
 

 

 

 

Abstract— Due to the distributed and asynchronous nature of 

neural computation through low-energy spikes, brain-inspired 

hardware systems offer high energy efficiency and massive 

parallelism. One such platform is the IBM TrueNorth 

Neurosynaptic System.  Recently, TrueNorth compatible 

representation learning algorithms have emerged, achieving close 

to state-of-the-art performance in various datasets. However, its 

application in temporal sequence processing models such as 

recurrent neural networks (RNNs) is still only at the proof of 

concept level. There is an inherent difficulty in capturing temporal 

dynamics of an RNN using spiking neurons which is only 

exasperated by the hardware constraints in connectivity and 

synaptic weight resolution. This work presents a design flow that 

overcomes these difficulties and maps a special case of recurrent 

networks called Long Short-Term Memory (LSTM) onto a spike-

based platform. The framework utilizes various approximation 

techniques; activation discretization, weight quantization, scaling 

and rounding; spiking neural circuits that implement the complex 

gating mechanisms, and a store-and-release technique to enable 

neuron synchronization and faithful storage. While the presented 

techniques can be applied to map LSTM to any Spiking Neural 

Network (SNN) simulator/emulator, here we choose the 

TrueNorth chip as the target platform by adhering to its hardware 

constraints. Three LSTM applications, parity check, Extended 

Reber Grammar and Question classification, are evaluated. The 

tradeoffs among accuracy, performance and energy tradeoffs 

achieved on TrueNorth are demonstrated. This is compared to the 

performance on an SNN platform without hardware constraints, 

which represents the upper bound of the achievable accuracy. 

 

Index Terms—Spiking Neural Networks, Recurrent Neural 

Networks, Long Short-Term Memory, Neuromorphic Hardware 

I. INTRODUCTION 

In the past few years, artificial neural networks have 

achieved close to and beyond human-level performance in 

various representation learning tasks such as image 

classification and pattern recognition. These neural networks 

include processing elements which are inspired by neurons 

which are the building blocks of our brain. The representation 

learning tasks are carried out by feedforward networks with 

varying connectivity (e.g. fully connected, or convolutional 

connected) trained on static input data. However, these 

feedforward neural networks are unable to build representations 

and learn patterns of dynamic data where the series of data have 

temporal dependencies. While recurrent neural networks 

(RNNs) address this issue with feedback connections, it is 

difficult to learn long temporal dependencies using vanilla 

RNNs [1]. Long Short-Term Memory (LSTM) improves upon 

RNN with a complex gated mechanism, which allows it to 

selectively forget, remember and output information [2], 

making it effective in capturing long-term temporal 

dependencies. Thus, LSTM has become a prominent and 

successful model for time-series processing. It has had recent 

successes in applications such as machine translation [3], image 

captioning [4], image generation [5], video to text [6], etc. 

The aforementioned neural network architectures are highly 

computationally intensive and power hungry as compared to 

our brain. Whereas, spiking neural networks (SNN), which uses 

spikes for communication and computations, has the potential 

to be very efficient as each neuron works asynchronously in an 

event-driven manner with sparse spiking activity. Thus, 

converting these neural network architectures to SNNs can 

greatly reduce their energy requirements. 

However, it is inefficient to implement SNNs on traditional 

Von Neumann architecture due to the performance gap between 

memory and processor. This has led to the advents of energy-

efficient large-scale neuromorphic hardware that enables low 

power implementation of large-scale neural networks for real-

time applications. One of the examples is IBM’s Neurosynaptic 

Processor, “TrueNorth”. Operating in the spiking-domain, 

TrueNorth has achieved close to state-of-the-art results in 

various pattern recognition tasks [7] with very high energy 

efficiency. Converting pre-trained network to an SNN has also 

produced good results in pattern recognition [8] on platforms 

other than TrueNorth. However, almost all of these applications 

aim at non-recurrent networks, such as convolutional neural 
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networks. Capturing temporal dynamics of a recurrent network 

using spiking neurons is inherently difficult. With added 

hardware constraints in connectivity and synaptic weight 

precision, implementing recurrent neural networks (RNNs) for 

temporal sequence processing in spike-domain is still at the 

proof of concept level [9].  

This paper presents a design flow that overcomes the 

aforementioned difficulties and maps LSTM, a special case of 

RNN, onto a spike-based platform, and implement it using the 

TrueNorth processor. The main contributions of this work are 

summarized as the following, (1) A modular approach is 

presented that converts a standard LSTM to a Spiked-based 

LSTM and incrementally maps it onto a neurosynaptic 

processor. (2) To have a faithful representation of inputs, 

outputs and internal activation of an LSTM in spike-domain, 

we adopted an encoding heuristic to maintain the consistency 

of spike representation throughout the network. (3) Novel 

neural circuit designs are presented that approximate the 

sigmoid and hyperbolic tangent functions. The relationship 

between stored membrane potential, the random firing 

threshold, and the firing rate is analyzed. (4) To synchronize the 

gated modules and achieve recurrent processing in the Spike-

based LSTM, we developed a store-and-release mechanism 

using locally generated and globally consistent store and release 

clock spikes. 

This paper is an extended version of [10]. We extend our 

previous work by (1) integrating a balanced weight quantization 

[11] technique, which rounds to single decimal place in the 

training, to minimize the rounding-off error of weights during 

the hardware mapping, (2) replacing the scaled-input technique 

with scaled-activation technique to prevent reducing input’s 

precision during the weight scaling, (3) adding experimental 

results of the spiked-based LSTM on an SNN platform with 

full-precision weights to analyze the impact of weight 

quantization on performance degradation, and (4) adding 

experimental results of a new application on question 

classification. 

The rest of the paper is organized as the following: Section 

II provides the necessary background including LSTM and the 

TrueNorth architecture; Section III provides the details of the 

proposed implementation which includes the temporal behavior 

and encoding schemes (Section III.A and III.B), spike-based 

constituent modules (Section III.C) and the mapping algorithm 

(Section III.D); Section IV discusses the constrain-then-train-

then-approximate workflow and Section V  presents the 

experimental results and analysis. 

II. BACKGROUND 

A. LSTM 

Recurrent neural networks learn sequential information by 

considering the information from previous time steps with the 

help of feedback connections. The loop, as shown in Figure 

1(a), allows information to be passed from one step of the 

network to the next thus allowing the information to persist. 

Recurrent networks are trained using backpropagation-

through-time which requires unrolling the recurrent network 

over the length of the sequence. The result is a very deep 

network where gradients vanish or explode [1] preventing 

vanilla RNNs to learn very long sequences. LSTMs circumvent 

this problem with their specialized structure of gates which 

regulate persistence of current information in the cell state, and 

addition or removal of new information to the cell state. The 

gates are composed of a sigmoid and a pointwise multiplication 

operation and are named input, forget and output gates as per 

their purpose to add, remove and output information from the 

cell state. This makes LSTM successful in tasks like language 

modeling, machine translation, speech recognition, 

image/video captioning etc. 

There are many variations of LSTM such as Gated Recurrent 

Units (GRU) [12], Peephole LSTM [13], etc. In this work, we 

aim at a standard LSTM model [2], which is shown in Figure 

1(b). A single standard LSTM has forget, input and output 

gates, which are sigmoid activations, and hyperbolic tangent 

activations to squash incoming inputs and outgoing outputs. Its 

output ht is generated based on the equations shown in Figure 

1(c), where ft, it and ot are the forget, input and output gate 

vectors, ct and ht are cell state and output vectors, and Wf, Wi, 

Wo and WC are trained weight matrices. 

B. TrueNorth Architecture 

This work uses TrueNorth neurosynaptic processor as an 

example hardware platform to discuss the mapping of SNN 

based LSTM. The TrueNorth processor is a highly efficient, 

scalable and flexible neuromorphic hardware. It consists of 

4096 cores [14] each with 256 neurons and 256 axons 

connected via 256x256 directed synaptic connections, thus 

providing 1 million programmable neurons and 268 million 

configurable synapses. The communication between those 

neurons is in the form of spike events represented as address 

event representation (AER). These spike events are sparse in 

time.  Since the active power is proportional to firing activity, 

the event-driven nature of the architecture gives very high 

energy efficiency. In the normal mode, membrane potential is 

processed, and spike events routed asynchronously inside the 

chip within 1 ms timesteps called a tick. A spike generated by 

a neuron can target any single axon on the chip.  Figure 2(a) 

shows a structural view of a TrueNorth core with axons as input 

and neurons as outputs and synapses linking them. This 

representation is similar to a traditional neural network. Figure 

          
      (a)                      (b) 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 𝐶′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 
𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′𝑡 ℎ𝑡 = 𝑜𝑓 ∗ tanh⁡(𝐶𝑡) 

(c) 

Figure 1(a)Unrolled RNN (b)Standard LSTM (c) LSTM equations [10] 



 

 

 

2(b) shows a functional view of a core as a crossbar where 

horizontal lines are axons, cross points are individually 

programmable synapses, vertical lines are neuron inputs, and 

triangles are neurons. Spikes flow from axons via active 

synapses to neurons. 

The synaptic connections and their weights between axons 

and neurons are captured by a crossbar matrix at an abstract 

level where the weight of the corresponding synapse in the 

crossbar is selected from 4 possible integers determined by the 

axon type at each neuron.  A Corelet [15] describes a network 

on the TrueNorth cores by encapsulating all details except 

external inputs and outputs as shown in Figure 2(c). The 

creating, composing and decomposing of corelets is done in an 

object-oriented Corelet Language in the programming 

paradigm for TrueNorth called Corelet Programming 

Environment (CPE). Programming TrueNorth includes creating 

corelets with specific neuron behaviors, synaptic connections, 

weights and delays to achieve the desired functionalities. 

Multiple corelets can be combined through their input and 

output connectors. 

III. SPIKING NEURAL MODULES FOR LSTM 

Most implementations of SNNs  [14] [16] [17] including the 

TrueNorth processor have event driven neuron operation and 

asynchronous inter-core communication. It reduces the 

hardware active power, however, also imposes a fundamental 

challenge to realize the LSTM. As shown in Figure 1(b), the 

inputs and outputs of an LSTM requires synchronization. The 

output vector ℎ𝑡−1 in time step 𝑡 − 1 must concatenate with the 

input vector 𝑥𝑡 in time step 𝑡 to calculate the new output vector. 

This level of synchronization requires special neural circuits on 

an event-driven hardware platform. Other challenges include 

the difficulty in representing both positive and negative 

numerical values with spikes, and a lack of direct support of 

non-linear activation functions such as sigmoid and tanh in the 

spike domain. 

In this section, we address the aforementioned challenges and 

present some key techniques that facilitate Spike-based LSTM 

and its mapping onto any crossbar-based neurosynaptic 

processor. We will first discuss how values are represented 

using different spike encoding schemes. Then we will describe 

the spike-based constituent modules of LSTM and how to 

maintain the temporal relation of these modules’ activities with 

specifics for TrueNorth Corelet configurations. Finally, we 

present the mapping algorithm. 

A. Temporal Behavior of Neurons in LSTM 

Synchronization is necessary to maintain the temporal 

dynamics of recurrence in a recurrent network. It is also the key 

to enable the complex gating mechanism of the LSTM, which 

requires the synchronized interactions between inputs, gate 

outputs and the cell state feedback. Given the inherent difficulty 

in representing this synchronization with asynchronously 

spiking neurons, we propose a store-and-release mechanism. It 

is implemented with special neural circuits where neurons 

operate in two modes, store and release.  During the store mode, 

the neurons gate their outputs, receives input spikes and 

accumulate their membrane potential. During the release mode, 

the neurons issue output spikes at an average rate proportional 

to its membrane potential either stochastically or in a burst. Two 

internal clock signals control when a neuron enters or exits the 

store or release modes by applying a high negative or positive 

potential respectively. How to configure and connect 

asynchronous neurons to form such synchronous neural circuits 

will be discussed in Section III.C.   

Using the store-and-release mechanism, the entire LSTM 

network is divided into three partitions as shown in Figure 3(a) 

and (b). They are referred to as input, processing and output 

partitions and color-coded using blue, red and green 

respectively. The system operation has two phases, processing 

phase and I/O phase. Each partition must only generate output 

spikes during its designated phase, i.e. processing partition 

spikes during the processing phase and input and output 

partitions spike during the I/O phases. Please note that during 

the I/O phase, if the output partition is working on the ith data, 

then the input partition is working on the (i+1)th data.  

The output of each functional module is a spike train. These 

spike trains are buffered at every partition and then released 

during the associated phase. Except for the input partition, all 

inputs of the processing and output partitions are buffered using 

the store-and-release neurons which are shown as white circles 

in Figure 3 (a). The inputs to the processing partition store 

during the I/O phase and release in the processing phase, while 

the inputs to the output partition store in the processing phase 

and release in the I/O phase. For the input partition, one of its 

inputs ℎ𝑡−1 is released in the I/O phase, and the other input, 𝑥𝑡, 
is an external signal. By careful control, we can make sure that 

xt is released only during the I/O phase as well. Thus, we can 

essentially overlap the activities of input and output partition in 

                          
                  (a)                           (b)                (c) 

Figure 2(a)Structural view (b)Functional view of a core (c) corelet [10] 



 

 

 

the I/O phase. The 𝑥𝑡 and ℎ𝑡−1 go through the input partition 

and being buffered at the input of the processing partition 

during the I/O phase. During the implementation, the store-and-

release neurons will be merged into their subsequent function 

modules and be implemented as store-and-release tanh or store-

and-release sigmoid, as we will present in Section III.C. The 

only exception is the store-and-release neurons before the dot 

product, which will stay stand-alone. 

Figure 3(c) shows how these three partitions operate 

alternatively. The duration of each phase is referred as phase 

length (PL). The input partition works on the matrix-vector 

multiplications to generate the operands for the forget, input 

and output gates during the I/O phase. They are buffered by the 

store-and-release neurons at the input of the processing 

partition. In the processing phase, these neurons release what 

they have stored, and the processing partition generates the cell 

state (𝐶𝑡 ) and partial output (𝑜𝑡 ), which are buffered by the 

store-and-release neurons at the input of the output partition. In 

the next I/O phase, the 𝐶𝑡  and 𝑜𝑡  is released and used to 

calculate the ℎ𝑡, which is then further forwarded to the input 

partition to calculate the matrix-vector multiplications again. 

The transition of phases are maintained through local clock 

(globally consistent) spikes which produce the store and release 

spikes for all the store-and-release capable neurons.  

B. Encoding and Spike Representation  

Since spikes are binary (on-off), they are inherently difficult 

to be used to represent both positive and negative values. This 

is another challenge as in an LSTM it is difficult to avoid 

numerical values (i.e. inputs, outputs and activations) ranging 

in both negative and positive directions as the weights learnt 

can be negative and also the tanh function outputs values in the 

range -1 to 1. A simple solution is to constrain the values during 

training by replacing the hyperbolic tangents with ReLUs, 

which have no negative range and have an open-ended positive 

range. ReLU improves performance of vanilla RNNs [18] 

because of to its ability to stop vanishing gradients. However, 

vanishing gradients is no longer a problem in LSTM due to its 

gating scheme. On the contrary, using unbounded activation 

functions like ReLU in an LSTM can cause it to diverge, thus 

resulting in worse performance [19]. Therefore, we choose to 

keep the Tanh function but solve the data range problem by 

using positive and negative channels of spikes respectively. 

The inputs and outputs of an LSTM are rate-coded where the 

firing rate is determined by the phase length (𝑃𝐿) and the max 

value (𝑚𝑥) to be represented in that phase. If we scale up the 

trained weights with a scaling factor 𝑠𝑓, the input and output 

should be scaled down by the same factor. Therefore, the 

number of spikes (nS) needed to represent value 1 can be 

calculated as:  

𝑛𝑆 = 𝑃𝐿 (𝑚𝑥 ∗ 𝑠𝑓)⁄ . 

To represent a numerical value Iv, the spike firing rate is set 

to (𝐼𝑣 ∗ 𝑛𝑆) 𝑃𝐿⁄ , and n spikes in a phase represent the value: 

𝑅𝑃𝑉𝑎𝑙𝑢𝑒 =
𝑛

𝑛𝑆
 . 

The choice of 𝑚𝑥⁡, phase length PL, and scaling factor sf 

defines the precision of values that can be represented by 

spikes, as the minimum resolution is one spike, which 

represents 1/𝑛𝑆  (i.e. (𝑚𝑥 ∗ 𝑠𝑓) 𝑃𝐿⁄ ) in terms of numerical 

value. For example, let the phase length 𝑃𝐿 = 100 and max 

value in the phase be 𝑚𝑥 = 5 with scaling factor 𝑠𝑓 = 1. The 

number of spikes needed to represent value 1 is 𝑛𝑆 =
100 (5 ∗ 1) = 20⁄ . That means a single spike in that phase 

represents a value of 1/20. So, if we want to represent a value 

𝑅𝑃𝑉𝑎𝑙𝑢𝑒 = 3, then we expect to have 3 ∗ 𝑛𝑆 = 60 spikes in 

the phase. Scaled weights can also be balanced by scaling the 

activation which we discuss in Section IV.C. 

All internal variables are rate-coded, except 𝐶𝑡 . We found 

that the cell state 𝐶𝑡 needs to have more accurate representation, 

because any error on this variable will be accumulated due to 

the feedback path. The stochastic rate coding is convenient 

when implementing multiplication as it requires only an AND 

function, however, it introduces not only rounding error but also 

random error due to stochastic sampling. Previous work shows 

that the spike burst code, where the numerical value is 

represented by the number of spikes that burst in a window, has 

a much higher correlation with the numerical value to be 

represented [20]. Therefore, we encode 𝐶𝑡  using spike burst 

code and use spike-burst neurons for the sum function.  

C. Spike-based LSTM Constituent Modules 

Figure 1(b) shows a general LSTM unit consisting of the 

sigmoid gates, hyperbolic tangent, dot products and sum. To 

implement a Spike-based LSTM (S-LSTM), we approximate 

these modules using spiking neurons. The structure of these 

modules can be implemented on any spike-based platform. On 
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(a)                                                   (b)                   (c) 

Figure 3. (a) LSTM color coded based on operation phase 

(b) LSTM equations color coded to represent operations in specific phases (c) 3 phases and partial pipelining [10] 



 

 

 

a crossbar-based neurosynaptic hardware, these modules will 

be mapped across cores based on the consideration of the fan-

in and fan-out and other hardware constraints. On TrueNorth, 

these modules are in the form of corelets. The corelets will be 

further connected to form the full spike-based LSTM (S-

LSTM.)  

1) Store-and-Release neurons 

Store and release mechanism is implemented using a neuron 

with a high negative threshold where it saturates. The store and 

release clocks are two inputs associated with large negative and 

positive weights respectively. A spike on the store clock turns 

on the store mode by pushing the membrane potential to the 

negative threshold, during its membrane potential rises as it 

accumulates the input spikes. The negative initial state 

guarantees that the raised membrane potential is still below the 

firing threshold, therefore, no output spikes are generated 

during the store mode. A spike on the release clock pushes the 

membrane potential to 0 or higher if input spikes are received 

during the store mode, and the neuron starts generating output 

spikes.  

A drawback of the above scheme is that the neuron is unable 

to collect negative spike at the beginning of the store mode as 

its membrane potential is already at the negative threshold 

where it saturates. We get around this problem by issuing a pre-

charge spike on the release clock immediately upon entering the 

store mode to push the membrane potential to an intermediate 

level between the negative threshold and 0 to allow collecting 

negative spikes. Figure 4 shows an example where the neuron 

enters the store mode through a negative potential of −250 and 

enters release mode through two positive potentials of +100 

administered by the store (red), pre-charge (yellow) and release 

(blue) clock spikes respectively. Figure 5 shows all the clock 

signals in the S-LSTM. 

At the beginning of the release phase, the neuron’s 

accumulated membrane potential (AMP) equals to the total 

number of net input spikes that it collected during the store 

mode. This is preserved throughout the release phase. The 

𝑅𝑃𝑉𝑎𝑙𝑢𝑒 stored in the neuron can be calculated as 𝑅𝑃𝑉𝑎𝑙𝑢𝑒 =
𝐴𝑀𝑃 𝑛𝑆⁄ . To generate the output spikes, a random number 

drawn in the range [0, RThR], where RThR stands for the 

random threshold range, becomes the threshold. If this number 

is less than the AMP, then an output spike is generated. During 

a phase window PL, the expected number of spikes generated 

in this way is 𝑃𝐿 × 𝐴𝑀𝑃 𝑅𝑇ℎ𝑅⁄ . When we set RThR to PL, the 

number of the output spikes equals to the total number of net 

input spikes, and the neuron relays input to the output without 

any transformation. In the actual implementation, almost all 

store-and-release neurons are merged to its subsequent sigmoid 

and tanh gate. 𝑅𝑇ℎ𝑅 should be selected differently due to the 

squash and linear transformation of these functions. More 

details will be given in Section III.C.3). 

2) Input Collection Module (IC Module) 

In an LSTM, the inputs to each gate are fully connected. As 

in any fully connected layer in a neural network, there is a 

matrix-vector multiplication between inputs and the weight 

matrices. From the LSTM equations, we see that the weight 

matrices 𝑊 for each gate are multiplied by the input vector 𝑥 

and the previous time-step’s output vector ℎ𝑡−1  respectively 

along with the biases. We develop a parameterized module 

called input collection (IC) module to implement such matrix-

vector multiplication. As shown in Figure 6(d), each input and 

output are represented using two channels to accommodate both 

positive and negative values. Specifically, for TrueNorth, 

which allows for maximum four possible integer weights per 

neuron in a core, we decide to use 4 axons with weights 1,2,4 

and 8 to approximate weights up to +15 in each channel. The 

absolute weight is assigned to the positive or negative output 

channel based on the resultant sign of the product of input and 

axon weight. Given the positive (+) and negative (−) channels 

of input x and output y, to calculate y = ax, if a is positive, then 

y− will be connected to x−, and y+ be connected to x+. 

Otherwise, if a is negative, then y− will be connected to x+, and 

y+ be connected to x−. For both cases, the synaptic weights of 

the connections are |a|. For example, in Figure 6 (d), the 

connection shows the relation that: 𝑜𝑢𝑡1 = 5 × (𝑖𝑛1) , and 

𝑜𝑢𝑡2 = (−3) × (𝑖𝑛1). Hence our two-channel weight mapping 

with 4 axons is capable of approximating 5-bit signed precision 

weights instead of 4-bit precision [21] on the TrueNorth chip. 

The above design results in positive and negative outputs in 

their respective channels. We use ReLU neurons for the output, 

which produces bursts of spikes equal to the accumulated 

membrane potential when the threshold is 1. The two-channels 

(i.e. positive and negative) are used in every input of the 

sigmoid and tanh gates in the processing partition, which is then 

be merged to achieve the net results. 

This module is also parameterized to accommodate 

matrices/vectors [𝑊𝑖 , 𝑊ℎ , 𝑋 , 𝑌 ] of various sizes and the 

mapping scales across multiple cores depending on the sizes of 

those matrices/vectors. 

3) Gate Modules 

Due to minimal cut points and linear interpolation between 

those cut points, piece-wise linear functions are 

 

 
 

Figure 5. Store and release clock spikes for all gates [10] 
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Figure 4. Store-and-release mechanism [10] 



 

 

 

computationally efficient [22]. And these cut points and 

linearity are more conducive than a smooth non-linearity to rate 

coding where the spiking rate determines the computed values. 

Spiking rates of these gate modules have definite max and min 

(0 and 1) and within this range, the rate is linearly proportional 

to the number of input spikes or the accumulated membrane 

potential of a neuron.  

LSTM uses sigmoid gates to allow the flow of input, cell 

state and output, and uses tanh to squeeze the inputs and outputs 

to a range. To implement this activation function using neurons 

with linear responses, we develop modules which produce a 

hard sigmoid and a hard tanh behavior with store and release 

capability and use them during both training and recall.   

The original sigmoid function as shown in Figure 7(a) is 

given as 

𝜎(𝑥) =
1

1+𝑒−𝑥
          (1) 

 

Equation (1) can be represented as a hard sigmoid using a 

piece-wise linear function with slope msig. 

𝜎(𝑥) =  ax⁡(0, in⁡(1, 𝑥 ∗ 𝑚𝑠𝑖𝑔 + 0.5))   (2) 

 

Similarly, the original hyperbolic tangent function as shown in 

Figure 7(b) is given in (3), 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
          (3) 

 

We represent (3) as a piece-wise linear function with slope 

mtanh given as  

𝑡𝑎𝑛ℎ(𝑥) =  ax⁡(−1, in⁡(1, 𝑥 ∗ 𝑚𝑡𝑎𝑛ℎ))     (4) 

 

As positive and negative channels are used to represent the 

positive and negative values, we rewrite (4) as: 

{
⁡⁡⁡⁡𝑡𝑎𝑛ℎ(𝑥)(−) = | ax(−1,𝑚𝑖𝑛(0, 𝑥 ∗ 𝑚𝑡𝑎𝑛ℎ))|,

𝑡𝑎𝑛ℎ⁡(𝑥)(+) =  ax(0, in(1, 𝑥 ∗ 𝑚𝑡𝑎𝑛ℎ)) ,
   (5) 

 

During the release mode, spikes generated by the gate 

modules are rate-coded. The value of (2) and (4) are encoded 

by the firing rates in a phase window. These activation 

functions are implemented using stochastic neurons, which 

generate stochastic rate-coded output. A stochastic neuron 

maintains a membrane potential m, which is the sum of its 

weighted inputs plus any possible offset. It firing threshold is 

generated as a uniformly distributed random number in the 

closed interval [0, RThR], where RThR is the random threshold 

range. It is not difficult to see that the probability that an output 

spike will be generated can be calculated as  

𝑦 =
𝑚

𝑅𝑇ℎ𝑅
            (6) 

 

where y is the firing rate (i.e. the probability of 𝑥 >
𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑟𝑎𝑛𝑑𝑜𝑚(𝑅𝑇𝐻𝑅) ) which represents the effective 

output of the activation function.  

So, from (2) and (6), hard sigmoid can be rewritten as 

 

𝜎(𝑥) ⁡=  in⁡(1, ax (0,
𝐴𝑀𝑃+𝑜𝑓𝑓𝑠𝑒𝑡

𝑅𝑇ℎ𝑅
))    (7) 

 

where 𝑥  is the RPValue (which equals to 𝐴𝑀𝑃/𝑛𝑆 ) 

accumulated from the input, AMP is the membrane potential 

accumulated from neuron inputs and offset is the offset 

membrane potential applied. The firing rate saturates at 0 when 

𝐴𝑀𝑃 + 𝑜𝑓𝑓𝑠𝑒𝑡 ≤ 0⁡ and 1 when 𝐴𝑀𝑃 + 𝑜𝑓𝑓𝑠𝑒𝑡 ≥ 𝑅𝑇ℎ𝑅⁡ , 
thus producing the piece-wise linear sigmoid activation. Since 

𝑥 in (2) is the RPValue (𝑖. 𝑒. = 𝐴𝑀𝑃/𝑛𝑆) accumulated from the 

input, by setting 𝑅𝑇ℎ𝑅 = 𝑛𝑠 𝑚𝑠𝑖𝑔⁄ ,  and 𝑜𝑓𝑓𝑠𝑒𝑡 =

0.5𝑛𝑠 𝑚𝑠𝑖𝑔⁄ , we can ensure that (7) and (2) are equivalent. 

Similarly, from (4) and (6), hard tanh can be rewritten as  

            
( a )             (b) 

     
(c)                                        (d) 

Figure 6. (a) Sigmoid module (b) Tanh module 

(c) Dot product module (d) IC module [10] 
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(b) 

  
(c) 

Figure 7(a) Sigmoid  (b) Hyperbolic Tangent activations 
(c) Dot product through logical AND of spikes [10] 

 



 

 

 

𝑡𝑎𝑛ℎ(𝑥) =  a x (−1, i n (1,
𝐴𝑀𝑃

𝑅𝑇ℎ𝑅
))     (8) 

For both channels, the firing rate saturates at 0 when 𝐴𝑀𝑃 ≤
0⁡and saturates at 1 when 𝐴𝑀𝑃 ≥ 𝑅𝑇ℎ𝑅, thus producing the 

piece-wise linear hyperbolic tangent activation. By setting 

𝑅𝑇ℎ𝑅 = 𝑛𝑠 𝑚𝑡𝑎𝑛ℎ⁄  we can ensure that (8) and (2) are 

equivalent. 

The choice of RThR for both sigmoid and hyperbolic tangent 

depends on the slope of the linear portions of these activation 

functions in (4) and (6), and that slope depends on the choice of 

steepness and scaling of the activation function. Details of the 

choice of RThR are discussed in Section IV.A.1) and IV.C. 

 

4) Dot Product Module 

The inputs of the dot product module are two-channeled 

inputs 𝐶𝑡 , which is burst coded, and a rate-coded sigmoid as 

shown in Figure 6(c). The dot product allows the gating 

function to regulate the flow of information.  Because the output 

of sigmoid function has numerical values between 0 and 1 and 

is stochastically rate-coded, we explore the stochastic nature of 

the input and perform the multiplication using stochastic 

computing. A simple logical AND of the two spike streams is 

used as the multiplication.  

An example is given in Figure 7(c). In a window of 10 ticks, 

there are 5 spikes from the sigmoid, which represents 𝜎 = 0.5, 

and 4 spikes in the in1, representing 𝑖𝑛1 = 0.4. The logical 

AND produces 2 spikes at the output representing 𝑜𝑢𝑡1 = 0.2. 

The logical AND operation can be easily realized using an 

integrate and fire neuron with threshold 2, by setting its input 

synapses weight and leak to be +1. 

D. Mapping Algorithm 

In crossbar-based neurosynaptic hardware, the number of fan-

ins and fan-outs are limited for example a single TrueNorth core 

consists of 256 neurons and axons. Thus, there is a distinct fan-

in and fan-out constraint. To deal with this constraint and freely 

map LSTM networks of arbitrary sizes, we develop an 

incremental mapping algorithm. The IC module’s size is 

dependent on the number of LSTM units as well as the number 

of inputs. Thus, they are mapped and extended across two 

dimensions (axons and neurons). Whereas the sizes of other 

modules are only dependent on the number of LSTM units. 

Thus, these modules are mapped and extended only across one 

dimension (axons). As shown in Figure 8, the mapping 

algorithms (Algorithm 1 and 2) are incremental. New cores are 

added only when the resources of the current core are filled up. 

This results in the number of cores and average neuron density 

(number of neurons used per core) increasing in steps of the 

number of LSTM.  

IV. WORKFLOW 

The LSTM network can be directly converted to SNN 

utilizing the spike-based constituent modules of LSTM, and the 

encoding and spike representation schemes described in Section 

3. However, the approximations, such as using a piece-wise 

linear function to replace original sigmoid and tanh, and using 

rate or burst coding to approximate real values, will give 

approximation errors.  Furthermore, most neurosynaptic 

hardware has a precision limitation on the synaptic weights. 

This limitation is even more visible in TrueNorth which utilizes 

integer weights. Thus, mapping this trained network onto 

TrueNorth induces potential rounding errors. It is necessary to 

constrain the network before and during training and 

accommodate these constraints during implementation. In this 

section, we will discuss the “constrain-then-train-then-

approximate” workflow that minimizes potential errors on SNN 

conversion and hardware implementation. The discussion is 

carried out using TrueNorth as an example hardware platform, 

however, the workflow can easily be adapted for other 

neurosynaptic chips.   

A. Constrain 

To avoid potential errors caused by various approximations 

during the SNN conversion and hardware implementation, we 

will consider these approximations in the training process as 

types of constraints. This requires us to set a plan of how to 

carry out the approximation before training the network. The 

       
(a)           (b) 

Figure 8(a) Algorithm 1 (b) Algorithm 2 in action [10] 

Algorithm 1. Sigmoid, Tanh, Dot product Mapping Algorithm 

h = number of hidden units 
addCore 
numAxons = 0 
for i = 1 to h 
      add a respective module with n axons 
      numAxons += n 
      if numAxons > 256 
            addCore 
            numAxons = 0   

 

Algorithm 2. IC Module Mapping Algorithm 

h = number of hidden units 
x = number of inputs  
function ExtendCores 
      addCore 
      numNeurons = 0 
      for I = 1 to h 
            add 2 neurons each for f, i, o, i_tanh 
            numNeurons +=8 
            if numNeurons>256 
 addCore 
 numNeurons = 0 

call ExtendCores 
numAxons = 0 
for i = 1 to (x+h) 
      add 8 axons (4 each for +ve and -ve) 
      make synaptic connections as per 4 axon 

scheme 
      numAxons += 8 
      if numAxons > 256 
            call ExtendCores  
            numAxons = 0 

 



 

 

 

plan includes which algorithm to be used for the approximation 

and how to set parameters in the algorithm. 

1) Steep Activation Functions 

The rounding errors introduced by the rounded weights are 

especially harmful when it propagates through the activation 

functions. The small changes of the input are visible in the 

output of an activation function if it falls in its linear operating 

region. Thus, a steeper slope of the activation function reduces 

the linear range of the input, hence, limits the propagation of 

rounding errors.  

In (2) and (4), 𝑚𝑠𝑖𝑔 and 𝑚𝑡𝑎𝑛ℎ represent the slopes of piece-

wise linear sigmoid and hard tanh respectively. To maintain the 

same linear operating range for the sigmoid and tanh, we must 

have mtanh=2*msig. Here, we choose 𝑚𝑠𝑖𝑔 = 1 and 𝑚𝑡𝑎𝑛ℎ = 2 

during training and inference such that the linear operating 

range for both sigmoid and tanh is from −0.5⁡to +0.5 . The 

constrained activation functions shown in Figure 7(a) and 

Figure 7(b). For the gate modules in (7) and (8), the change in 

the slope changes the choice of 𝑅𝑇ℎ𝑅. 

 

2) Weight Quantization 

Binary and ternary integer weights have been used to produce 

close to state-of-the-art results for feed-forward network 

architectures [23] [24], but both our preliminary work and the 

existing research [25] show that it is difficult to train LSTMs 

with binary and ternary integer weights. Recently quantization 

methods have shown promising results for RNNs [26]. But with 

these quantization methods, large performance degradation 

occurs when quantizing weights to 2-bit or l-bit numbers. This 

is accredited to the unbalanced distribution of the weights 

across the quantized values which occurs when these 

quantization methods employ uniform quantization on a bell-

shaped distribution of parameters with sporadic large outliers. 

As shown in Figure 9(b) for 2-bit quantization, for the original 

weights in Figure 9(a), there is a huge discrepancy between the 

number of weights in the two middle quantized values and the 

two outer quantized values. Thus, we utilize a balanced 

quantization approach as proposed in [27] [11] which focuses 

on producing balanced distributions of quantized values of data 

rather than preserving the outliers. The goal is to produce 

weights uniformly distributed across the quantized values as 

shown in Figure 9(c). 

Consider a random variable w in a close interval [0, 1]. As an 

entry in the weight matrix, w follows a bell-style distribution as 

shown in Figure 9 (a). Using the traditional k-bit uniform 

quantization, the quantized value  𝑄𝑘(𝑤) can be calculated as: 

𝑄𝑘(𝑤) = ⁡
1

2𝑘 − 1
⌊(2𝑘 − 1)𝑤 +

1

2
⌋ 

 

The distribution of 2-bit uniformly quantized value of 

variables in Figure 9 (a) is shown in Figure 9 (b). As we can see 

a large portion of variables are quantized into the 2 levels in the 

center. This effectively reduces the data precision from 2-bit to 

1-bit. 

A k-bit balanced quantization of w is calculated as 

 

𝑄𝑘
𝑏𝑎𝑙(𝑤) = ⁡𝑄𝑘 (

𝑤`

𝑠𝑐𝑎𝑙𝑒
) ∗ 𝑠𝑐𝑎𝑙𝑒     (9) 

 

where 𝑠𝑐𝑎𝑙𝑒 = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑊)) ∗ 2.5 is the approximation of 

the parameter dependent adaptive threshold 3 ∗

𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑠(𝑊)) to produce an auto-balancing effect [27] at 

each layer using a standardization transform to produce 𝑤` with 

a close interval [0,1] from 𝑤 using the following equation: 

 

𝑤` = ⁡ ax (−0.5, in (0.5,
𝑤

𝑠𝑐𝑎𝑙𝑒
)) + 0.5 

 

Scaling these weights and rounding to integer can produce 

rounding-off errors. Thus, to minimize the rounding-off error 

from scaling and rounding, we introduce a rounding in the 

quantization flow during training which rounds the weights to 

the nth decimal place given as the following:  

 

𝑅𝑄𝑘
𝑏𝑎𝑙(𝑊) = ⁡ 𝑟𝑜𝑢𝑛𝑑_𝑛𝐷(𝑄𝑘

𝑏𝑎𝑙(𝑊))   (10) 

 

where 𝑟𝑜𝑢𝑛𝑑_𝑛𝐷(𝑥) =
𝑟𝑜𝑢𝑛𝑑_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥∗10𝑛)

10𝑛
 . This rounding 

enables scaling by 10n and produces integer weights and thus 

removes rounding-off error. 

 The balanced quantization method combined with rounding 

during training can be utilized to get trained weights at any 

fixed-point quantization level for an inference hardware that 

utilizes fixed-point weights.  

With weight quantization, along with minimizing rounding 

error, the number of axons can be reduced from 4 to 2 to allow 

for more efficient usage of the axons. 

B. Train 

The derivatives of the quantization function in (9) and (10) 

equal to zero or undefined as the function 𝑄𝑘(𝑋)  and 

𝑅𝑄𝑘
𝑏𝑎𝑙(𝑥)⁡ is non-differentiable. This causes hindrance in 

training the network using backpropagation. So, we adopt the 

 

( a ) 

  

      ( b )           ( c ) 
Figure 9 Histograms for (a)Original (b)Standard quantization (2-bit) (c) 

Balanced quantization weights (2-bit) 



 

 

 

Straight Through Estimator (STE) proposed in [28] [29], and 

substitute the gradient with respect to the quantized value (
𝜕𝑐

𝜕𝑦
) 

for the gradient of the original value (
𝜕𝑐

𝜕𝑥
) as if propagating the 

gradient through a linear function. As STE produces 

approximation noises while computing gradients, we limit it 

only to the necessary functions that are non-differentiable. In 

(9), the STE method is applied to the floor function, and the 

forward and backward propagation of the floor function is 

defined as the following 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 𝑦⁡ ← ⁡𝑓𝑙𝑜𝑜𝑟(𝑥) 

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑:
𝜕𝑐

𝜕𝑥
⁡←

𝜕𝑐

𝜕𝑦
 

Similarly, in 𝑅𝑄𝑘
𝑏𝑎𝑙(𝑥)⁡of (10), the STE method is applied to 

the round to integer function and 𝑖ts forward and backward 

propagation is defined as follows. 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 𝑦⁡ ← ⁡𝑟𝑜𝑢𝑛𝑑_𝑡𝑜_𝑖𝑛𝑡𝑒𝑔𝑒𝑟(𝑥) 

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑:
𝜕𝑐

𝜕𝑥
⁡←

𝜕𝑐

𝜕𝑦
 

 Overall, the modified backpropagation algorithm is given in 

Algorithm 3. Here WQ is the quantized weight after applying 

(10). As we can see, the forward propagation is performed using 

balanced quantized weight coefficients, the weight is also 

updated based on the derivative calculated with the respect of 

the quantized weights.  

C. Approximate 

After constraining and training the network, we have the 

quantized weights trained with nth decimal precision. Now, to 

implement the trained network on a constrained TrueNorth 

chip, some linear transformation is necessary. 

As the synaptic weights in TrueNorth and many other 

neuromorphic hardware only have integer precision, it is 

necessary to scale the weights and round them to integer values. 

With nth decimal precision, the scaling is simplified by using 

scaling factor 𝑠𝑓 = 10𝑛 , which directly generates integer 

weights.  

To keep the output unchanged, it is necessary to counter the 

scaling up of the weights by a scaling-down using the same 

scaling factor. The weighted sum of the IC module can be 

written as: 𝑥 = ∑𝑊 ∗ 𝐼𝑛𝑝𝑢𝑡 + 𝑏. In our previous work [10], 

when the weights W and b is scaled up by sf, we scaled down 

the Input by sf to preserve the integrity of y. We call this 

mechanism the scaled-input approach. This scaling mechanism 

is straightforward but reduces the precision of the input, which 

is already low given that the inputs are represented in terms of 

rate-coded spikes. For example, in a set up with PL=50 and 

mx=5, it takes 10 spikes to represent a value “1”, hence the data 

precision is 1/10. When the scaling factor sf is set to 10, data 

precision is drastically degraded to 1. Thus, in the previous 

work, it was necessary to use minimal scaling factor. 

Because the outputs of the IC module always go through an 

activation function, instead of scaling down the inputs of the IC 

module, in this work we integrate the down scaling factor into 

the activation function and we call this scaled-activation 

approach. This is similar to scale the output x of the IC module 

instead of its input. Since x is an accumulation of the inputs, it 

has a larger range than each individual input, and scaling x 

usually has less impact on the accuracy than scaling each input 

individually.  This scaling will preserve network accuracy and 

allow the use of larger scaling factor. 

In Section III.C.3), we know that the activation functions (i.e. 

sigmoid and hyperbolic tangent) are formulated in terms of 

AMP and RThR. We also know that by setting 𝑅𝑇ℎ𝑅 =
𝑛𝑆/𝑚𝑠𝑖𝑔  and 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.5𝑛𝑠 𝑚𝑠𝑖𝑔⁄ , we can use a stochastic 

neuron to implement the hard sigmoid function given in 

Equation (2). For scaled-activation scaling, we set 𝑅𝑇ℎ𝑅 =
(𝑛𝑆 ∗ 𝑠𝑓)/𝑚𝑠𝑖𝑔, and set the 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.5 ∗ 𝑅𝑇ℎ𝑅.  

Similarly, without scaling we set 𝑅𝑇ℎ𝑅 = 𝑛𝑆/𝑚𝑡𝑎𝑛ℎ⁡  to 

implement the hard hyperbolic tangent function using a 

stochastic neuron. However, with activation-scaling, the 

random threshold range should be set to 𝑅𝑇ℎ𝑅 = (𝑛𝑆 ∗
𝑠𝑓)/𝑚𝑡𝑎𝑛ℎ. 

The blue lines in Figure 7(a) and (b) plot the activation 

function with the scaling factor sf = 10 when implemented using 

a TrueNorth neuron. Compared to the original function and the 

constrained function, it has a steeper slope due to the scaling 

factor. As we utilize stochastic neurons to approximate the 

constrained activation functions, the quality of the 

approximation is highly dependent on random threshold 

generation and the length of the window over which the 

approximation is made. In Figure 7(a) and (b), the 

approximated activation functions using TrueNorth have some 

irregularities which can be attributed to imperfect random 

number generation for the random threshold and limited 

window length for the approximation. 

V. EXPERIMENTS 

In the following experiments, we compare the Spike-based 

LSTM mapped on TrueNorth against the standard LSTM 

implemented using Keras with TensorFlow backend. We use 

spike-based LSTM simulated on a full precision SNN simulator 

[30], as an ideal case scenario as no scaling and rounding are 

necessary. Its result is denoted as FPW-SNN. Please note that 

for FPW-SNN, the synaptic weights are not quantized, 

however, the neuron activities are quantized to 1/ns precision. 

All other results with pre-fix S-LSTM are results from 

TrueNorth. The results with pre-fix LSTM are results from a 

Algorithm 3. Training an L-layer LSTM network with 

quantized weights 

Input: A batch of inputs(I) and targets(Y), cost 

function(C), current weights(W) and current learning 

rate(η) 

Forward Propagation(W, I): 

      Balanced Quantization:  

         For l=1 to L 

         𝑊𝑙
𝑄 ⁡← ⁡𝑅𝑄𝑘

𝑏𝑎𝑙(𝑊𝑙)  
Standard forward propagation(WQ , I) 

Backward Propagation(W, Y, C): 

      Standard backward propagation(WQ, Y, C) 

      
𝜕𝑐

𝜕𝑊
⁡←

𝜕𝑐

𝜕𝑊𝑄   given by STE 

      W = UpdateParameters(W,⁡
𝜕𝑐

𝜕𝑊
⁡, η ) 

 

 



 

 

 

non-spiking LSTM implemented on Tensorflow. 

For all experiments, the network is comprised of one hidden 

layer of LSTM units. The networks are trained with two setups: 

scaled-input scaling without weight quantization and scaled-

activation scaling with 2-bit weight quantization. The 

quantization is done with single decimal place precision (n=1) 

such that we set sf=10 to achieve quantized integer weights. 

And to account for the large sf which reduces the slope, we train 

with a steep slope for both sigmoid (msig=1) and tanh (mtanh=2). 

The networks are trained also with weights constrained to the 

range -1 to 1. Spike-based LSTM is set to mx=5 and we vary 

the phase lengths to show how data precision can affect the 

performance, speed and accuracy. A longer phase length means 

high precision of the internal data of the LSTM. 

A. Benchmark Applications 

1) Parity check / XOR problem 

Parity check of a bit stream is a classic problem that is 

difficult to solve with a standard feed-forward network, but 

simple to solve with an RNN. In this problem, we have to 

determine at each input of a sequence of binary inputs whether 

the number of 1’s observed so far in the sequence is even or 

odd. Here, we train LSTM with one hidden layer containing 2, 

4 and 10 LSTM units on 9000 varying length binary sequences 

with a maximum length of 20. Then it is tested with 1000 

sequences on TrueNorth with varying phase lengths. 

In Figure 10, we can see that the accuracy improves with the 

phase length as this increases the precision of activations. The 

accuracy also increases when the number of LSTM units is 

increased. The scaled-activation and weight quantization 

method also improve the results as it removes rounding-off 

error from weights and reduces quantization error by preventing 

a reduction in precision. The full precision simulation of the 

spike-based LSTM led to the accuracy close to (>98%) or equal 

to the results on Tensorflow. 

 

2) Embedded Reber Grammar 

Embedded Reber grammar (ERG) is a popular RNN 

benchmark [2] and is useful for training sequences with short 

time lags. Figure 11(a) shows a Reber Grammar graph which is 

extended to an Embedded Reber Grammar in Figure 11(b). An 

ERG sequence starts from the leftmost node ‘B’ of the ERG 

graph and sequentially generates a finite number of symbols by 

following edges until the rightmost node ‘E’ is reached. At 

some nodes, there can be two possible paths and the choice is 

made randomly. A sequence that follows Reber Grammar 

defines a path in the Reber Grammar graph. During training, the 

system is presented with sequences following Reber Grammar, 

and during testing, the system is expected to generate sequences 

according to Reber Grammar.  

Input and target patterns are represented by 7-dimensional 

binary vectors, representing one symbol each, in the training 

set. And the task is to read the symbols one at a time and to 

continually predict the next possible symbol(s). Input vectors 

have exactly one nonzero component, but the target vector 

could have one or two nonzero components representing one or 

two possible paths. The prediction is considered correct if it 

predicts either one or both possible symbols. Here, we train 

LSTM networks with one hidden layer containing 10, 30 and 

50 LSTM units on 5000 ERG sequences with maximum 

sequence length 36. We tested on 500 ERG sequences on 

TrueNorth with varying phase lengths. 

Again, we see that the phase length has a direct impact on 

accuracy. For networks without weight quantization and with 

scaled-input (NWQ-SI), when the phase length increases above 

10, the accuracy drastically improves which means it requires 

the minimum data precision that can be represented by 1 spike 

to be higher than 1/10. The trend is noticeable in all 3 network 

sizes as shown in Figure 12. With weight quantization and 

scaled-activation (WWQ-SA), the accuracy gets closer to the 

full precision spike-based LSTM (FPW-SNN) as seen in Figure 

12(a)(b)(c) and achieving ~5% improvement over NWQ-SI. 

The improvement is higher (5% - ~30%) when the phase length 

is small. This is understandable as at lower PL, the precision 

reduced by scaled-input scaling is more noticeable than at 

higher PL.  

The network using rate-coded internal cell state (S-LSTM-

50RCt) instead of burst-coded one (S-LSTM-50) performs 

significantly worse as shown in Figure 12(d). In average using 

burst coding on Ct gives ~30% improvement in accuracy. This, 

as mentioned in Section III.B, is due to the accumulation of 

rounding error and additionally the sampling error while the 

spikes move from one buffer to another and then feeds back. 

The improvement is higher (up to 35%) when the phase length 

is large and lower (~20%) when the phase length is small. This 

is because at smaller phase lengths the low precision of inputs 

and internal data has a higher impact than the sampling error. 

The scaled-activation and weight quantization (WWQ-SA) 

method improve the results in this example by ~15%. Keeping 

the internal cell state burst-coded is still important under 

WWQ-SA.  It gives an extra ~15% improvement in accuracy in 

average. This is because scaled-activation and weight 

 
Figure 10. Accuracy vs Phase Length for Spike-based LSTM  

[NWQ-SI: No Weight Quantization with Scaled Input, WWQ-SA: With 

Weight Quantization with Scaled Activation] 

(Keras/Tensorflow counterparts have 100% for all cases) (modified from 

[10]) 

    
    (a)                                                      (b) 

Figure 11. (a) Reber Grammar (b) Embedded Reber Grammar [10] 



 

 

 

quantization do not change the representation of the internal 

data, hence cannot be used to reduce the sampling error 

introduced by rate coding. 

 For networks without weight quantization, when trained 

without any constraints, the range of learned weights varies. If 

that range is wide, it is hard to find a scaling factor that can raise 

smaller values to hardware supported range with low rounding 

errors without causing the larger values to overflow. So, we 

simply set the scaling factor sf to be 1. Compared to the 

networks trained with constraints, the rounding error of the 

unconstrained network is higher. However, setting 𝑠𝑓 = 1 

leads to higher nS and better precision (i.e. lower 1/nS) than 

setting sf > 1. Therefore, the unconstrained network (S-LSTM-

50NoC) produces better accuracy than the constrained network 

(S-LSTM-50 <35%) at lower PL, because it allows higher data 

precision. When the PL is high, the large window size already 

ensures reasonable data precision, so the constrained network 

performs better than the unconstrained version as shown in 

Figure 12(d). However, for networks with weight quantization, 

as they produce discrete weights with single decimal precision, 

we always set sf=10.  

 

3) Question Classification 

In the previous tasks the inputs are one-hot encoded thus 

requiring no discretization of the input. In the third experiment, 

we utilize a task requiring discretization of the input as well. 

The goal of this task is to categorize a question into six coarse 

classes (ABBREVIATION, ENTITY, DESCRIPTION, 

HUMAN, LOCATION and NUMERIC VALUE) based on the 

sequence of words in the question sentence. The training dataset 

[31] consists of 5500 sentences and test set contains 500 

sentences. The LSTM network is trained on these sentences 

using a 50-dimensional vector representation for words called 

GloVe [32], learnt on aggregated global word-word co-

occurrence statistics from a corpus. For this problem, each 

sentence is limited to 10 words. Thus, the input is a sequence of 

10 50-D word vectors and output is one of the six classes. As 

these word vectors are continuous values, the input is also 

rounded to precision given by 1/nS. 

With 30 LSTM units, the LSTM network achieves ~86% 

accuracy on Tensorflow. It reduces to ~84% when using 2-bit 

weights with full precision inputs. Rounding the inputs to 1/nS 

precision, the performance decreases by ~2% as shown in 

Figure 13 by the LSTM-QW data series. It is understandable as 

there is always some loss of information associated with 

quantization. Using the full precision weights on an SNN 

simulator, our S-LSTM achieves 79.9% accuracy which is 

within ~3% of the Tensorflow implementation. However, the 

networks on TrueNorth still lag behind (both NWQ-SI and 

WWQ-SA) due to the added constraints. 

          

( a )                     ( b ) 

                                 
( c )                     ( d ) 

Figure 12. Accuracy vs Phase Length (PL) for Spike-based LSTM with (a)10 (b)30 (c)50 units (d) with rate-coded Ct and no-constraint setup  

[NWQ-SI: No Weight Quantization with Scaled Input, WWQ-SA: With Weight Quantization with Scaled Activation, FPW-SNN: Full Precision Weights 
SNN, RCt: Rated coded Ct, NoC: No Constraints](Keras/Tensorflow counterparts have 100% for all cases).  (modified from [10]) 

 
Figure 13 Accuracy vs Phase Length for Spike-based LSTM 

[NWQ-SI: No Weight Quantization with Scaled Input, WWQ-SA: With 
Weight Quantization with Scaled Activation, 1/nS: Tensorflow LSTM 

network tested with 1/nS input precision, QW:Tensorflow LSTM trained 

with quantized weights, FPW: with full precision weights] 
 



 

 

 

B. Power Analysis 

Table 1 shows the results of 50-unit LSTM network with 

scaled-input scaling and without weight quantization, and the 

respective TrueNorth implementations with 200 (high 

accuracy) phase lengths used for Embedded Reber Grammar. 

The table demonstrates the energy versus performance trade-off 

between TrueNorth and the GPUs. Compared to NVIDIA Tegra 

X1 (20nm technology) and NVIDIA Titan X (16nm 

technology), the TrueNorth networks (running at normal 

operating frequency 1 kHz) is more energy efficient. It 

consumes only 56 µJ at 0.8V for 200 PL per sample and is up 

to 84x and 416x energy efficient than Tegra X1 and Titan X 

respectively. At faster than real time operation (3.5 kHz 

operating frequency) and the same voltage level of 0.8V, 

TrueNorth performs even better with 165x and 817x higher 

energy efficiency compared to Tegra X1 and Titan X. All the 

measurements were taken only during inference. 

 Table 1 also shows the TrueNorth implementation is slower 

than the GPU implementations. In practical deployment, this 

factor of time delay is unsuitable, and it points to a large 

performance/energy tradeoff. This tradeoff is drastic mainly 

due to the inability to reliably train LSTM networks with very 

limited precision. In the experimental setup, we chose PL = 200 

and sf > 1 for comparison to ensure reasonable data precision 

and comparable accuracy as the GPU implementation. If we can 

train an LSTM network with limited precision, then sf can be 

set to 1 and a much lower PL can be used without reducing 

spike’s data representation precision. This will reduce the 

delays to a tolerable level or even close to the GPU 

implementation with the same or even lower energy footprint.   

C. Chip utilization 

The actual power consumption only for the resources utilized 

on TrueNorth chip is computed by measuring chip idle power 

which is leakage power Pleak and total power Ptotal with the 

network running [33]. Active power is Pactive = Ptotal - Pleak. The 

scaled leakage power for the cores utilized is Pleak_s= 

Pleak*#cores/4096. Therefore, the total power consumed for the 

utilized resources is Ptotal_s = Pactive + Pleak_s. For a given network 

the active power is directly proportional to the spiking activity 

however, the same network can be designed to be mapped 

utilizing a different number of cores. To ensure minimum 

power consumption it is critical to pack as many neurons 

possible on to each core for minimizing Ptotal_s as Pleak_s is the 

only free variable. 

Packing/Efficient utilization of the TrueNorth chip can be 

described in terms of number of cores used and the average 

neuron and synaptic density. The incremental mapping 

algorithm shown in Section III.D attempts to pack as many 

neurons as possible in a core, incrementally adding cores as 

required. This behavior is illustrated in Figure 14(b) which 

shows the average neuron and synaptic density increasing with 

the number of LSTM units. This suggests that with increasing 

number of LSTM units, the cores are more densely packed and 

thus better utilized.  

With weight quantization, the weights can be discretized to 

2-bit or even 1-bit. This allows for utilizing only 2 axons per 

input channel in the ICB module instead of 4 axons. Utilizing 

just 2 axons per channel results in reduced number of cores and 

improved neuron and synaptic density as shown in Figure 14(a) 

and Figure 14(b) with the increase in the number of LSTM 

units. Thus, with weight quantization scalability of mapping 

networks on TrueNorth is improved. 

 

VI. CONCLUSION 

The paper presents a methodology to convert a general 

LSTM to a Spike-based LSTM which can be deployed in any 

neuromorphic hardware. A standard LSTM is divided into 

modules and separately approximated using spiking neurons. 

Here we target benchmark applications on IBM TrueNorth 

Neurosynaptic Processor. On TrueNorth, modules are in the 

form of corelets which are then combined, connected and 

mapped to form Spike-based LSTM networks and synchronized 

  

 
             ( a )                      ( b )  

Figure 14. (a) Total number of cores used vs LSTM units, (b) Average Neuron density and Synaptic density vs LSTM units 

[NWQ – 4-bit: No Weight Quantization – 4-bit integer precision, WWQ – 2-bit: With Weight Quantization – 2-bit precision] 

Table 1. Power and performance on different platforms 

Network Devices 

Time/ 

Sample 

(ms) 

Active 

Power 

(W) 

Energy/ 

Sample 

(mJ) 

50-LSTM 

NVIDIA  

Tegra X1 
1.928 2.45 4.72 

NVIDIA 

Titan X 
0.5 46.5 23.3 

50-LSTM 

200-PL 

IBM  

TrueNorth 
400 0.00014 0.056 

*IBM 

TrueNorth 
114 0.00025 0.0285 

*running at faster than real time (3.5x faster) 



 

 

 

using a store-and-release mechanism. These networks are tested 

on three RNN benchmarks with promising accuracy results and 

high power efficiency.  
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