interval [0, 1]. As an

entry in the weight matrix, w follows a bell-style distribution as

shown in Figure 9 (a). Using the traditional k-bit uniform

quantization, the quantized value 𝑄𝑘(𝑤) can be calculated as:

𝑄𝑘(𝑤) =
1

2𝑘 − 1
⌊(2𝑘 − 1)𝑤 +

1

2
⌋

The distribution of 2-bit uniformly quantized value of

variables in Figure 9 (a) is shown in Figure 9 (b). As we can see

a large portion of variables are quantized into the 2 levels in the

center. This effectively reduces the data precision from 2-bit to

1-bit.

A k-bit balanced quantization of w is calculated as

𝑄𝑘
𝑏𝑎𝑙(𝑤) = 𝑄𝑘 (

𝑤`

𝑠𝑐𝑎𝑙𝑒
) ∗ 𝑠𝑐𝑎𝑙𝑒 (9)

where 𝑠𝑐𝑎𝑙𝑒 = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑊)) ∗ 2.5 is the approximation of

the parameter dependent adaptive threshold 3 ∗

𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑠(𝑊)) to produce an auto-balancing effect [27] at

each layer using a standardization transform to produce 𝑤` with

a close interval [0,1] from 𝑤 using the following equation:

𝑤` = ax (−0.5, in (0.5,
𝑤

𝑠𝑐𝑎𝑙𝑒
)) + 0.5

Scaling these weights and rounding to integer can produce

rounding-off errors. Thus, to minimize the rounding-off error

from scaling and rounding, we introduce a rounding in the

quantization flow during training which rounds the weights to

the nth decimal place given as the following:

𝑅𝑄𝑘
𝑏𝑎𝑙(𝑊) = 𝑟𝑜𝑢𝑛𝑑_𝑛𝐷(𝑄𝑘

𝑏𝑎𝑙(𝑊)) (10)

where 𝑟𝑜𝑢𝑛𝑑_𝑛𝐷(𝑥) =
𝑟𝑜𝑢𝑛𝑑_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥∗10𝑛)

10𝑛
 . This rounding

enables scaling by 10n and produces integer weights and thus

removes rounding-off error.

 The balanced quantization method combined with rounding

during training can be utilized to get trained weights at any

fixed-point quantization level for an inference hardware that

utilizes fixed-point weights.

With weight quantization, along with minimizing rounding

error, the number of axons can be reduced from 4 to 2 to allow

for more efficient usage of the axons.

B. Train

The derivatives of the quantization function in (9) and (10)

equal to zero or undefined as the function 𝑄𝑘(𝑋) and

𝑅𝑄𝑘
𝑏𝑎𝑙(𝑥) is non-differentiable. This causes hindrance in

training the network using backpropagation. So, we adopt the

(a)

 (b) (c)
Figure 9 Histograms for (a)Original (b)Standard quantization (2-bit) (c)

Balanced quantization weights (2-bit)

Straight Through Estimator (STE) proposed in [28] [29], and

substitute the gradient with respect to the quantized value (
𝜕𝑐

𝜕𝑦
)

for the gradient of the original value (
𝜕𝑐

𝜕𝑥
) as if propagating the

gradient through a linear function. As STE produces

approximation noises while computing gradients, we limit it

only to the necessary functions that are non-differentiable. In

(9), the STE method is applied to the floor function, and the

forward and backward propagation of the floor function is

defined as the following

𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 𝑦 ← 𝑓𝑙𝑜𝑜𝑟(𝑥)

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑:
𝜕𝑐

𝜕𝑥
←

𝜕𝑐

𝜕𝑦

Similarly, in 𝑅𝑄𝑘
𝑏𝑎𝑙(𝑥)of (10), the STE method is applied to

the round to integer function and 𝑖ts forward and backward

propagation is defined as follows.

𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 𝑦 ← 𝑟𝑜𝑢𝑛𝑑_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥)

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑:
𝜕𝑐

𝜕𝑥
←

𝜕𝑐

𝜕𝑦

 Overall, the modified backpropagation algorithm is given in

Algorithm 3. Here WQ is the quantized weight after applying

(10). As we can see, the forward propagation is performed using

balanced quantized weight coefficients, the weight is also

updated based on the derivative calculated with the respect of

the quantized weights.

C. Approximate

After constraining and training the network, we have the

quantized weights trained with nth decimal precision. Now, to

implement the trained network on a constrained TrueNorth

chip, some linear transformation is necessary.

As the synaptic weights in TrueNorth and many other

neuromorphic hardware only have integer precision, it is

necessary to scale the weights and round them to integer values.

With nth decimal precision, the scaling is simplified by using

scaling factor 𝑠𝑓 = 10𝑛 , which directly generates integer

weights.

To keep the output unchanged, it is necessary to counter the

scaling up of the weights by a scaling-down using the same

scaling factor. The weighted sum of the IC module can be

written as: 𝑥 = ∑𝑊 ∗ 𝐼𝑛𝑝𝑢𝑡 + 𝑏. In our previous work [10],

when the weights W and b is scaled up by sf, we scaled down

the Input by sf to preserve the integrity of y. We call this

mechanism the scaled-input approach. This scaling mechanism

is straightforward but reduces the precision of the input, which

is already low given that the inputs are represented in terms of

rate-coded spikes. For example, in a set up with PL=50 and

mx=5, it takes 10 spikes to represent a value “1”, hence the data

precision is 1/10. When the scaling factor sf is set to 10, data

precision is drastically degraded to 1. Thus, in the previous

work, it was necessary to use minimal scaling factor.

Because the outputs of the IC module always go through an

activation function, instead of scaling down the inputs of the IC

module, in this work we integrate the down scaling factor into

the activation function and we call this scaled-activation

approach. This is similar to scale the output x of the IC module

instead of its input. Since x is an accumulation of the inputs, it

has a larger range than each individual input, and scaling x

usually has less impact on the accuracy than scaling each input

individually. This scaling will preserve network accuracy and

allow the use of larger scaling factor.

In Section III.C.3), we know that the activation functions (i.e.

sigmoid and hyperbolic tangent) are formulated in terms of

AMP and RThR. We also know that by setting 𝑅𝑇ℎ𝑅 =
𝑛𝑆/𝑚𝑠𝑖𝑔 and 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.5𝑛𝑠 𝑚𝑠𝑖𝑔⁄ , we can use a stochastic

neuron to implement the hard sigmoid function given in

Equation (2). For scaled-activation scaling, we set 𝑅𝑇ℎ𝑅 =
(𝑛𝑆 ∗ 𝑠𝑓)/𝑚𝑠𝑖𝑔, and set the 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.5 ∗ 𝑅𝑇ℎ𝑅.

Similarly, without scaling we set 𝑅𝑇ℎ𝑅 = 𝑛𝑆/𝑚𝑡𝑎𝑛ℎ to

implement the hard hyperbolic tangent function using a

stochastic neuron. However, with activation-scaling, the

random threshold range should be set to 𝑅𝑇ℎ𝑅 = (𝑛𝑆 ∗
𝑠𝑓)/𝑚𝑡𝑎𝑛ℎ.

The blue lines in Figure 7(a) and (b) plot the activation

function with the scaling factor sf = 10 when implemented using

a TrueNorth neuron. Compared to the original function and the

constrained function, it has a steeper slope due to the scaling

factor. As we utilize stochastic neurons to approximate the

constrained activation functions, the quality of the

approximation is highly dependent on random threshold

generation and the length of the window over which the

approximation is made. In Figure 7(a) and (b), the

approximated activation functions using TrueNorth have some

irregularities which can be attributed to imperfect random

number generation for the random threshold and limited

window length for the approximation.

V. EXPERIMENTS

In the following experiments, we compare the Spike-based

LSTM mapped on TrueNorth against the standard LSTM

implemented using Keras with TensorFlow backend. We use

spike-based LSTM simulated on a full precision SNN simulator

[30], as an ideal case scenario as no scaling and rounding are

necessary. Its result is denoted as FPW-SNN. Please note that

for FPW-SNN, the synaptic weights are not quantized,

however, the neuron activities are quantized to 1/ns precision.

All other results with pre-fix S-LSTM are results from

TrueNorth. The results with pre-fix LSTM are results from a

Algorithm 3. Training an L-layer LSTM network with

quantized weights

Input: A batch of inputs(I) and targets(Y), cost

function(C), current weights(W) and current learning

rate(η)

Forward Propagation(W, I):

 Balanced Quantization:

 For l=1 to L

 𝑊𝑙
𝑄 ← 𝑅𝑄𝑘

𝑏𝑎𝑙(𝑊𝑙)
Standard forward propagation(WQ , I)

Backward Propagation(W, Y, C):

 Standard backward propagation(WQ, Y, C)

𝜕𝑐

𝜕𝑊
←

𝜕𝑐

𝜕𝑊𝑄 given by STE

 W = UpdateParameters(W,
𝜕𝑐

𝜕𝑊
, η)

non-spiking LSTM implemented on Tensorflow.

For all experiments, the network is comprised of one hidden

layer of LSTM units. The networks are trained with two setups:

scaled-input scaling without weight quantization and scaled-

activation scaling with 2-bit weight quantization. The

quantization is done with single decimal place precision (n=1)

such that we set sf=10 to achieve quantized integer weights.

And to account for the large sf which reduces the slope, we train

with a steep slope for both sigmoid (msig=1) and tanh (mtanh=2).

The networks are trained also with weights constrained to the

range -1 to 1. Spike-based LSTM is set to mx=5 and we vary

the phase lengths to show how data precision can affect the

performance, speed and accuracy. A longer phase length means

high precision of the internal data of the LSTM.

A. Benchmark Applications

1) Parity check / XOR problem

Parity check of a bit stream is a classic problem that is

difficult to solve with a standard feed-forward network, but

simple to solve with an RNN. In this problem, we have to

determine at each input of a sequence of binary inputs whether

the number of 1’s observed so far in the sequence is even or

odd. Here, we train LSTM with one hidden layer containing 2,

4 and 10 LSTM units on 9000 varying length binary sequences

with a maximum length of 20. Then it is tested with 1000

sequences on TrueNorth with varying phase lengths.

In Figure 10, we can see that the accuracy improves with the

phase length as this increases the precision of activations. The

accuracy also increases when the number of LSTM units is

increased. The scaled-activation and weight quantization

method also improve the results as it removes rounding-off

error from weights and reduces quantization error by preventing

a reduction in precision. The full precision simulation of the

spike-based LSTM led to the accuracy close to (>98%) or equal

to the results on Tensorflow.

2) Embedded Reber Grammar

Embedded Reber grammar (ERG) is a popular RNN

benchmark [2] and is useful for training sequences with short

time lags. Figure 11(a) shows a Reber Grammar graph which is

extended to an Embedded Reber Grammar in Figure 11(b). An

ERG sequence starts from the leftmost node ‘B’ of the ERG

graph and sequentially generates a finite number of symbols by

following edges until the rightmost node ‘E’ is reached. At

some nodes, there can be two possible paths and the choice is

made randomly. A sequence that follows Reber Grammar

defines a path in the Reber Grammar graph. During training, the

system is presented with sequences following Reber Grammar,

and during testing, the system is expected to generate sequences

according to Reber Grammar.

Input and target patterns are represented by 7-dimensional

binary vectors, representing one symbol each, in the training

set. And the task is to read the symbols one at a time and to

continually predict the next possible symbol(s). Input vectors

have exactly one nonzero component, but the target vector

could have one or two nonzero components representing one or

two possible paths. The prediction is considered correct if it

predicts either one or both possible symbols. Here, we train

LSTM networks with one hidden layer containing 10, 30 and

50 LSTM units on 5000 ERG sequences with maximum

sequence length 36. We tested on 500 ERG sequences on

TrueNorth with varying phase lengths.

Again, we see that the phase length has a direct impact on

accuracy. For networks without weight quantization and with

scaled-input (NWQ-SI), when the phase length increases above

10, the accuracy drastically improves which means it requires

the minimum data precision that can be represented by 1 spike

to be higher than 1/10. The trend is noticeable in all 3 network

sizes as shown in Figure 12. With weight quantization and

scaled-activation (WWQ-SA), the accuracy gets closer to the

full precision spike-based LSTM (FPW-SNN) as seen in Figure

12(a)(b)(c) and achieving ~5% improvement over NWQ-SI.

The improvement is higher (5% - ~30%) when the phase length

is small. This is understandable as at lower PL, the precision

reduced by scaled-input scaling is more noticeable than at

higher PL.

The network using rate-coded internal cell state (S-LSTM-

50RCt) instead of burst-coded one (S-LSTM-50) performs

significantly worse as shown in Figure 12(d). In average using

burst coding on Ct gives ~30% improvement in accuracy. This,

as mentioned in Section III.B, is due to the accumulation of

rounding error and additionally the sampling error while the

spikes move from one buffer to another and then feeds back.

The improvement is higher (up to 35%) when the phase length

is large and lower (~20%) when the phase length is small. This

is because at smaller phase lengths the low precision of inputs

and internal data has a higher impact than the sampling error.

The scaled-activation and weight quantization (WWQ-SA)

method improve the results in this example by ~15%. Keeping

the internal cell state burst-coded is still important under

WWQ-SA. It gives an extra ~15% improvement in accuracy in

average. This is because scaled-activation and weight

Figure 10. Accuracy vs Phase Length for Spike-based LSTM

[NWQ-SI: No Weight Quantization with Scaled Input, WWQ-SA: With

Weight Quantization with Scaled Activation]

(Keras/Tensorflow counterparts have 100% for all cases) (modified from

[10])

 (a) (b)

Figure 11. (a) Reber Grammar (b) Embedded Reber Grammar [10]

quantization do not change the representation of the internal

data, hence cannot be used to reduce the sampling error

introduced by rate coding.

 For networks without weight quantization, when trained

without any constraints, the range of learned weights varies. If

that range is wide, it is hard to find a scaling factor that can raise

smaller values to hardware supported range with low rounding

errors without causing the larger values to overflow. So, we

simply set the scaling factor sf to be 1. Compared to the

networks trained with constraints, the rounding error of the

unconstrained network is higher. However, setting 𝑠𝑓 = 1

leads to higher nS and better precision (i.e. lower 1/nS) than

setting sf > 1. Therefore, the unconstrained network (S-LSTM-

50NoC) produces better accuracy than the constrained network

(S-LSTM-50 <35%) at lower PL, because it allows higher data

precision. When the PL is high, the large window size already

ensures reasonable data precision, so the constrained network

performs better than the unconstrained version as shown in

Figure 12(d). However, for networks with weight quantization,

as they produce discrete weights with single decimal precision,

we always set sf=10.

3) Question Classification

In the previous tasks the inputs are one-hot encoded thus

requiring no discretization of the input. In the third experiment,

we utilize a task requiring discretization of the input as well.

The goal of this task is to categorize a question into six coarse

classes (ABBREVIATION, ENTITY, DESCRIPTION,

HUMAN, LOCATION and NUMERIC VALUE) based on the

sequence of words in the question sentence. The training dataset

[31] consists of 5500 sentences and test set contains 500

sentences. The LSTM network is trained on these sentences

using a 50-dimensional vector representation for words called

GloVe [32], learnt on aggregated global word-word co-

occurrence statistics from a corpus. For this problem, each

sentence is limited to 10 words. Thus, the input is a sequence of

10 50-D word vectors and output is one of the six classes. As

these word vectors are continuous values, the input is also

rounded to precision given by 1/nS.

With 30 LSTM units, the LSTM network achieves ~86%

accuracy on Tensorflow. It reduces to ~84% when using 2-bit

weights with full precision inputs. Rounding the inputs to 1/nS

precision, the performance decreases by ~2% as shown in

Figure 13 by the LSTM-QW data series. It is understandable as

there is always some loss of information associated with

quantization. Using the full precision weights on an SNN

simulator, our S-LSTM achieves 79.9% accuracy which is

within ~3% of the Tensorflow implementation. However, the

networks on TrueNorth still lag behind (both NWQ-SI and

WWQ-SA) due to the added constraints.

(a) (b)

(c) (d)

Figure 12. Accuracy vs Phase Length (PL) for Spike-based LSTM with (a)10 (b)30 (c)50 units (d) with rate-coded Ct and no-constraint setup

[NWQ-SI: No Weight Quantization with Scaled Input, WWQ-SA: With Weight Quantization with Scaled Activation, FPW-SNN: Full Precision Weights
SNN, RCt: Rated coded Ct, NoC: No Constraints](Keras/Tensorflow counterparts have 100% for all cases). (modified from [10])

Figure 13 Accuracy vs Phase Length for Spike-based LSTM

[NWQ-SI: No Weight Quantization with Scaled Input, WWQ-SA: With
Weight Quantization with Scaled Activation, 1/nS: Tensorflow LSTM

network tested with 1/nS input precision, QW:Tensorflow LSTM trained

with quantized weights, FPW: with full precision weights]

B. Power Analysis

Table 1 shows the results of 50-unit LSTM network with

scaled-input scaling and without weight quantization, and the

respective TrueNorth implementations with 200 (high

accuracy) phase lengths used for Embedded Reber Grammar.

The table demonstrates the energy versus performance trade-off

between TrueNorth and the GPUs. Compared to NVIDIA Tegra

X1 (20nm technology) and NVIDIA Titan X (16nm

technology), the TrueNorth networks (running at normal

operating frequency 1 kHz) is more energy efficient. It

consumes only 56 µJ at 0.8V for 200 PL per sample and is up

to 84x and 416x energy efficient than Tegra X1 and Titan X

respectively. At faster than real time operation (3.5 kHz

operating frequency) and the same voltage level of 0.8V,

TrueNorth performs even better with 165x and 817x higher

energy efficiency compared to Tegra X1 and Titan X. All the

measurements were taken only during inference.

 Table 1 also shows the TrueNorth implementation is slower

than the GPU implementations. In practical deployment, this

factor of time delay is unsuitable, and it points to a large

performance/energy tradeoff. This tradeoff is drastic mainly

due to the inability to reliably train LSTM networks with very

limited precision. In the experimental setup, we chose PL = 200

and sf > 1 for comparison to ensure reasonable data precision

and comparable accuracy as the GPU implementation. If we can

train an LSTM network with limited precision, then sf can be

set to 1 and a much lower PL can be used without reducing

spike’s data representation precision. This will reduce the

delays to a tolerable level or even close to the GPU

implementation with the same or even lower energy footprint.

C. Chip utilization

The actual power consumption only for the resources utilized

on TrueNorth chip is computed by measuring chip idle power

which is leakage power Pleak and total power Ptotal with the

network running [33]. Active power is Pactive = Ptotal - Pleak. The

scaled leakage power for the cores utilized is Pleak_s=

Pleak*#cores/4096. Therefore, the total power consumed for the

utilized resources is Ptotal_s = Pactive + Pleak_s. For a given network

the active power is directly proportional to the spiking activity

however, the same network can be designed to be mapped

utilizing a different number of cores. To ensure minimum

power consumption it is critical to pack as many neurons

possible on to each core for minimizing Ptotal_s as Pleak_s is the

only free variable.

Packing/Efficient utilization of the TrueNorth chip can be

described in terms of number of cores used and the average

neuron and synaptic density. The incremental mapping

algorithm shown in Section III.D attempts to pack as many

neurons as possible in a core, incrementally adding cores as

required. This behavior is illustrated in Figure 14(b) which

shows the average neuron and synaptic density increasing with

the number of LSTM units. This suggests that with increasing

number of LSTM units, the cores are more densely packed and

thus better utilized.

With weight quantization, the weights can be discretized to

2-bit or even 1-bit. This allows for utilizing only 2 axons per

input channel in the ICB module instead of 4 axons. Utilizing

just 2 axons per channel results in reduced number of cores and

improved neuron and synaptic density as shown in Figure 14(a)

and Figure 14(b) with the increase in the number of LSTM

units. Thus, with weight quantization scalability of mapping

networks on TrueNorth is improved.

VI. CONCLUSION

The paper presents a methodology to convert a general

LSTM to a Spike-based LSTM which can be deployed in any

neuromorphic hardware. A standard LSTM is divided into

modules and separately approximated using spiking neurons.

Here we target benchmark applications on IBM TrueNorth

Neurosynaptic Processor. On TrueNorth, modules are in the

form of corelets which are then combined, connected and

mapped to form Spike-based LSTM networks and synchronized

 (a) (b)

Figure 14. (a) Total number of cores used vs LSTM units, (b) Average Neuron density and Synaptic density vs LSTM units

[NWQ – 4-bit: No Weight Quantization – 4-bit integer precision, WWQ – 2-bit: With Weight Quantization – 2-bit precision]

Table 1. Power and performance on different platforms

Network Devices

Time/

Sample

(ms)

Active

Power

(W)

Energy/

Sample

(mJ)

50-LSTM

NVIDIA

Tegra X1
1.928 2.45 4.72

NVIDIA

Titan X
0.5 46.5 23.3

50-LSTM

200-PL

IBM

TrueNorth
400 0.00014 0.056

*IBM

TrueNorth
114 0.00025 0.0285

*running at faster than real time (3.5x faster)

using a store-and-release mechanism. These networks are tested

on three RNN benchmarks with promising accuracy results and

high power efficiency.

REFERENCES

[1] Y. Bengio, P. Simard and P. Frasconi, "Learning long-term

dependencies with gradient descent is difficult," IEEE transactions on

neural networks, vol. 5, pp. 157-166, 1994.

[2] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

computation, vol. 9, pp. 1735-1780, 1997.

[3] I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to sequence learning
with neural networks," in Advances in neural information processing

systems, 2014.

[4] O. Vinyals, A. Toshev, S. Bengio and D. Erhan, "Show and tell: A
neural image caption generator," in Computer Vision and Pattern

Recognition (CVPR), 2015 IEEE Conference on, 2015.

[5] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende and D. Wierstra,

"DRAW: A recurrent neural network for image generation," arXiv

preprint arXiv:1502.04623, 2015.

[6] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell and

K. Saenko, "Sequence to sequence-video to text," in Proceedings of the

IEEE international conference on computer vision, 2015.

[7] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,

A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch

and others, "Convolutional networks for fast, energy-efficient
neuromorphic computing," Proceedings of the National Academy of

Sciences, p. 201604850, 2016.

[8] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu and M. Pfeiffer, "Fast-
classifying, high-accuracy spiking deep networks through weight and

threshold balancing," in Neural Networks (IJCNN), 2015 International

Joint Conference on, 2015.

[9] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni and E. Neftci,

"Conversion of artificial recurrent neural networks to spiking neural

networks for low-power neuromorphic hardware," in Rebooting

Computing (ICRC), IEEE International Conference on, 2016.

[10] A. Shrestha, K. Ahmed, Y. Wang, D. P. Widemann, A. T. Moody, B.

C. V. Essen and Q. Qiu, "A spike-based long short-term memory on a
neurosynaptic processor," in 2017 {IEEE/ACM} International

Conference on Computer-Aided Design, {ICCAD} 2017, Irvine, CA,

USA, November 13-16, 2017, 2017.

[11] S.-C. Zhou, Y.-Z. Wang, H. Wen, Q.-Y. He and Y.-H. Zou, "Balanced

quantization: An effective and efficient approach to quantized neural

networks," Journal of Computer Science and Technology, vol. 32, pp.
667-682, 2017.

[12] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of

gated recurrent neural networks on sequence modeling," arXiv preprint
arXiv:1412.3555, 2014.

[13] F. A. Gers, N. N. Schraudolph and J. Schmidhuber, "Learning precise

timing with LSTM recurrent networks," Journal of machine learning
research, vol. 3, pp. 115-143, 2002.

[14] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura and others,
"A million spiking-neuron integrated circuit with a scalable

communication network and interface," Science, vol. 345, pp. 668-673,

2014.

[15] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser,

A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza and

others, "Cognitive computing programming paradigm: a corelet
language for composing networks of neurosynaptic cores," in Neural

Networks (IJCNN), The 2013 International Joint Conference on, 2013.

[16] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R.
Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A.

Merolla and K. Boahen, "Neurogrid: A mixed-analog-digital multichip

system for large-scale neural simulations," Proceedings of the IEEE,
vol. 102, pp. 699-716, 2014.

[17] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras and

S. B. Furber, "SpiNNaker: mapping neural networks onto a massively-
parallel chip multiprocessor," in Neural Networks, 2008. IJCNN

2008.(IEEE World Congress on Computational Intelligence). IEEE

International Joint Conference on, 2008.

[18] S. S. Talathi and A. Vartak, "Improving performance of recurrent neural

network with relu nonlinearity," arXiv preprint arXiv:1511.03771,

2015.

[19] T. M. Breuel, "Benchmarking of LSTM networks," arXiv preprint

arXiv:1508.02774, 2015.

[20] Q. Chen and Q. Qiu, "Real-time Anomaly Detection for Streaming Data
using Burst Code on a Neurosynaptic Processor," in Proc. Conf. Design,

Autom. Test Eur.(DATE), 2017.

[21] P. U. Diehl, B. U. Pedroni, A. Cassidy, P. Merolla, E. Neftci and G.
Zarrella, "Truehappiness: Neuromorphic emotion recognition on

truenorth," in Neural Networks (IJCNN), 2016 International Joint

Conference on, 2016.

[22] A. Laudani, G. M. Lozito, F. R. Fulginei and A. Salvini, "On training

efficiency and computational costs of a feed forward neural network: a

review," Computational intelligence and neuroscience, vol. 2015, p. 83,

2015.

[23] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio,

"Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1," arXiv preprint

arXiv:1602.02830, 2016.

[24] F. Li, B. Zhang and B. Liu, "Ternary weight networks," arXiv preprint
arXiv:1605.04711, 2016.

[25] J. Ott, Z. Lin, Y. Zhang, S.-C. Liu and Y. Bengio, "Recurrent neural

networks with limited numerical precision," arXiv preprint
arXiv:1608.06902, 2016.

[26] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio,

"Quantized neural networks: Training neural networks with low
precision weights and activations," arXiv preprint arXiv:1609.07061,

2016.

[27] Q. He, H. Wen, S. Zhou, Y. Wu, C. Yao, X. Zhou and Y. Zou, "Effective
Quantization Methods for Recurrent Neural Networks," arXiv preprint

arXiv:1611.10176, 2016.

[28] G. Hinton, "Neural Networks for Machine Learning, Coursera," URL:
http://coursera. org/course/neuralnets, 2012.

[29] Y. Bengio, N. Léonard and A. Courville, "Estimating or propagating

gradients through stochastic neurons for conditional computation,"
arXiv preprint arXiv:1308.3432, 2013.

[30] K. Ahmed, A. Shrestha, Q. Qiu and Q. Wu, "Probabilistic inference

using stochastic spiking neural networks on a neurosynaptic processor,"
in 2016 International Joint Conference on Neural Networks, {IJCNN}

2016, Vancouver, BC, Canada, July 24-29, 2016, 2016.

[31] X. Li and D. Roth, "Learning question classifiers," in Proceedings of
the 19th international conference on Computational linguistics-Volume

1, 2002.

[32] J. Pennington, R. Socher and C. Manning, "Glove: Global vectors for
word representation," in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014.

[33] A. S. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. V. Arthur,

P. A. Merolla, P. Datta, M. G. Tallada, B. Taba, A. Andreopoulos and

others, "Real-time scalable cortical computing at 46 giga-synaptic
OPS/watt with," in Proceedings of the international conference for high

performance computing, networking, storage and analysis, 2014.

[34] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W.
P. Risk, H. D. Simon and D. S. Modha, "Compass: A scalable simulator

for an architecture for cognitive computing," in Proceedings of the

International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012.

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin and others, "Tensorflow: Large-
scale machine learning on heterogeneous distributed systems," arXiv

preprint arXiv:1603.04467, 2016.

Amar Shrestha received the B.S. degree in electrical
and electronics engineering from the Department of

Electrical and Electronics Engineering in Kathmandu

University, Dhulikhel, Nepal, in 2013.
He is currently pursuing the Ph.D. degree from the

Department of Electrical Engineering and Computer

Science, Syracuse University, Syracuse, NY, USA.
His current research interests include neuromorphic

computing, machine learning and neural networks.

Khadeer Ahmed received his Ph.D. and M.S. degree

in Computer Engineering from Syracuse University,
USA in 2017 and 2014 respectively. He received his

B.E. degree in Electronics and Communication

Engineering from Visvesvaraya Technological
University, India in 2006.

He is currently working at Synopsys. His research

interests include high performance computing,
largescale simulation, neuromorphic computing,

spiking neural networks and deep neural networks.

Yanzhi Wang has just joined the Department of

Electrical and Computer Engineering at Northeastern
University as assistant professor. Previously he is

assistant professor in the Department of Electrical
Engineering and Computer Science at Syracuse

University from August 2015. He has received his

Ph.D. Degree in Computer Engineering from
University of Southern California (USC) in 2014,

under supervision of Prof. Massoud Pedram, and his

B.S. Degree with Distinction in Electronic
Engineering from Tsinghua University in 2009.

Dr. Wang's current research interests are the

energy-efficient and high-performance implementations of deep learning and
artificial intelligence systems, and emerging deep learning algorithms/systems

such as Bayesian neural networks, generative adversarial networks (GANs),

and deep reinforcement learning. Besides, he works on the application of deep
learning and machine intelligence in various mobile and IoT systems, medical

systems, and UAVs, as well as the integration of security protection in deep

learning systems. His group works on both algorithms and actual
implementations (FPGAs, circuit tapeouts including superconducting circuits,

mobile and embedded systems, and UAVs). His works have been published in

top venues in conferences and journals (e.g. ASPLOS, MICRO, AAAI, ICML,
VLDB, FPGA, DAC, ICCAD, DATE, ISLPED, LCTES, INFOCOM, ICDCS,

TComputer, TCAD, Plos One, etc.), and have been cited for around 4,000 times

according to Google Scholar. He has received four Best Paper or Top Paper
Awards from major conferences including IEEE ICASSP (top 3 among all

2,000+ submissions), ISLPED, IEEE CLOUD, and ISVLSI. He has another

seven Best Paper Nominations and two Popular Papers in IEEE TCAD. His
group is sponsored by the NSF, DARPA, IARPA, AFRL/AFOSR, Syracuse

CASE Center, and industry sources.

 David P. Widemann received his B.A. in

mathematics from University of California,
Berkeley, California, in 1995. He received his M.A.

in mathematics and Ph.D. in computational and

applied mathematics from University of Maryland,
College Park, Maryland, USA, in 2001 and 2008

respectively.

He is currently working at Lawrence Livermore
National Laboratory as a Machine Learning

Researcher. His current research interests include machine learning and

algorithms.

Adam T. Moody was born in Zanesville, Ohio in
1979. In 2001, he earned a B.S. degree in Computer

Science and Engineering and a B.S. degree in

Engineering Physics from The Ohio State University
in Columbus, Ohio. In 2003, he earned an M.S.

degree in Computer Science and an M.S. degree in

Electrical Engineering from The Ohio State
University in Columbus, Ohio. Since 2004, he has

worked as a Computer Scientist at the Lawrence

Livermore National Laboratory in Livermore,
California, where he conducts research,

development, and support of system software on large-scale supercomputers.

His current research interests include distributed computing, parallel
communication algorithms, fault tolerance, and storage for high-performance

computing systems. He is an active member of IEEE.

Brian C. Van Essen is a Computer Scientist at the

Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory (LLNL).

His research interests include developing spatial

accelerators for embedded systems and high

performance computing, reconfigurable computing,

and memory architectures for data-intensive

computing. He recently completed his Doctorate at
the University of Washington where he studied

architectural techniques for improving the energy
efficiency of Coarse-Grained Reconfigurable

Arrays.

Dr. Van Essen joined LLNL in October of 2010 after earning his Ph.D. in
Computer Science and Engineering from the University of Washington in

Seattle. He also holds a M.S in Computer Science and Engineering from the

University of Washington, a M.S in Electrical and Computer Engineering from
Carnegie Mellon University, and a B.S. in Electrical and Computer Engineering

from Carnegie Mellon University.

Prior to his graduate studies, Brian co-founded two startups in the area of
reconfigurable computing and worked as a verification engineer at Cisco

Systems.

Qinru Qiu received her M.S. and Ph.D. degrees

from the department of Electrical Engineering at
University of Southern California in 1998 and 2001

respectively. She received her B.S. degree from the

department of Information Science and Electronic
Engineering at Zhejiang University, China in 1994.

Dr. Qiu is currently a professor and the graduate

program director at Department of Electrical
Engineering and Computer Science in Syracuse

University. Before joining Syracuse University, she

has been an assistant professor and then an associate
professor at the Department of Electrical and

Computer Engineering in State University of New York, Binghamton. Her

research areas are neuromorphic computing and high performance energy
efficient computing systems. She has been the TPC member of many

conferences including DATE, DAC, ISLPED, ISQED, VLSI-SoC, and ICCAD.

She is the co-organizer of the SIGDA Live series.

