

**FINAL TECHNICAL AND ECONOMIC FEASIBILITY STUDY ON THE
APPLICATION OF A HEAT INTEGRATED POST-COMBUSTION CO₂ CAPTURE
SYSTEM WITH HITACHI ADVANCED SOLVENT INTO EXISTING COAL-FIRED
POWER PLANT**

TOPICAL REPORT

PRINCIPAL AUTHOR:

Abhoyjit S. Bhowm, Electric Power Research Institute, Palo Alto, CA

CONTRIBUTING CO-AUTHORS:

Ron Schoff, Andrew Maxson, Yang Du, and Alex Jimenez, Electric Power Research Institute, Palo Alto, CA

Kunlei Liu, Jim Neathery, Joe Remias, Jesse Thompson, Lisa Richburg, Andrew Placido and Heather Nikolic, University of Kentucky, Lexington, KY

Mike Bartone and Jay White, WorleyParsons Group Inc., Reading, PA

Sandhya Eswaran and Song Wu, Hitachi Power Systems America, Ltd, Basking Ridge, NJ

REPORTING PERIOD

10/01/2011 – 05/31/2020

SUBMISSION DATE

May 2020

WORK PERFORMED UNDER AWARD NUMBER

DE-FE0007395 – Task 19

SUBMITTED BY

University of Kentucky Research Foundation
109 Kinkead Hall
Lexington, KY, 40506-0057

PRINCIPAL INVESTIGATOR

Kunlei Liu
+1-859-257-0293
kunlei.liu@uky.edu

DOE PROGRAM MANAGER

Jose Figueroa
Jose.Figueroa@netl.doe.gov
Andy Aurelio
Isaac.Aurelio@netl.doe.gov

SUBMITTED TO

U.S. Department of Energy
National Energy Technology Laboratory

NOTICES

COPYRIGHT NOTICE. Copyright, 2020, University of Kentucky Research Foundation, Electric Power Research Institute, Inc., Hitachi Power Systems America, Ltd., and WorleyParsons Group, Inc.

ACKNOWLEDGEMENT OF GOVERNMENT SUPPORT. This material is based upon work supported by the Department of Energy under Award Number DE-FE0007395.

DISCLAIMER. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

This report contains the results of a techno-economic assessment (TEA) conducted of a heat integrated post-combustion CO₂ capture process with Hitachi advanced solvent for retrofit into an existing coal-fired power plant (but treated as greenfield plant on cost analysis). The process has been developed by the University of Kentucky Center for Applied Energy (UK CAER). EPRI was chiefly responsible for this analysis, with significant input from WorleyParsons, Hitachi Power Systems America (Hitachi) and UK CAER.

The project also involves the design, fabrication, installation, testing, and analyses of a slipstream facility located at L&GE-KU's E.W. Brown Generating Station to demonstrate the UK CAER carbon capture system that could utilize heat integration with the main power plant. The design, start-up, and baseline of the pilot system was performed with a generic 30 wt% MEA solvent to obtain data for direct comparison with the DOE/NETL Reference Case ¹ followed by testing Hitachi's proprietary solvent H3-1.

In this techno-economic analysis, two cases utilizing the UK CAER process are compared, using different approach temperatures and solvent, against the DOE/NETL Reference Case (Case 10). The results are shown comparing the energy demand for post-combustion CO₂ capture and the net higher heating value (HHV) efficiency of the power plant integrated with the post-combustion capture (PCC) plant. A levelized cost of electricity (LCOE) assessment was performed showing the costs of the options presented in the study. The key factors contributing to the reduction of LCOE were identified as CO₂ partial pressure increase at the flue gas inlet, thermal integration of the process, and performance of the Hitachi H3-1 solvent.

Recent UK CAER process pilot-scale testing data and process simulation data showed that the packing heights of absorber and stripper columns were significantly oversized in the preliminary TEA (Task 2 of this project) and thus updated in this final TEA for the H3-1 case only. In addition, the solvent make-up cost for H3-1 was updated based on latest test results. Finally, a heat integration with the main power plant was applied in this final TEA to increase overall energy efficiency for both the MEA and H3-1 cases. Additional reductions in capital and operational costs are expected but not taken into account here. Shorter columns result in reduced pressure drops, smaller blower head and pump hydraulic head requirements. An increase in overall energy efficiency results in a decreased size of the power plant, the CCS and a reduced parasitic steam requirement to the CCS.

The net efficiency of the UK CAER integrated PC power plant with CO₂ capture changes from 26.2% for the Reference Case 10 plant in 2010 revised DOE/NETL baseline report to 27.6% for the MEA options considered, and 29.1% for the options utilizing the Hitachi advanced solvent. The UK CAER Process + Hitachi case also produces an extra 30.9 MW of generation compared to the UK CAER Process + MEA case and total 60.9 MW more than DOE Case 10. LCOE (\$/MWh) values are \$172.08/MWh for the MEA option and \$157.65/MWh for the Hitachi H3-1 solvent cases considered in comparison to \$189.59/MWh in January 2012 dollar for the Reference Case 10.

¹ United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). (2010). *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Rev. 2.* (DOE/NETL-2010/1397). Pittsburgh, Pennsylvania: U.S. DOE.

The UK CAER CCS process with MEA case lowers energy consumption for CO₂ capture to 1340 Btu/lb-CO₂ captured as compared to 1540 Btu/lb-CO₂ in the Reference Case 10. The UK CAER CCS process with H3-1 case further lowers energy consumption for CO₂ capture to 973 Btu/lb-CO₂ captured, for an advantage of 36.8% less energy consumption than Case 10. The study also shows 38.1% less heat rejection associated with the carbon capture system from 3398 MBtu/hr (Case 10) to 2104 MBtu/hr for the UK CAER + MEA system. Heat rejection is reduced to 2464 MBtu/hr in the UK CAER + H3-1 case, for a 27.5 % decrease compared to Case 10. Modeling outputs show that in the UK CAER process, the cooling water that is 2-5°C cooler than conventional cooling tower water can be achieved for ambient conditions common to the midwest and other regions. The results from the techno-economic assessment show that the proposed technology can be investigated further as a viable alternative to conventional CO₂ capture technology.

The evaluation also shows the effect of the critical parameters on the LCOE, with the main variables being the approach temperature and CO₂ partial pressure increase at the flue gas inlet. A summary of the key advantages of the UK CAER Process + H3-1 case for LCOE and other economic factors compared to the DOE Case 10 is as follows:

- A lower variable operating cost by \$1.56/MWh (\$1.08MWh less than the UK CAER Process + MEA Case), a 11.7% reduction compared to the DOE Case 10
- A lower COE by \$25.32MWh (\$13.94/MWh lower than the UK CAER Process + MEA Case), a 16.9% reduction compared to the DOE Case 10
- A lower LCOE by \$31.94/MWh (\$17.51/MWh lower than the UK CAER Process + MEA Case), a 16.9% reduction compared to the DOE Case 10
- A lower cost of CO₂ captured by \$18.65/tonne CO₂ (\$9.44/tonne CO₂ lower than the UK CAER Process + MEA Case), a 30.4% reduction compared to the DOE Case 10
- A lower cost of CO₂ avoided by \$34.95/tonne CO₂ (\$18.53 tonne CO₂ lower than the UK CAER Process + MEA Case), a 38.7% reduction compared to the DOE Case 10

Table of Contents

Abstract	3
Abbreviations	10
1 Introduction	11
1.1 Background	11
1.2 Project Overview	14
1.3 Report Objectives.....	15
2 Evaluation Basis.....	16
2.1 Pre-treatment Tower Block.....	16
2.1.1 Booster fan	16
2.1.2 Direct Contact Cooler/Pre-Treatment Tower.....	16
2.2 CO ₂ Scrubber Block.....	19
2.2.1 CO ₂ Absorber.....	19
2.2.2 Heat Exchangers (Rich/Lean Solvent).....	19
2.3 Stripping Systems Block.....	22
2.3.1 Primary Stripper.....	22
2.3.2 Secondary Stripper.....	23
2.4 Heat Integration Cooling Tower Block.....	25
2.5 Heat Integration with Main Plant.....	27
2.6 Solvent Agnostic Nature of the UK CAER CCS.....	28
3 Description of Hitachi Advanced Solvent	29
3.1 Development Background	29
3.1.1 Bench-Scale R&D.....	29
3.1.2 Pilot-Plant Testing	29
3.1.3 Technology Demonstration.....	30
3.1.4 Scale-up & Commercialization.....	30
3.2 Performance of the Hitachi Solvent.....	31
4 PC Power Plant with CO ₂ Capture.....	35
4.1 Brief Process Description	35
4.2 Key System Assumptions	35
4.3 Performance Modeling Approach and Validation	36
4.4 CO ₂ Equipment Sizing Methodology, Cost Estimating, and Financial Analysis Methodology	39

4.4.1	Capital Costs	40
4.4.2	Operating and Maintenance Cost Estimates	41
4.4.3	Transport Storage and Monitoring.....	42
4.4.4	Finance Structure, Discounted Cash Flow Analysis, and Cost of Electricity.....	42
4.4.5	Levelized Cost of Electricity	44
4.5	Update of the DOE/NETL Base Cases	48
4.5.1	Results for the Update of the DOE Base Cases	50
5	Performance Results	52
5.1	UK CAER Process + MEA Case	52
5.1.1	Performance Results	52
5.1.2	Major Equipment List	58
5.1.3	Economic Results.....	73
5.2	UK CAER Process + H3-1 Solvent Case	76
5.2.1	Performance Results	76
5.2.2	Major Equipment List	78
5.2.3	Economic Results.....	86
5.2.4	Space Requirements for Commercial CO ₂ Capture and Compression Plant	88
6	Potential Environmental Benefits	89
6.1	Integration of the UK CAER process into a power plant cycle for efficiency improvement	89
6.2	Warm-weather Sensitivity Analysis for the Liquid Desiccant Drying System	94
6.2.1	Effect of Ambient Air Relative Humidity	95
6.2.2	Sensitivity of Brine Regenerator Air Flow to Wet-bulb Depression and Waste Heat Recovery	96
A	APPENDICES	98
A.1	The selection of flue gas extraction location for slipstream facility	98
A.2	Corrosion and Steel Selection.....	98
A.3	Commercial deployment/technology transfer for UK CAER heat integrated system.	100
A.4	Auxillary Boiler and Backpressure Steam Turbine for Existing Plant Retrofit.....	101
A.5	Updated DOE Cases 9 and 10 Results.....	103

List of Figures

Figure 1-1 The Impact of Energy Recovery from Stripping Evolved Stream	12
Figure 1-2 Mass Transfer Flux with Higher CO ₂ Concentrations	13
Figure 1-3 Reduced Stripper Energy Requirements with Higher CO ₂ Concentration in the Gas Stream	13
Figure 1-4 The Impact of Relative Humidity on Overall Plant Thermal Efficiency at 90 °F dry bulb temperature (Correction Curve was obtained from ASME PTC 6 for Steam Turbine)	14
Figure 2-1 Direct Contact Cooler/Pre-Treatment Tower	18
Figure 2-2 CO ₂ Scrubber	21
Figure 2-3 Stripping Systems (Primary and Secondary Strippers)	24
Figure 2-4 Integrated Cooling Tower	26
Figure 3-1 Bench-Scale Test Rig	29
Figure 3-2 Pilot plant at Yokosuka	30
Figure 3-3 Long-term pilot testing of H3 solvent under various conditions	31
Figure 3-4 Reaction Heat by CO ₂ Absorption of MEA Solution and H3-1 Solvent	32
Figure 3-5 Comparison of Amine Loss from Different Solvents	32
Figure 3-6 Comparison of CO ₂ recovery Heat from Different Solvents	32
Figure 3-7 Comparison of the Effect of L/G of Various Solvents	33
Figure 3-8 Comparison of Regeneration Energy of Various Solvents	34
Figure 4-1 Typical PC Boiler with Pollution Controls	35
Figure 4-2 Aspen Plus® Flowsheet of UK CAER Process	37
Figure 4-3 Aspen Plus® Flowsheet of UK CAER Process	38
Figure 4-3 Comparison and Breakdown of COE for Case 9 and Case 10	50
Figure 5-1 High-Level Block Flow Diagram for the MEA Case	53
Figure 5-2 Heat and Mass Balance for the Steam Cycle for the MEA Case	56
Figure 5-3 Comparison and Breakdown of COE for the MEA and DOE Cases	75
Figure 5-4 Comparison and Breakdown of COE for the Hitachi, and DOE Cases	88
Figure 6-1 Heat and Mass Balance, Subcritical PC Boiler with CO ₂ Capture in DOE NETL 2010 Report	91
Figure 6-2 The Impact of Relative Humidity on Overall Plant Thermal Efficiency at 90°F dry bulb temperature (Correction Curve was obtained from PTC Code for Steam Turbine)	93
Figure 6-3 Aspen Plus® model results showing the effect of ambient relative humidity at a constant dry-bulb temperature of 90 °F on dried gas wet-bulb and dehydration energy requirements	96
Figure 6-4 Air Flow Rate to the Brine Regenerator Tower (30% to 50% of the main cooling tower air flow)	97
Figure A-1 The flowchart of auxiliary unit for CO ₂ capture process	102

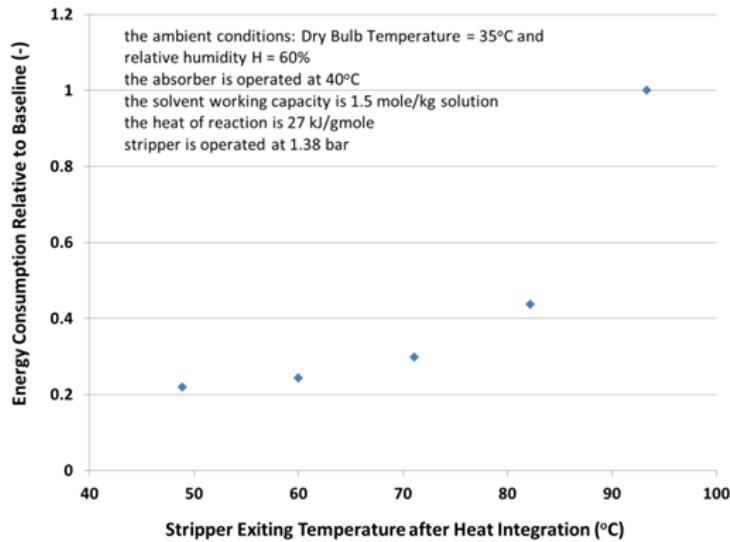
List of Tables

Table 2-1 Typical PC Boiler with Pollution Controls	28
Table 4-1 Typical PC Boiler with Pollution Controls	36
Table 4-2 Owner's Costs Basis and Assumptions	43
Table 4-3 Global Economic Assumptions	47
Table 4-4 Financial Structure for Investor Owned Utility.....	48
Table 4-5 Plant Specific Operational and Cost Inputs.....	49
Table 4-6 Economic Metrics.....	50
Table 5-1 High-Level Stream Conditions for the MEA Case (numbers match with those in Figure 5-1).....	54
Table 5-2 MEA Performance Summary	57
Table 5-3 Fuel and Sorbent Handling Equipment List.....	59
Table 5-4 Coal and Sorbent Preparation and Feed Equipment List	60
Table 5-5 Feedwater and Miscellaneous Systems and Equipment List	61
Table 5-6 Boiler and Accessories Equipment List	62
Table 5-7 Flue Gas Clean-up Equipment List.....	63
Table 5-8 CO ₂ Capture Equipment List (high-level).....	63
Table 5-9 HRSG, Ducting, and Stack Equipment List	64
Table 5-10 Steam Turbine Generator and Auxiliaries Equipment List.....	64
Table 5-11 Cooling Water System Equipment List.....	64
Table 5-12 Ash/Spent Sorbent Recovery and Handling Equipment List	65
Table 5-13 Accessory Electric Plant Equipment List.....	66
Table 5-14 Instrumentation and Control Equipment List	66
Table 5-15 CO ₂ Capture Equipment List for the MEA Case (detailed).....	67
Table 5-16 Comparison of Operating Parameters and Costs between the DOE Base Cases and the MEA Case.....	74
Table 5-17 Comparison of COE between the DOE Base Cases and the MEA Case.....	75
Table 5-18 Hitachi Performance Summary	77
Table 5-19 Steam Turbine Generator and Auxiliaries Equipment List	78
Table 5-20 Steam Turbine Generator and Auxiliaries Equipment List.....	78
Table 5-21 Cooling Water System Equipment List.....	79
Table 5-22 CO ₂ Capture Equipment List for the 2020+H3-1 Solvent Case (detailed).....	80
Table 5-23 Comparison of Operating Parameters and Costs between the MEA, Hitachi, and DOE Cases	86
Table 5-24 Comparison of LCOE between the UK CAER + MEA, UK CAER + H3-1, and DOE Cases	87
Table 6-1 Impact of Condenser Pressure on Steam Turbine Performance (TC4F-40).....	92
Table A-1 Summary of electrochemical parameters and corrosion rate of carbon steel A106 in MEA-H ₂ O-CO ₂ systems	99
Table A-2 Comparative corrosion data as measure using electrochemical method for Hitachi H3-1 and 30 wt% MEA measured at rich conditions (0.5 mol C/mol N).....	100
Table A-3 Summary of Updated Capital Costs for DOE Bituminous Coal Baseline Case 9.....	103
Table A-4 Detailed Updated Capital Costs for DOE Bituminous Coal Baseline Case 9	104
Table A-5 Updated O&M Costs for DOE Bituminous Coal Baseline Case 9.....	107
Table A-6 Summary of Updated Capital Costs for DOE Bituminous Coal Baseline Case 10...	108

Table A-7 Detailed Updated Capital Costs for DOE Bituminous Coal Baseline Case 10	109
Table A-8 Updated O&M Costs for DOE Bituminous Coal Baseline Case 10.....	112
Table A-9 Summary of Capital Costs for UK CAER + MEA Case	113
Table A-10 Detailed Capital Costs for UK CAER + MEA Case	114
Table A-11 O&M Costs for UK CAER + MEA Case.....	117
Table A-12 Summary of Capital Costs for UK CAER + H3-1 Case.....	118
Table A-13 Detailed Capital Costs for UK CAER + H3-1 Case.....	119
Table A-14 O&M Costs for UK CAER + H3-1 Case	122

Abbreviations

BP	– Budget Period
Btu	– British thermal unit
UK CAER	– University of Kentucky Center for Applied Energy Research
CCS	– Carbon Capture and Storage
CO ₂	– Carbon dioxide
COE	– Cost of electricity
DCC	– Direct Contact Cooler
DOE	– Department of Energy
EPRI	– Electric Power Research Institute
FEED	– Front End Engineering Design
FGD	– Flue Gas Desulphurisation
HHV	– Higher Heating Value
ID Fan	– Induced Draught/Draft Fan
KU	– Kentucky Utilities
kW	– Kilowat
kWh	– Kilowat-hour
LCOE	– Levelized Cost Of Electricity
LG&E	– Louisville Gas & Electric
LHV	– Lower Heating Value
MEA	– Monoethanolamine
MW	– Megawatt
MWh	– Megawatt-hour
NETL	– National Energy Technology Laboratory
O&M	– Operation and Maintenance
PC	– Pulverized Coal
PCC	– Post Combustion Carbon Capture
PFD	– Process Flow Diagram
TEA	– Techno-Economic Assessment
TS&M	– Transportation, Storage, and Monitoring
TTD	– Terminal Temperature Difference


1 Introduction

1.1 *Background*

In order to meet the DOE's goals, significant improvements and breakthroughs in cost-effective techniques for carbon capture are needed. Here, the techno-economic analysis (TEA) of the UK CAER heat-integrated post-combustion CO₂ capture system using an advanced solvent as the reagent for post-combustion CO₂ capture from utility flue gas is detailed. The process uses a two-stage stripping unit for solvent regeneration. This approach includes the addition of an air-based second stage stripping process inserted between a conventional rich-lean crossover heat exchanger and a lean solution temperature polishing heat exchanger. The secondary stripper outlet stream is used as boiler combustion air, consequently enriching the flue gas at the absorber inlet with CO₂. The proposed process also could use a heat-integrated cooling tower system which recovers waste energy from the carbon capture system. In this process, the conventional cooling tower would include two sections – the top section with 100% cooling water collection for the conventional cooling function; the bottom section to remove moisture from cooling air using a liquid desiccant prior to entering the top section for cooling recirculating water from steam turbine condenser. The working principle is that reducing the relative humidity of the cooling air will lower the turbine condenser cooling water temperature and thereby reduce the steam turbine back pressure for efficiency improvement.

In order to find new methods of lowering CCS costs, especially those from energy consumption, it is useful to consider the steam requirement for the stripper in an energy balance. This balance has three elements: the heat of desorption of CO₂ (Q_{des}) (sometimes referred to as the heat of reaction), the solvent sensible heat (Q_{sens}), and the latent heat of evaporation for stripping in the regenerator outlet (Q_{strip}). For instance, in a reference monoethanolamine (MEA)-based system, using the units of moles of steam required per mole of CO₂ desorbed, Q_{des} = 2.2, Q_{sens} = 0.6, and Q_{strip} = 2.7, approximately 49% of energy is used for water evaporation. In this case, the stream temperature at stripper outlet is assumed to be 93 °C without any heat recovery downstream. For a given solvent the heat of desorption of CO₂ is set by thermodynamics, and the sensible heat requirement is practically fixed by the crossover heat exchanger (EHX) approach temperature (typically 5 °C differential temperature by design because of capital cost concerns, but operated at 10-15 °C in practice). Therefore, recovering the water evaporation energy will be the main variable to reduce CCS energy consumption.

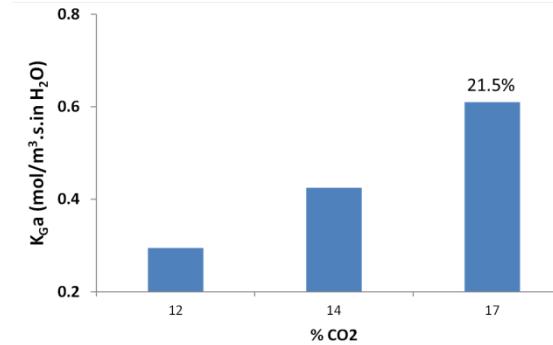

As presented in Figure 1-1, the energy consumption could be reduced significantly by dropping the evolved stream temperature at the stripper outlet through the installation of a heat recovery unit downstream and effective heat integration inside this unit. Energy savings of 70% could be realized if the temperature of the evolved stream (CO₂ + H₂O) is cooled to 71 °C from 93 °C through heat integration.

Figure 1-1
The Impact of Energy Recovery from Stripping Evolved Stream

Presently, three possible configurations have been suggested and studied to integrate the low-quality heat from CCS (specifically stripper exhaust and compressor intercooler) into the main power plant for energy recovery, which include (1) heating the carbon-rich solution prior to stripper; (2) heating the condensate from the steam turbine to replace one or two stages of feed water heater; and (3) integrating with plant HVAC system. Considering the large amount of low quality energy available from post-combustion CCS (approximately 25% of total energy input to power plant with CCS), all these configurations cannot be provided at an adequate scale for energy recovery. Further, these heat recovery approaches are constrained by the optimum temperature approach across the heat transfer unit and its capital investment, and energy loss from the elimination of feed water heaters due to steam condensation in the CCS reboiler.

Compared to conventional heat integrations as listed above, there are two key features of the proposed heat-integrated post-combustion CO₂ capture process. The first is the deployment of an air-based secondary stripper. An extra lean solvent produced from the regeneration process and partial CO₂ recycling (3-4 vol% in the stream) into the boiler combustion system will result in a smaller scrubber and stripper, which will reduce capital costs. Further reduction of carbon loading in the lean solution would result in a higher free amine concentration (higher pH), and lower liquid CO₂ partial pressure at the top of the scrubber. The recycling of CO₂ to the absorber inlet will yield a higher CO₂ concentration, 16.6% in this initial analysis. As illustrated in Figure 1-2, higher gas phase CO₂ concentration will increase the driving force for CO₂ diffusion through liquid/gas reaction film, and result in a higher mass transfer flux through increasing internal liquid circulation for a sturctured packed column. High CO₂ concentration in the gas stream will also enhance the final carbon loading in the solution at the scrubber bottom, which results in reduced stripper energy, as seen in Figure 1-3. Using the higher mass transfer flux possible in this system, permits a rich loading of 0.52 mol CO₂/mol amine (MEA case) which is approximately 17% higher than the value obtained without the enhanced CO₂ concentration.

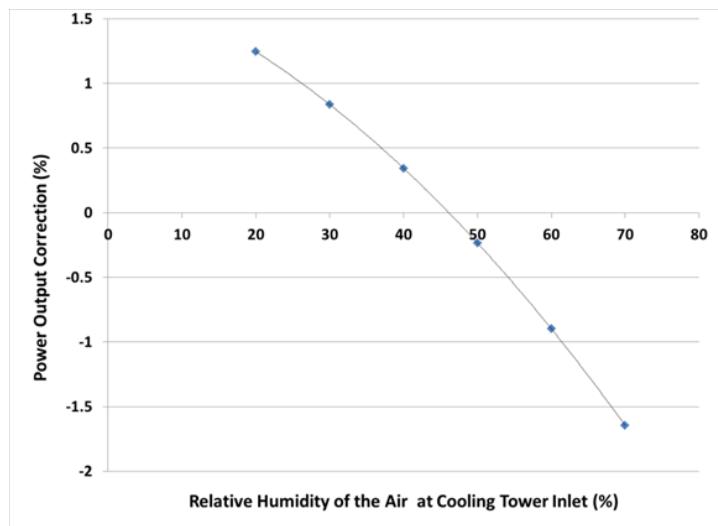

Figure 1-2
Mass Transfer Flux with Higher CO₂ Concentrations

Figure 1-3
Reduced Stripper Energy Requirements with Higher CO₂ Concentration in the Gas Stream

The second key feature in the proposed heat-integrated post-combustion CO₂ capture process is the deployment of an integrated cooling tower system using a liquid dessicant if waste heat is available. Over the history of modern power plant design, a tremendous effort has been made to minimize the heat rejection from the steam turbine condenser though operated at high vacuum, which accounts for more than 30% of the fuel energy input in any steam-cycle utility power plant. Single crystal long blade technology for the last stage of the low pressure (LP) steam turbine has successfully demonstrated the capability to withstand the steam condition at 2 inch Hg (Abs) backpressure. To take advantage of this low backpressure, a larger condenser and cooling tower have been designed to achieve low temperature inside the condenser which determines the steam pressure (turbine back pressure); however, the selection is based on reference ambient conditions. For instance, in the DOE Reference Case 9 and 10, ambient conditions are stated as 59 °F dry bulb temperature with 60% relative humidity. With cooling water temperature at 60 °F and 20 °F temperature increase inside the condenser, a 100 °F environment in the condenser is achieved, which will result in a 2 inch Hg (Abs) steam backpressure.

As we know, for an existing power generation unit without any retrofit at given ambient conditions, the only way to reduce the turbine back pressure, e.g. cooling water temperature, is to reduce wet bulb temperature of cooling air which can be achieved by removing moisture/water content in the air through liquid desiccant as proposed by UK CAER. Again, as presented in the UK CAER system, the power generation efficiency, as illustrated in Figure 1-4, could be improved by 2.5% if the air relative humidity was decreased from 70% to 30% on a typical summer day. Due to the low ambient temperature specified in the DOE Reference Case, as mentioned above, the liquid desiccant was not utilized in this techno-economic analysis. A sensitivity study was performed using Aspen Plus® simulation software to assess the performance.

Figure 1-4
The Impact of Relative Humidity on Overall Plant Thermal Efficiency at 90 °F dry bulb temperature (Correction Curve was obtained from ASME PTC 6 for Steam Turbine)

Additionally, the proposed heat-integrated post-combustion CO₂ capture process will also feature additional technologies incorporated into the system including:

- UK CAER proposes splitting the feed water after the boiler feed water pump into two streams. While the main portion of the feed water maintains the normal flow path, 20-25% of the flow will be heated to the same parameters as the boiler economizer in a split, last-stage feed water heater powered by steam extracted for the CCS reboiler. An Aspen Plus® steam cycle simulation shows an additional 8 MW_e of net power can be produced when the superheat of CCS steam supply is recovered.
- The packed column CO₂ scrubber is equipped with an intermediate cooler. The proposed system will have two sets of solution cycles – an internal scrubber circulation at the lower part of scrubber to take advantage of low pressure drop of structured packing and an external liquid cycle to the top of scrubber from the stripper. The cooled solution pump-around in the scrubber will have two direct impacts: 1) enhanced gas-liquid contact through increasing local liquid/gas ratio allowing the ability to maintain mass balance between liquid and gas without impacting balance of plant and reduce the sensible heat rejection from lean solution temperature polisher; and 2) flexible temperature control inside the scrubber through multi-port cooled solvent injection.

1.2 **Project Overview**

In this research project, the UK CAER team proposed a 2 MW_{th} (0.7 MW_e equivalent) slipstream post-combustion CO₂ capture system for a coal-fired power plant using a heat integration method and novel concepts coupled with Hitachi's proprietary solvent (H3-1). The project involved the design, fabrication; installation and testing of a slipstream facility to demonstrate an innovative carbon capture system which utilizes heat integration with the main power plant.

The knowledge gained from this project on various aspects such as material coatings, process simplification/optimization, system compatibility and operability, solvent degradation & secondary environmental impact, water management and potential heat integration could be applied to future commercial applications to achieve DOE's current goals on post-combustion CO₂ capture.

The facility is located at LG&E and KU's E.W. Brown Generating Station, located near Harrodsburg, Ky. The design, start-up/commissioning of the test facility was performed with a 30 wt% MEA solvent to obtain baseline data, followed by Hitachi's proprietary amine solvent (H3-1).

1.3 *Report Objectives*

The objective of this report is to summarize process modeling studies that provide detailed mass and energy balances needed to conduct an economic assessment of the proposed process. The basis for the analysis was a nominal 550 MW (net) power plant according to NETL guidelines. Process modeling was conducted in order to optimize the proposed process, determine power plant integration strategies, and conduct sensitivity analyses. EPRI has developed an Aspen Plus® model for a pulverized coal power plant, as well as process models for CO₂ capture with solvent absorption using Aspen Plus®. EPRI has used the Aspen Plus® solvent models and the coupled Aspen Plus® power plant model to conduct optimization, integration, and sensitivity analyses in order to determine integration strategies and system-level performance.

Using DOE guidelines, EPRI has conducted an economic assessment of the proposed capture process. From the results of that effort, EPRI and WorleyParsons developed the LCOE estimates, compared the COE to DOE/NETL Reference Case (Case 10) in 2010 revised NETL baseline report, and also evaluated the COE increase relative to DOE's goals. EPRI also estimated the expected plant equivalent availability based on estimated planned and scheduled outage rates. The impact of fuel costs, CO₂ compression technologies, solvent degradation and heat integration configurations on system performance and process economics were determined for each process to aid in the cost comparisons as described in the DOE's Carbon Capture and Sequestration Systems Analysis guideline and according to the assumptions listed in Attachment 5 of the FOA (DE-FOA-000043). A list of item costs was compiled. Costs included capital investment for major components and operational costs such as power, chemical, and water consumption.

2 Evaluation Basis

The post-combustion CO₂ capture and compression block includes a direct contact flue gas cooler/pre-treatment tower for polishing flue gas containments (SPU), two-trains of CO₂ capture, regeneration and compressions consisting of a packed column scrubber (Absorber) with solvent recovery water wash, two packed-bed stripper with reboiler and reclaimer (Stripper), a six-stage compressor, balance of plant (BOP) consisting of several heat exchangers for sensible heat recovery, several pumps for liquid recirculation, and a filtration device to remove entrained slurry droplets from the SO₂ scrubber and solids formed during the process for each train. The process is summarized as follows:

2.1 **Pre-treatment Tower Block**

2.1.1 **Booster fan**

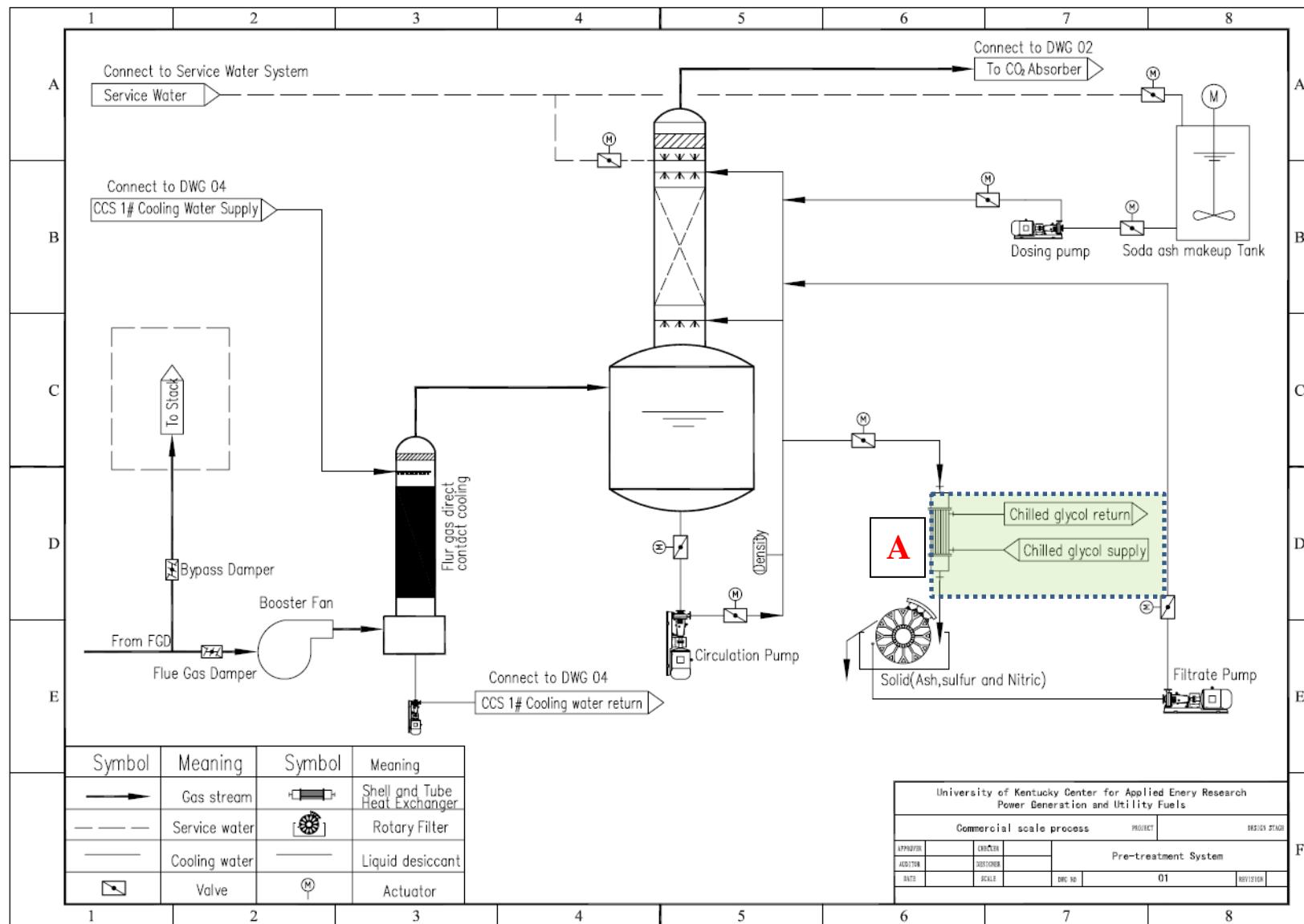
As shown in Figure 2-1, the PCC system uses a booster fan to overcome the ducting and downstream components (Direct Contact Cooler (DCC) and Absorber) pressure drop. The booster fan is designed for continuous stable operation over the full flue gas operation range specified in stream 16 of Exhibit 4-28 of the DOE/NETL 2010 study. The fan used here is a variable-speed centrifugal type, complete with inlet vane control. The design capacity and static pressure rise are calculated for the design conditions, with a suitable margin added, to ensure that the flue gas is delivered to the PCC plant at the required conditions.

At this point, the flue gas is saturated with water at a temperature of approximately 55 °C, water content of 17 vol%, and CO₂ concentration around 14-18 vol% (16 vol% DOE/NETL Case 10) in the total wet gas stream.

Note: the total CO₂ concentration consists of 2 vol % from CO₂ recycling via. the secondary air stripper, and 12-16 vol% CO₂ from coal combustion.

2.1.2 **Direct Contact Cooler/Pre-Treatment Tower**

To minimize the accumulation of heat-stable salts (HSS), the incoming flue gas must have an SO₂ concentration of 10 ppmv or less. The gas exiting the FGD system passes through an SO₂ polishing step to achieve this objective. The polishing step consists of a non-plugging, low-differential-pressure, spray-baffle-type scrubber using soda ash. A 20 wt% solution of sodium hydroxide (NaOH) was used for DOE/NETL Case 10. Because hydroxide immediately reacts with the CO₂ containing flue gas to produce sodium carbonate, which is soda ash, and then sodium bicarbonate, the process chemistry remains the same. Regardless of starting point, bicarbonate is the predominately recirculated species under process conditions (pH < 7). The caustic is continuously made up to maintain the target pH minimizing CO₂ capture while maximizing acid gas sulfur compound removal.


A removal efficiency of about 75 percent is necessary to reduce SO₂ emissions from the FGD outlet to 10 ppmv as required by the process. The polishing scrubber proposed for this application has been demonstrated in numerous industrial applications throughout the world and can achieve removal efficiencies of over 95 percent if necessary.

The polishing scrubber also serves as the flue gas cooling system. Cooling water from the PC plant is used to reduce the flue gas temperature to below the adiabatic saturation temperature, resulting in a reduction of the flue gas moisture content. Flue gas is cooled beyond the CO₂ absorption process requirements to 32 °C for the purpose of downstream water management. Without pre-capture water removal, the CCS will be out of water balance and the excess water will have to be purged from the system. It would not be beneficial to remove the excess water from the CCS because of the large losses of reagent. Removal of water from the stripper condensate is inefficient. Also, excessive heat has to be removed from the absorber to maintain an optimal reaction temperature; cooling the flue gas prior to the scrubber will provide more flexibility for unit operations.

The recycled reagent is introduced at the top of a single packed-bed through a liquid distributor for even liquid distribution to the packing surface. The distributor is designed to prevent splashing and droplet formation. The column has an internal diameter of approximately 15 meters, with Sulzer-Mellapak 350Y packing.

One option for the removal of the sulfur products is to reduce the temperature of the spent sulfur rich solution in a cooling device, which results in crystallization of a portion of the sulfate product. The solids can then be removed via filtration. Another option is include level control on the pretreatment controlled with a blowdown stream routed to the power plant flue gas desulfurization unit as the same chemical species are present. Make-up of fresh caustic solution is controlled by pH.

Note: The heat exchanger A is to cool a slipstream of pre-treatment solution to a certain temperature at which sulfate/sulfite/chloride/nitric salts will precipitate and are removed by a mechanical filter along with solids uncaptured in WFGD. If those precipitations cannot be formed, the heat exchanger A will be eliminated.

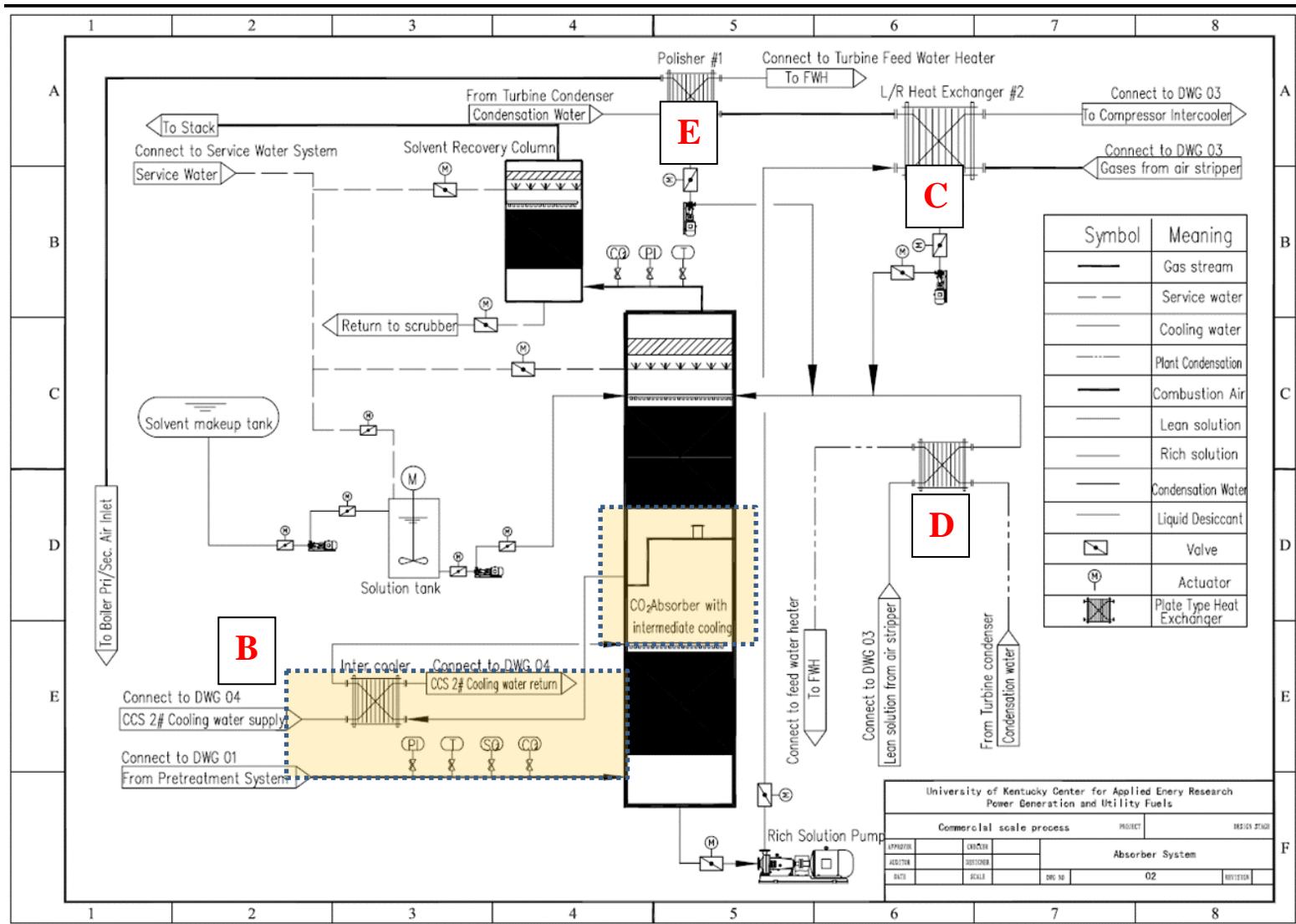
Figure 2-1
Direct Contact Cooler/Pre-Treatment Tower

2.2 CO₂ Scrubber Block

2.2.1 CO₂ Absorber

The absorption column is designed to remove 90% of the CO₂ from the flue gas using the MEA and Hitachi H3-1 solvents. The lean (low liquid CO₂ content) amine solution is introduced at the top of the column at the desired temperature, approximately 40 °C. The solution is introduced using a liquid distributor for even liquid distribution to the packing surface. The distributor is designed to prevent splashing and droplet formation. The cooled flue gas from the DCC/polisher enters the column horizontally at the bottom between the sump and lower packing section. A gas inlet nozzle is designed to minimize liquid entrainment.

The countercurrent solvent flows down the column over the two sections of packing. The stainless steel structured packing, Mellapack 250, is selected to provide sufficient interfacial area, low pressure drop, and minimal overall column size. As the solvent flows down the column, it forms a thin film over the surface area of the structured packing material, allowing maximum gas-liquid interfacial contact within the column. This contact allows both the diffusion of the CO₂ into the solvent surface and the reaction between the solvent and the CO₂ to take place, capturing the CO₂ from the flue gas. The absorber column is approximately 11.6 meters in diameter and has 36 meters of packing for UK CAER process for MEA and approximately 10.4 meters in diameter and has 18.3 meters of packing for UK CAER process with the Hitachi solvent. To ensure even distribution throughout the total height of the absorber column, solvent collection and re-distribution is utilized. The CO₂ rich solution (high in CO₂ content) exits the bottom of the absorber to be passed through heat exchange en route to be regenerated.


The absorber utilizes intercooling to maximize mass transfer of the solvent and promote a high rich CO₂ loading. The solution collected at the bottom of the first packing section will be pulled out for intermediate cooling by recycle water from the cooling tower. The liquid collector is designed to have the function of adjusting the flowrate for external cooling (between none and full external). The intercooling heat exchanger is depicted in Figure 2-2 as section block (B). The gaseous CO₂ reacts exothermically with aqueous solvent to form ionic carbon species in the scrubber. Much of the generated heat is removed by the intercooling to maintain the temperature of the rich solution at pump outlet to approximately 36 °C. Through the intercooling, the CO₂ carrying capacity of the solvent is increased at lower temperature, which reduces the solvent circulation rate.

The remaining flue gas, with CO₂ removed, passes upwards through a chimney tray into the water wash section. A one stage water wash is adopted to reduce amine, amine degradation products, and amine aerosol loss. Water for the process will be taken from the direct water contactor and recycled in the process with monitoring of buildup of trace components. At this point, the flue gas is saturated with water at a temperature of approximately 42 °C.

2.2.2 Heat Exchangers (Rich/Lean Solvent)

After the gaseous CO₂ is converted into aqueous carbon species, the carbon-rich solution travels from the bottom of the scrubber, is pressurized, and is sent to the heat exchanger (C) for sensible heat recovery prior to going to the compressor intercoolers (F), followed by L/R crossover heat exchanger (I) and then the stripper for solution regeneration. The heat exchanger is a plate and frame exchanger optimized for the viscosity of the design solvent.

Note: The heat exchanger (C) is the overhead condenser for the secondary air stripper. Based on the UK CAER process simulation, the temperature of saturated gaseous stream (hot stream) at heat exchanger (C) inlet is in the range 90-105 °C. However, the water condensed from the heat exchanger (C) will NOT be used as Reflux for the secondary air stripper, instead, the water will be combined with the lean solution from the lean solution polisher (the heat exchanger D) prior to going to the CO₂ scrubber. Heat exchanger (E) is additionally used to recover the energy by steam condensate from main plant. The outlet temperature of the E hot stream (CO₂ contained air from air stripper) is approximately 40 °C prior to feeding into the boiler as secondary combustion air. It is suggested that the condensate from steam turbine condenser is used for further energy recovery but could result a complicate system integration and operating difficult to balance the main plant and CCS. In the TEA, the cooling water is used as coolant to simplify the process.

Figure 2-2
CO₂ Scrubber

2.3 Stripping Systems Block

The designed process is composed of two strippers. One a primary stripper that removes the bulk of the CO₂ from the liquid process solution. The secondary stripper is used to further reduce the liquid CO₂ concentration providing a leaner solution to be introduced at the top of the absorber. The CO₂ enriched air stream is then introduced to the boiler as secondary combustion air.

2.3.1 Primary Stripper

The primary stripper column has a diameter of approximately 5.5 m for UK CAER process for MEA only and 4.9 meters for UK CAER process with Hitachi solvent. The rich amine solution is introduced at approximately the top 3rd quarter through a liquid distributor. The distributor acts to evenly spread the process solution over the packing material and minimize solution spray into the condenser section. The stripper contains a single section of structured packing of Mellapak 350Y with a height of 22.3 meters for UK CAER process with MEA and 10.7 meters for UK CAER process with Hitachi solvent. The upper quarter of the column includes additional packing as a demister to minimize water droplets carried to the heat exchanger/condenser (H). At the exit of the primary stripper, the gas stream primarily consists of CO₂ (45-50 vol%) and water vapor (50-55 vol%) at elevated pressure of 1.38 bar and temperature of 105 °C.

Note: the temperature at the bottom of primary stripper is operated in the range of 120-130 °C. The outlet temperature of the carbon lean solution(hot stream) for the heat exchanger (I) is in the range of 100-105 °C without the cold stream flux.

The carbon loading in the rich solution entering the stripper is approximately 7-9% richer than that obtained from conventional process without CO₂ recycling based on the experimental data from UK CAER pilot-plant.

The carbon loading in lean solution from the primary stripper is approximately 0.25-0.3 mole carbon/mole alkalinity.

From the stripper overhead condenser, the CO₂ enriched gas stream from the primary stripper will enter the heat exchanger (H), for energy recovery via the Liquid Desiccant or Rich Amine solution (described in detail in Figure 2-3). After the heat recovery unit (G) (via condensate from turbine), the CO₂ stream will be pressurized, intercooled [heat exchanger (F) for heating up Liquid Desiccant or Rich Amine solution] and compressed to 138 bars for downstream utilization or sequestration.

Note: the saturated gaseous temperature at the outlet of heat exchanger (H) is approximately 60-65°C. As indicated in the diagram, the water condensed in this heat exchanger will NOT be sent back to the stripper as reflux. Instead, it will be combined with the lean solution stream from the bottom of the secondary air stripper prior to or after the pump located underneath the secondary air stripper. The purpose for this configuration is to (1) increase the energy quality for the heat exchanger (H) through raising the temperature; and (2) increase the CO₂ partial pressure in the air stripper by dewatering the lean solution from the primary stripper.

If condensate from the turbine condenser isn't available for the heat exchanger (G), cooling water will be used as coolant.

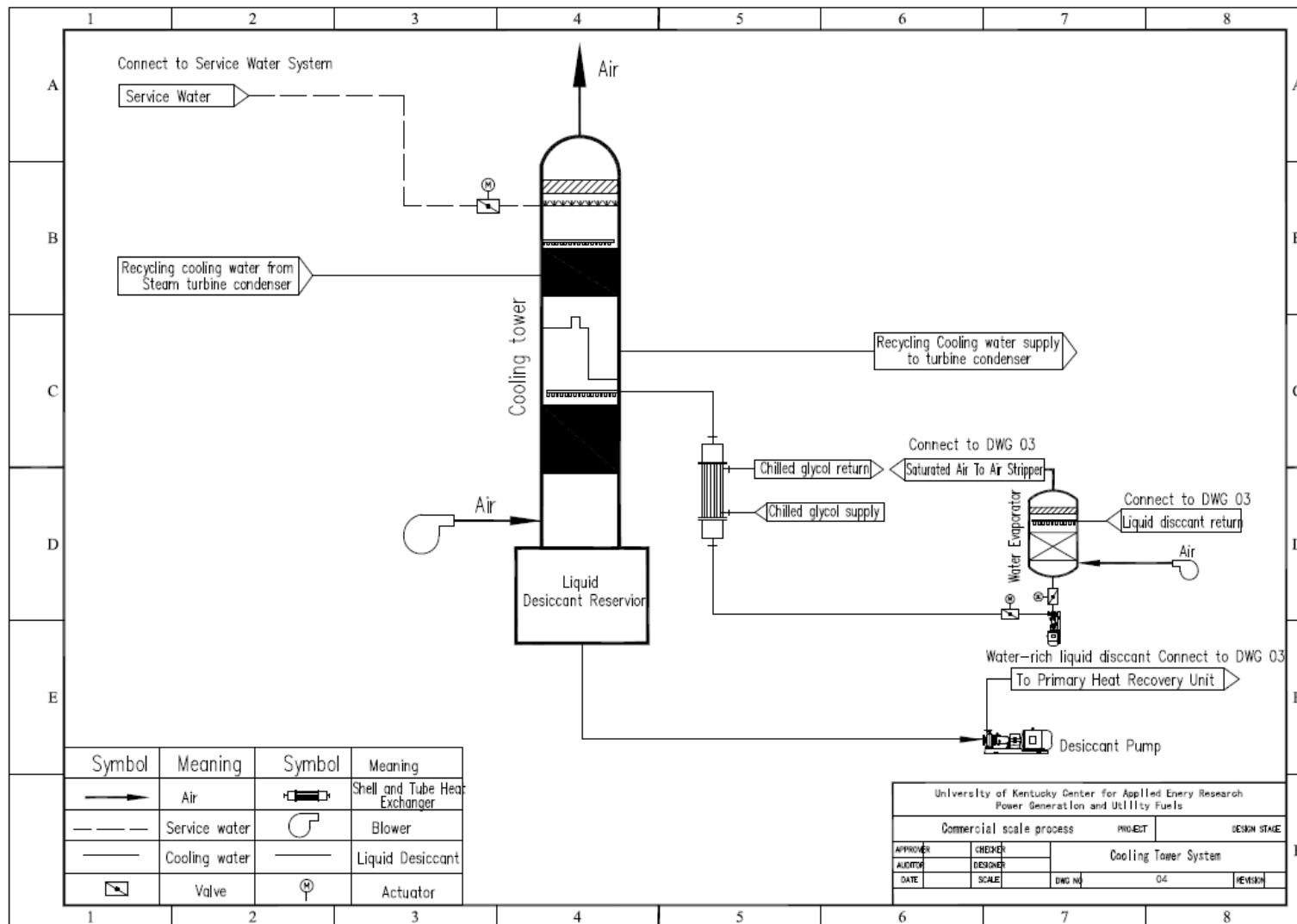
2.3.2 Secondary Stripper

The lean stream from the heat exchanger (I) will be sent to the top of an ambient pressure (secondary) air stripper to drop the carbon loading further in the lean solution. The CO₂ enriched air (3-4 vol% CO₂ content) from the top of this stripper will be used to provide recovered heat in the heat exchanger (C) in Figure 2-2, then cooled to approximately 40 °C by condensate from steam turbine or cooling water, and sent to the boiler as secondary combustion air. The air used here comes from a liquid desiccant water evaporator in Figure 2-4 which is saturated with water. In this assessment the liquid desiccant is not implemented due to low ambient air temperature and humidity as described below.

Note: the temperature of the lean solution from the bottom of secondary air stripper is in the range of 65-70 °C. Its sensible heat will be recovered in the heat exchanger (D) presented in Figure 2-2.

Figure 2-3
Stripping Systems (Primary and Secondary Strippers)

2.4 Heat Integration Cooling Tower Block


The low quality heat with temperature less than 50 °C rejected from the Rankine steam cycle as circulating water accounts for more than 35% of the energy loss for the steam utility power plant. In simplistic form, the Rankine cycle commonly used in modern power plants consist of a steam generator, steam turbine, and a water or air-cooled condenser. In this cycle, liquid water is heated in the steam generator to produce high temperature steam under pressure. Kinetic energy from the steam is converted to work from expansion in a turbine to produce electricity from a generator connected mechanically to the turbine. The turbine exhaust steam with quality at approximately 0.92 flows on the shell-side, while circulating water flows in the tube-side of the condenser. Most modern power plants employ a closed loop system with an evaporative cooling tower. The resulting steam condensate is collected in a hotwell below the condenser tubes where it is recirculated to the boiler to repeat the cycle.

As the steam condenses, the specific volume of the water is reduced significantly, thereby resulting in low pressure or vacuum that is a function of the circulating water outlet temperature. For a given inlet steam pressure, the enthalpy drop across the turbine increases as the operating pressure of the condenser is lowered. This will increase the amount of available work from the turbine and thereby increase the electrical power output of the generator, particularly in the wet steam region. Therefore, by minimizing the steam-side condenser pressure (i.e. vacuum), the turbine output and efficiency will be optimized for a given set of operating conditions.

For all other parameters being constant and assuming any non-condensable components have been ejected, the water outlet temperature from the condenser determines the operating shell-side pressure of the condenser according to the saturated steam tables. As the circulating water temperature is lowered, the condenser pressure will also decrease. During the daily operation, plant operators have limited options available to minimize the condenser vacuum; they usually strive to limit air in-leakage and to keep the tube-side of the condenser clean from fouling organic matter. Otherwise, the turbine efficiency is at the mercy of ambient temperature and humidity or wet bulb temperature of the air used to evaporate water in the cooling tower.

Similar to the DOE Case 10 (a retrofitting case), there is the need for additional cooling capacity to meet the heat rejection requirement from carbon capture system (CCS). In the UK CAER process, a two-section tower is adopted to contain two divided sections—the top section with open packing media with 100% liquid (water) collection for the conventional cooling function; the bottom section is also a packed structure column which will be used to remove moisture from cooling air using a liquid desiccant prior to entering the top section for cooling recirculating water from the steam turbine condenser. The purpose of the desiccant unit is to utilize low-quality waste heat from the CCS process and possibly flue gas energy to dry air for the main evaporative cooling tower, thereby lowering the wet bulb temperature. The heat-integrated cooling tower will lower condenser vacuum in the proposed carbon capture system using a liquid desiccant. This will proportionately lower the cooling water temperature supplied to the LP steam condenser. In a full demonstration of the concept the heat integrated cooling tower block would replace the existing power plant cooling tower and provide both the turbine and CCS cooling water requirements.

Note: the temperature of water-rich liquid desiccant at pump outlet is less than 50 °C dependent on the ambient temperature.

Figure 2-4
Integrated Cooling Tower

The system is comprised of a conventional evaporative cooling tower that has been modified to accept dried air from a liquid desiccant moisture absorbing tower. A concentrated brine solution used as a desiccant, such as CaCl_2 , is circulated in the moisture absorption tower and contacted with ambient humid air to remove water, effectively lowering the wet bulb temperature of the air entering the cooling tower. The water-loaded brine is pumped through a heat exchanger (H in Figure 2-3) to gain temperature from waste heat in the CCS unit. A secondary heat exchanger could be added to extract low quality heat from low-temperature flue gas (between 90 and 150 °C). The heated brine is then pumped to an evaporative tower (brine regenerator) and contacted with ambient air. At the higher regeneration temperature (about 55-80 °C), the water-rich brine tends to release moisture into the air and is cooled considerably from the latent heat of the liquid moisture evaporated. The water-lean desiccant will be collected from the bottom, and further cooling may be required using a chilling unit to reduce the sensible heat of the brine [heat exchanger (J)] before being recycled to the water absorption tower. The high-temperature saturated air from the evaporator will be fed to the secondary (air-sweeping) stripper as carrier gas for CO_2 removal.

Note: the temperature of water-rich liquid desiccant entering water evaporator is approximately 90-100 °C. The temperature drop for liquid desiccant across the heat exchanger is expected to be in the range of 5-10 °C.

The proposed air-drying system for evaporative cooling towers would be most useful in late Spring through early Fall as the average temperature rises above 80 °F (27 °C). During these warm-weather months, steam plant operators are not able to maximize their plant generating capacity due to limitations of the cooling systems caused by the increased relative humidity levels as the wet bulb temperature rises above 70 °F (21 °C). As mentioned in the introduction, the power generation efficiency could be improved by 2.5% if the air relative humidity was decreased from 70% to 30% on a typical summer day. However, these seasonal changes cannot be integrated into the present study due to the static ambient baseline of the DOE Reference Cases 9 and 10 that is based upon annual average conditions of the mid-western United States. Here the ambient conditions are stated as 59 °F (15 °C) dry bulb temperature with the wet bulb temperature as 51.5 °F (10.8 °C). With absolute humidity levels being lower than 0.009 lbs moisture per pound of dry air, the proposed drying system could not achieve wet bulb temperatures less than 46 °F (7.8 °C) without a significant heat input and electricity consumption for the brine chilling unit. After thorough discussion between UK CAER and EPRI, it was concluded that the liquid desiccant will not be utilized in the techno-economic analysis. As an alternative, a sensitivity study was using an Aspen Plus® simulation to assess the performance of the effectiveness of evaporative air drying for warm weather months when wet-bulb suppression can offer benefits for increasing vacuum in the low pressure turbine condenser. In order to have a capital cost as reference point the cost analysis was on the liquid desiccant cooling tower to incorporate into the analysis.

2.5 Heat Integration with Main Plant

The heat integration of the UK CAER process is a scheme in which the heat integration does not impact the main turbine steam cycle. For example, there is no waste heat from the CCS block used to heat steam for the turbine cycle. Doing so has too large of an impact on the steam extraction point as described below. As presented in Appendix A.4, the UK CAER process utilizes auxillary boiler with back pressure turbine to retrofit the existing power plant. This

removes the problems associated with LP steam extraction (multiple extraction points needed at different loads) and provides operating flexibility for meeting power plant output demands.

The auxillary boiler consists of a stand-alone intermediate-pressure boiler with the back-pressure steam. In order to maintain the same net output requirements the boiler would be additional to the existing power plant infrastructure. The boiler uses a carbon-neutral biomass fuel, or even natural gas (NG) for fuel to minimize emissions. On the other hand, the makeup boiler will only be equipped with SCR for NOx reduction if needed. The exhaust flue gas stream after the SCR will combine with main flue gas stream prior to the in-duct cooling section in the proposed CO₂ capture process. SO₂ in the flue gas stream from the makeup boiler will be removed by aqueous ammonia solution in the pre-treatment tower.

Note: For the techno-economic analysis the steam is extracted from the LP steam stream. This allows consistency and comparison to the NETL baseline Case 10.

2.6 **Solvent Agnostic Nature of the UK CAER CCS**

The UK CAER CCS can be applied with any solvent and since operation of the 0.7 MWe small pilot facility started in 2015, six solvent campaigns have been conducted with the advanced solvents performing similarly despite differences in chemical compositions and physical properties (Table 2-1). The solvent regeneration energy applied in this economic analysis will apply for most adavanced solvents.

Table 2-1
UK CAER Small Pilot CCS Campaign Results

Performance Compared to 30 wt% MEA	Hitachi H3-1	Proprietary Solvent C	6 M MEA	CAER AS1	CAER AS2
Energy Penalty	33% savings	~21% savings	~14%	~30% savings	~14% savings
Solvent Circulation Rate	~35-45% reduction	~40% reduction	~20% reduction	~30% reduction	~same
Cyclic Capacity	~1.5X	~2X	~1.3X	~1.5X	~1.0X
Viscosity	2.5 – 3X	3 – 3.5X	~1.5X	~1.5X	~1.0X
Surface Tension	~0.6X	-1.1X	~1X	~1.0X	~0.8X
Degradation Products	Low	Low	Low	Low	Low
Solvent Regeneration Energy Measured at UK CAER 0.7 MWe CCS (Btu/lb CO ₂)	1020-1500	1200-1400	1330-1480	1070-1600	1320-1580

3 Description of Hitachi Advanced Solvent

3.1 ***Development Background***

Since the early 1990's, when the first bench-scale studies and pilot-scale demonstration were conducted, Hitachi has been continually improving process designs and the technology for full-scale power plant applications through extensive research and development, demonstrations, and installations.

3.1.1 **Bench-Scale R&D**

At Hitachi's Kure Research Laboratory near Hiroshima, Japan, bench-scale studies with simulated flue gas have been performed regularly on a small test rig (absorber ID = 50 mm, shown in Figure 3-1) and a larger rig with a 300 mm ID vessel. These test rigs were used to screen over 30 combinations of amines and additives and identify promising combinations for maximum CO₂ removal efficiencies while keeping solvent degradation and energy consumption low.

Figure 3-1
Bench-Scale Test Rig

3.1.2 **Pilot-Plant Testing**

Figure 3-2 shows Hitachi's first CO₂ capture pilot plant built at Yokosuka Thermal Power Plant Unit 2 of Tokyo Electric Power Co., built and tested in the early 1990s. A slipstream of 1000 m³N/h (620 scfm ~ 1 MWth) of flue gas generated from combustion of coal – oil mixture (COM)

was treated for CO₂ removal. During the two-year demonstration period, Hitachi tested a range of commercial and proprietary amine-based solvents (including H1, H2, and H3, of which H3-1 is based) and logged more than 3000 hours of test data. The large volume of test data formed a solid foundation for Hitachi's solvent refinement and design of larger units.

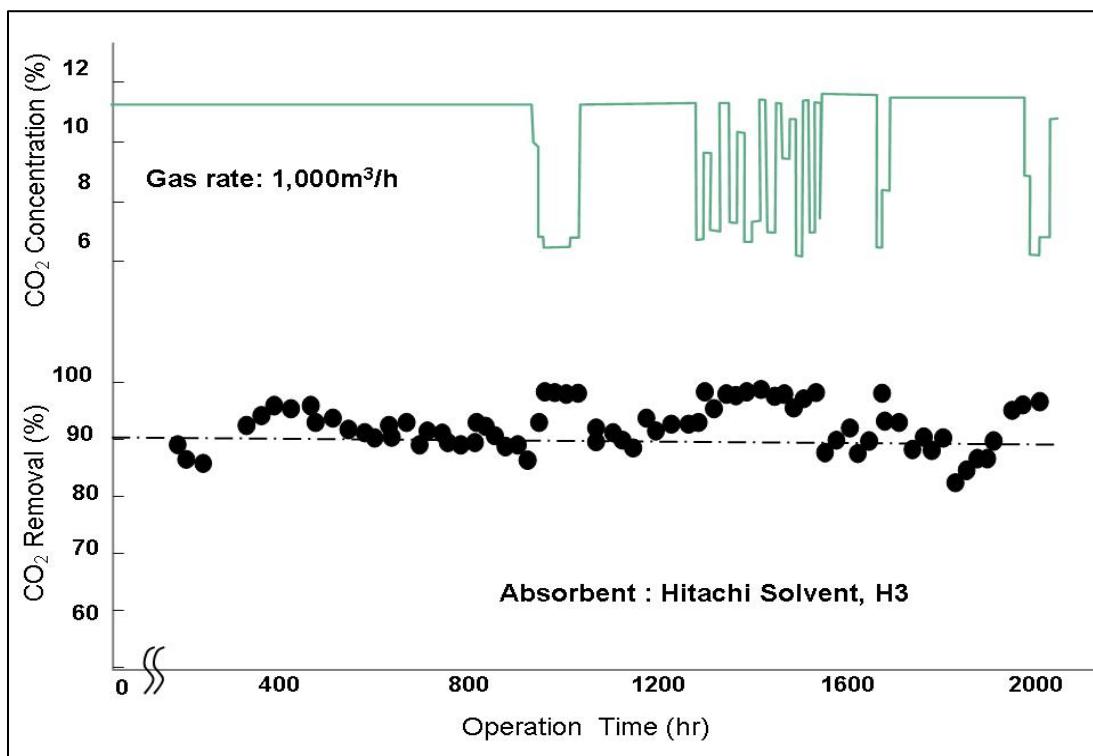
Figure 3-2
Pilot plant at Yokosuka

In recent years, the Hitachi solvent has also been evaluated independently by other researchers in their test facilities. These include the pilot plants at the Energy and Environmental Research Center at the University of North Dakota and the National Carbon Capture Center operated by Southern Company.

3.1.3 Technology Demonstration

Hitachi and SaskPower, a utility company in Saskatchewan, Canada, collaborated to design and build a 20 MWth Carbon Capture Test Facility (CCTF) at SaskPower's coal-fired Shand Power Station. The plant provided slipstream flue gas at a flow rate of about 20,000 Nm³/h. The H3-1 solvent was tested at this CCTF, with unit operations starting on June of 2015.

3.1.4 Scale-up & Commercialization


Hitachi successfully completed the Phase I FEED of a 50 MWe slipstream CO₂ capture system under the DOE Industrial Carbon Capture and Storage (ICCS) program in 2010. By developing a

detailed design for the CO₂ capture system along with optimized integration into the balance of plant, detailed project schedule and commercial assessment, the objectives of the DOE-ICCS program were achieved.

As a leading global supplier of complete thermal power plants, Hitachi's experience in boilers, steam turbines and air quality control systems provides a solid knowledge base for integration of a commercial-scale CO₂ capture system with the proposed novel concepts, and balance of the plant.

3.2 **Performance of the Hitachi Solvent**

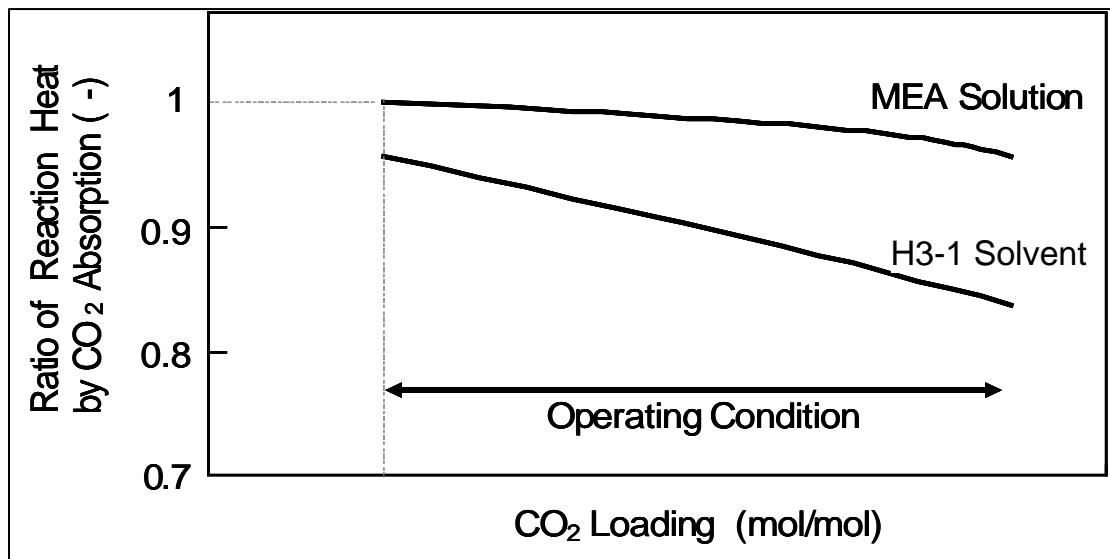
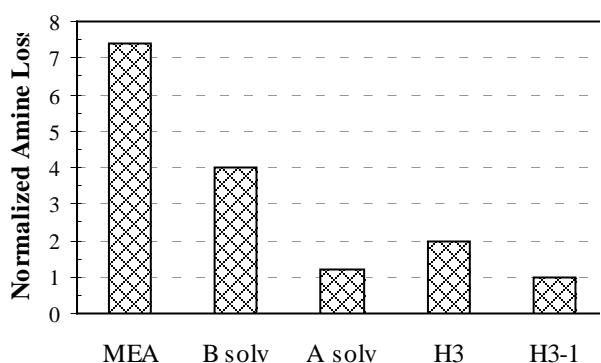

Figure 3-3 shows Hitachi solvent, H3, achieving an average of 90% CO₂ removal over 2000 hours of continuous testing under various plant loads, inlet CO₂ concentrations and other operating conditions.

Figure 3-3
Long-term pilot testing of H3 solvent under various conditions


The latest refinement of the H3 solvent formulation, H3-1, is a proprietary blend that has the same advantages of high CO₂ absorption capacity and low regeneration heat as H3, and has further reduced amine loss. The sterically hindering effect of the base amine in H3-1 results in a lower CO₂ absorption heat than that of MEA solution. The CO₂ regeneration energy of the H3-1 based process is 2,800 kJ/kg CO₂, with ongoing research efforts to further lower to 2,500 kJ/kg CO₂ through both solvent improvement and optimization of absorber-stripper loop.

The reaction heat for CO₂ absorption was measured for H3-1 solvent and MEA under standard operating conditions. As shown in Figure 3-4, the heat of absorption (and desorption) of CO₂ from H3-1 is about 5 to 15% less than that for MEA at varying CO₂ loading.

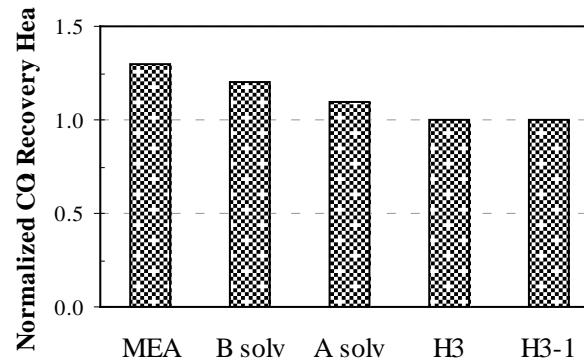


Figure 3-4
Reaction Heat by CO₂ Absorption of MEA Solution and H3-1 Solvent

Figure 3-5 and Figure 3-6 show comparisons of solvent performance based on third-party independent test data including those by a government research institute in Japan. H3 and H3-1 have the lowest regeneration heat compared to 30% MEA solution and two advanced amine solutions by other leading developers (A solv and B solv). H3-1 also has the lowest amine loss, which is 86% lower than that of the MEA solution. The reduced level of solvent losses and lower heat requirement of H3-1 translate to great savings in utility and operating costs.

Figure 3-5
Comparison of Amine Loss from Different Solvents

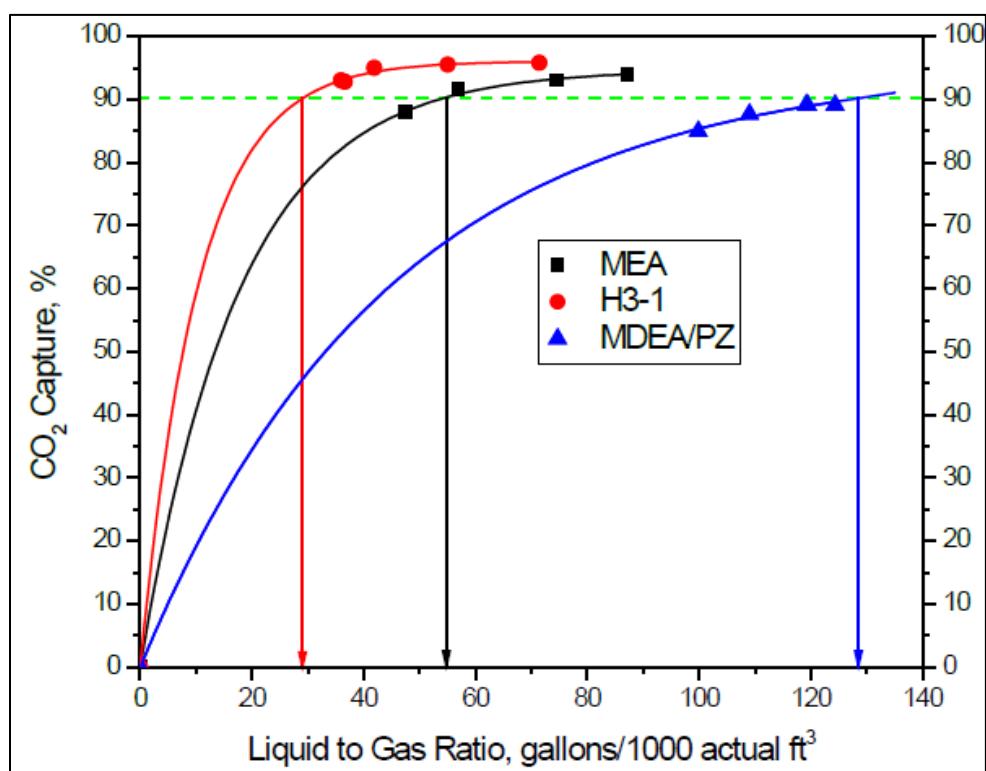
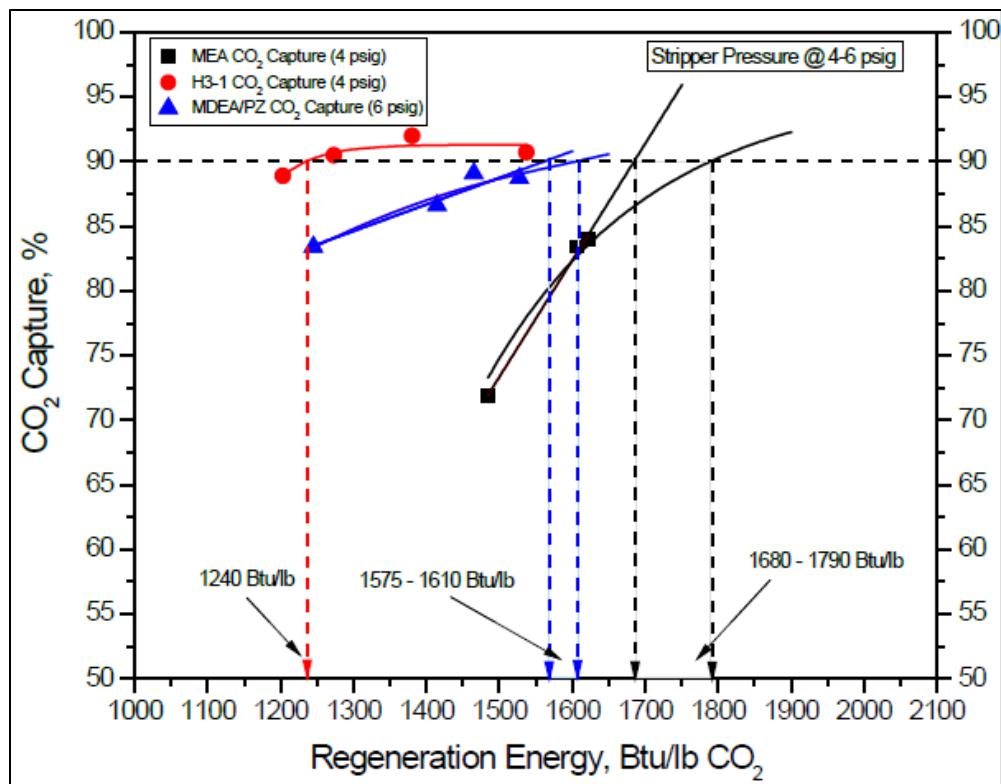


Figure 3-6
Comparison of CO₂ recovery Heat from Different Solvents

The H3-1 solvent was independently tested by the Energy and Environmental Research Center (EERC), University of North Dakota at the 400 m³N/h (250 scfm) CO₂ capture pilot plant. An

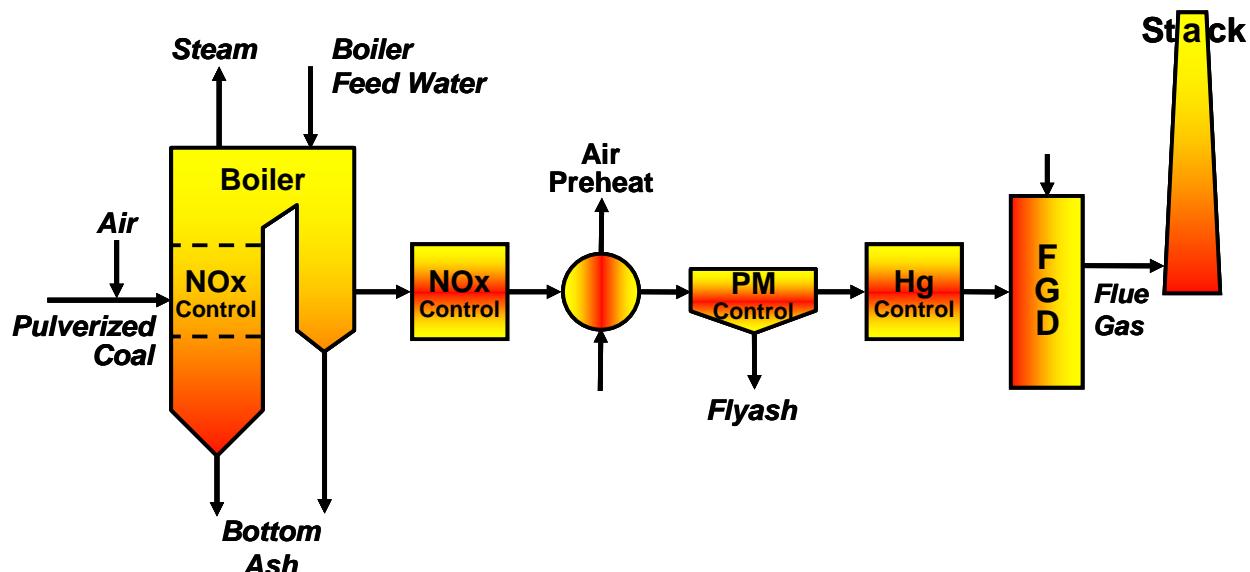

average of 90% of the CO₂ was removed at steady state even when test parameters were varied during the test period. Figure 3-7 and Figure 3-8 show a comparison of the effect of liquid-to-gas ratio and regeneration energy on CO₂ capture with two other solvents tested under similar conditions². For 90% CO₂ capture, the solvent recirculation rate needed is about 45% lower than that for MEA and the energy required to regenerate the H3-1 solvent is about 30% lower than 30 wt% MEA solution. Both these factors would result in significant capital and operating cost savings.

In 2012, the H3-1 solvent was tested at the 0.5 MWe pilot plant at the National Carbon Capture Center (NCCC). The NCCC facility is sponsored by DOE and industry. The pilot plant takes a slipstream of flue gas from the coal-fired Gaston power station. H3-1 was tested for over 1,300 hours under various plant operating conditions. Preliminary results of the NCCC pilot test confirm, and in some areas surpass, the H3-1 performance as described in this section.

Figure 3-7
Comparison of the Effect of L/G of Various Solvents

²Pavlish, B. "Partnership for CO₂ Capture: Results of the Pilot-Scale Solvent Evaluations". 2010 NETL CO₂ Capture Technology Meeting, Pittsburgh, PA. September 13-17, 2010.

Figure 3-8
Comparison of Regeneration Energy of Various Solvents


4 PC Power Plant with CO₂ Capture

4.1 Brief Process Description

In this report, results are provided for a technical and economic analysis of the proposed UK CAER process design. The basis for the analysis was a nominal 550-MW power plant according to NETL guidelines and parameters. The objective was to conduct process modeling studies providing detailed mass and energy balances to conduct a performance assessment of the proposed process and then develop an associated equipment list based on the data. In addition, using DOE guidelines, an economic assessment of the UK CAER capture process was conducted to determine its capital and operating costs as well the levelized cost of electricity (LCOE).

4.2 Key System Assumptions

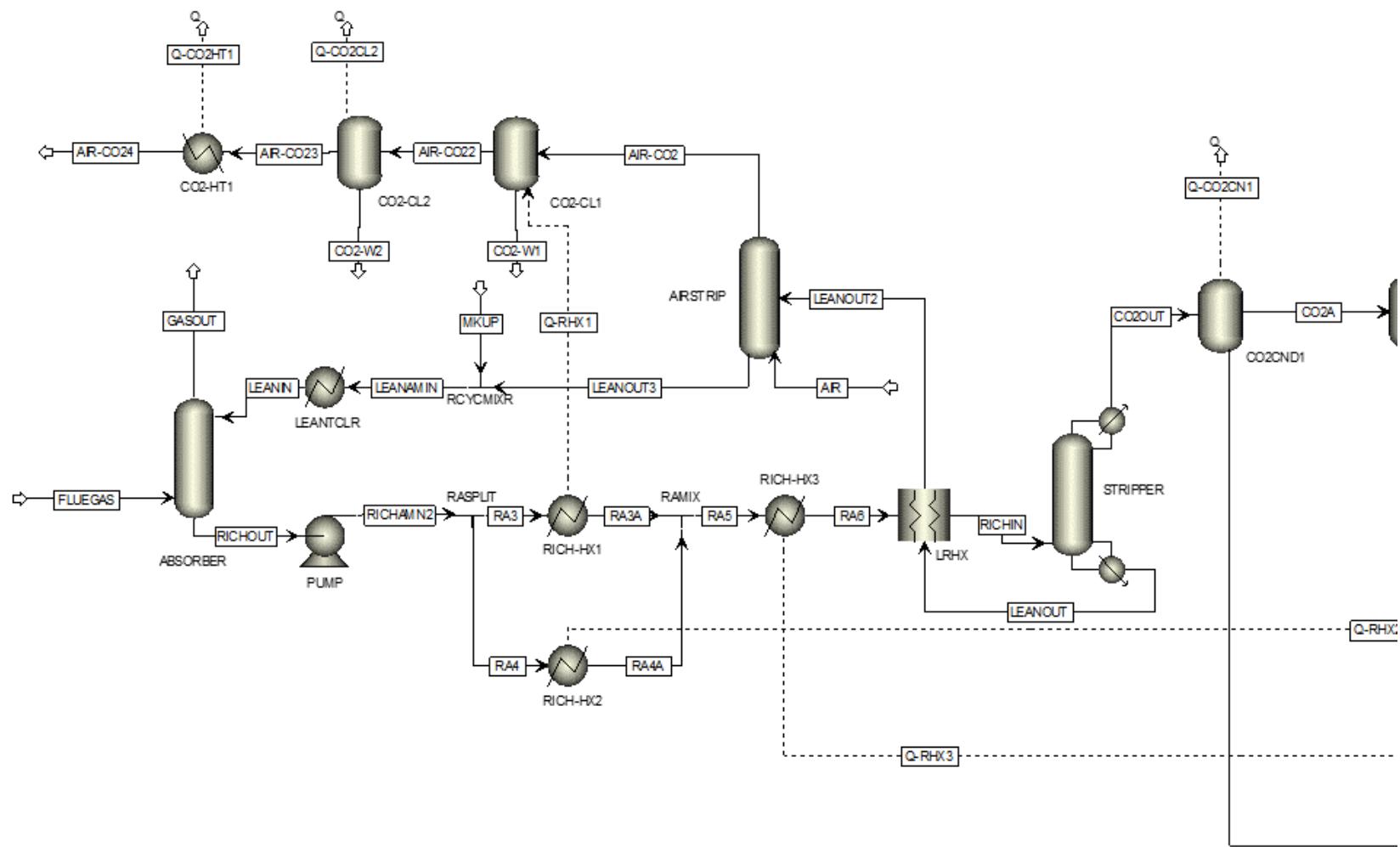
The process design was based on a nominal 550 MW (net), greenfield PC plant (a high-level schematic is shown in Figure 4-1). It was identical to that used for Cases 9 and 10 of the DOE/NETL Bituminous Baseline Report Volume 1, Rev. 2, 2010³:

Figure 4-1
Typical PC Boiler with Pollution Controls

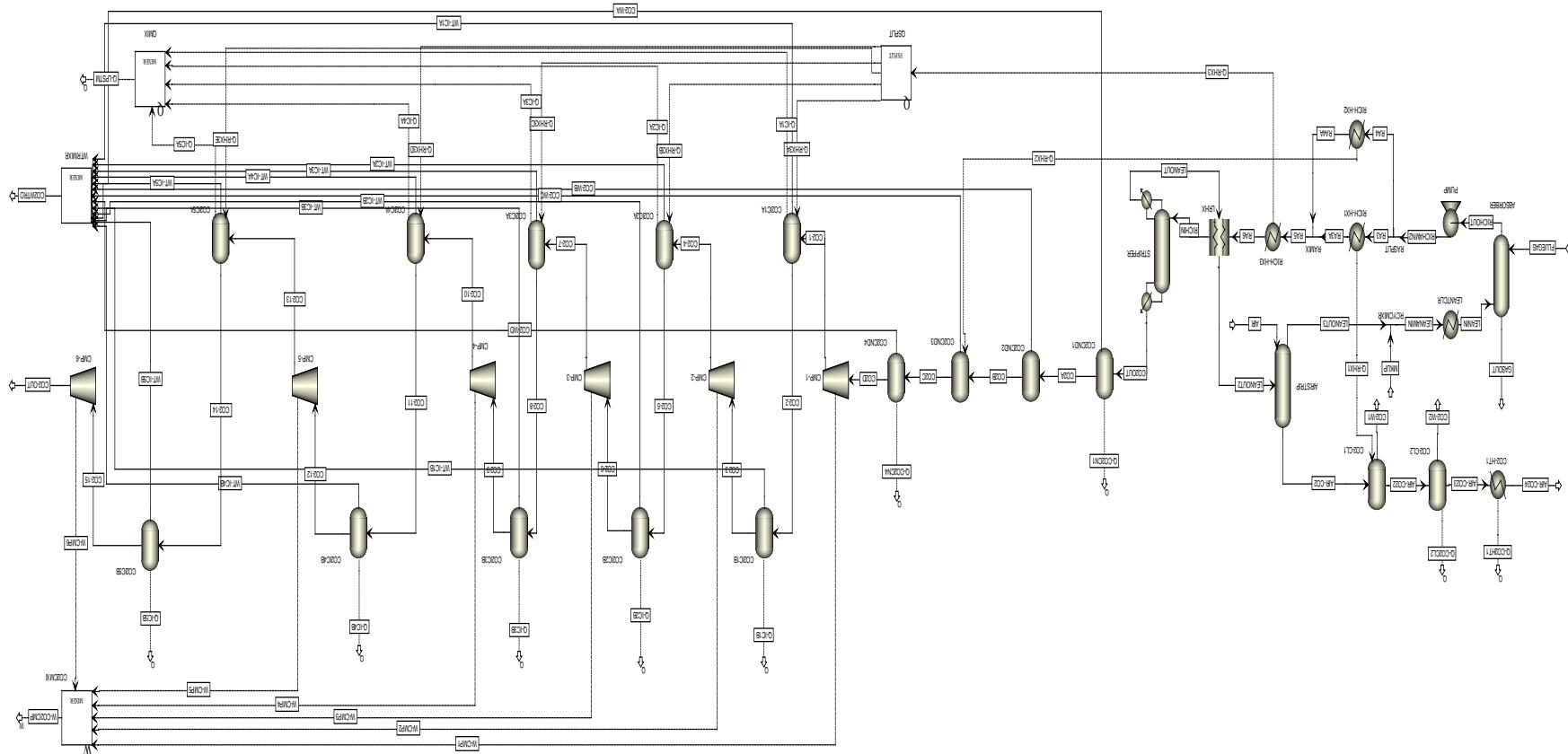
Assumptions for coal quality and the normal flue-gas composition from PC boiler after pollution controls (dry basis) is shown in Table 4-1.

³ United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). (2010). *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Rev. 2*. (DOE/NETL-2010/1397). Pittsburgh, Pennsylvania: U.S. DOE.

Table 4-1
Typical PC Boiler with Pollution Controls


Coal	Illinois No. 6	Dry Flue Gas	After Combustion (1)	After NOx Control (2)	After PM & Hg Control (3)	After SOx Control (4)
Moisture	11 wt%					
Carbon	64					
Hydrogen	4.5					
Nitrogen	1.2					
Chlorine	0.3					
Sulfur	2.5					
Oxygen	6.9					
Ash	9.7					
Mercury	0.15 ppm (dry)					
		CO₂	15.8 vol%	15.9 vol%	15.9 vol%	15.9 vol%
		N₂+Ar	80.8	81.1	81.1	81.3
		O₂	2.8	2.8	2.8	2.8
		NOx	0.30	74 ppmv	74 ppmv	~80 ppmv
		SOx	0.21	0.21	0.21	~45 ppmv
		Moisture	8.7 vol%	8.7 vol%	8.7 vol%	17 vol%
		PM	7,100 ppmw	7,100 ppmw	~9 ppmw	~9 ppmw
		Hg	12 ppbw	12 ppbw	~1.2 ppbw	~1.2 ppbw

The design basis used for CO₂ capture and compression was:


- CO₂ Removal from flue gas: > 90%
- CO₂ Purity: > 95 vol%
- CO₂ Delivery Pressure and Temperature: 2,215 psia (152.7 bar)/124°F (51.1°C)
- Cost of CO₂ Transport, Storage & Monitoring: \$4.05/ton CO₂
- Steam Extraction Location: Medium to Low Pressure Steam Turbine Crossover Pipe

4.3 **Performance Modeling Approach and Validation**

Rate-based performance calculations were performed for more accurate results using Aspen Plus® steady state simulation software with the Ratesep plugin. Two equations of state (ELECNRTL and NRTL-RK) were used throughout the model to closely match expected results for the design based on published data. As the model results were produced, they were checked by EPRI and UK CAER against published data to ensure that they fell within the expected range. This includes estimation of secondary stripper performance, which is one innovation included in the design offered by UK CAER. The CO₂ capture system was modeled in a stand-alone model with the overall results merged into a power plant model to ensure overall process results convergence. Some manual iteration was required to ensure accuracy. Figure 4-2 shows the complete Aspen Plus® flowsheet for the UK CAER process.

Figure 4-2
Aspen Plus® Flowsheet of UK CAER Process

Figure 4-3
Aspen Plus® Flowsheet of UK CAER Process

During power plant performance modeling, an adjustment was made to boiler performance due to the recycle of non-combustible gas into the secondary set of burners. The estimated reduction in boiler efficiency is 0.7% (HHV basis) and is based on results observed during a related study on membrane separation of CO₂ from flue gas that has a recycle to the boiler.

The proposed case is retrofit with a CO₂ capture system using H3-1 solvent to remove 90% of the CO₂ present in the flue gas. The process lineup includes:

- Flue gas desulfurization unit to remove greater than 95% of the sulfur.
- Direct contact cooler that uses water and soda ash (Na₂CO₃) with a pH less than 7.0 to further reduce sulfur content to less than 10 ppmv and the temperature to less than 100 °F.
- Fan to pressurize flue gas in order to overcome the pressure drop of downstream CO₂ capture equipment
- Reactive absorption distillation column to remove 90% of the CO₂. The column includes a pumparound and cooler to help reduce solvent flowrate.
- Primary stripper using pressure drop and low pressure steam to drive off the majority of CO₂ from the rich solvent. The primary stripper overhead is cooled by preheating solvent and other process streams
- Secondary stripper using air to remove remainder of CO₂ from semi-rich solvent, which is then cooled and returned to the Secondary Air Fans upstream of the boiler

4.4 CO₂ Equipment Sizing Methodology, Cost Estimating, and Financial Analysis Methodology

The following describes that approach to sizing the major equipment in the CO₂ capture process.

Column Towers

Column towers, such as the CO₂ Absorber and Primary Stripper, were identified as vertical towers with structured packed bed internals for gas-liquid interface. Tower diameters are based on 75% of flooding velocity. Packing height is based on various correlations for unit-heights of mass-transfer. Total column height incorporates packing height along with any of the following if appropriate: sump depth, freeboard space coupled with mist eliminators, flow redistributors. No sparing was used and the number of units in operation is based on generic rules-of-thumb for column sizes. Design conditions are a standard function of operating conditions; typically 50 psia (3.4 bar) above operating pressure and 50 °F (27.7 °C) above operating temperature. All materials were specified as carbon steel except for the upper sections of the Primary Stripper which was specified as 304 stainless clad.

Heat Exchangers

All heat exchangers are specified as plate and frame other than the reboiler which has been identified as a kettle-type. Additional engineering and economic comparison would have to be done to evaluate if the reboiler can be specified as plate and frame. All heat exchangers were sized utilizing rate-based traditional log-mean temperature equations where the overall heat transfer coefficient was selected based on past experience and vendor quotes. Design conditions

are a standard function of operating conditions; typically 50 psia (3.4 bar) above operating pressure and 50 °F (27.7 °C) above operating temperature. All materials were specified as carbon steel except the Lean/Rich heat exchanger.

Pumps

Pumps were sized based on dynamic head values that took column heights and friction pressure drop into account. Fluid properties and head values were used to calculate required motor power via traditional calculation procedures. As noted above, design conditions are a standard function of operating conditions and all materials of construction were specified as carbon steel.

Cooling Tower

The basic sizing criteria for a cooling tower is the approach temperature, range and cooling duty. For this study, the cooling tower approach and range were kept the same as those used in DOE/NETL Bituminous Coal Baseline study for comparison purposes. The cooling duty was based on the total cooling requirement for the power block and process plant. GEA's proprietary cooling tower sizing program was used to estimate the cooling tower size and fan power requirement. The liquid to air ratio for the cooling tower was selected to match the value used in the DOE/NETL Baseline study. The packing of cooling tower is assumed to be film type.

It should be noted that the 8.5 °F (4.7 °C) of cooling tower approach temperature used in the DOE/NETL Baseline study is very aggressive at 59 °F (15 °C) DB/60%RH ambient. Although this design approach temperature is achievable, it results in a very large size cooling tower size and high capital cost. In addition, there is no performance improvement with this tight cooling tower approach because the Terminal Temperature Difference (TTD) of the steam turbine condenser is at 21°F (11.7 °C), which is much higher than the typical value for a cooling tower application. From both performance and economical points of view, about 18 °F (10 °C) approach temperature for the cooling tower and approximate 10 °F (5.6 °C) condenser TTD are more reasonable and optimal design parameters for the power plant cooling system Cost Estimating Methodology.

4.4.1 Capital Costs

Capital costs were developed using a combination of commercial capital cost estimating software, factored equipment estimates, and WorleyParsons in-house parametric models supplemented by WorleyParsons' extensive in-house equipment cost database.

The Aspen In-Plant Cost Estimator® software was used to develop costs for most of the major equipment in the UK CAER CO₂ removal process. This includes reactor vessels, absorbers, and other specialized process equipment. The associated capital costs for bulk materials and installation were developed by applying a factor to the established equipment cost to derive a total installed cost. Factors vary by type of equipment, metallurgy, and complexity, and conform to WorleyParsons standards.

Costs for other equipment and balance of plant items were developed via scaling and/or parametric modelling based on key project and equipment parameters, and in accordance with

DOE guidelines⁴. These were the primary methods used to estimate the capital costs of balance of plant equipment and systems whose costs are impacted by the change in CO₂ removal process from that used in Case 10 of the DOE/NETL Bituminous Coal Baseline Study⁵. Costs not impacted by the change in CO₂ removal process, and whose performance characteristics did not change from the DOE Study remained the same as in the updated (to January 2012 dollars) costs for Case 10.

The total capital cost estimates include the cost of equipment, freight, materials, and labor for equipment installation and erection; materials and labor for construction of buildings, supporting structures, and site improvements; engineering, construction management, and start-up services (Professional Services); and process and project contingency. The estimate excludes owner's costs and is provided as "overnight" costs; that is, escalation to period of performance is excluded.

Home office expenses and other owner's costs were based on an allocation included in the COE analysis.

4.4.2 Operating and Maintenance Cost Estimates

The operating costs and related maintenance expenses (O&M) pertain to those charges associated with operating and maintaining the plant over its expected life. These costs include:

- Operating Labor
- Maintenance – Material and Labor
- Administrative and Labor Support
- Consumables
- Waste Disposal
- Fuel
- Co-Product or By-Products credit (that is, a negative cost for any byproducts sold)

There are two components of O&M costs; fixed O&M, which is independent of power generation, and variable O&M, which is proportional to annual power generation. The fixed operating costs do not include the cost of capital. The variable O&M cost includes an estimate of fuel cost. The annual consumables costs include accounting for the annual capacity factor; that is:

$$\text{Annual Cost} = \text{Hourly Consumption Rate} \times 8760 \text{ hours/yr} \times 0.85 \times \text{Unit Cost.}$$

⁴ United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). (2013). *Quality Guidelines for Energy System Studies: Capital Cost Scaling Methodology*. (DOE/NETL-341-013113).

⁵ United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). (2010). *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Rev. 2*. (DOE/NETL-2010/1397). Pittsburgh, Pennsylvania: U.S. DOE.

The operating labor cost is assumed to be the same as in the DOE/NETL Bituminous Coal Baseline study Case 10. The maintenance cost is determined based on the basis of relationship to initial capital cost. The administrative and labor support cost is estimated based on 25 percent of the burdened operating and maintenance labor cost. The maintenance material cost is estimated as a percentage of the plant capital cost.

Consumables, waste disposal, and fuel costs are estimated based on a unit cost times the annual quantity consumed or disposed. With the exception of the solvent cost and water, the unit costs for all consumables, wastes, and fuel were assumed to be the same as in the updated (to January 2012 dollars) costs for the DOE/NETL Bituminous Coal Baseline study Case 10. In addition, the waste water treatment chemicals are expressed as a percentage of the consumed water.

Consistent with the assumptions of the DOE/NETL Bituminous Coal Baseline study, no credit or cost of disposal was included for gypsum produced by the plant flue gas desulfurization (FGD) system.

4.4.3 Transport Storage and Monitoring

CO₂ transport storage and monitoring costs were estimated based on the quantity of CO₂ captured and the TS&M unit cost (\$ per ton of CO₂) used in the DOE/NETL Bituminous Coal Baseline study Case 10.

4.4.4 Finance Structure, Discounted Cash Flow Analysis, and Cost of Electricity

The methodology and assumptions for the financial analysis are consistent with those presented for use on updating the base cases for the DOE/NETL Bituminous Coal Baseline Report. The only difference in this costing analysis compared to the DOE/NETL Base Cases relates to the basis for the owner's costs as summarized in Table 4-2.

Plant specific inputs, both technical and cost, are taken from the capital and O&M cost estimates specific to the case being evaluated.

Table 4-2
Owner's Costs Basis and Assumptions

Owner's Costs	Basis
Preproduction costs	
6 Months all labor	Sum of Operating, Maintenance and Administrative Labor
1 Month maintenance materials	Annual maintenance materials @ 85% capacity
1 Month non-fuel consumables	Annual consumables @ 85% capacity
1 Month waste disposal	OPEX disposal costs @ Capacity Factor (CF)=85%
25% of 1 months fuel cost at 100% CF	Annual fuel costs @ 85% capacity
2% TPC	TPC
Inventory Capital	
60 day supply of fuel and consumables at 100% CF	OPEX fuel and consumables
Spare parts	0.5% of TPC
Land	\$3,000/acre, 300 acre for PC plants
Financing Costs	2.7% of TPC
Other Owner's Costs includes:	
<ul style="list-style-type: none"> • Preliminary feasibility studies, including Front-End Engineering Design (FEED) study • Economic development • Construction and/or improvement of roads and/or railroad spurs outside of site boundary • Legal Fees • Permitting costs • Owner's engineering • Owner's Contingency (Management reserve, funds to cover costs relating to delayed startup, fluctuations in equipment costs, unplanned labor incentives) 	15% of TPC
Costs not included:	
<ul style="list-style-type: none"> • EPC risk premium • Transmission interconnection-cost of connecting to grid beyond plant busbar • Taxes on capital costs • Unusual site improvements 	

4.4.5 **Levelized Cost of Electricity**

The financial analysis uses the capital and O&M cost estimates along with global economic assumptions to determine the following financial metrics to compare the technologies:

- First-year COE breakdown including:
 - Capital
 - Fuel
 - Variable O&M
 - Fixed O&M
 - TS&M
- Thirty-year leveled COE (using DOE/NETL Power System Financial Model [PSFM])⁶
- Cost of CO₂ avoided
- Cost of CO₂ captured

The following equations were used to determine the economic metrics in the analysis. These are based on those presented in the DOE/NETL PSFM.

Cost of Electricity

The COE (\$/MWh) is calculated using the following equation from the BB report.

$$COE = \frac{first\ year\ capital\ charge + first\ year\ fixed\ operating\ costs + first\ year\ variable\ operating\ costs}{annual\ net\ megawatt\ hours\ of\ power\ generated}$$

$$COE = \frac{(CCF)(TOC) + OC_{FIX} + (CF)(OC_{VAR})}{(CF)(MWH)}$$

where:

COE = cost of electricity, revenue received by the generator (\$/MWh) during the power plant's first year of operation (expressed in base-year dollars) assuming that the COE escalates thereafter at a nominal annual rate equal to the general inflation rate

⁶ Worhach, P. , “Power Systems Financial Model Version 6.6,” DOE/NETL-2011/1492, May 2011, available from <http://www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View&PubId=382>

CCF = capital charge factor based on financial structure and determined using the NETL PSFM. This factor takes into account the financial structure and construction period to distribute the costs of the plant operational life (unitless)
 TOC = total overnight capital costs, expressed in base-year dollars (\$)
 OC_{FIX} = the sum of all fixed annual operating costs, expressed in base-year dollars (\$)
 OC_{VAR} = the sum of all variable operating costs (fuel and variable O&M costs), expressed in base-year dollars (\$/MWh)
 CF = Capacity factor (unit-less)
 MWH = Total generation from facility operating for 1 year, 8760 hours (MWh).

Levelized Cost of Electricity

The LCOE (\$/MWh) is determined using the following equation from the PSFM.

$$LCOE = L_{COE} COE$$

where:

L_{COE} = COE levelization factor as defined by:

$$L_{COE} = \frac{i(1+i)^n \left(1 - \frac{(1+e_{COE})^n}{(1+i)^n}\right)}{((1+i)^n - 1)(i - e_{COE})}$$

where:

n = levelization period

i = discount rate, rate of return on equity RROE

e_{COE} = COE escalation rate

Cost of CO₂ Avoided (\$/tonne CO₂)

The cost of CO₂ avoided is calculated using the following equation:

$$CO_2 \text{ Avoided Cost} = \frac{COE_{Capture} - COE_{No\ Capture}}{CO_2 \text{ Emissions}_{No\ Capture} - CO_2 \text{ Emissions}_{Capture}}$$

where:

COE_{Capture} = COE of generation facility with CO₂ capture (\$/MWh)

$COE_{No\ Capture}$ = COE of generation facility without CO₂ capture (\$/MWh)

$CO_2\ Emissions_{Capture}$ = CO₂ emissions from generation facility with CO₂ capture (tonne CO₂/MWh)

$CO_2\ Emissions_{No\ Capture}$ = CO₂ emissions from generation facility without CO₂ capture (tonne CO₂/MWh)

Cost of CO₂ Captured

Cost of CO₂ captured (\$/tonne CO₂) is calculated using the following equation:

$$CO_2\ Capture\ Cost = \frac{COE_{Capture} - COE_{No\ Capture}}{CO_2\ Captured_{Per\ Net\ Output}}$$

where:

$CO_2\ Captured_{Per\ Net\ Output}$ = amount of CO₂ captured per unit of generation (tonne CO₂/MWh)

The economic analysis assumptions were taken from the original DOE/NETL report. The global assumptions are summarized in Table 4-3. The financial structure for low risk (no-capture) and high risk (capture) projects and the resulting factors are summarized in Table 4-4.

Table 4-3
Global Economic Assumptions

Parameter	Value
TAXES	
Income Tax Rate	38% (Effective: 34% Federal, 6% State)
Capital Depreciation	20 years, 150% declining balance
Investment Tax Credit	0%
Tax Holiday	0 years
CONTRACTING AND FINANCING TERMS	
Contracting Strategy	Engineering Procurement Construction Management (owner assumes project risks for performance, schedule and cost)
Type of Debt Financing	Non-Recourse (collateral that secures debt is limited to the real assets of the project)
Repayment Term of Debt	15 years
Grace Period on Debt Repayment	0 years
Debt Reserve Fund	None
ANALYSIS TIME PERIODS	
Capital Expenditure Period	5 years
Operational Period	30 years
Economic Analysis Period (used for IRROE)	35 years (capital expenditure period plus operation period)
Treatment of Capital Costs	
Capital Cost Escalation During Capital Expenditure Period (nominal annual rate)	3.6% ¹
Distribution of Total Overnight Capital over the Capital Expenditure Period (before escalation)	10%, 30%, 25%, 20%, 15%
Working Capital	Zero for all parameters
% of Total Overnight Capital that is Depreciated	100% (this assumption introduces a very small error even in a substantial amount of TOC is actually non-depreciable)
ESCALATION OF OPERATING REVENUES AND COSTS	
Escalation of COE (Revenue), O&M Costs, and Fuel Costs (nominal annual rate)	3% ²

Notes:

1. The nominal average rate of 3.6 percent is assumed for escalation of capital costs during construction. This rate is equivalent to the nominal average annual escalation rate for process plant construction costs between 1947 and 2008 according to the *Chemical Engineering* Plant Cost Index.
2. An average annual inflation of 3.0% is assumed. This rate is equivalent to the average annual escalation rated between 1947 and 2008 for the US Department of Labor's Producer Price Index for Finished Goods, the so-called "headline" index of the various Producer Price Indices.

Table 4-4
Financial Structure for Investor Owned Utility

Finance Structure	High Risk CO₂ Capture Cases		Low Risk Non – CO₂ Capture Cases	
	Debt	Equity	Debt	Equity
Percent of Total	45%	50%	50%	50%
Current (Nominal) Dollar Cost	5.50%	12.00%	4.50%	12.00%
Weighted Current (Nominal) Cost	2.48%	6.60%	2.25%	6.00%
Weighted Current (Nominal) Cost Combined	9.08%		8.25%	
After Tax Weighted Cost of Capital	8.13%		7.39%	
Capital Charge Factor	0.124		0.116	
Levelization Factor	1.268		1.268	

4.5 *Update of the DOE/NETL Base Cases*

The capital costs, O&M costs, and the cost of electricity (COE) estimates for Case 9 and Case 10 of the DOE/NETL Bituminous Baseline Report Volume 1, Rev. 2, 2010⁷ were updated from June 2007 year dollar basis to January 2012 year dollar basis using the methodology described in Section 4.5.

Case 9 is a 550-MWe net sub-critical pulverized coal power plant without CO₂ capture and utilization and sequestration (CCUS) and Case 10 is a 550-MWe net sub-critical pulverized coal power plant with CCUS based on the Fluor Economine FG Plus CO₂ removal technology. The purpose of the cost update is to provide a basis for comparison with the cost developed for the commercial-scale pulverized coal power plant with post-combustion CO₂ removal based on the UK CAER CO₂ removal process.

The bituminous baseline cases were escalated from a cost basis date June 2007 to a cost basis date of January 2012 using information derived from a number of sources. These include published indices such as the Chemical Engineering (CE) Plant Cost Index, recent vendor quotations for similar equipment and materials, monthly mill pricing updates for structural steel, cost trending input from vendors, published wage rate information, and WorleyParsons in-house cost data base. In general, the CE index tends to trend slightly lower than costs developed using other sources. This can be due to several reasons including specific equipment design/sizing parameters and market conditions. In particular, the index value for construction labor and

⁷ United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). (2010). *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Rev. 2*. (DOE/NETL-2010/1397). Pittsburgh, Pennsylvania: U.S. DOE.

engineering services was not used because it almost always trends at a much lower rate than other sources employed.

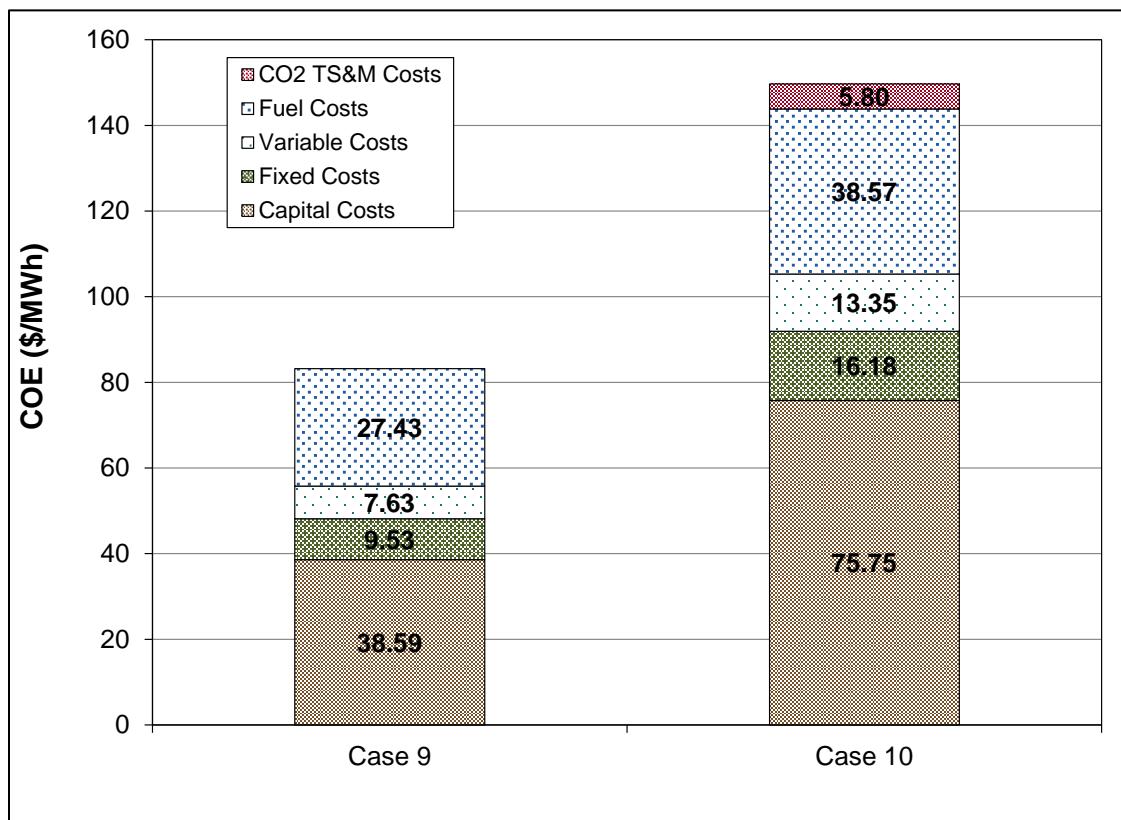
Equipment accounts that don't follow the general cost escalation trend include consumables, that generally are escalated using the index for producer prices for industrial chemicals (per HIS Global Insight, Inc. and reported in Chemical Engineering), and CO₂ compressor and main power transformer costs that were re-calibrated using more recent quotes in addition to the general cost of escalation.

The coal price was estimated based on the NETL Quality Guidelines for Energy System Studies⁸.

Plant specific inputs, both technical and cost, are listed in Table 4-5. The operational parameters for Case 9 and Case 10 are taken from the DOE/NETL report. The cost data for Case 9 and Case 10 from were escalated from 2007\$ to 2012\$ for this study.

Table 4-5
Plant Specific Operational and Cost Inputs

OPERATING PARAMETERS	Case 9	Case 10
Net Plant Output	550.0	550.0
Net Plant Heat Rate, Btu/kWh (kJ/kWh)	9,277 (9,787)	13,046 (13,764)
CO₂ Captured, lb/MWh (kg/MWh)	0	2,390 (1,084)
CO₂ Emitted, lb/MWh net (kg/MWh net)	1,888 (856)	266 (221)
COSTS		
Total Plant Costs (2012\$)	2,000	3,689
Total Overnight Cost (2012\$/kw)	2,477	4,548
Bare Erected Cost	1,629	2,836
Home Office Expenses	147	257
Project Contingency	224	465
Process contingency	0	131
Owners Costs	477	860
Total Overnight Cost (2012\$x1,000)	1,362,516	2,501,457
Total As Spent Capital (2012\$)	2809	5185
Annual Fixed Operating Costs (\$/yr)	39,039,238	66,263,173
Variable Operating Costs (\$/MWh)	7.63	13.35
Fuel		
Coal Price (\$/ton)		69.00


⁸ U. S. Department of Energy National Energy Technology Laboratory (NETL), *Quality Guideline for Energy System Studies: Fuel Prices for Selected Feedstocks in NETL Studies*, DOE/NETL-341/121211, August 2011.

4.5.1 Results for the Update of the DOE Base Cases

Economic metrics determined during this analysis are listed in Table 4-6. The percent increase in the COE for Case 10 compared to the non-capture configuration in Case 9 is 80%. The COE and a breakdown of the COE are graphically compared in Figure 4-3.

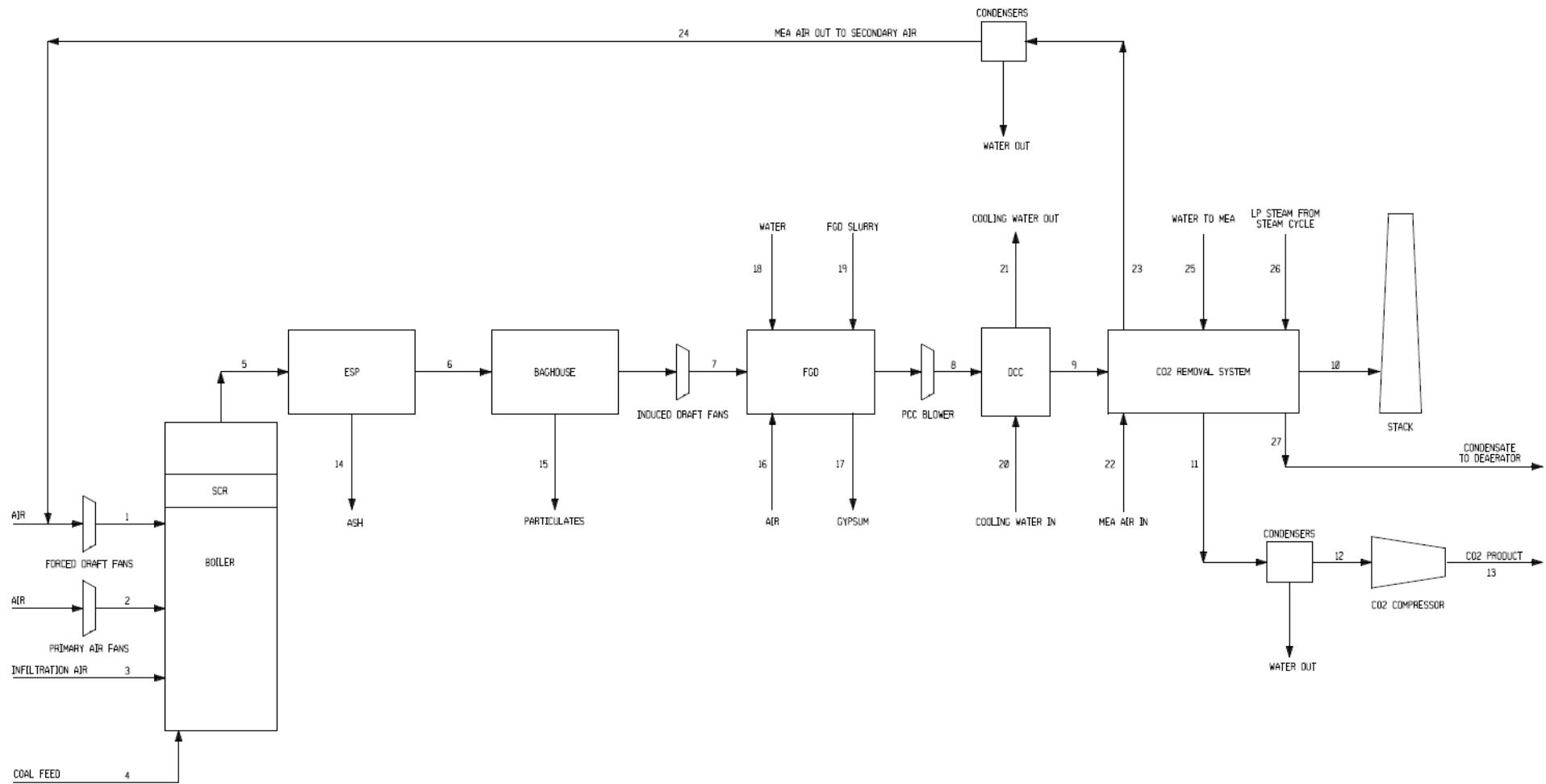
Table 4-6
Economic Metrics

	Case 9	Case 10
COE(\$/MWh, 2012\$)	83.19	149.65
CO ₂ TS&M Costs		5.80
Fuel Costs	27.43	38.57
Variable Costs	7.63	13.35
Fixed Costs	9.53	16.18
Capital Costs	38.59	75.75
LCOE (2012\$/MWh)	105.36	189.59
Cost of CO₂ Captured (\$/tonne CO₂)		61.31
Cost of CO₂ Avoided (\$/tonne CO₂)		90.35

Figure 4-4
Comparison and Breakdown of COE for Case 9 and Case 10

The summary and detailed updated capital costs for Case 9 are shown in the Appendix in Table A-3 and Table A-4, and the O&M cost is shown in Table A-5. The summary and detailed updated capital costs for Case 10 are also shown in the Appendix in Table A-6 and Table A-7, and the O&M cost is shown in Table A-8.

5 Performance Results


Figure 5-1 presents the high-level block flow diagram showing all of the principal systems in the power plant, including the CO₂ capture system. Figure 5-2 presents the steam cycle heat and mass balance diagram, with the tabulated data summarized in Table 5-1.

5.1 UK CAER Process + MEA Case

5.1.1 Performance Results

The stream numbers given at the inlet and outlets for each system correspond to the stream data given in Table 5-1, which includes composition (on a volumetric basis), flowrate, and thermodynamic state conditions (temperature, pressure, and density) for each stream. A more detailed look at the steam cycle is given in a heat and mass balance chart in Figure 5-1.

The high-level performance results for the UK CAER process + MEA case are shown in Table 5-2. In summary, the net efficiency of the UK CAER integrated PC power plant with CO₂ capture changes from 26.2% with the Reference Case 10 plant in 2010 revised DOE/NETL baseline report to 27.6% for the MEA options considered. Similarly, the UK CAER process + MEA case lowers energy consumption for CO₂ capture to 1,340 Btu/lb-CO₂ captured, as compared to 1,540 Btu/lb-CO₂ in the Case 10. The study also shows 38.1% less heat rejection associated with carbon capture system, with a decrease from 3,398 MBtu/hr (Case 10) to 2,104 MBtu/hr. Modeling outputs show that the UK CAER process can achieve 2-5 °C lower cooling water temperatures than conventional cooling tower water for ambient conditions common to the midwest and other regions.

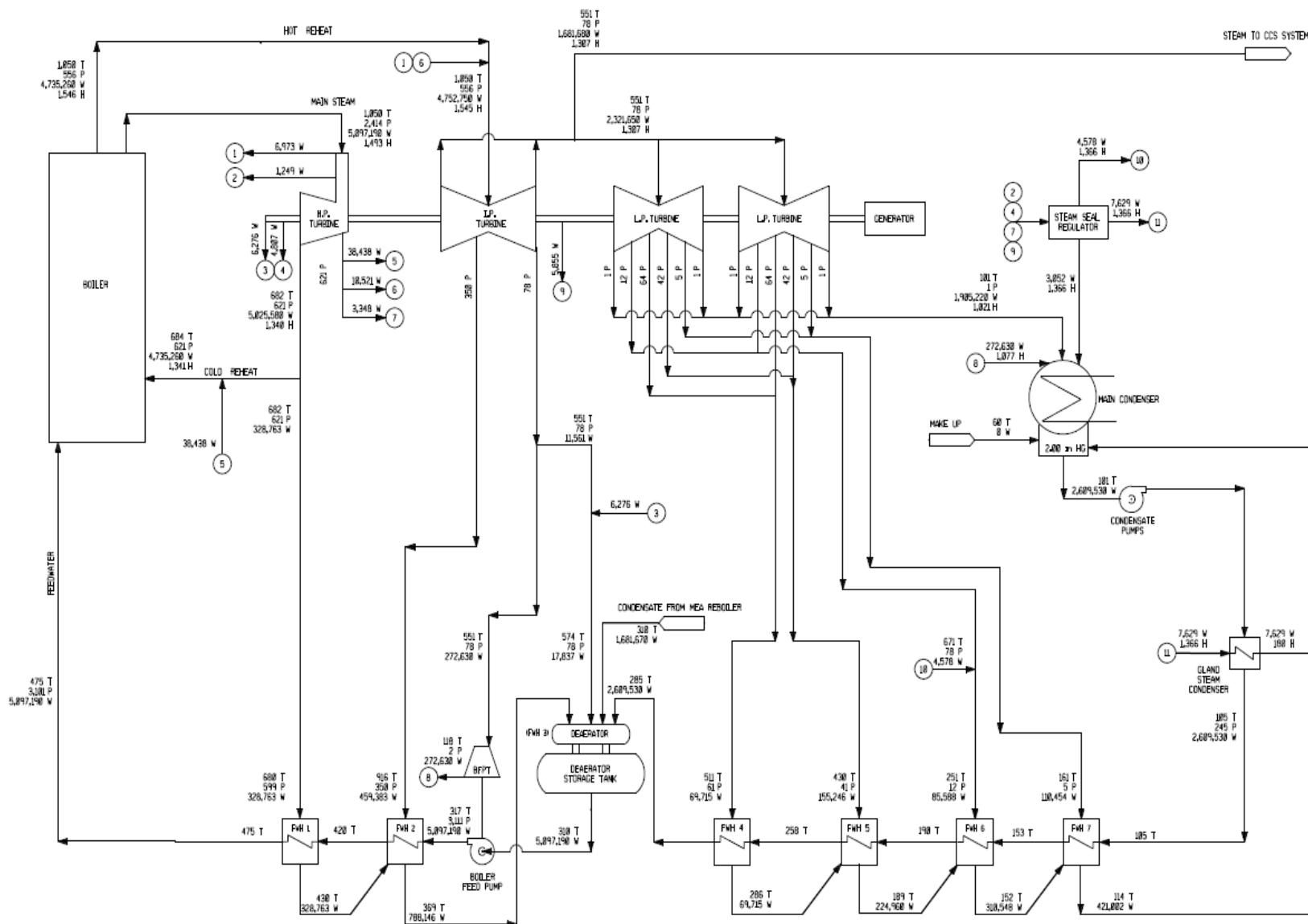

Figure 5-1
High-Level Block Flow Diagram for the MEA Case

Table 5-1
High-Level Stream Conditions for the MEA Case (numbers match with those in Figure 5-1)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
V-L Mole Fraction														
Ar	0.009	0.009	0.009	0.000	0.008	0.008	0.008	0.008	0.009	0.009	0.000	0.000	0.000	0.000
CO ₂	0.012	0.000	0.000	0.000	0.154	0.154	0.154	0.145	0.166	0.017	0.550	0.962	0.997	0.000
H ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂ O	0.026	0.010	0.010	0.000	0.099	0.099	0.099	0.155	0.034	0.153	0.449	0.037	0.002	0.000
N ₂	0.752	0.773	0.773	0.000	0.717	0.717	0.717	0.673	0.769	0.798	0.000	0.000	0.000	0.000
O ₂	0.202	0.207	0.207	0.000	0.020	0.020	0.020	0.019	0.022	0.023	0.000	0.000	0.000	0.000
SO ₂	0.000	0.000	0.000	0.000	0.002	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	1.000	1.000	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
V-L Flowrate (lbmol/hr)	158,846	49,614	3,589	0	224,369	224,369	224,369	242,053	211,732	204,196	53,583	30,636	29,553	0
V-L Flowrate (kgmol/hr)	72,039	22,501	1,628	0	101,755	101,755	101,755	109,775	96,024	92,606	24,301	13,894	13,403	0
V-L Flowrate (lb/hr)	4,583,690	1,431,710	103,571	0	6,674,330	6,674,330	6,674,330	7,007,820	6,462,100	5,507,740	1,732,050	1,318,380	1,298,860	0
V-L Flowrate (kg/hr)	2,079,125	649,412	46,979	0	3,027,423	3,027,423	3,027,423	3,178,691	2,931,157	2,498,267	785,644	598,007	589,153	0
Solids Flowrate (lb/hr)	0	0	0	614,994	0	0	0	0	0	0	0	0	0	11,927
Solids Flowrate (kg/hr)	0	0	0	278,956	0	0	0	0	0	0	0	0	0	5,410
Temperature (°F)	85	78	59	59	270	270	292	168	90	134	221	100	206	270
Temperature (°C)	29.4	25.6	15.0	15.0	132.2	132.2	144.4	75.6	32.2	56.7	105.0	37.8	96.7	132.2
Pressure (psia)	15.3	16.1	14.7	14.7	14.4	14.4	15.4	17.4	15.7	14.7	27.3	25.8	2,214.70	14.4
Pressure (bar)	1.1	1.1	1.0	1.0	1.0	1.0	1.1	1.2	1.1	1.0	1.9	1.8	152.7	1.0
Density (lb/ft ³)	0.076	0.081	0.076	---	0.055	0.055	0.057	0.075	0.081	0.062	0.122	0.186	21.541	---
Density (kg/m ³)	1.216	1.296	1.216	---	0.88	0.88	0.912	1.2	1.296	0.992	1.952	2.976	344.656	---

Table 5-1
High-Level Stream Conditions for the MEA Case (numbers match with those in Figure 5-1) (cont.)

	15	16	17	18	19	20	21	22	23	24	25	26	27
V-L Mole Fraction											Not Used		
Ar	0.000	0.009	0.000	0.000	0.000	0.000	0.000	0.009	0.005	0.008		0.000	0.000
CO2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.028		0.000	0.000
H2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000
H2O	0.000	0.010	0.000	1.000	1.000	0.999	0.999	0.053	0.420	0.048		1.000	1.000
N2	0.000	0.773	0.000	0.000	0.000	0.000	0.000	0.740	0.440	0.722		0.000	0.000
O2	0.000	0.207	0.000	0.000	0.000	0.000	0.000	0.198	0.118	0.194		0.000	0.000
SO2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000
Total	0.000	1.000	0.000	1.000	1.000	0.999	0.999	1.000	1.000	1.000		1.000	1.000
V-L Flowrate (lbmol/hr)	0	2,550	0	8,329	7,983	532,916	563,227	67,510	118,496	66,643		93,347	93,347
V-L Flowrate (kgmol/hr)	0	1,156	0	3,777	3,620	241,685	255,432	30,617	53,740	30,224		42,334	42,334
V-L Flowrate (lb/hr)	0	73,571	0	150,057	143,821	9,612,340	10,158,100	1,948,130	2,917,330	1,923,000		1,681,680	1,681,670
V-L Flowrate (kg/hr)	0	33,371	0	68,065	65,236	4,360,081	4,607,633	883,506	1,323,278	872,257		762,797	762,792
Solids Flowrate (lb/hr)	47,708	0	96,194	0	0	0	0	0	0	0		0	0
Solids Flowrate (kg/hr)	21,640	0	43,633	0	0	0	0	0	0	0		0	0
Temperature (°F)	270	64	138	59	59	75	75	80	181	100		551	310
Temperature (°C)	132.2	17.8	58.9	15.0	15.0	23.9	23.9	26.7	82.8	37.8		288.3	154.4
Pressure (psia)	14.2	15	14.9	15	15	18	20	16.5	15.2	14.7		78	130
Pressure (bar)	1.0	1.0	1.0	1.0	1.0	1.2	1.4	1.1	1.0	1.0		5.4	9.0
Density (lb/ft3)	---	0.077	---	47.503	47.503	47.16	47.165	0.082	0.055	0.071		0.131	56.97
Density (kg/m3)	---	1.232	---	---	760.048	754.56	754.64	1.312	0.88	1.136		2.096	911.52

Figure 5-2
Heat and Mass Balance for the Steam Cycle for the MEA Case

Table 5-2
MEA Performance Summary

POWER SUMMARY (Gross Power at Generator Terminals kWe)	
Case	UK CAER + MEA 2020 Case
Steam Turbine Power	699,000
TOTAL (STEAM TURBINE) POWER, kWe	699,000
AUXILIARY LOAD SUMMARY, kWe	
Coal Handling & Conveying	540
Pulverizers	4,180
Sorbent Handling & Reagent Preparation	1,370
Ash Handling	800
Primary Air Fans	1,980
Forced Draft Fans	2,890
Induced Draft Fans	11,410
SCR	70
Baghouse	100
Wet FGD	4,470
CO ₂ Removal System Auxiliaries	22,122
CO ₂ Compression	48,930
Miscellaneous Balance of Plant ^{2,3}	2,000
Steam Turbine Auxiliaries	400
Condensate Pumps	750
Circulating Water Pump	8,830
Ground Water Pumps	720
Cooling Tower Fans	4,590
Transformer Losses	2,440
TOTAL AUXILIARIES, kWe	118,142
NET POWER, kWe	580,858
Net Plant Efficiency (HHV)	27.6%
Net Plant Heat Rate, Btu/kWhr HHV (kJ/kWhr)	12,352 (13,032)
Net Plant Efficiency (LHV)	28.6%
Net Plant Heat Rate, Btu/kWhr LHV (kJ/kWhr)	11,913 (12,569)
COOLING TOWER DUTY, MBtu/hr (GJ/hr)	4,200 (4,431)
Consumables	
As-Received Coal Feed, lb/hr (kg/hr)	614,994 (278,956)
Limestone Sorbent Feed, lb/hr (kg/hr)	62,235 (28,229)

1. HHV of As-Received Illinois #6 coal is 11,666 Btu/lb (27,135 kJ/kg)

2. Boiler feed pumps are turbine driven

3. Includes plant control systems, lighting, HVAC, and miscellaneous low-voltage loads

5.1.2 Major Equipment List

The major equipment list for the UK CAER process + MEA Case is provided in Table 5-3 through Table 5-14, with information broken down into the following plant sub-systems:

- Fuel and Sorbent Handling
- Coal and Sorbent Preparation and Feed
- Feedwater and Miscellaneous Systems and Equipment
- Boiler And Accessories
- Flue Gas Cleanup
- CO₂ Capture (high-level)
- HRSG, Ducting, and Stack
- Steam Turbine Generator and Auxiliaries
- Cooling Water System
- Ash/Spent Sorbent Recovery and Handling
- Accessory Electric Plant
- Instrumentation and Control

In each table, a label for the piece of equipment is given, a brief description, the type if applicable, the design condition for it, the quantity used in the plant, and the number of spares, if any.

Table 5-3
Fuel and Sorbent Handling Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Bottom Trestle Dumper and Receiving Hoppers	N/A	181 tonne (200 ton)	2	0
2	Feeder	Belt	572 tonne/hr (630 tph)	2	0
3	Conveyor No. 1	Belt	1,134 tonne/hr (1,250 tph)	1	0
4	Transfer Tower No. 1	Enclosed	N/A	1	0
5	Conveyor No. 2	Belt	1,134 tonne/hr (1,250 tph)	1	0
6	As-Received Coal Sampling System	Two-stage	N/A	1	0
7	Stacker/Reclaimer	Traveling, linear	1,134 tonne/hr (1,250 tph)	1	0
8	Reclaim Hopper	N/A	54 tonne (60 ton)	2	1
9	Feeder	Vibratory	227 tonne/hr (250 tph)	2	1
10	Conveyor No. 3	Belt w/ tripper	463 tonne/hr (510 tph)	1	0
11	Crusher Tower	N/A	N/A	1	0
12	Coal Surge Bin w/ Vent Filter	Dual outlet	227 tonne (250 ton)	2	0
13	Crusher	Impactor reduction	8 cm x 0 - 3 cm x 0 (3 in x 0 - 1-1/4 in x 0)	2	0
14	As-Fired Coal Sampling System	Swing hammer	N/A	1	1
15	Conveyor No. 4	Belt w/ tripper	463 tonne/hr (510 tph)	1	0
16	Transfer Tower No. 2	Enclosed	N/A	1	0
17	Conveyor No. 5	Belt w/ tripper	463 tonne/hr (510 tph)	1	0
18	Coal Silo w/ Vent Filter and Slide Gates	Field erected	998 tonne (1,100 ton)	3	0
19	Limestone Truck Unloading Hopper	N/A	36 tonne (40 ton)	1	0
20	Limestone Feeder	Belt	118 tonne/hr (130 tph)	1	0
21	Limestone Conveyor No. L1	Belt	118 tonne/hr (130 tph)	1	0
22	Limestone Reclaim Hopper	N/A	27 tonne (30 ton)	1	0
23	Limestone Reclaim Feeder	Belt	91 tonne/hr (100 tph)	1	0
24	Limestone Conveyor No. L2	Belt	91 tonne/hr (100 tph)	1	0
25	Limestone Day Bin	w/ actuator	372 tonne (410 ton)	2	0

Table 5-4
Coal and Sorbent Preparation and Feed Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Coal Feeder	Gravimetric	54 tonne/hr (60 tph)	6	0
2	Coal Pulverizer	Ball type or equivalent	54 tonne/hr (60 tph)	6	0
3	Limestone Weigh Feeder	Gravimetric	31 tonne/hr (34 tph)	1	1
4	Limestone Ball Mill	Rotary	31 tonne/hr (34 tph)	1	1
5	Limestone Mill Slurry Tank with Agitator	N/A	121,133 liters (32,000 gal)	1	1
6	Limestone Mill Recycle Pumps	Horizontal centrifugal	2,006 lpm @ 12m H ₂ O (530 gpm @ 40 ft H ₂ O)	1	1
7	Hydroclone Classifier	4 active cyclones in a 5 cyclone bank	492 lpm (130 gpm) per cyclone	1	1
8	Distribution Box	2-way	N/A	1	1
9	Limestone Slurry Storage Tank with Agitator	Field erected	673,803 liters (178,000 gal)	1	1
10	Limestone Slurry Feed Pumps	Horizontal centrifugal	1,401 lpm @ 9m H ₂ O (370 gpm @ 30 ft H ₂ O)	1	1

Table 5-5
Feedwater and Miscellaneous Systems and Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares Qty.
1	Demineralized Water Storage Tank	Vertical, cylindrical, outdoor	1,563,375 liters (413,000 gal)	2	0
2	Condensate Pumps	Vertical canned	21,735 lpm @ 213 m H ₂ O (5,750 gpm @ 700 ft H ₂ O)	1	1
3	Deaerator and Storage Tank	Horizontal spray type	2,543,335 kg/hr (5,607,000 lb/hr),	1	0
4	Boiler Feed Pump/Turbine	Barrel type, multi-stage, centrifugal	43,532 lpm @ 2,591 m H ₂ O (11,500 gpm @ 8,500 ft H ₂ O)	1	1
5	Startup Boiler Feed Pump, Electric Motor Driven	Barrel type, multi-stage, centrifugal	12,870 lpm @ 2,591 m H ₂ O (3,400 gpm @ 8,500 ft H ₂ O)	1	0
6	LP Feedwater Heater 1A/1B	Horizontal U-tube	650,900 kg/hr (1,435,000 lb/hr)	2	0
7	LP Feedwater Heater 2A/2B	Horizontal U-tube	650,900 kg/hr (1,435,000 lb/hr)	2	0
8	LP Feedwater Heater 3A/3B	Horizontal U-tube	650,900 kg/hr (1,435,000 lb/hr)	2	0
9	LP Feedwater Heater 4A/4B	Horizontal U-tube	650,900 kg/hr (1,435,000 lb/hr)	2	0
10	HP Feedwater Heater 6	Horizontal U-tube	2,543,335 kg/hr (5,607,000 lb/hr)	1	0
11	HP Feedwater Heater 7	Horizontal U-tube	2,543,335 kg/hr (5,607,000 lb/hr)	1	0
12	Auxiliary Boiler	Shop fabricated, water tube	18,144 kg/hr, 2.8 MPa, 343°C (40,000 lb/hr, 400 psig, 650°F)	1	0
13	Fuel Oil System	No. 2 fuel oil for light	1,135,624 liter (300,000 gal)	1	0
14	Service Air Compressors	Flooded Screw	28 m ³ /min @ 0.7 MPa (1,000 scfm @ 100 psig)	2	1
15	Instrument Air Dryers	Duplex, regenerative	28 m ³ /min (1,000 scfm)	2	1
16	Closed Cycle Cooling Heat Exchangers	Shell and tube	53 GJ/hr (50 MMBtu/hr) each	2	0
17	Closed Cycle Cooling Water Pumps	Horizontal centrifugal	20,820 lpm @ 30 m H ₂ O (5,500 gpm @ 100 ft H ₂ O)	2	1
18	Engine-Driven Fire Pump	Vertical turbine, diesel engine	3,785 lpm @ 88 m H ₂ O (1,000 gpm @ 290 ft H ₂ O)	1	1
19	Fire Service Booster Pump	Two-stage horizontal centrifugal	2,650 lpm @ 64 m H ₂ O (700 gpm)	1	1
20	Raw Water Pumps	Stainless steel, single suction	12,265 lpm @ 18 m H ₂ O (3,240 gpm @ 60 ft H ₂ O)	2	1
21	Ground Water Pumps	Stainless steel, single suction	4,921 lpm @ 268 m H ₂ O (1,300 gpm @ 880 ft H ₂ O)	5	1
22	Filtered Water Pumps	Stainless steel, single suction	2,953 lpm @ 49 m H ₂ O (780 gpm)	2	1
23	Filtered Water Tank	Vertical, cylindrical	2,839,059 liter (750,000 gal)	1	0
24	Makeup Water Demineralizer	Multi-media filter, cartridge filter, RO membrane assembly, electrodeionization unit	1,022 lpm (270 gpm)	1	1
25	Liquid Waste Treatment System	--	10 years, 24-hour storm	1	0

Table 5-6
Boiler and Accessories Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Boiler	Subcritical, drum wall-fired, low NO _x burners, overfire air	2,599,084 kg/hr steam @ 17.9 MPa/574°C/574°C (5,730,000 lb/hr steam @ 2,600 psig/1,065°F/1,065°F)	1	0
2	Primary Air Fan	Centrifugal	357,210 kg/hr, 4,853 m ³ /min @ 123 cm WG (787,500 lb/hr, 172,200 acfm @ 48 in. WG)	2	0
3	Forced Draft Fan	Centrifugal	1,168,473 kg/hr, 16,510 m ³ /min @ 47 cm WG (2,576,000 lb/hr, 583,000 acfm @ 19 in. WG)	2	0
4	Induced Draft Fan	Centrifugal	1,665,166 kg/hr, 32,060 m ³ /min @ 104 cm WG (3,671,000 lb/hr, 1,132,200 acfm @ 41 in. WG)	2	0
5	SCR Reactor Vessel	Space for spare layer	3,347,512 kg/hr (7,380,000 lb/hr)	2	0
6	SCR Catalyst	--	--	3	0
7	Dilution Air Blower	Centrifugal	198 m ³ /min @ 108 cm WG (7,000 acfm @ 42 in. WG)	2	1
8	Ammonia Storage	Horizontal tank	219,554 liter (58,000 gal)	5	0
9	Ammonia Feed Pump	Centrifugal	42 lpm @ 91 m H ₂ O (11 gpm @ 300 ft H ₂ O)	2	1

Table 5-7
Flue Gas Clean-up Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Fabric Filter	Single stage, high-ratio with pulse-jet online cleaning system	1,665,166 kg/hr (3,671,000 lb/hr) 99.8% efficiency	2	0
2	Absorber Module	Counter-current open spray	67,102 m ³ /min (2,370,000 acfm)	1	0
3	Recirculation Pumps	Horizontal centrifugal	230,910 lpm @ 64 m H ₂ O (61,000 gpm @ 210 ft H ₂ O)	5	1
4	Bleed Pumps	Horizontal centrifugal	6,095 lpm (1,610 gpm) at 20 wt% solids	2	1
5	Oxidation Air Blowers	Centrifugal	128 m ³ /min @ 0.3 MPa (4,525 acfm @ 37 psia)	2	1
6	Agitators	Side entering	50 hp	5	1
7	Dewatering Cyclones	Radial assembly, 5 units each	1,514 lpm (400 gpm) per cyclone	2	0
8	Vacuum Filter Belt	Horizontal belt	48 tonne/hr (53 tph) of 50 wt % slurry	2	1
9	Filtrate Water Return Pumps	Horizontal centrifugal	908 lpm @ 12 m H ₂ O (240 gpm @ 40 ft H ₂ O)	1	1
10	Filtrate Water Return Storage Tank	Vertical, lined	605,666 lpm (160,000 gal)	1	0
11	Process Makeup Water Pumps	Horizontal centrifugal	4,883 lpm @ 21 m H ₂ O (1,290 gpm @ 70 ft H ₂ O)	1	1

Table 5-8
CO₂ Capture Equipment List (high-level)

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	CAER CO ₂ Capture System	Amine-based CO ₂ capture technology	1,748,300 kg/h (3,854,300 lb/h) 22.0 wt % CO ₂ concentration	2	0
2	CAER Condensate Pump	Centrifugal	13,984 lpm @ 52 m H ₂ O (3,700 gpm @ 170 ft H ₂ O)	1	1

Table 5-9
HRSG, Ducting, and Stack Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Stack	Reinforced concrete with FRP liner	152 m (500 ft) high x 5.8 m (19 ft) diameter	1	0

Table 5-10
Steam Turbine Generator and Auxiliaries Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Steam Turbine	Commercially available advanced steam turbine	699 MW 16.5 MPa/566°C/566°C (2400.3 psig/ 1050°F/1 050°F)	1	0
2	Steam Turbine Generator	Hydrogen cooled, static excitation	790 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1	0
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	2,215 GJ/hr (2,099 MMBtu/hr), Inlet water temperature 16°C (60°F), Water temperature rise 11°C (20°F)	1	0

Table 5-11
Cooling Water System Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Circulating Water Pumps	Vertical, wet pit	794,200 lpm @ 30 m (209,800 gpm @ 100 ft)	2	1
2	Cooling Tower	Evaporative, mechanical draft, multi-cell	11°C (51.5°F) wet bulb / 16°C (60°F) CWT / 27°C (80°F) HWT / 4434 GJ/hr (4203 MMBtu/hr) heat duty	1	0

Table 5-12
Ash/Spent Sorbent Recovery and Handling Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Economizer Hopper (part of boiler scope of supply)	--	--	4	0
2	Bottom Ash Hopper (part of boiler scope of supply)	--	--	2	0
3	Clinker Grinder	--	6.4 tonne/hr (7 tph)	1	1
4	Pyrites Hopper (part of pulverizer scope of supply included with boiler)	--	--	6	0
5	Hydroejectors	--	--	12	
6	Economizer/Pyrites Transfer Tank	--	--	1	0
7	Ash Sluice Pumps	Vertical, wet pit	227 lpm @ 17 m H ₂ O (60 gpm @ 56 ft H ₂ O)	1	1
8	Ash Seal Water Pumps	Vertical, wet pit	7,571 lpm @ 9 m H ₂ O (2000 gpm @ 28 ft H ₂ O)	1	1
9	Hydrobins	--	227 lpm (60 gpm)	1	1
10	Baghouse Hopper (part of baghouse scope of supply)	--	--	24	0
11	Air Heater Hopper (part of boiler scope of supply)	--	--	10	0
12	Air Blower	--	22 m ³ /min @ 0.2 MPa (770 scfm @ 24 psi)	1	1
13	Fly Ash Silo	Reinforced concrete	1,451 tonne (1,600 ton)	2	0
14	Slide Gate Valves	--	--	2	0
15	Unloader	--	--	1	0
16	Telescoping Unloading Chute	--	136 tonne/hr (150 tph)	1	0

Table 5-13
Accessory Electric Plant Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	STG Transformer	Oil-filled	24 kV/345 kV, 650 MVA, 3-ph, 60 Hz	1	0
2	Auxiliary Transformer	Oil-filled	24 kV/4.16 kV, 129 MVA, 3-ph, 60 Hz	1	1
3	Low Voltage Transformer	Dry ventilated	4.16 kV/480 V, 20 MVA, 3-ph, 60 Hz	1	1
4	STG Isolated Phase Bus Duct and Tap Bus	Aluminum, self-cooled	24 kV, 3-ph, 60 Hz	1	0
5	Medium Voltage Switchgear	Metal clad	4.16 kV, 3-ph, 60 Hz	1	1
6	Low Voltage Switchgear	Metal enclosed	480 V, 3-ph, 60 Hz	1	1
7	Emergency Diesel Generator	Sized for emergency shutdown	750 kW, 480 V, 3-ph, 60 Hz	1	0

Table 5-14
Instrumentation and Control Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	DCS - Main Control	Monitor/keyboard; Operator printer (laser color); Engineering printer (laser B&W)	Operator stations/printers and engineering stations/printers	1	0
2	DCS - Processor	Microprocessor with redundant input/output	N/A	1	0
3	DCS - Data Highway	Fiber optic	Fully redundant, 25% spare	1	0

The detailed equipment list for the CO₂ capture system used for the UK CAER process + MEA Case is provided in Table 5-15. The table provides a label for the piece of equipment, a brief description, the type if applicable, the design condition for it, and the quantity used in the capture plant.

Table 5-15
CO₂ Capture Equipment List for the MEA Case (detailed)

Equipment No.	Description	Type	Design Condition	Quantity
1	Direct Contact Cooler	Vertical	50 ft (15.2 m) dia, 110 ft (33.5 m) T/T, Operating: 2 psig (1.2 bara) / 90°F (32.2°C), Design: -2/+10 psig (0.88/+1.7 bara) / 150°F (65.6°C), Pressure Drop: 1.7 psia (0.11 bar) Carbon Steel	2 op
2	CO ₂ Absorber	Structured Packed Bed	38 ft (11.6 m) Dia, 138 ft (42 m) T/T, Operating: 2 psig (1.2 bara) / 134°F (56.7°C), Design: -2/+10 psig (.88/+1.7 bara) / 190°F (87.8°C), Pressure Drop: 1.79 psi (0.12 bar) Carbon Steel 118 ft (36 m) structured packing	2 op
3	Primary Stripper	Structured Packed Bed	18 ft (5.5 m) Dia, 93 ft (28.3 m) T/T, Operating: 12.7 psig (1.89 bara) / 254°F (123°C), Design: 110 psig (8.6 bara) / 360°F (182.2°C), Pressure Drop: 7 psi (0.48 bar), Carbon Steel / Upper 35 ft (10.7 m) 304SS clad 73 ft (22.3 m) of structured packing	2 op
4	Reclaimer	Vertical Tank	14 ft (4.3 m) Dia, 26ft (7.9 m) T/T ft Length, Steam Pressure/Temp: 63.3 psig (5.4 bara) / 310°F (154.4°C), Design: 110 psig (8.6 bara) / 360°F (182.2°C), Heat Required: 120 MBtu /hr (127 GJ/hr), Carbon Steel	1 op
5	Air Stripper	Structured Packed Bed	19 ft (5.8 m) Dia, 90 ft (27.4 m) T/T ft Length, Operating: 0.6 psig (1.1 bara)/ 210°F (99°C), Design: 10 psig (1.7 bara) / 360°F (182.2°C), Pressure Drop: 12.6 psi (0.87 bar), Carbon Steel 78 ft (23.8 m) of structured packing	2 op
6	Saturator (Water Evaporator)	Structured Packed Bed	16 ft (4.9 m) Dia, 69 ft (21 m) T/T ft Length, Operating: 1.3 psig (1.1 bara)/ 108°F (42°C), Design: 10 psig (1.7 bara) / 160°F (71°C), Pressure Drop: 8 psi (0.55 bar), Carbon Steel 49 ft (15 m) of structured packing	1 op

Equipment No.	Description	Type	Design Condition	Quantity
7	Reboiler	Kettle	Heat Duty: 782 MBtu/hr (825 GJ/hr), OHTC:250 Btu/ft ² -h-F (1419.6 W/(m ² K)), Steam Pressure/Temp :63.3 psig (5.4 bara) / 310°F (154.4°C), Heat Transfer Area: 50,740 ft ² (4714m ²) Design: 110 psig (8.6 bara) / 600°F (316°C), Carbon Steel	2 op
8	Lean/Rich Exchanger	Plate & Frame	Heat Duty: 240 MBtu/hr (253 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp(F) In/Out: 190/217 (Cold); 251/211(Hot) Temp(C) In/Out: 87.8/103 (Cold); 122/99 (Hot) Heat Transfer Area: 14,850 ft ² (1380 m ²), Op. Pressure: 30 psig (3.08 bara), Design: 80 psig (6.5 bara) / 300°F (149°C), 304 Alloy Plate material / Carbon Steel	2 op
9	Recycle Air Cooler #1	Plate & Frame	Heat Duty: 330 MBtu/hr (348 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp(F) In/Out: 97/171(Cold); 180/138(Hot) Temp(C) In/Out 36/72(Cold); 82/59(Hot) Heat Transfer Area: 26,102 ft ² (2,425 m ²) Op. Pressure: 47 psig (50.9 bara), Design: 100 psig / 250°F (7.9 bara / 121°C), Carbon Steel	2 op
10	CO ₂ Cond #2	Plate & Frame	Heat Duty: 180 MBtu/hr (189.9 GJ/hr) OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp(F) In/Out: 97/189(Cold); 200/141(Hot) Temp(C) In/Out 36/87 (Cold); 93/61 (Hot), Heat Transfer Area: 12,620 ft ² (1172 m ²), Op. Pressure: 45 psig (4.1 bara), Design: 100 psig (7.9 bara) / 250°F (121°C), Carbon Steel	2 op

Equipment No.	Description	Type	Design Condition	Quantity
11	Rich Amine Preheater #3	Plate & Frame	Heat Duty: 24 MBtu/hr (25.3 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp(F) In/Out: 177/190(Cold); 213/187(Hot) Temp(C) In/Out 81/88 (Cold); 101/31 (Hot), Heat Transfer Area: 2,560 ft ² (238 m ²), Op. Pressure: 43 psig, (4 bara) Design: 100 psig / 270°F (7.9 bara / 132°C), Carbon Steel	2 op
12	CO ₂ Condenser #1	Plate & Frame	Heat Duty: 21.7 MBtu/hr (22.9 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp(F) In/Out: 60/180(Cold); 211/200(Hot) Temp(C) In/Out 15.6/82 (Cold); 99/93 (Hot), Heat Transfer Area: 1,160 ft ² (108 m ²), Op. Pressure: 15 psig (2.0 bara), Design: 70 psig (5.8 bara) / 270°F (132°C), Carbon Steel	2 op
13	Saturated Air Preheater	Plate & Frame	Heat Duty: 11.2 MBtu/hr (11.8 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp(F) In/Out: 108/131(Cold); 138/129(Hot) Temp(C) In/Out: 42/55(Cold); 59/54(Hot), Heat Transfer Area: 1,470 ft ² (137 m ²), Op. Pressure: 1.5 psig (1.1 bara), Design: 60 psig (5.2 bara) / 200°F (93°C), Carbon Steel	1 op
14	Absorber Intercooler	Plate & Frame	Heat Duty: 265.7 MBtu/hr (280.3 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 144/100°F (62/38°C), Heat Transfer Area: 8,672 ft ² (806 m ²), Op. Pressure: 1 psig (1.08 bara), Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	2 op

Equipment No.	Description	Type	Design Condition	Quantity
15	Lean Cooler	Plate & Frame	Heat Duty: 170 MBtu/hr (179.3 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 128/90°F (53.3/31.2°C), Heat Transfer Area: 7,398 ft ² (687 m ²), Op. Pressure: 1.5 psig, (1.1 bara) Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	2 op
16	CO ₂ Condenser #3	Plate & Frame	Heat Duty: 31.7 MBtu/hr (33.4 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 142/100°F (61/38°C), Heat Transfer Area: 1,055 ft ² (98 m ²), Op. Pressure: 10 psig (1.7 bara), Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	2 op
17	Recycle Air Cooler #2	Plate & Frame	Heat Duty: 122.64 MBtu/hr (129.4 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 138/95 F (59/35°C), Heat Transfer Area: 4,489 ft ² (417 m ²), Op. Pressure: 0.5 psig (1.04 bara), Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	2 op
18	Recycle Air Heater	Plate & Frame	Heat Duty: 0.99 MBtu/hr (1.04 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 95/99 F (35/37.2°C), Heat Transfer Area: 10 ft ² (0.9 m ²), Op. Pressure: 0.2 psig (1.02 bara), Design: 110 psig / 600°F (8.6 bara / 316°C), Utility: LP Steam Carbon Steel	1 op

Equipment No.	Description	Type	Design Condition	Quantity
19	LD Preheater	Plate & Frame	Heat Duty: 12.7 MBtu/hr (13.4 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 180/200°F (82/93°C), Heat Transfer Area: 220 ft ² (20.4 m ²), Op. Pressure: 10 psig (1.7 bara), Design: 110 psig / 600°F (7.9 bara / 316°F), Utility: LP Steam Carbon Steel	1 op
20	Rich Amine Preheater #4	Plate & Frame	Heat Duty: 78 MBtu/hr (82.3 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 177/190°F (81/88°C), Heat Transfer Area: 1,290 ft ² (119.8 m ²), Op. Pressure: 10 psig (1.7 bara), Design: 110 psig / 600°F (8.6 bara / 316°C), Utility: LP Steam Carbon Steel	2 op
21	DCC Cooler	Plate & Frame	Heat Duty: 758 MBtu/hr (800 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3407 W/(m ² K)) Temp In/Out: 140/75°F (60/24°C), Heat Transfer Area: 38,510 ft ² (3,578 m ²), Op. Pressure: 1.5 psig (1.1 bara), Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	1 op
22	Lean Solution Pump	Centrifugal	Solvent @ 15,200 GPM (56,782 lpm), Pressure In/Out: 0.6/158 psig (1.05/11.9 bara), Power: 1,130 hp (843 kW), Efficiency: 85%, Design: 275 psig / 300°F (20 bara / 149°C), Estimated Shutoff: 225 psig (16.5 bara) Carbon Steel	2 Op 2 Spare
23	Rich Solution Pump	Centrifugal	Solvent @ 17,000 GPM (64,352 lpm), Pressure In/Out: 1.1/ 62 psig (1.09/5.3 bara), Power: 630 hp (470 kW), Efficiency: 85%, Design: 150 psig / 200°F (11.4 bara / 93.3°C), Estimated Shutoff: 95 psig (7.6 bara) Carbon Steel	2 Op 2 Spare

Equipment No.	Description	Type	Design Condition	Quantity
24	Primary Stripper Pump	Centrifugal	Solvent @ 14,280 GPM (54,056 lpm), Pressure: In/Out: 12.8/ 68 psig (1.9/5.7 bara), Power: 420 hp (313 kW), Efficiency: 85%, Design: 150 psig / 150°F (11.4 bara / 65.6°C), Estimated Shutoff: 100 psig (7.9 bara) Carbon Steel	2 Op 2 Spare
25	Liquid Desiccant Pump	Centrifugal	Solvent @ 4,050 GPM (15,331 lpm), Pressure In/Out: 10/ 138 psig (1.7/10.5 bara), Power: 135 hp (101 kW), Efficiency: 85%, Design: 250 psig / 20° F (18.3 bara / -6.7°C), Estimated Shutoff: 190 psig (14.1 bara) Carbon Steel	1 Op 1 Spare
26	Saturated LD Pump	Centrifugal	Water/LD @ 41,000 GPM (155,202 lpm), Pressure In/Out: 10/ 130 psig (1.7/10.0 bara), Power: 1,410 hp (1,051 kW), Efficiency: 85%, Design: 250 psig / 200°F (18.3 bara / 93.3°C), Estimated Shutoff: 190 psig (14.1 bara) Carbon Steel	2 Op 1 Spare
27	Soda Ash Injection Pump	Centrifugal	Solvent @ 50 GPM (189 lpm), Pressure In/Out: 0/ 1.23 psig (1.0/0.5 bara), Power: 235 hp (175 kW), Efficiency: 85%, Design: 50 psig / 150°F (4.5 bara / 65.6°C), Estimated Shutoff: 10 psig (1.7 bara) 304L SS casing with CS body	1 Op 1 Spare
28	Inter Stage Cooling Pump	Centrifugal	Solvent @ 5,460 GPM (20,668 lpm), Pressure In/Out: -0.47 / 50 psig (0.98 / 4.5 bara), Power: 130 hp (96.9 kW), Efficiency: 85%, Design: 50 psig / 200°F (4.5 bar a / 93.3°C), Estimated Shutoff: 10 psig (1.7 bara) Carbon Steel	2 Op 1 Spare

Equipment No.	Description	Type	Design Condition	Quantity
29	Solvent Make-up Pump	Centrifugal	Solvent @ 100 GPM (379 lpm), Pressure In/Out: 0/ 10.23 psig (1/1.7 bara), Power: 5 hp (3.7 kW), Efficiency: 80%, Design: 50 psig / 200°F (4.5 bar a/ 93.3°C), Estimated Shutoff: 20 psig (14.8 bara) Carbon Steel	1 Op 1 Spare
30	DCC Pump	Centrifugal	Water @ 20,300 GPM (76,844 lpm), Pressure In/Out: 0.5 / 75 psig (1.05 / 6.2 bara), Power: 820 hp (611 kW), Efficiency: 85%, Design: 160 psig / 150°F (12.05 bar a/ 66°C), Estimated Shutoff: 110 psig (8.6 bara) Carbon Steel	1 Op 1 Spare
31	ID Fan	Axial	867,650 ACFM (24,569 m ³ /min) gas, Pressure In/Out: 0.2/ 2.7 psig (1.03/1.20 bara), Power: 10,963 hp (8,175 kW) Design: -2/+10 psig / 150 F (0.88/+1.7 bara / 65.6°C), Carbon Steel	2 Op
32	Saturator Air Blower	Centrifugal	425,900 ACFM gas (12,060 m ³ /hr), Pressure In/Out: 0/ 1.8 psig (1 / 1.14 bara), Power: 3,969 hp (2,960 kW) Design: 10 psig / 150°F (1.7 bara / 65.6°C), Carbon Steel	1 Op
33	CO ₂ Compressor	Inter-Cooled Multi-Staged Centrifugal	58,950 ACFM (1,669 m ³ /min) w/ 5-stages Pressure In/Out: 11.1/2200 psig (1.78/153 bara) Power: 32,808 hp (24,465 kW) Design: 2,410 psig / 350°F (167 bara/ 177°C), Carbon Steel with 316SS at wet/dry areas TEG Drying Unit	2 Op

5.1.3 Economic Results

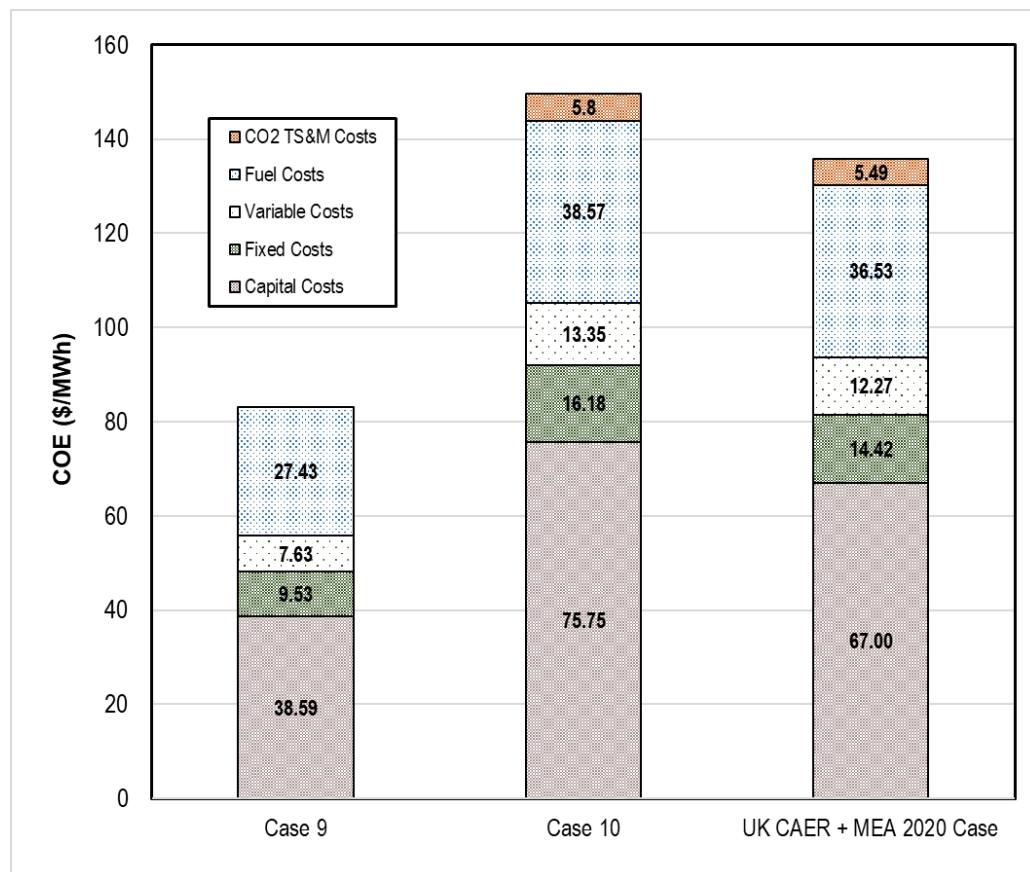
The cost estimating methodology described in Section 4.5 was used to calculate the capital and O&M costs for the UK CAER process + MEA Case as well as the LCOE. The summary and detailed updated capital costs for the UK CAER process + MEA Case are shown in the Appendix in Table A-9 and Table A-10, and the O&M cost is shown in Table A-11. Table 5-16 compares operating parameters and costs between the DOE/NETL Case 10 and the UK CAER process + MEA case. Key observations are summarize as follows:

- An extra 30.9 MW of generation

- A lower net plant heat rate by 694 Btu/kWh (732 kJ/kWh), a 5% improvement in efficiency
- A lower variable operating cost by \$1.08/MWh, an 8% reduction.

Table 5-16
Comparison of Operating Parameters and Costs between the DOE Base Cases and the MEA Case

	Case 9	Case 10	UK CAER + MEA 2020
OPERATING PARAMETERS			
Net Plant Output, MWe	550.0	550.0	580.9
Net Plant Heat Rate, Btu/kWh HHV (kJ/kWh)	9,277 (9,787)	13,046 (13,764)	12,352 (13,032)
CO ₂ Captured, lb/MWh (kg/MWh)	0 (0)	2,390 (1,084)	2,264 (1,027)
CO ₂ Emitted, lb/MWh net (kg/MWh net)	1,888 (856)	266 (121)	252 (114)
COSTS			
Risk	Low	High	High
Capital Costs (2012\$)	2,000	3,689	3,258
Total Overnight Cost (2012\$/kW)	2,477	4,548	4,024
Bare Erected Cost	1,629	2,836	2,521
Home Office Expenses	147	257	229
Project Contingency	224	465	406
Process contingency	0	131	102
Owners Costs	477	860	766
Total Overnight Cost (2012\$x1,000)	1,362,516	2,501,457	2,337,245
Total As Spent Capital (2012\$)	2,809	5,185	4,587
Annual Fixed Operating Costs (\$/yr)	39,039,238	66,263,173	62,361,303
Variable Operating Costs (\$/MWh)	7.63	13.35	12.27
Fuel			
Coal Price (\$/ton)	69.00		


The comparison in COE and LCOE between the DOE Case 9 and 10 and the UK CAER process + MEA Case is shown in Table 5-17. The UK CAER Process + MEA Case has the following key advantages compared to DOE/NETL Case 10, which also has CCS:

- A lower COE by \$13.9/MWh, an 9.3% reduction
- A lower LCOE by \$17.5/MWh, also an 9.2% reduction
- A lower cost of CO₂ captured by \$9.44/tonne CO₂, a 15.4% reduction
- A lower cost of CO₂ avoided by \$18.53/tonne CO₂, a 20.5% reduction

Table 5-17
Comparison of COE between the DOE Base Cases and the MEA Case

	Case 9	Case 10	UK CAER + MEA 2020 Case
COE (\$/MWh, 2012\$)	83.19	149.65	135.71
CO ₂ TS&M Costs		5.80	5.49
Fuel Costs	27.43	38.57	36.53
Variable Costs	7.63	13.35	12.27
Fixed Costs	9.53	16.18	14.42
Capital Costs	38.59	75.75	67.00
LCOE (2012\$/MWh)	105.36	189.59	172.08
Cost of CO₂ Captured (\$/tonne CO₂)		61.31	51.87
Cost of CO₂ Avoided (\$/tonne CO₂)		90.35	71.82

A further breakdown of the cost quantities that comprise LCOE is shown between the MEA Case and the two DOE Base Cases in Figure 5-3.

Figure 5-3
Comparison and Breakdown of COE for the MEA and DOE Cases

5.2 UK CAER Process + H3-1 Solvent Case

5.2.1 Performance Results

A simulation of the UK CAER process with H3-1 would require physical and chemical property information to the same level of detail as MEA. Though information was made available on H3-1, it was not sufficiently detailed to conduct an Aspen Plus® kinetic model simulation of the complete system. Therefore, scaling factors provided by Hitachi for performance of H3-1 relative to MEA were used. These scaling factors were based on Hitachi's prior test results. Key amongst these test results were 74% regeneration energy relative to MEA which under those test conditions was assumed to be 3.6 GJ/t (1547 BTU/lb). That is, in a conventional process, H3-1 solvent would exhibit a regeneration energy of 2.66 GJ/t (1145 BTU/lb). Further improvement would be expected for H3-1 when used in the UK CAER process. In the absence of data, these improvements were estimated to be the same ratio as that for MEA in a conventional process relative to that in the UK CAER process. Simulations with MEA showed this improved to be about 15% further reduction between a conventional process and the UK CAER process, and therefore the H3-1 regeneration energy was assumed to be 2.26 GJ/t (973 BTU/lb) when used in the UK CAER process. Other improvements provided by Hitachi based on their prior work included higher cycle capacity, a higher mass transfer coefficients compared with MEA, and other performance improvements. A 20% cycle capacity improvement was used for this preliminary analysis. The impact of the higher viscosity of the H3-1 solvent was deemed to be relatively minor relative to the other assumptions and hence not considered in this initial analysis. We note that in full simulations or actual operations, it is often not possible to achieve all improvements simultaneously. That is, attributes such as solvent regeneration energy, mass transfer coefficients, circulation rates are functions not only of the solvent, but also functions of the equipment and the process conditions under which the system is operated. Attempting to optimize one attribute often leads to detriment of another. Hence, without a full process simulation or full testing campaign, it is not possible to ascertain whether all or only part of these improvements may be actually realized in any given process. An optimization of a solvent in a process must be conducted, either by simulations or by testing, such that the overall capture and plant can be optimized with respect to typical objective functions such as net plant output or lowest COE increase. Given our assumptions as stated, the high-level performance results for the UK CAER CCS process with H3-1 case are shown in Table 5-18.

In summary, the net efficiency of the UK CAER integrated PC power plant with CO₂ capture changes from 26.2% with the Reference Case 10 plant in 2010 revised DOE/NETL baseline report to 29.1% for the UK CAER process + H3-1 case; the UK CAER process + H3-1 case lowers energy consumption for CO₂ capture to 973 Btu/lb-CO₂ captured as compared to 1,540 Btu/lb-CO₂ in the Case 10. The study also shows 27.5% less heat rejection associated with carbon capture system, decreased from 3,398 MBtu/hr (Case 10) to 2,464 MBtu/hr for the UK CAER process + H3-1 case.

Table 5-18
Hitachi Performance Summary

POWER SUMMARY (Gross Power at Generator Terminals kWe)	
Case	UK CAER + H3-1 2020 Case
Steam Turbine Power	730,300
TOTAL (STEAM TURBINE) POWER, kWe	730,300
AUXILIARY LOAD SUMMARY, kWe	
Coal Handling & Conveying	540
Pulverizers	4,180
Sorbent Handling & Reagent Preparation	1,370
Ash Handling	800
Primary Air Fans	1,980
Forced Draft Fans	2,890
Induced Draft Fans	11,410
SCR	70
Baghouse	100
Wet FGD	4,470
CO ₂ Removal System Auxiliaries	21,485
CO ₂ Compression	48,930
Miscellaneous Balance of Plant ^{2,3}	2,000
Steam Turbine Auxiliaries	400
Condensate Pumps	870
Circulating Water Pump	9,580
Ground Water Pumps	780
Cooling Tower Fans	4,990
Cooling Tower Chillers	0
Transformer Losses	2,550
TOTAL AUXILIARIES, kWe	119,395
NET POWER, kWe	610,905
Net Plant Efficiency (HHV)	29.1%
Net Plant Heat Rate, Btu/kWhr HHV (kJ/kWhr)	11,744
Net Plant Efficiency (LHV)	30.1%
Net Plant Heat Rate, Btu/kWhr LHV (kJ/kWhr)	11,327
Condenser duty, MBtu/hr (GJ/hr)	2,625 (2,770)
COOLING TOWER DUTY, MBtu/hr (GJ/hr)	4,560 (4,811)
Consumables	
As-Received Coal Feed, lb/hr (kg/hr)	614,994
Limestone Sorbent Feed, lb/hr (kg/hr)	62,235
Thermal Input (kW _{th} HHV) ¹	2,102,643
Thermal Input (kW _{th} LHV)	2,028,027
Raw Water Withdrawal, gpm (m ³ /min)	11,224 (42.5)
Raw Water Consumption, gpm (m ³ /min)	8,620 (32.6)

1. HHV of As-Received Illinois #6 Coal is 27,135 kJ/kg (11,666 Btu/lb)

2. Boiler feed pumps are turbine driven

3. Includes plant control systems, lighting, HVAC, and miscellaneous low-voltage loads

5.2.2 Major Equipment List

The major equipment list for the UK CAER process + H3-1 Case for the balance of plant is similar to the UK CAER process + MEA case given in Section 5.1.2, except for the following sub-systems:

- Steam Turbine Cycle LP Feedwater Heaters
- Steam Turbine Generator and Auxiliaries
- Cooling Water System

Tables showing the components of these sub-systems are given in Table 5-19, Table 5-20, and Table 5-21.

Table 5-19
Steam Turbine Generator and Auxiliaries Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
6	LP Feedwater Heater 1A/1B	Horizontal U-tube	755,700 kg/hr (1,666,000 lb/hr)	2	0
7	LP Feedwater Heater 2A/2B	Horizontal U-tube	755,700 kg/hr (1,666,000 lb/hr)	2	0
8	LP Feedwater Heater 3A/3B	Horizontal U-tube	755,700 kg/hr (1,666,000 lb/hr)	2	0
9	LP Feedwater Heater 4A/4B	Horizontal U-tube	755,700 kg/hr (1,666,000 lb/hr)	2	0

Table 5-20
Steam Turbine Generator and Auxiliaries Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Steam Turbine	Commercially available advanced steam turbine	730.3 MW 16.5 MPa/566 °C/566 °C (2400.3 psig/ 1050 °F/1050 °F)	1	0
2	Steam Turbine Generator	Hydrogen cooled, static excitation	810 MVA @ 0.9 p.f., 24 kV, 60 Hz, 3-phase	1	0
3	Surface Condenser	Single pass, divided waterbox including vacuum pumps	2,535 GJ/hr (2,403 MMBtu/hr), Inlet water temperature 16 °C (60 °F), Water temperature rise 11 °C (20 °F)	1	0

Table 5-21
Cooling Water System Equipment List

Equipment No.	Description	Type	Design Condition	Operating Qty.	Spares
1	Circulating Water Pumps	Vertical, wet pit	899,640 lpm @ 30 m (238,000 gpm @ 100 ft)	2	1
2	Cooling Tower	Evaporative, mechanical draft, multi- cell	11°C (51.5 °F) wet bulb / 16 °C (60 °F) CWT / 27 °C (80 °F) HWT / 4811 GJ/hr (4560 MMBtu/hr) heat duty	1	0

The detailed equipment list for the CO₂ capture system used for the UK CAER process + H3-1 case is provided in Table 5-22. The table provides a label for the piece of equipment, a brief description, the type if applicable, the design condition for it, and the quantity used in the capture plant.

Table 5-22
CO₂ Capture Equipment List for the 2020+H3-1 Solvent Case (detailed)

Equipment No.	Description	Type	Design Condition	Quantity
1	Direct Contact Cooler	Vertical	50 ft (15.2 m) dia, 110 ft (33.5 m) T/T, Operating: 2 psig (1.2 bara) / 90 °F (32.2 °C), Design: -2/+10 psig (0.88/+1.7 bara) / 150 °F (65.6 °C), Pressure Drop: 1.7 psia (0.11 bar) Carbon Steel	2 op
2	CO ₂ Absorber	Structured Packed Bed	34 ft (10.4 m) Dia, 80 ft (24.4 m) T/T, Operating: 2 psig (1.2 bara) / 134 °F, Design: -2/+10 psig (0.88/+1.7 bara) / 190 °F, Pressure Drop: 1.14 psi (0.08 bar) Carbon Steel 60 ft (18.3 m) of structured packing	2 op
3	Primary Stripper	Structured Packed Bed	16 ft (4.9 m) Dia, 50 ft (15.2 m) T/T, Operating: 12.7 psig (1.9 bara) / 254 °F, Design: 110 psig (8.6 bara) / 360 °F (182.2 °C), Pressure Drop: 3.2 psi (0.22 bar), Carbon Steel / Upper 16 ft (4.9 m) 304SS clad 35 ft (10.7 m) of structured packing	2 op
4	Reclaimer	Vertical Tank	14 ft (4.3 m) Dia, 26ft (7.9 m) T/T ft Length, Steam Pressure/Temp: 63.3 psig (5.4 bara) / 310 °F (154.4 °C) (154.4 °C), Design: 110 psig (8.6 bara) / 360 °F (182.2 °C), Heat Required: 96 MBtu /hr (101 GJ/hr), Carbon Steel	1 op
5	Air Stripper	Structured Packed Bed	18 ft (5.5 m) Dia, 35 ft (10.7 m) T/T ft Length, Operating: 0.6 psig (1.05 bara) / 210 °F (99 °C), Design: 10 psig (1.7 bara) / 360 °F (182.2 °C), Pressure Drop: 4.4 psi (0.30 bar), Carbon Steel 25 ft (7.6 m) of structured packing	2 op
6	Saturator (Water Evaporator)	Structured Packed Bed	14.5 ft (4.4 m) Dia, 14 ft (4.3 m) T/T ft Length, Operating: 1.3 psig (1.1 bara) / 108 °F (42.2 °C), Design: 10 psig (1.7 bara) / 160 °F (71.1 °C), Pressure Drop: 1.6 psi (0.11 bar), Carbon Steel 10 ft (3.0 m) of structured packing	1 op

Equipment No.	Description	Type	Design Condition	Quantity
7	Reboiler	Kettle	Heat Duty: 626 MBtu/hr (660 GJ/hr), OHTC:200 Btu/ft ² , h, F (1,136 W/(m ² K)), Steam Pressure/Temp :63.3 psig (5.4 bara) / 310 °F (154.4 °C), Heat Transfer Area: 50,740 ft ² (4,714 m ²), Design: 110 psig (8.6 bara) / 600 °F (316 °C), Carbon Steel	2 op
8	Lean/Rich Exchanger	Plate & Frame	Heat Duty: 192 MBtu/hr (202.6 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp(F) In/Out: 190/217 (Cold); 251/211(Hot) Temp(C) In/Out 88/103 (Cold); 122/99(Hot) Heat Transfer Area: 14,850 ft ² (1,380 m ²), Op. Pressure: 30 psig (3.1 bara), Design: 80 psig (6.5 bara) / 300 °F (149 °C), 304 Alloy Plate material / Carbon Steel	2 op
9	Recycle Air Cooler #1	Plate & Frame	Heat Duty: 264 MBtu/hr (279 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp(F) In/Out: 97/171(Cold); 180/138(Hot) Temp(C) In/Out 36/77(Cold); 82/59 (Hot) Heat Transfer Area: 26,102 ft ² (2,425 m ²), Op. Pressure: 47 psig (4.25 bara), Design: 100 psig (7.9 bara) / 250 °F (121 °C), Carbon Steel	2 op
10	CO ₂ Cond #2	Plate & Frame	Heat Duty: 180 MBtu/hr (190 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp(F) In/Out: 97/189(Cold); 200/141(Hot) Temp(C) In/Out 36/87(Cold); 93/61 (Hot), Heat Transfer Area: 15,144 ft ² (1,407 m ²), Op. Pressure: 45 psig (4.1 bara), Design: 100 psig (7.9 bara) / 250 °F (121 °C), Carbon Steel	2 op
11	Rich Amine Preheater #3	Plate & Frame	Heat Duty: 19.2 MBtu/hr (20.3 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp(F) In/Out: 177/190(Cold); 213/187(Hot) Temp(C) In/Out 81/88(Cold); 101/86(Cold), Heat Transfer Area: 2,560 ft ² (238 m ²), Op. Pressure: 43 psig (4.0 bar), Design: 100 psig (7.9 bar) / 270 °F, Carbon Steel	2 op

Equipment No.	Description	Type	Design Condition	Quantity
12	CO ₂ Condenser #1	Plate & Frame	Heat Duty: 21.7 MBtu/hr (22.9 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp(F) In/Out: 60/180(Cold); 211/200(Hot) Temp(C) In/Out 15.6/82(Cold); 99/93(Hot), Heat Transfer Area: 1,160 ft ² (108 m ²), Op. Pressure: 15 psig (2.05 bara), Design: 70 psig (5.8 bara) / 270 °F (132 °C), Carbon Steel	2 op
13	Saturated Air Preheater	Plate & Frame	Heat Duty: 9 MBtu/hr (9.5 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp(F) In/Out: 108/131(Cold); 138/129(Hot), Heat Transfer Area: 1,180 ft ² (110 m ²), Op. Pressure: 1.5 psig (1.1 bara), Design: 60 psig (5.2 bara) / 200 °F (93.3 °C), Carbon Steel	1 op
14	Absorber Intercooler	Plate & Frame	Heat Duty: 212 MBtu/hr (224 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp In/Out: 144/100 °F (62/38 °C), Heat Transfer Area: 8,672 ft ² (806 m ²), Op. Pressure: 1 psig (1.08 bara), Design: 60 psig (5.2 bar) / 200 °F (93.3 °C), Utility: CWS Carbon Steel	2 op
15	Lean Cooler	Plate & Frame	Heat Duty: 136 MBtu/hr (144 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp In/Out: 128/90 °F (53/32 °C), Heat Transfer Area: 7,398 ft ² (687 m ²), Op. Pressure: 1.5 psig (1.1 bara), Design: 60 psig (5.2 bara) / 200 °F (93.3 °C), Utility: CWS Carbon Steel	2 op

Equipment No.	Description	Type	Design Condition	Quantity
16	CO ₂ Condenser #3	Plate & Frame	Heat Duty: 31.7 MBtu/hr (33.4 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp In/Out: 142/100°F (61/38°C), Heat Transfer Area: 1,055 ft ² (98 m ²), Op. Pressure: 10 psig (1.7 bara), Design: 60 psig (5.5 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	2 op
17	Recycle Air Cooler #2	Plate & Frame	Heat Duty: 98.11 MBtu/hr (103.5 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp In/Out: 138/95°F (59/35°C), Heat Transfer Area: 3,600 ft ² (334 m ²), Op. Pressure: 0.5 psig (1.05 bara), Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	2 op
18	Recycle Air Heater	Plate & Frame	Heat Duty: 0.8 MBtu/hr (0.84 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp In/Out: 95/99°F (35/37.2°C), Heat Transfer Area: 8 ft ² (0.74 m ²), Op. Pressure: 0.2 psig (1.03 bara), Design: 110 psig (8.6 bara) / 600°F (316°C), Utility: LP Steam Carbon Steel	1 op
19	LD Preheater	Plate & Frame	Heat Duty: 10.2 MBtu/hr (10.8 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp In/Out: 180/200°F (82.2/93.3°C), Heat Transfer Area: 176 ft ² (16.4 m ²), Op. Pressure: 10 psig (1.7 bara), Design: 110 psig 8.6 (bara) / 600°F (316°C), Utility: LP Steam Carbon Steel	1 op
20	Rich Amine Preheater #4	Plate & Frame	Heat Duty: 62 MBtu/hr 65.4 GJ/hr), OHTC: 450 Btu/ft ² -h-F (2,555 W/(m ² K)) Temp In/Out: 177/190°F (81/88°C), Heat Transfer Area: 1,290 ft ² (119.8 m ²), Op. Pressure: 10 psig (1.7 bara), Design: 110 psig (8.6 bara) / 600°F (316°C), Utility: LP Steam Carbon Steel	2 op

Equipment No.	Description	Type	Design Condition	Quantity
21	DCC Cooler	Plate & Frame	Heat Duty: 758 MBtu/hr (800 GJ/hr), OHTC: 600 Btu/ft ² -h-F (3,407 W/(m ² K)) Temp In/Out: 140/75°F (60/23.9°C), Heat Transfer Area: 38,510 ft ² (3,578 m ²), Op. Pressure: 1.5 psig (1.1 bara), Design: 60 psig (5.2 bara) / 200°F (93.3°C), Utility: CWS Carbon Steel	1 op
22	Lean Solution Pump	Centrifugal	Solvent @ 12,160 GPM (46,031 lpm), Pressure In/Out: 0.6/126 psig (1.05/9.7 bara), Power: 720 hp (537 kW), Efficiency: 85%, Design: 230 psig (16.9 bara) / 300°F (149°C), Estimated Shutoff: 180 psig (13.4 bara) Carbon Steel	2 Op 2 Spare
23	Rich Solution Pump	Centrifugal	Solvent @ 13,600 GPM (51,482 lpm), Pressure In/Out: 1.1/ 50 psig (1.09/4.46 bara), Power: 400 hp (298.3 kW), Efficiency: 85%, Design: 120 psig (9.3 bara) / 200°F (93.3°C), Estimated Shutoff: 70 psig (5.8 bara) Carbon Steel	2 Op 2 Spare
24	Primary Stripper Pump	Centrifugal	Solvent @ 11,420 GPM (43,229 lpm), Pressure In/Out: 12.8/ 54 psig (1.9/4.7 bara), Power: 250 hp (186 kW), Efficiency: 85%, Design: 130 psig (10.0 bara) / 150°F (66°C), Estimated Shutoff: 80 psig (bar) Carbon Steel	2 Op 2 Spare
25	Liquid Desiccant Pump	Centrifugal	Water/LD @ 3,240 GPM (12,265 lpm), Pressure In/Out: 10/ 88 psig (1.7/7.1 bara), Power: 80 hp (60 kW), Efficiency: 85%, Design: 170 psig (12.7 bara) / 200°F (93.3°C), Estimated Shutoff: 120 psig (9.3 bara) Carbon Steel	1 Op 1 Spare
26	Saturated LD Pump	Centrifugal	Water/LD @ 32,800 GPM (124,162 lpm), Pressure In/Out: 1/10 psig (1.08/1.7 bara) Power: 190 hp (142 kW), Efficiency: 85%, Design: 200 psig (14.8 bara) / 200°F (93.3°C), Estimated Shutoff: 150 psig (11.4 bara) Carbon Steel	2 Op 1 Spare

Equipment No.	Description	Type	Design Condition	Quantity
27	Soda Ash Injection Pump	Centrifugal	Solvent @ 50 GPM (189 lpm), Pressure In/Out: 0/ 1.23 psig (1/1.1 bara), Power: 2 hp (1.5 kW), Efficiency: 80%, Design: 50 psig (4.5 bara) / 150°F (66°C), Estimated Shutoff: 10 psig (1.7 bara) 304L SS casing with CS body	1 Op 1 Spare
28	Inter Stage Cooling Pump	Centrifugal	Solvent @ 4,370 GPM (16,542 lpm), Pressure In/Out: -0.47 / 50 psig (0.98/4.5 bara), Power: 100 hp (74.6 kW), Efficiency: 85%, Design: 50 psig (4.5 bara) / 200°F (93.3°C), Estimated Shutoff: 10 psig (1.7 bara) Carbon Steel	2 Op 1 Spare
29	Solvent Make-up Pump	Centrifugal	Solvent @ 100 GPM (379 lpm), Pressure In/Out: 0/ 10.23 psig (1/1.7 bara), Power: 5 hp (3.7 kW), Efficiency: 80%, Design: 50 psig (4.5 bara) / 200°F (93.3°C), Estimated Shutoff: 20 psig (2.4 bara) Carbon Steel	1 Op 1 Spare
30	DCC Pump	Centrifugal	Water @ 20,300 GPM (76,844 lpm), Pressure In/Out: 0.5 / 75 psig (1.05/6.2 bara), Power: 820 hp (611 kW), Efficiency: 85%, Design: 160 psig (12.0 bara) / 150°F (66°C), Estimated Shutoff: 110 psig (8.6 bara) Carbon Steel	1 Op 1 Spare
31	ID Fan	Axial	867,650 ACFM (24,569 m ³ /min) gas, Pressure In/Out: 0.2/ 2.7 psig (1.03/1.20 bara), Power: 10,963 hp (8,175 kW) Design: -2/+10 psig (0.88/+1.7 bara) / 150°F (66°C), Carbon Steel	2 Op
32	Saturator Air Blower	Centrifugal	341,000 ACFM (9,656 m ³ /min) gas, Pressure In/Out: 0/ 1.8 psig (1/1.1 bara), Power: 3,178 hp (2,370 kW) Design: 10 psig (1.7 bara) / 150°F (66°C), Carbon Steel	1 Op
33	CO ₂ Compression and Drying	Inter-Cooled Multi-Staged Centrifugal	58,950 ACFM (1,669 m ³ /min) w/ 5-stages Pressure In/Out: 11.1/2200 psig (1.8/152.7 bara) Power: 32,808 hp (24,465 kW) Design: 2,410 psig (167 bara) / 350°F (177°C), Carbon Steel with 316SS at wet/dry areas TEG Unit	2 Op

5.2.3 Economic Results

The cost estimating methodology described in Section 4.5 was used to calculate the capital and O&M costs for the UK CAER process + H3-1 case as well as the LCOE. The summary and detailed updated capital costs for the UK CAER process + H3-1 case are shown in the Appendix in Table A-12 and Table A-13, and the O&M cost is shown in Table A-14.

The comparison in operating parameters and costs between the NETL/DOE Case 9 and 10, UK CAER process + MEA, and UK CAER process + H3-1 cases is shown in Table 5-23.

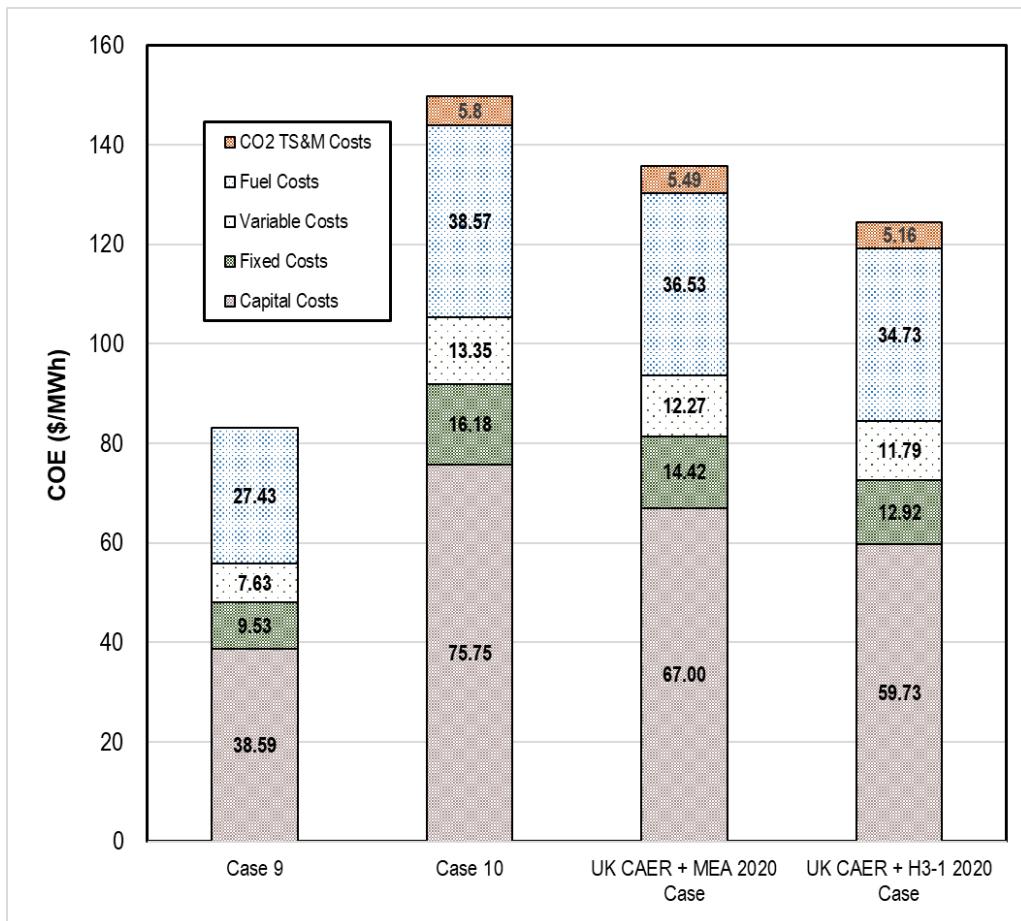
The UK CAER Process + H3-1 case has the following key advantages compared to the DOE/NETL Case 10:

- An extra 60.9 MW of generation
- A lower net plant heat rate by 1,302Btu/kWh (1,373kJ/kWh), a 10% improvement in efficiency

Table 5-23
Comparison of Operating Parameters and Costs between the MEA, Hitachi, and DOE Cases

	Case 9	Case 10	UK CAER + MEA 2020 Case	UK CAER + H3-1 2020 Case
OPERATING PARAMETERS				
Net Plant Output, MWe	550	550	580.9	610.9
Net Plant Heat Rate, Btu/kWh HHV (kJ/kWh)	9,277 (9,787)	13,046 (13,764)	12,352 (13,032)	11744 (12,391)
CO ₂ Captured, lb/MWh (kg/MWh)	0 (0)	2,390 (1,084)	2,264 (1,027)	2,126 (964)
CO ₂ Emitted, lb/MWh net (kg/MWh net)	1,888 (856)	266 (121)	252 (114)	250 (113)
COSTS				
Risk	Low	High	High	High
Capital Costs (2012\$/kW)	2,000	3,689	3,258	2,890
Total Overnight Cost (2012\$/kW)	2,477	4,548	4,024	3,587
Bare Erected Cost	1,629	2,836	2,521	2,270
Home Office Expenses	147	257	229	206
Project Contingency	224	465	406	350
Process contingency	0	131	102	64
Owners Costs	477	860	766	697
Total Overnight Cost (2012\$x1,000)	1,362,516	2,501,457	2,337,245	2,191,483
Total As Spent Capital (2012\$/kW)	2,809	5,185	4,587	4,089
Annual Fixed Operating Costs (\$/yr)	39,039,238	66,263,173	62,361,303	58,791,430
Variable Operating Costs (\$/MWh)	7.63	13.35	12.27	11.79
Fuel				
Coal Price (\$/ton)			69	

The comparison in LCOE between the DOE Cases 9 and 10, UK CAER process + MEA, and UK CAER process + H3-1 case is shown in Table 5-24. The evaluation results show that the UK CAER Process + H3-1 case has the following key advantages compared to the DOE/NETL Case 10:


- A lower COE by \$25.32/MWh, a 16.92% reduction
- A lower LCOE by \$31.94/MWh, also a 16.85% reduction
- A lower cost of CO₂ captured by \$18.65/tonne, a 30.42% reduction
- A lower cost of CO₂ avoided by \$34.95/tonne CO₂, a 38.68% reduction.
- A lower variable operating cost by \$1.56/MWh, a 11.69% reduction.

The initial H3-1 filling cost was estimated at \$10.3M, while the annual cost was estimated at \$1.7M.

The COE and breakdown are graphically compared in Figure 5-24.

Table 5-24
Comparison of LCOE between the UK CAER + MEA, UK CAER + H3-1, and DOE Cases

	Case 9	Case 10	UK CAER + MEA 2020 Case	UK CAER + H3-1 2020 Case
COE (\$/MWh, 2012\$)	83.19	149.65	135.71	124.33
CO ₂ TS&M Costs		5.8	5.49	5.16
Fuel Costs	27.43	38.57	36.53	34.73
Variable Costs	7.63	13.35	12.27	11.79
Fixed Costs	9.53	16.18	14.42	12.92
Capital Costs	38.59	75.75	67.00	59.73
LCOE (2012\$/MWh)	105.36	189.59	172.08	157.65
Cost of CO₂ Captured (\$/tonne CO₂)		61.31	51.87	42.66
Cost of CO₂ Avoided (\$/tonne CO₂)		90.35	71.82	55.40

Figure 5-4
Comparison and Breakdown of COE for the Hitachi, and DOE Cases

5.2.4 Space Requirements for Commercial CO₂ Capture and Compression Plant

Based on several studies and guidance on CCS plants land footprint requirements published by IEA Greenhouse Gas R&D Programme (IEA GHG)⁹, United States Department of Energy/National Energy Technology Laboratory (DOE/NETL)^{10,11}, the Global Carbon Capture

⁹ IEA Greenhouse Gas R&D Programme (IEA GHG), Retrofit of CO₂ Capture to Natural gas Combined Cycle Power Plants (2005/1), prepared by Jacobs Consultancy Netherlands B.V. January 2005.

¹⁰ United States of America Department of Energy/ National Energy Technology Laboratory DOE/NETL, Carbon Dioxide Capture from Existing Coal-Fired Power Plants, DOE/NETL-401/110907 prepared by Science Applications International Corporation (SAIC)/Research and Development Solutions (RDS) and Alstom Power Inc., Final Report, November 2007

¹¹ United States of America Department of Energy/ National Energy Technology Laboratory DOE/NETL, Carbon Sequestration Program Environmental Reference Document, DE-AT26-04NT42070, August 2007

and Storage Institute (GCCSI)¹² and Department of Energy and Climate Change (DECC)¹³, as well as the CCS plant for the Petra Nova project, a minimum of 10 acres footprint is estimated to be needed for the proposed CO₂ capture and compression system when integrated into a 550 MW power plant for 90 % CO₂ capture. The specific breakdown is two acres for the absorber system, two acres for the stripper system, two acres for the compression system, two acres for the auxiliary boiler system, and two acres for other needs.

6 Potential Environmental Benefits

Potential improvements or environmental benefits are discussed in this section, and described below.

6.1 *Integration of the UK CAER process into a power plant cycle for efficiency improvement*

A typical wet cooling system consisting of a surface condenser, circulating water system and cooling tower results in turbine back pressures between two and five inches of mercury (1-2.5 psi), which is mostly driven by the ambient wet bulb temperatures and by the efficiency of the heat rejection system. Despite these high vacuum conditions in the condenser the amount of energy rejected from a typical steam cycle is very large – the total losses in a cycle are almost twice the amount of the electricity generated and most of these losses occur in the heat rejection system of the plant.

To maximize plant efficiency, it is therefore desirable to reduce the amount of heat rejected to the environment by condensing the turbine exhaust steam at the lowest possible temperature and corresponding pressure (turbine back pressure), which in turn can be achieved by minimizing the cooling water temperature entering the condenser. The liquid desiccant process proposed by UKRF as described later can be used for such purpose.

In the DOE/NETL Reference Cases 9 and 10, ambient conditions are stated as 59 °F dry bulb temperature with 60% relative humidity, and the heat rejection system is designed to result in a cooling water temperature of 60 °F at the inlet of the condenser, and 80 °F at its discharge. This results in a steam turbine backpressure of approximately 2 inches Hg (Abs). Due to the lack of detailed information in the DOE reference report, the cooling tower liquid/gas ratio used as the basis for the DOE heat balance was estimated to be approximately 0.9, which is below the generic design standard of 1.3-1.7. For example, using annual average ambient conditions of the Midwest such as Kentucky, the liquid/gas ratio in the cooling tower based on 109 (cooling water return) – 89 (cooling water leaving) – 79 °F (wet-bulb temperature) would typically be designed at 1.7, according to a commercial cooling tower OEM.

¹² The Global Carbon Capture and Storage Institute (GCCSI), Defining CCS Ready: An Approach to an International Definition, prepared by ICF International and partners, 23rd February 2010.

¹³ Department of Energy and Climate Change (DECC), Coal-Fired Advanced Supercritical Retrofit with CO₂ Capture, Contract No.: C/08/00393/00/00 URN 09D/739, prepared by Doosan Babcock Energy Limited as part of the DTI Emerging Energy Technologies Programme/Technology Strategy Board, June 2009.

Steam turbines do not always operate at the design backpressure, but may operate at much higher back pressures due to higher cooling water temperatures caused by ambient conditions that are different from design condition. Based on data collected from one KU coal fired power plant, rated at 350 MWe, the average annual condenser pressure is 3.98" Hg (abs) and the maximum backpressure could be as high as 4.63" Hg (abs) during the summer time. On the other hand, the unit's 350 MW rating is at backpressure of 2" Hg (abs).

Based on the heat and material balance in the DOE Reference Case 10 (refer to Figure 6-1, below, or page 361 of DOE/NETL 2010 Report), Hitachi determined that a four-flow LP turbine section with a last stage blade length of 40 inches (TC4F-40) would be appropriate. However, if the condenser design pressure deviates from the 2 inches Hg (abs) that are indicated in the Reference Case 10 the performance of the plant would be significantly impacted and a different blade selection may be more appropriate. Hitachi conducted an estimate of the impact of a 4" Hg and 5" Hg condenser pressure on steam turbine power output based on the TC4F-40 design (refer to Table 6-1) and determined that an increase in exhaust pressure from 2" Hg (abs) to 4" Hg (abs) or 5" Hg (abs) results in an output reduction of approximately 43 MWe or 55MWe, respectively. Hence, if the average back pressure is higher than 2" Hg (abs) a shorter last stage blade and/or fewer exhaust ends may be more appropriate, subject to a cost/benefit analysis.

Exhibit 4-26 Case 10 Heat and Mass Balance, Subcritical Steam Cycle

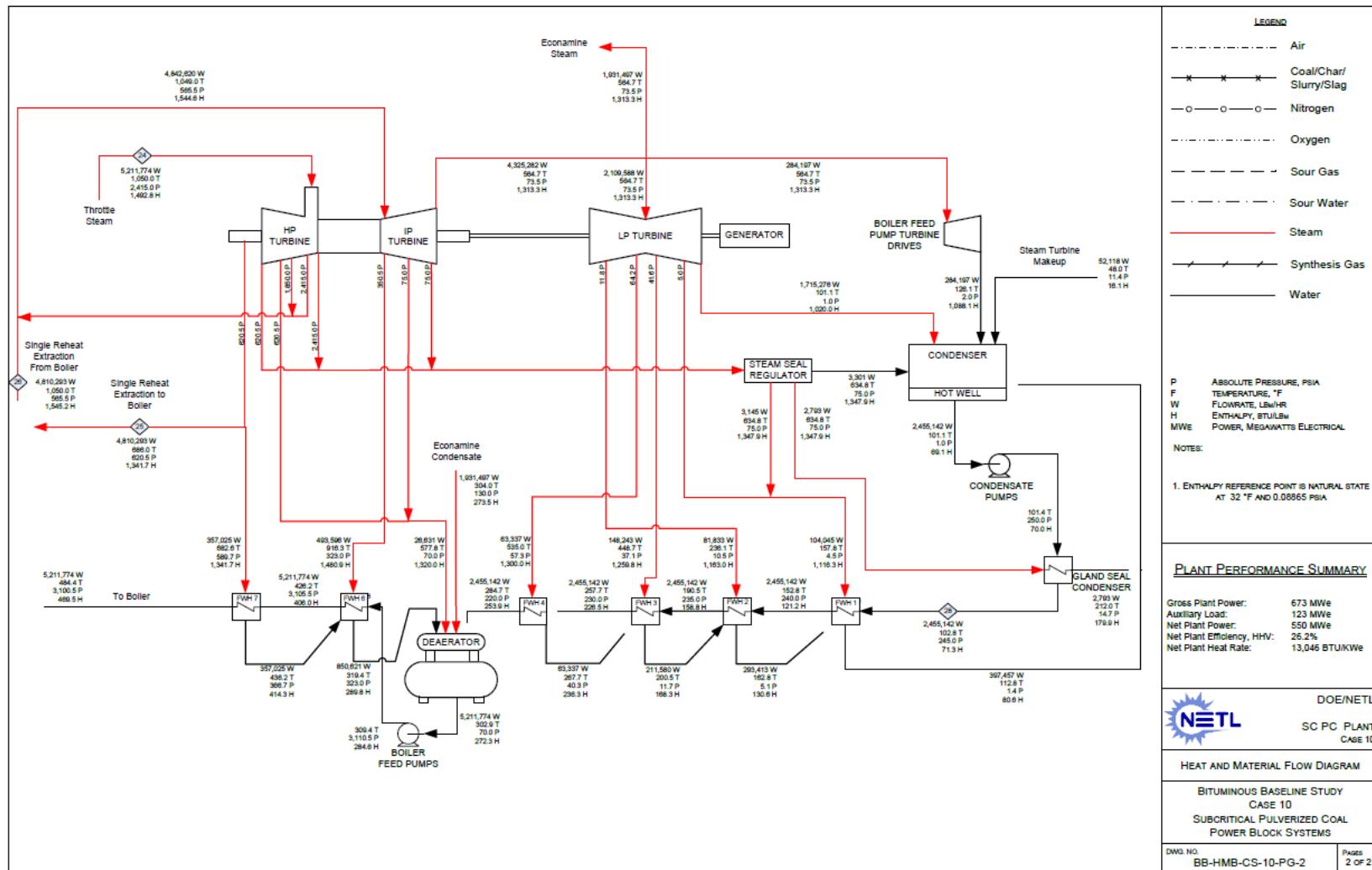
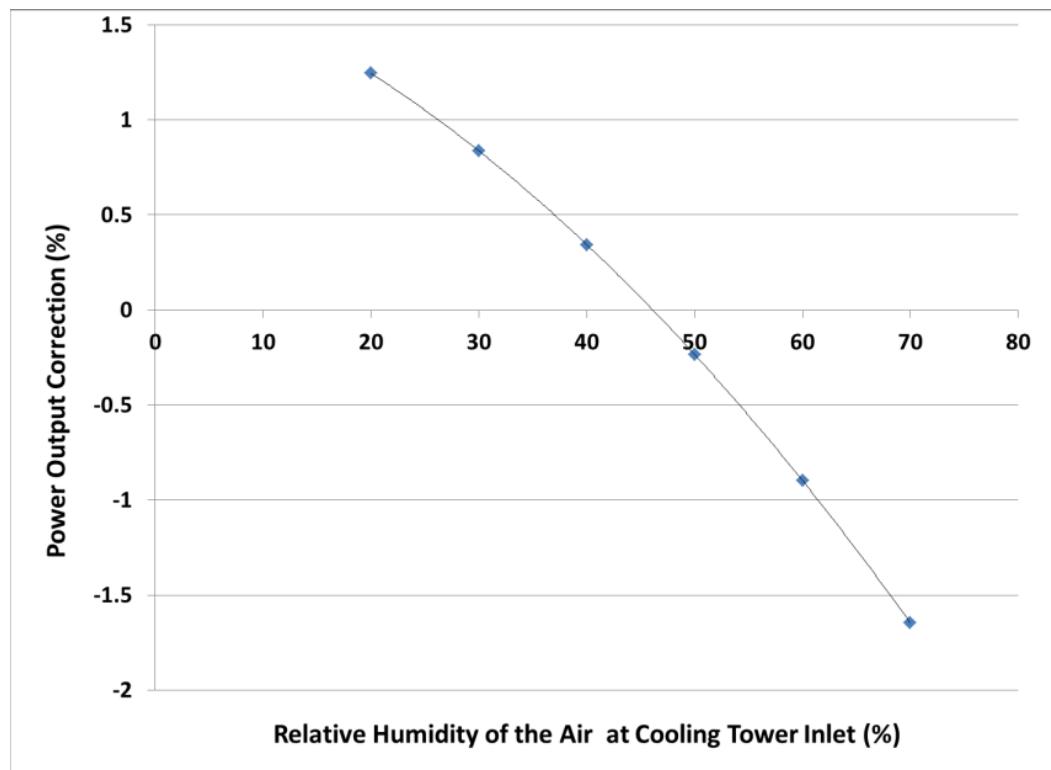


Figure 6-1
Heat and Mass Balance, Subcritical PC Boiler with CO₂ Capture in DOE NETL 2010 Report

Table 6-1
Impact of Condenser Pressure on Steam Turbine Performance (TC4F-40)



Steam Turbine Performance Change if the Condenser Cold Water Temperature is Varied					
Revision 3 - 2012/11/09					
This estimate is based on a simplified spreadsheet calculation and not on a detailed performance model. As a result, the accuracy is considered low.					
The estimate is based on the information provided in DOE/NETL Case 10 Heat and Mass Balance, Subcritical Steam Cycle ("Base")					
It was assumed that the DOE/NETL heat balance is based on a four-flow LP turbine section with a last stage blade length of 40 inches (4F-40), which is appropriate based on the steam conditions and condenser pressure provided. For significantly higher condenser pressures (such as 4 in HgA or 5 in HgA) the 4F-40 exhaust configuration is oversized and will result in very low exhaust velocities, high exhaust losses and associated vibration potential. Subject to a detailed analysis, continuous operation at such elevated exhaust pressures may not be recommended.					
Simplifying Assumptions:					
Constant LPT Efficiency (exhaust losses are adjusted according to operating condition)					
No change in extraction design (i.e. same extraction pressures)					
Constant Condenser Range & TTD					
Constant Heater 1 TTD & DCA					
Cold Water Temperature Differential	Temperature, C	Base	-3	13.5	18.1
Cold Water Temperature to Condenser		Base	Base - 5.40 F (-3.0 C)	Base + 24.27 F (13.5 C)	Base + 32.61 F (18.1 C)
Conditions Downstream of Heater 1 Extraction					
Flow, lb/h	1,715,276		1,702,513	1,772,631	1,792,355
Pressure, psia	5.0		5.0	5.0	5.0
Temperature, F	162.2		162.2	162.2	162.2
Enthalpy, Btu/lb	1,109		1,109	1,109	1,109
Entropy, Btu/lb F	1.8090		1.8090	1.8090	1.8090
Conditions at LPT Exhaust					
Flow, lb/h	1,715,276		1,702,513	1,772,631	1,792,355
Pressure, in HgA	2.0		1.7	4.0	5.0
Pressure, psia	0.98		0.83	1.96	2.46
Temperature, F	101.1		95.7	125.4	133.7
UEEP, Btu/lb	1,020.0		1,014.7	1,106.1	1,127.8
Quality	0.918		0.915	0.991	1.000
Differential Shaft Power	Output, MW	Base	2.3	(43.2)	(54.6)
Estimated Changes to Heater 1 Performance					
Steam to Heater 1					
Flow, lb/h	104,112		116,875	46,758	27,034
Pressure, psia	4.50		4.50	4.50	4.50
Temperature, F	157.8		157.80	157.80	157.80
Enthalpy, Btu/lb	1,116.3		1,116.3	1,116.3	1,116.3
Condensate to Heater 1					
Flow, lb/h	2,455,142		2,455,142.00	2,455,142.00	2,455,142.00
Pressure, psia	245.0		245.00	245.00	245.00
Temperature, F	102.7		97.3	126.9	135.3
Enthalpy, Btu/lb	71.3		66.0	95.5	103.9
Drain to Heater 1					
Flow, lb/h	293,413		293,413	293,413	293,413
Enthalpy, Btu/lb	130.6		130.6	130.6	130.6
Heater 1 Duty In, MBtu/h		329.7	330.7	325.1	323.5
Condensate to Heater 2					
Flow, lb/h	2,455,142		2,455,142	2,455,142	2,455,142
Pressure, psia	240.0		240.00	240.00	240.00
Temperature, F	152.7		152.7	152.7	152.7
Enthalpy, Btu/lb	121.2		121.2	121.2	121.2
Heater 1 Drain to Condenser					
Flow, lb/h	397,525		410,288	340,171	320,447
Pressure, psia	1.40		1.40	1.40	1.40
Temperature, F	112.6		112.6	112.6	112.6
Enthalpy, Btu/lb	80.6		80.60	80.60	80.60
Heater 1 Duty Out, MBtu/h		329.7	330.7	325.1	323.5

As stated above, a reduction of the turbine back pressure can be achieved by removing moisture content in the air through liquid desiccant as proposed by UKRF. The power generation efficiency, as illustrated in Figure 6-2, could be improved by 2.5% if the air relative humidity

was decreased from 70% to 30% on a typical summer day (note that the power output correction in Figure 6-2 is based on correction curves provided in ASME PTC 6 and does not represent the output correction provided in Table 6-1 for the reference plant).

Besides utilizing low-quality heat from the carbon capture process for liquid desiccant regeneration, the utilization of flue gas sensible energy from the air preheater exhaust for the heat-integrated cooling tower is also possible. The technology to recover sensible heat from the air preheater exhaust has been developed by Hitachi. UKRF determined that utilizing such sensible heat can achieve a hot stream with 120 °C as terminal temperature if liquid desiccant is used as heat transfer media. The following describes the heat recovery process developed by Hitachi.

Figure 6-2
The Impact of Relative Humidity on Overall Plant Thermal Efficiency at 90°F dry bulb temperature (Correction Curve was obtained from PTC Code for Steam Turbine)

In a boiler system, the air preheater is typically the last means of extracting energy from the combustion flue gas prior to discharge to the stack. The design flue gas exit temperature from the air preheater can range from 280 °F to 350 °F, depending on the acid dew point temperature of the flue gas, which is dependent on the concentration of sulfur trioxide and moisture. If the plant is equipped with a wet flue gas desulfurization system, the flue gas is further cooled to approximately 125 °F in direct contact with the flue gas desulfurization reagent slurry. The heat removed from the flue gas between the air preheater outlet and the FGD is generally lost to the atmosphere. However, it is possible to recover some of this energy in the flue gas that would otherwise be lost, and return it to the water/steam cycle. Hitachi has developed such a heat exchanger, the Clean Energy Recuperator (CER), which was derived from Hitachi's patented

high dust Gas-Gas-Heater (GGH) technology, which has been used successfully on five large supercritical coal-fired power plants in Japan.

The CER is a finned tube heat exchanger with the flue gas flowing over the tubes and the cooling medium within them. Located downstream of the air preheater and upstream of dust collecting and SO₂ removal equipment, it cools the flue gas, recovers a large amount of low grade energy and, due to its operation in high ash environment and the deep cooling of flue gas, removes almost all SO₃ in the flue gas.

By transferring the energy recovered from the above-described heat recovery process to the heat-integrated cooling tower system for liquid desiccant regeneration, UKRF has estimated that approximately 50% of the boiler dry flue gas heat loss can be recovered (approximately 3% of overall boiler heat input), which is equivalent to 47 MWt, based on the DOE Reference Case 9.

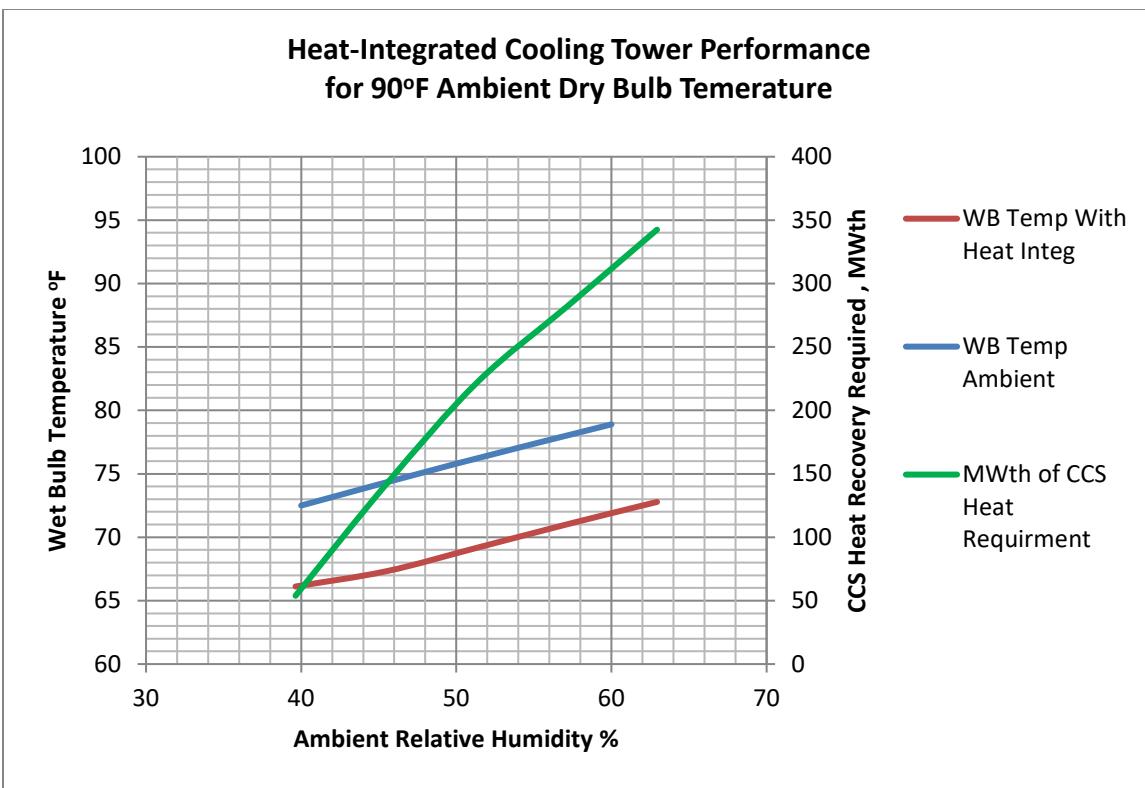
6.2 Warm-weather Sensitivity Analysis for the Liquid Desiccant Drying System

The design objective of the proposed liquid desiccant system is to recover low-quality heat from the CCS plant and flue gas such that the air supplied to an evaporative cooling system may be dried to effectively lower the operating wet bulb temperature. This in turn will have the effect of lowering the cooling water temperature supplied to the steam plant condenser. This operation will allow for increased efficiency in warm-weather months that are typical throughout the eastern and mid-western United States. The key to the effectiveness of such a massive drying system will be the availability of waste heat from various sources within power plant equipped with CCS. Additionally, the cost of increased fan and pump power should be minimized to make the additional efficiency savings both feasible and cost-effective.

A sensitivity study was performed using an Aspen Plus® process simulation to estimate degree of the ambient wet-bulb temperature depression possible and the corresponding power requirements for additional fan/pump power along with waste heat requirements to drive the thermal regeneration of the brine. The design basis of the study included an evaporative cooling tower system connected to a 2000 MMBtu/hr steam condenser that is in line with the DOE base case. For the purpose of the study, the ambient design basis was modified to use 90 °F (32.2°C) ambient air instead of the 59 °F (15 °C) DOE test case to gauge the feasible efficiency improvements during the warm-weather seasons.

As previously stated, the proposed desiccant system will consist of a dehydration tower for the drying of incoming air destined for the main evaporative cooling tower and a water-rich brine regenerator tower to remove excess moisture from the brine. The brine mixture used for this study was a 50wt% (with a maximum of 55% wt) CaCl₂ water solution. The brine is contacted with moist ambient air in the dehydration tower. The resulting water-rich brine will have a higher temperature than that of the incoming brine as a result of the latent heat of the water vapor removed. In the simulation, the water-rich brine collected in the dehydration tower is pumped to a series of heat exchangers representing heat loads from various parts of the CCS plant and possibly flue gas heat recovered past the recuperative air heater.

As the water-rich brine gains additional waste heat enthalpy, its temperature rises accordingly, reaching a range of 120 (48.9 °C) to 180 °F (82.2 °C), depending on the temperature of the waste

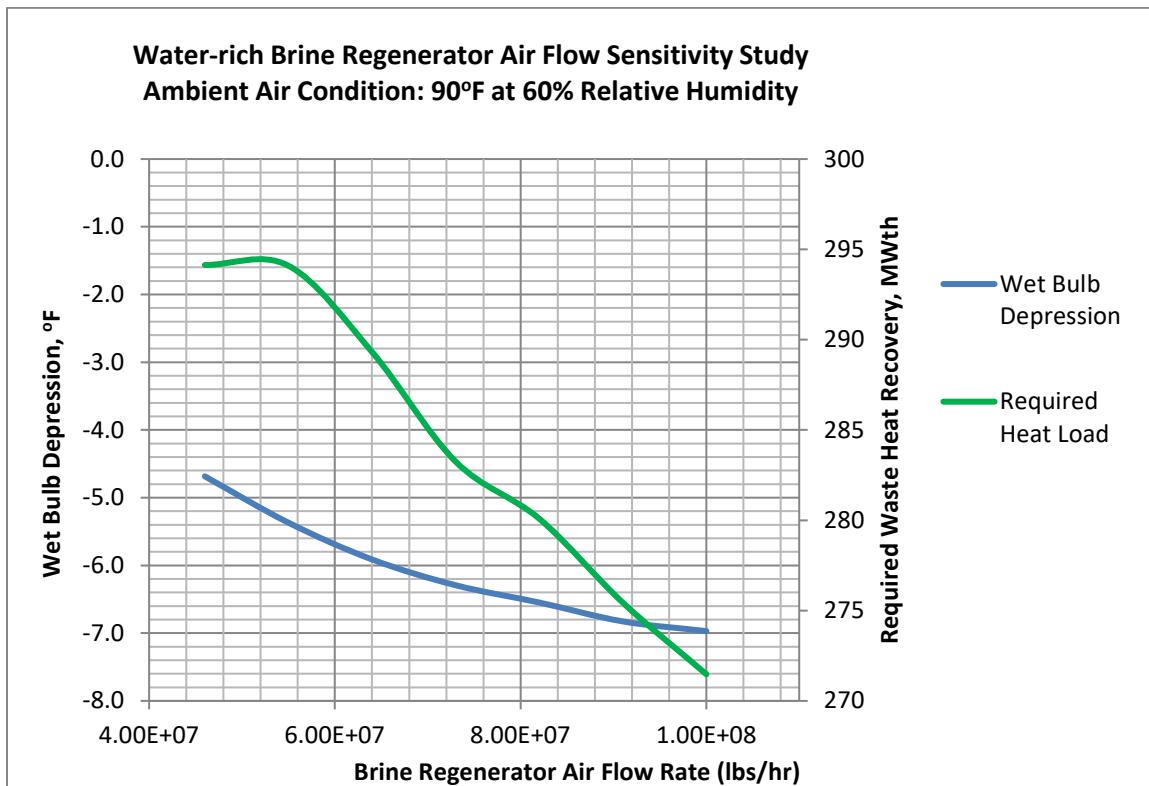

heat sources available. With this increased brine temperature, the water vapor pressure is increased. Consequently, the water-rich brine may be regenerated in a separate tower by contacting it with ambient air. The excess water vapor is released at the exhaust of the tower where a portion is ducted to the air-stripping unit in the CCS process. Air, in excess of the air stripping requirements, is vented to the atmosphere. The parasitic electric load for the desiccant system will be from the two pumps required to move the brine solution between the two towers and the fan power for the blower used in the dehydration tower. Additional fan energy will be required to overcome the increased pressure drop in the main evaporative cooling tower connected in series with the dehydration tower. In order to minimize parasitic energy requirements for the proposed air drying system, the air flow rate supplied to the brine regeneration system should be kept well below that used for the main evaporative cooling tower. Likewise, brine liquid flows should be kept low enough only to allow a favorable equilibrium between moisture absorption at low temperature and evaporation at regenerator temperatures. Obviously, the waste heat needed to drive the desiccant regeneration process needs to be within the inventory of available waste heat available in the CCS plant and from the flue gas.

EPRI's initial model of the dehydration system was modified for the current sensitivity study. The thermodynamics were based on the NRTL/Electrolyte model. Airflow through the main evaporative cooling tower was kept as a constant $2.0419E+8$ lbs/hr. The CaCl_2 desiccant solution (at 50 wt% aqueous mixture) was fixed at $9.118E+7$ lbs/hr. Therefore, the L/G ratio in the dehydration was fixed at 0.45 lbs desiccant per lb of air treated. Since the desiccant solution flow rate was held constant, the pumping power for the two pumps was fixed at 1.8MWe. All of the unit operations involving mass transfer calculations were based on vapor liquid equilibrium models.

6.2.1 Effect of Ambient Air Relative Humidity

As previously mentioned, the original design basis of the DOE was modified to investigate the effectiveness of the desiccant drying system over warm weather periods experienced in most areas of the United States. For the purposes of this sensitivity study, the ambient dry bulb temperature was fixed at 90 °F (32.2 °C) with the relative humidity varied from 40 to 66% that translates to a variation in wet-bulb temperature from about 73 to 80°F, respectively. The airflow rate to the regenerator was fixed at $6.0E+7$ lbs/hr (or 30% of the mass of air treated in the dehydration tower) over the range of RH studied. A thermal chiller load of 10 MWth was extracted from the incoming lean-brine to help the model converge.

As shown in Figure 6-3, with increasing relative humidity, the equilibrium water vapor pressure over the desiccant will increase accordingly. Thus, to maximize the wet-bulb depression, the quantity of waste heat required for keeping the system in balance increases proportionately from 40 to 340 MWth. The model indicates that the wet bulb depression (or the difference between the ambient and dried-air wet bulb temperatures) was between 6 to 7 °F over range of 40-66% RH, respectively, that will result in additional 13.1 to 15.1MWe electricity output at the generator terminal if the backpressure is originally run with 4" Hg (abs).


Figure 6-3
Aspen Plus® model results showing the effect of ambient relative humidity at a constant dry-bulb temperature of 90 °F on dried gas wet-bulb and dehydration energy requirements

6.2.2 Sensitivity of Brine Regenerator Air Flow to Wet-bulb Depression and Waste Heat Recovery

One of the key design variables for the desiccant drying system will be the quantity of airflow required to regenerate the moisture-laden desiccant. Effectively, the power source to drive this regeneration will be from the low quality heat recovered from various sources within the CCS plant and the flue gas. However, additional ambient air must be provided via a blower to reach equilibrium with the desiccant at higher temperature to vaporize moisture. Hopefully, this quantity of airflow will be substantially less than that of the air being dried for the main evaporative cooling system

For the above-mentioned model constants, the airflow to the desiccant regenerator was varied from 4.00E+7 to 1.00E+8 lbs/hr, which is approximately 20% to 50% of the total air, treated in the dehydration tower, respectively. The fan power for this range of airflow varied from 0.5 to 1.4 MWe, respectively. Additionally, a chiller load of 5 MWth was included to lower the incoming lean-desiccant temperature to the dehydration tower. The model was iterated to solve for the amount of waste energy required to equalize both the temperature and the exiting CaCl_2 concentration with that of the incoming brine (water-lean desiccant) entering the dehydration tower over the range of airflow considered. In theory, more regenerator airflow will result in more favorable water equilibrium in the vapor phase requiring less energy for driving the dehydration process at the expense of fan power.

The results of the model iterations in terms of the wet bulb temperature depression achieved in the evaporative cooling tower and waste heat required over the range of regenerator airflow are shown in Figure 6-4. The ambient wet bulb for the ambient condition considered (90 °F dry bulb temperature at 60% RH) was 79 °F (26.1 °C). As expected, the wet-bulb depression increased proportionately with the regenerator airflow while the required waste recovery to drive the desiccant regeneration varied inversely with airflow. Toward the low end of the regenerator airflow, the model had difficulty converging and became unstable. To remedy this, the convergence criterion was initially lowered for the first point to start the calculations. This is likely why power curve slope tends to flatten in the low end of the airflow range.

Figure 6-4
Air Flow Rate to the Brine Regenerator Tower (30% to 50% of the main cooling tower air flow)

A APPENDICES

A.1 The selection of flue gas extraction location for slipstream facility

During the kick-off meeting at NETL in October 2011, the flue gas extraction for the slipstream facility was discussed. Initially the UKRF team proposed to extract flue gas from the location prior to WFGD (where the water vapor is approximately 8% vol) to decrease water balance concerns and potentially reduce the slipstream facility complexity because the water removal from the saturated flue gas stream at WFGD (the water vapor is approximately 18%) was thought to be commercially available at present. In that plan, the makeup water for water wash at the top section of CO₂ absorber and air stripper would be collected and sent to the flue gas pre-treatment tower for flue gas direct cooling and SO₂ removal. However, extracting flue gas after the WFGD is more realistic since most units will be equipped with desulfurization units when CO₂ capture regulation is applied in the future, and one of the slipstream demonstration project objectives is to obtain first-hand experience for future system design and operation.

Consequently, UKRF has selected to extract flue gas at the WFGD scrubber exit and return the processed gas stream to the inlet of WFGD to eliminate the potential concern of emissions from the carbon capture facility.

For the slipstream facility several measures have been evaluated to address the water balance issue caused by water content in the stream entering the CCS block (approximately 18% vol) and leaving the CCS block (approximately 8% vol), which include chilling the flue gas to 30°C, immersed EHX with glycol chilling cycle, direct cooling using cooling water, and direct cooling with external EHX using a glycol chilling unit. In order to increase the flexibility of the slipstream facility and handle flue gas constituents at various concentrations, the approach of direct cooling with external EHX using a glycol chilling unit is selected to cool the flue gas to 30°C and polish the SO₂ concentration to below 10 ppm. The water condensed here will be sent to the WFGD blow-down loop for treatment.

Of course, as expected, this process modification has resulted in higher capital cost than originally estimated for the slipstream facility.

A.2 Corrosion and Steel Selection

The materials of construction are critical for amine acid gas treating plants with corrosion being a significant concern in the selection. The selection of carbon steel for the bulk of the plant design here was based on extensive electrochemical tests, and traditional coupon tests on carbon steel A106 have been carried out in the aqueous environment at our UK CAER research facility. For instance, using MEA (no corrosion inhibitor) as a generic solvent, the effect of solution temperature, and CO₂ loading in MEA without the use of corrosion inhibitors on steel corrosion was investigated. The corrosion rate of carbon steel A106 increases at higher temperature because both anodic and cathodic reactions proceed faster due to the fact that molecules have higher thermal energy at 80 °C. This is reflected in a higher calculated corrosion rate of 0.62 vs. 0.04 mm⁻¹ year⁻¹, as indicated in Table A-1.

Table A-1

Summary of electrochemical parameters and corrosion rate of carbon steel A106 in MEA-H₂O-CO₂ systems

No.	CO ₂ loading (mol/mol MEA)	Temp erature (°C)	O ₂ percent age (%)	<i>I</i> _{corr} (μA)	<i>E</i> _{corr} (mV vs. SCE)	Corrosio n Rate (mmpy)	β_a (mV/decad e)	<i>i</i> _{crit} (μA/c m ²)	<i>i</i> _{pass} (μA/ cm ²)	<i>E</i> _b (mV)
1	0.2	40	0	18.2	-885.3	0.04	146.8	-18.7	-0.9	544
2	0.2	80	0	227.2	-880.3	0.53	99.5	-281.7	-1.5	456
3	0.5	40	0	79.1	-810.1	0.18	-	-18.3	-1.9	715
4	0.5	80	0	359.1	-853.3	0.83	110.2	-778.9	-3.4	623

The effects of CO₂ loading in solution show that the polarization curve obtained from the electrochemical run with $\alpha = 0.5$ shifts towards the right with higher measured current density at both 40 °C and 80 °C. The current density of the curves is the total cell current density, which was contributed by both the anodic and the cathodic currents. Therefore, higher iron dissolution and cathodic reduction rate with higher CO₂ loading can be expected. This indicated that the carbon steel corrodes faster with higher CO₂ loading. From Figure A-1, it can be seen that the corrosion rate increases from 0.02 to 0.06 mmpy and 0.62 to 0.83 mmpy when CO₂ loading is raised from 0.2 to 0.5 at 40 °C and 80 °C, respectively.

The increase in corrosion rate in rich MEA solution is due to the rise in oxidizer concentration. Bicarbonate ion is a primary oxidizing agent in aqueous amine-CO₂ systems and the reduction of bicarbonate ion is as in the equation of $2\text{HCO}_3^- + 2\text{e}^- \leftrightarrow 2\text{CO}_3^{2-} + \text{H}_2(\text{g})$. According to Veawab et al., HCO₃⁻ plays a significant role in corrosion due to its high rate of reduction while H₃O⁺ contributes less to corrosion because of its extremely low concentration in amine solutions. Higher CO₂ loading increase results in an increase of oxidizer HCO₃⁻ concentration considering the basic environment of MEA.

Data was collected from UK CAER's electrochemistry corrosion cell at given conditions, as listed in Table A-2. For the representative carbon steel, the H3-1 solvent exhibits a dramatically lower corrosion rate (greater than one order of magnitude) compared to MEA regardless of the temperature measured. When considering a representative stainless steel, H3-1 exhibits similar corrosion rate at low temperature but approximately half the corrosion rate at high temperature. It should be noted that the above corrosion data was obtained through short duration tests. Therefore, the values, especially at low corrosion rate, may include significant measurement uncertainties.

Table A-2

Comparative corrosion data as measure using electrochemical method for Hitachi H3-1 and 30 wt% MEA measured at rich conditions (0.5 mol C/mol N).

Solvent	Temperature (°C)	Corrosion rate (mmpy)	
		H3-1	5M MEA
Carbon steel A106	40	0.029	0.79
	90	0.350	4.97
Stainless steel 304	40	0.037	0.033
	90	0.104	0.187

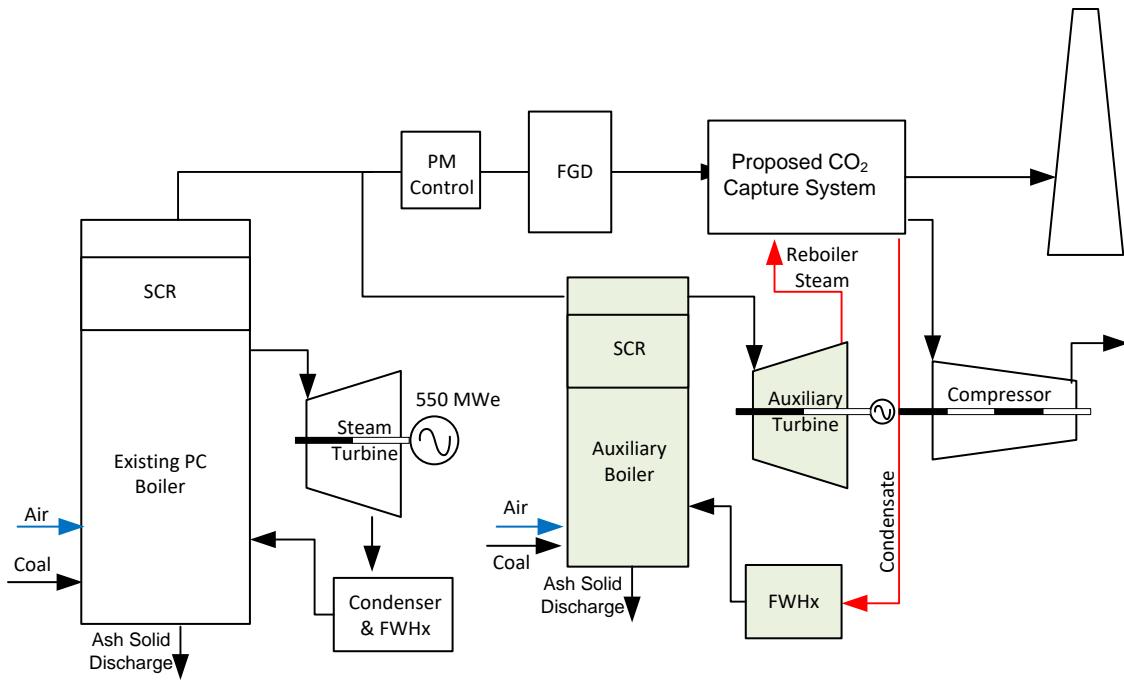
Overall, the potential for significant corrosion will occur at high temperature and high carbon loading spots, e.g. the hot end of L/R Heat Exchanger and the top of stripper. As result, high corrosion resistance metal such as stainless steel is selected for high carbon loading and high temperature areas of the plant while remaining parts utilize carbon steel.

A.3 Commercial deployment/technology transfer for UK CAER heat integrated system

If we are to continue using coal while simultaneously addressing climate change, international cooperation to develop new, environmentally sound coal-based technologies that are deployable in both developing and industrialized countries must be addressed. In response to this urgent need, in November 2009, President Barack Obama and President Hu Jintao announced the establishment of the Clean Energy Research Center (CERC). On November 17, 2009, U.S. Secretary of Energy Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Administrator Zhang Guobao signed the U.S.-China CERC Protocol, launching the CERC. The primary purpose of the CERC is to facilitate joint research, development, and commercialization of clean energy technologies between U.S. and China.

Within the three current CERC programs, the Clean Coal, including Carbon Capture and Sequestration (CCS), program addresses technology and practices for clean coal utilization and carbon capture, utilization, and storage. In 2010, US DOE selected the West Virginia University (WVU) –led consortium, including University of Kentucky Center for Energy Research as one of the few main partners, under DOE award DE- PI0000017. In the Consortium, Dr. Kunlei Liu is the PI for Task 5 – Novel CO₂ Capture covering pre-, post- and oxyfuel combustion.

Using the exchange platform established through US-China CERC, a working relationship has built between UK CAER and China Huaneng Clean Energy Research Institute, and between UK CAER and Sinopec Shengli Oil Field Company. Huaneng Clean Energy Research Institute, as PI, has constructed a 160,000 ton/year post-combustion CO₂ capture demonstration plant at Shanghai Shidongkou Power Plant in 2009 which has been successfully run for over a few thousands of hours.


The Sinopec Shengli Oil Field Company has built a 40ton/day post-combustion CO₂ capture plant in one of its power plants located at Dongyin, Shandong province, and is currently in the process of selecting a technology to build a 1Mton/year post-combustion CO₂ capture plant for

its EOR operation in 2015. UK CAER has been informed that this company has very strong interests in the heat-integrated process UKy is currently developing under this slipstream project. A delegation from Shengli Oil Field Company has scheduled to visit UK CAER for discussion of collaboration in January, 2013. If successful, this international cooperation could potentially lead to a technology transfer to Asia and maintain US as the leading technology provider.

A.4 Auxillary Boiler and Backpressure Steam Turbine for Existing Plant Retrofit

The heat integration of the UK CAER process is a scheme in which the heat integration does not impact the main turbine steam cycle. For example there is no waste heat from the CCS block used to heat steam for the turbine cycle in this intial TEA report. Doing so has too large of an impact on the steam extraction point as described below.

An auxillary boiler with back pressure turbine to provide steam for solvent regeneration. To maintain a 575 MWe net power output for external grid demand, for UKRF Heat-integrated process with 30% MEA as solvent, an extra 34% coal compared to DOE Reference Case 9 will be burned to generate steam for (a) 75.7 MWe electricity production which will off-set the CO₂ capture auxiliaries consumption; and (b) 1694 MBtu/hr low pressure (LP) stream (78 psia and 551°F) for solvent regeneration in the reboiler which is equivalent to approximately 50% of steam flowing into the low pressure steam turbine. With the capacity factor for a selected carbon capture process between 80-85%, absence of 40% low pressure steam extraction demanded by CCS after retrofitted could force the main plant to shut-down which will potentially drag the overall plant capacity factor down to 70%; (2) the routine cyclic loading change for any giving power generation unit. The CO₂ capture process requires minimum steam pressures to regenerate the solvent effectively. Initially, the location of the steam extraction can be determined by the pressure profile across the steam turbine. However, as the steam turbine load is decreased, the pressure at a selected extraction point decreases, and will post a tremendous challenge for retrofitting because of significant changes in steam thermodynamics at the low pressure turbine after approximately 40% steam is extracted for solvent regeneration requirements. Therefore, to maintain a constant extraction steam pressure will require multiple locations that will increase the cost and system complexity; (3) for a typical subcritical steam cycle, the pressure of cross-over steam between IP and LP turbine is in the range of 73-78 psia with an enthalpy of 1313.3 Btu/lb steam . On the other hand, the steam pressure required for the reboiler is only between 45-50 psia with enthalpy 1290 Btu/lb steam. In order to take advantage of the difference between those two steam parameters, a lay-down turbine has been suggested by others to generate approximately 10.5MWe which could improve the overall plant efficiency by 0.5 percentage points. However, the variation of LP steam due to external load changes will make the realization of this benefit much more difficult.

Figure A-1
The flowchart of auxiliary unit for CO₂ capture process

Instead of extracting steam from existing steam turbines, an alternative approach to shortcut the challenges for retrofitting mentioned above is utilized – constructing a stand-alone intermediate-pressure boiler with the back-pressure steam for single-unit power plant or retrofitting one power train with back-pressure steam turbine for the multi-unit power plant, as illustrated in Figure A-1. The power produced will be make-up power for the extra auxiliaries and compression train. The application of a back-pressure steam turbine will eliminate the need for a condenser and guarantee the overall thermal efficiency of a newly-constructed unit to be above 80% which is at least 20 points higher than natural gas combined cycle (NGCC). A carbon-neutral biomass fuel, or even natural gas (NG) could be the feedstock for the make-up boiler. On the other hand, the makeup boiler will only be equipped with SCR for NO_x reduction if needed. The exhaust flue gas stream after the SCR will combine with main flue gas stream prior to the in-duct cooling section in the proposed CO₂ capture process. SO₂ in the flue gas stream from the makeup boiler will be removed by aqueous ammonia solution in the pre-treatment tower. This alternative approach will also give more flexibility to operate both units.

A.5 Updated DOE Cases 9 and 10 Results

Table A-3

Summary of Updated Capital Costs for DOE Bituminous Coal Baseline Case 9

Client: Project:		TOTAL PLANT COST SUMMARY							Report Date: 2012-Aug-23			
Case: Plant Size:		Baseline Case 9 - 1x550 MWnet SubCritical PC 550.1 MW,net Estimate Type: Conceptual							Cost Base (Jan)	2012	(\$x1000)	
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Contingencies Project	TOTAL PLANT COST \$	\$/kW
				Direct	Indirect							
1 COAL & SORBENT HANDLING		\$21,020	\$5,351	\$12,487	\$0	\$0	\$38,858	\$3,405	\$0	\$6,339	\$48,603	\$88
2 COAL & SORBENT PREP & FEED		\$14,155	\$782	\$3,560	\$0	\$0	\$18,497	\$1,572	\$0	\$3,010	\$23,079	\$42
3 FEEDWATER & MISC. BOP SYSTEMS		\$49,628	\$0	\$23,266	\$0	\$0	\$72,894	\$6,414	\$0	\$12,997	\$92,305	\$168
4 PC BOILER												
4.1 PC Boiler & Accessories		\$165,013	\$0	\$105,843	\$0	\$0	\$270,856	\$25,677	\$0	\$29,653	\$326,186	\$593
4.2 SCR (w/4.1)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3 Open		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.4-4.9 Boiler BoP (w/ ID Fans)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SUBTOTAL 4		\$165,013	\$0	\$105,843	\$0	\$0	\$270,856	\$25,677	\$0	\$29,653	\$326,186	\$593
5 FLUE GAS CLEANUP		\$104,340	\$0	\$34,777	\$0	\$0	\$139,117	\$12,787	\$0	\$15,190	\$167,094	\$304
5B CO ₂ REMOVAL & COMPRESSION		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6 COMBUSTION TURBINE/ACCESSORIES												
6.1 Combustion Turbine Generator		N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2-6.9 Combustion Turbine Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SUBTOTAL 6		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7 HRSG, DUCTING & STACK												
7.1 Heat Recovery Steam Generator		N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.2-7.9 HRSG Accessories, Ductwork and Stack		\$22,521	\$1,217	\$15,123	\$0	\$0	\$38,861	\$3,460	\$0	\$5,515	\$47,836	\$87
SUBTOTAL 7		\$22,521	\$1,217	\$15,123	\$0	\$0	\$38,861	\$3,460	\$0	\$5,515	\$47,836	\$87
8 STEAM TURBINE GENERATOR												
8.1 Steam TG & Accessories		\$66,000	\$0	\$7,620	\$0	\$0	\$73,620	\$6,401	\$0	\$8,002	\$88,024	\$160
8.2-8.9 Turbine Plant Auxiliaries and Steam Piping		\$31,679	\$1,267	\$15,451	\$0	\$0	\$48,397	\$3,919	\$0	\$7,313	\$59,629	\$108
SUBTOTAL 8		\$97,679	\$1,267	\$23,072	\$0	\$0	\$122,017	\$10,321	\$0	\$15,315	\$147,653	\$268
9 COOLING WATER SYSTEM		\$16,363	\$8,446	\$14,954	\$0	\$0	\$39,763	\$3,605	\$0	\$5,882	\$49,250	\$90
10 ASH/SPENT SORBENT HANDLING SYS		\$5,814	\$169	\$7,464	\$0	\$0	\$13,446	\$1,239	\$0	\$1,510	\$16,195	\$29
11 ACCESSORY ELECTRIC PLANT		\$21,183	\$8,327	\$22,619	\$0	\$0	\$52,130	\$4,482	\$0	\$7,032	\$63,644	\$116
12 INSTRUMENTATION & CONTROL		\$10,641	\$0	\$10,726	\$0	\$0	\$21,367	\$1,883	\$0	\$2,868	\$26,117	\$47
13 IMPROVEMENTS TO SITE		\$3,413	\$1,962	\$7,318	\$0	\$0	\$12,692	\$1,254	\$0	\$2,789	\$16,735	\$30
14 BUILDINGS & STRUCTURES		\$0	\$28,314	\$27,159	\$0	\$0	\$55,473	\$4,908	\$0	\$15,095	\$75,476	\$137
TOTAL COST		\$531,770	\$55,835	\$308,367	\$0	\$0	\$895,972	\$81,005	\$0	\$123,197	\$1,100,174	\$2,000

Table A-4
Detailed Updated Capital Costs for DOE Bituminous Coal Baseline Case 9

Client: Project:		Report Date: 2012-Aug-23										
Case: Plant Size:		TOTAL PLANT COST SUMMARY										
Baseline Case 9 - 1x550 MWnet SubCritical PC 550.1 MW,net		Estimate Type: Conceptual								Cost Base (Jan)	2012	(\$x1000)
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies		TOTAL PLANT COST	
				Direct	Indirect			Process	Project		\$	\$/kW
1 COAL & SORBENT HANDLING												
1.1	Coal Receive & Unload	\$4,320	\$0	\$1,956	\$0	\$0	\$6,276	\$543	\$0	\$1,023	\$7,842	\$14
1.2	Coal Stackout & Reclaim	\$5,583	\$0	\$1,254	\$0	\$0	\$6,837	\$579	\$0	\$1,112	\$8,528	\$16
1.3	Coal Conveyors	\$5,191	\$0	\$1,241	\$0	\$0	\$6,432	\$545	\$0	\$1,047	\$8,024	\$15
1.4	Other Coal Handling	\$1,358	\$0	\$287	\$0	\$0	\$1,645	\$139	\$0	\$268	\$2,052	\$4
1.5	Sorbent Receive & Unload	\$173	\$0	\$52	\$0	\$0	\$225	\$19	\$0	\$37	\$281	\$1
1.6	Sorbent Stackout & Reclaim	\$2,795	\$0	\$508	\$0	\$0	\$3,302	\$278	\$0	\$537	\$4,118	\$7
1.7	Sorbent Conveyors	\$997	\$214	\$242	\$0	\$0	\$1,454	\$122	\$0	\$236	\$1,812	\$3
1.8	Other Sorbent Handling	\$602	\$140	\$313	\$0	\$0	\$1,056	\$90	\$0	\$172	\$1,318	\$2
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$4,997	\$6,635	\$0	\$0	\$11,631	\$1,089	\$0	\$1,908	\$14,628	\$27
	SUBTOTAL 1.	\$21,020	\$5,351	\$12,487	\$0	\$0	\$38,858	\$3,405	\$0	\$6,339	\$48,603	\$88
2 COAL & SORBENT PREP & FEED												
2.1	Coal Crushing & Drying	\$2,481	\$0	\$479	\$0	\$0	\$2,960	\$250	\$0	\$481	\$3,691	\$7
2.2	Coal Conveyor to Storage	\$6,352	\$0	\$1,374	\$0	\$0	\$7,726	\$653	\$0	\$1,257	\$9,637	\$18
2.3	Coal Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.4	Misc.Cal Prep & Feed	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.5	Sorbent Prep Equipment	\$4,750	\$204	\$978	\$0	\$0	\$5,931	\$500	\$0	\$965	\$7,395	\$13
2.6	Sorbent Storage & Feed	\$572	\$0	\$217	\$0	\$0	\$790	\$68	\$0	\$129	\$986	\$2
2.7	Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.8	Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.9	Coal & Sorbent Feed Foundation	\$0	\$578	\$511	\$0	\$0	\$1,090	\$101	\$0	\$179	\$1,369	\$2
	SUBTOTAL 2.	\$14,155	\$782	\$3,560	\$0	\$0	\$18,497	\$1,572	\$0	\$3,010	\$23,079	\$42
3 FEEDWATER & MISC. BOP SYSTEMS												
3.1	Feedwater System	\$20,016	\$0	\$6,850	\$0	\$0	\$26,866	\$2,279	\$0	\$4,372	\$33,517	\$61
3.2	Water Makeup & Pretreating	\$5,982	\$0	\$1,867	\$0	\$0	\$7,848	\$707	\$0	\$1,711	\$10,266	\$19
3.3	Other Feedwater Subsystems	\$6,790	\$0	\$2,744	\$0	\$0	\$9,534	\$806	\$0	\$1,551	\$11,891	\$22
3.4	Service Water Systems	\$1,194	\$0	\$619	\$0	\$0	\$1,813	\$161	\$0	\$395	\$2,369	\$4
3.5	Other Boiler Plant Systems	\$8,060	\$0	\$7,543	\$0	\$0	\$15,603	\$1,406	\$0	\$2,551	\$19,560	\$36
3.6	FO Supply Sys & Nat Gas	\$337	\$0	\$390	\$0	\$0	\$727	\$65	\$0	\$119	\$911	\$2
3.7	Waste Treatment Equipment	\$3,942	\$0	\$2,241	\$0	\$0	\$6,183	\$586	\$0	\$1,354	\$8,123	\$15
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$3,306	\$0	\$1,012	\$0	\$0	\$4,319	\$405	\$0	\$945	\$5,669	\$10
	SUBTOTAL 3.	\$49,628	\$0	\$23,266	\$0	\$0	\$72,894	\$6,414	\$0	\$12,997	\$92,305	\$168
4 PC BOILER & ACCESSORIES												
4.1	PC Boiler & Accessories	\$165,013	\$0	\$105,843	\$0	\$0	\$270,856	\$25,677	\$0	\$29,653	\$326,186	\$593
4.2	SCR (w/4.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.4	Boiler BoP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.5	Primary Air System	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.6	Secondary Air System	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.8	Major Component Rigging	\$0	w/4.1	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.9	Boiler Foundations	\$0	w/14.1	w/14.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 4.	\$165,013	\$0	\$105,843	\$0	\$0	\$270,856	\$25,677	\$0	\$29,653	\$326,186	\$593
5 FLUE GAS CLEANUP												
5.1	Absorber Vessels & Accessories	\$72,668	\$0	\$15,337	\$0	\$0	\$88,005	\$8,045	\$0	\$9,605	\$105,655	\$192
5.2	Other FGD	\$3,792	\$0	\$4,213	\$0	\$0	\$8,005	\$750	\$0	\$876	\$9,631	\$18
5.3	Bag House & Accessories	\$20,535	\$0	\$12,777	\$0	\$0	\$33,312	\$3,091	\$0	\$3,640	\$40,044	\$73
5.4	Other Particulate Removal Materials	\$1,390	\$0	\$1,458	\$0	\$0	\$2,848	\$267	\$0	\$311	\$3,426	\$6
5.5	Gypsum Dewatering System	\$5,955	\$0	\$992	\$0	\$0	\$6,947	\$634	\$0	\$758	\$8,339	\$15
5.6	Mercury Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5.9	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$104,340	\$0	\$34,777	\$0	\$0	\$139,117	\$12,787	\$0	\$15,190	\$167,094	\$304

Client:	EPRI								Report Date:	2012-Aug-23
Project:	Post-Combustion CO2 Capture									
Case:	TOTAL PLANT COST SUMMARY									
Plant Size:	Baseline Case 9 - 1x550 MWnet SubCritical PC									
Plant Size:	550.1 MW,net	Estimate Type:	Conceptual		Cost Base (Jan)	2012	(\$x1000)			
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Contingencies Project	TOTAL PLANT COST
				Direct	Indirect					\$ \$/kW
11	ACCESSORY ELECTRIC PLANT									
11.1	Generator Equipment	\$1,966	\$0	\$317	\$0	\$2,284	\$205	\$0	\$187	\$2,676 \$5
11.2	Station Service Equipment	\$3,440	\$0	\$1,165	\$0	\$4,605	\$429	\$0	\$378	\$5,412 \$10
11.3	Switchgear & Motor Control	\$3,949	\$0	\$693	\$0	\$4,641	\$431	\$0	\$507	\$5,579 \$10
11.4	Conduit & Cable Tray	\$0	\$2,758	\$8,835	\$0	\$0	\$11,593	\$1,075	\$0	\$1,900 \$14,568 \$26
11.5	Wire & Cable	\$0	\$5,205	\$9,308	\$0	\$0	\$14,513	\$1,160	\$0	\$2,351 \$18,024 \$33
11.6	Protective Equipment	\$320	\$0	\$1,121	\$0	\$0	\$1,441	\$138	\$0	\$158 \$1,736 \$3
11.7	Standby Equipment	\$1,515	\$0	\$36	\$0	\$0	\$1,551	\$143	\$0	\$169 \$1,863 \$3
11.8	Main Power Transformers	\$9,993	\$0	\$210	\$0	\$0	\$10,204	\$779	\$0	\$1,098 \$12,081 \$22
11.9	Electrical Foundations	\$0	\$364	\$934	\$0	\$0	\$1,298	\$122	\$0	\$284 \$1,704 \$3
	SUBTOTAL 11.	\$21,183	\$8,327	\$22,619	\$0	\$0	\$52,130	\$4,482	\$0	\$7,032 \$63,644 \$116
12	INSTRUMENTATION & CONTROL									
12.1	PC Control Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.2	Combustion Turbine Control	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.4	Other Major Component Control	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.6	Control Boards, Panels & Racks	\$528	\$0	\$326	\$0	\$0	\$855	\$80	\$0	\$140 \$1,075 \$2
12.7	Distributed Control System Equipment	\$5,336	\$0	\$961	\$0	\$0	\$6,296	\$584	\$0	\$688 \$7,568 \$14
12.8	Instrument Wiring & Tubing	\$3,269	\$0	\$5,913	\$0	\$0	\$9,182	\$739	\$0	\$1,488 \$11,409 \$21
12.9	Other I & C Equipment	\$1,508	\$0	\$3,526	\$0	\$0	\$5,034	\$480	\$0	\$551 \$6,065 \$11
	SUBTOTAL 12.	\$10,641	\$0	\$10,726	\$0	\$0	\$21,367	\$1,883	\$0	\$2,868 \$26,117 \$47
13	IMPROVEMENTS TO SITE									
13.1	Site Preparation	\$0	\$57	\$1,221	\$0	\$0	\$1,278	\$124	\$0	\$280 \$1,682 \$3
13.2	Site Improvements	\$0	\$1,904	\$2,517	\$0	\$0	\$4,421	\$437	\$0	\$972 \$5,829 \$11
13.3	Site Facilities	\$3,413	\$0	\$3,581	\$0	\$0	\$6,994	\$693	\$0	\$1,537 \$9,224 \$17
	SUBTOTAL 13.	\$3,413	\$1,962	\$7,318	\$0	\$0	\$12,692	\$1,254	\$0	\$2,789 \$16,735 \$30
14	BUILDINGS & STRUCTURES									
14.1	Boiler Building	\$0	\$10,273	\$9,145	\$0	\$0	\$19,418	\$1,712	\$0	\$5,282 \$26,412 \$48
14.2	Turbine Building	\$0	\$14,845	\$14,006	\$0	\$0	\$28,851	\$2,551	\$0	\$7,850 \$39,252 \$71
14.3	Administration Building	\$0	\$708	\$758	\$0	\$0	\$1,466	\$130	\$0	\$399 \$1,995 \$4
14.4	Circulation Water Pumphouse	\$0	\$203	\$163	\$0	\$0	\$366	\$32	\$0	\$100 \$498 \$1
14.5	Water Treatment Buildings	\$0	\$727	\$671	\$0	\$0	\$1,397	\$123	\$0	\$380 \$1,901 \$3
14.6	Machine Shop	\$0	\$474	\$322	\$0	\$0	\$796	\$69	\$0	\$216 \$1,081 \$2
14.7	Warehouse	\$0	\$321	\$326	\$0	\$0	\$647	\$57	\$0	\$176 \$880 \$2
14.8	Other Buildings & Structures	\$0	\$262	\$226	\$0	\$0	\$488	\$43	\$0	\$133 \$664 \$1
14.9	Waste Treating Building & Str.	\$0	\$502	\$1,542	\$0	\$0	\$2,044	\$190	\$0	\$559 \$2,793 \$5
	SUBTOTAL 14.	\$0	\$28,314	\$27,159	\$0	\$0	\$55,473	\$4,908	\$0	\$15,095 \$75,476 \$137
	TOTAL COST	\$531,770	\$55,835	\$308,367	\$0	\$0	\$895,972	\$81,005	\$0	\$123,197 \$1,100,174 \$2,000

Client:	EPRI	Report Date:	2012-Aug-23									
Project:	Post-Combustion CO2 Capture											
Case:	TOTAL PLANT COST SUMMARY											
Plant Size:	550.1 MW,net	Estimate Type:	Conceptual									
Baseline Case 9 - 1x550 MWnet SubCritical PC												
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Cost Base (Jan) 2012	(\$x1000)		
				Direct	Indirect				\$	\$/kW		
11 ACCESSORY ELECTRIC PLANT												
11.1	Generator Equipment	\$1,966	\$0	\$317	\$0	\$0	\$2,284	\$205	\$0	\$187	\$2,676	\$5
11.2	Station Service Equipment	\$3,440	\$0	\$1,165	\$0	\$0	\$4,605	\$429	\$0	\$378	\$5,412	\$10
11.3	Switchgear & Motor Control	\$3,949	\$0	\$693	\$0	\$0	\$4,641	\$431	\$0	\$507	\$5,579	\$10
11.4	Conduit & Cable Tray	\$0	\$2,758	\$8,835	\$0	\$0	\$11,593	\$1,075	\$0	\$1,900	\$14,568	\$26
11.5	Wire & Cable	\$0	\$5,205	\$9,308	\$0	\$0	\$14,513	\$1,160	\$0	\$2,351	\$18,024	\$33
11.6	Protective Equipment	\$320	\$0	\$1,121	\$0	\$0	\$1,441	\$138	\$0	\$158	\$1,736	\$3
11.7	Standby Equipment	\$1,515	\$0	\$36	\$0	\$0	\$1,551	\$143	\$0	\$169	\$1,863	\$3
11.8	Main Power Transformers	\$9,993	\$0	\$210	\$0	\$0	\$10,204	\$779	\$0	\$1,098	\$12,081	\$22
11.9	Electrical Foundations	\$0	\$364	\$934	\$0	\$0	\$1,298	\$122	\$0	\$284	\$1,704	\$3
SUBTOTAL 11.		\$21,183	\$8,327	\$22,619	\$0	\$0	\$52,130	\$4,482	\$0	\$7,032	\$63,644	\$116
12 INSTRUMENTATION & CONTROL												
12.1	PC Control Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.2	Combustion Turbine Control	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.4	Other Major Component Control	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
12.6	Control Boards, Panels & Racks	\$528	\$0	\$326	\$0	\$0	\$855	\$80	\$0	\$140	\$1,075	\$2
12.7	Distributed Control System Equipment	\$5,336	\$0	\$961	\$0	\$0	\$6,296	\$584	\$0	\$688	\$7,568	\$14
12.8	Instrument Wiring & Tubing	\$3,269	\$0	\$5,913	\$0	\$0	\$9,182	\$739	\$0	\$1,488	\$11,409	\$21
12.9	Other I & C Equipment	\$1,508	\$0	\$3,526	\$0	\$0	\$5,034	\$480	\$0	\$551	\$6,065	\$11
SUBTOTAL 12.		\$10,641	\$0	\$10,726	\$0	\$0	\$21,367	\$1,883	\$0	\$2,868	\$26,117	\$47
13 IMPROVEMENTS TO SITE												
13.1	Site Preparation	\$0	\$57	\$1,221	\$0	\$0	\$1,278	\$124	\$0	\$280	\$1,682	\$3
13.2	Site Improvements	\$0	\$1,904	\$2,517	\$0	\$0	\$4,421	\$437	\$0	\$972	\$5,829	\$11
13.3	Site Facilities	\$3,413	\$0	\$3,581	\$0	\$0	\$6,994	\$693	\$0	\$1,537	\$9,224	\$17
SUBTOTAL 13.		\$3,413	\$1,962	\$7,318	\$0	\$0	\$12,692	\$1,254	\$0	\$2,789	\$16,735	\$30
14 BUILDINGS & STRUCTURES												
14.1	Boiler Building	\$0	\$10,273	\$9,145	\$0	\$0	\$19,418	\$1,712	\$0	\$5,282	\$26,412	\$48
14.2	Turbine Building	\$0	\$14,845	\$14,006	\$0	\$0	\$28,851	\$2,551	\$0	\$7,850	\$39,252	\$71
14.3	Administration Building	\$0	\$708	\$758	\$0	\$0	\$1,466	\$130	\$0	\$399	\$1,995	\$4
14.4	Circulation Water Pumphouse	\$0	\$203	\$163	\$0	\$0	\$366	\$32	\$0	\$100	\$498	\$1
14.5	Water Treatment Buildings	\$0	\$727	\$671	\$0	\$0	\$1,397	\$123	\$0	\$380	\$1,901	\$3
14.6	Machine Shop	\$0	\$474	\$322	\$0	\$0	\$796	\$69	\$0	\$216	\$1,081	\$2
14.7	Warehouse	\$0	\$321	\$326	\$0	\$0	\$647	\$57	\$0	\$176	\$880	\$2
14.8	Other Buildings & Structures	\$0	\$262	\$226	\$0	\$0	\$488	\$43	\$0	\$133	\$664	\$1
14.9	Waste Treating Building & Str.	\$0	\$502	\$1,542	\$0	\$0	\$2,044	\$190	\$0	\$559	\$2,793	\$5
SUBTOTAL 14.		\$0	\$28,314	\$27,159	\$0	\$0	\$55,473	\$4,908	\$0	\$15,095	\$75,476	\$137
TOTAL COST		\$531,770	\$55,835	\$308,367	\$0	\$0	\$895,972	\$81,005	\$0	\$123,197	\$1,100,174	\$2,000

Table A-5
Updated O&M Costs for DOE Bituminous Coal Baseline Case 9

INITIAL & ANNUAL O&M EXPENSES				Cost Base (Jan):	2012
Baseline Case 9 - 1x550 MWnet SubCritical PC				Heat Rate-net (Btu/kWh):	9,276
				MWe-net:	550
				Capacity Factor (%):	85
<u>OPERATING & MAINTENANCE LABOR</u>					
<u>Operating Labor</u>					
Operating Labor Rate (base):	40.30	\$/hour			
Operating Labor Burden:	30.00	% of base			
Labor O-H Charge Rate:	25.00	% of labor			
			Total		
Skilled Operator	2.0		2.0		
Operator	9.0		9.0		
Foreman	1.0		1.0		
Lab Tech's, etc.	2.0		2.0		
TOTAL-O.J.'s	14.0		14.0		
				Annual Cost	Annual Unit Cost
				\$	\$/kW-net
Annual Operating Labor Cost				\$6,425,110	\$11.681
Maintenance Labor Cost				\$7,203,494	\$13.096
Administrative & Support Labor				\$3,407,151	\$6.194
Property Taxes and Insurance				\$22,003,483	\$40.003
TOTAL FIXED OPERATING COSTS				\$39,039,238	\$70.974
<u>VARIABLE OPERATING COSTS</u>					
<u>Maintenance Material Cost</u>					\$/kWh-net
				\$10,805,241	\$0.00264
<u>Consumables</u>					
	<u>Initial Fill</u>	<u>Consumption</u>	<u>Unit Cost</u>	<u>Initial Fill Cost</u>	
		/Day			
Water (/1000 gallons)	0	4,245	1.51	\$0	\$1,992,367
Chemicals					
MU & WT Chem.(lbs)	0	20,549	0.24	\$0	\$1,543,093
Limestone (ton)	0	521	30.26	\$0	\$4,889,653
Carbon (Mercury Removal) (lb)	0	0	1.47	\$0	\$0
MEA Solvent (ton)	0	0.00	3,146.52	\$0	\$0
NaOH (tons)	0	0.00	606.51	\$0	\$0
H2SO4 (tons)	0	0.00	194.09	\$0	\$0
Corrosion Inhibitor	0	0	0.00	\$0	\$0
Activated Carbon (lb)	0	0	1.47	\$0	\$0
Ammonia (19% NH3) ton	0	78	298.21	\$0	\$7,205,519
Subtotal Chemicals				\$0	\$13,638,264
Other					
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0.00000
SCR Catalyst (m3)	w/equip.	0.33	8,077.80	\$0	\$828,824
Emission Penalties	0	0	0.00	\$0	\$0.00000
Subtotal Other				\$0	\$828,824
Waste Disposal					
Fly Ash (ton)	0	407	25.11	\$0	\$3,171,856
Bottom Ash (ton)	0	102	25.11	\$0	\$792,964
Subtotal-Waste Disposal				\$0	\$3,964,820
By-products & Emissions					
Gypsum (tons)	0	811	0.00	\$0	\$0.00000
Subtotal By-Products				\$0	\$0.00000
TOTAL VARIABLE OPERATING COSTS				\$0	\$31,229,517
Fuel (ton)	0	5,248	69.00	\$0	\$112,352,584
					\$0.02743

Table A-6
Summary of Updated Capital Costs for DOE Bituminous Coal Baseline Case 10

Client: Project:		TOTAL PLANT COST SUMMARY										Report Date: 2012-Aug-23	
Case: Plant Size:		Baseline Case 10 - 1x550 MW net SubCritical PC w/ CO2 Capture 550.0 MW.net Estimate Type: Conceptual											
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies		TOTAL PLANT COST		
				Direct	Indirect				Process	Project	\$	\$/kW	
1	COAL & SORBENT HANDLING	\$26,098	\$6,621	\$15,458	\$0	\$0	\$48,176	\$4,221	\$0	\$7,860	\$60,256	\$110	
2	COAL & SORBENT PREP & FEED	\$17,814	\$992	\$4,486	\$0	\$0	\$23,293	\$1,979	\$0	\$3,791	\$29,063	\$53	
3	FEEDWATER & MISC. BOP SYSTEMS	\$65,942	\$0	\$30,904	\$0	\$0	\$96,846	\$8,535	\$0	\$17,430	\$122,812	\$223	
4	PC BOILER & ACCESSORIES												
4.1	PC Boiler & Accessories	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$752	
4.2	SCR (w/4.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.4-4.9	Boiler BoP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SUBTOTAL 4		\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$752	
5	FLUE GAS CLEANUP	\$133,952	\$0	\$44,885	\$0	\$0	\$178,837	\$16,438	\$0	\$19,528	\$214,803	\$391	
5B	CO2 REMOVAL & COMPRESSION	\$324,867	\$0	\$99,921	\$0	\$0	\$424,788	\$39,002	\$70,598	\$106,878	\$641,265	\$1,166	
6	COMBUSTION TURBINE/ACCESSORIES												
6.1	Combustion Turbine Generator	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2-6.9	Combustion Turbine Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SUBTOTAL 6		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK												
7.1	Heat Recovery Steam Generator	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.2-7.9	HRSG Accessories, Ductwork and Stack	\$24,075	\$1,239	\$16,131	\$0	\$0	\$41,446	\$3,683	\$0	\$5,921	\$51,049	\$93	
SUBTOTAL 7		\$24,075	\$1,239	\$16,131	\$0	\$0	\$41,446	\$3,683	\$0	\$5,921	\$51,049	\$93	
8	STEAM TURBINE GENERATOR												
8.1	Steam TG & Accessories	\$73,004	\$0	\$8,429	\$0	\$0	\$81,433	\$7,081	\$0	\$8,851	\$97,365	\$177	
8.2-8.9	Turbine Plant Auxiliaries and Steam Piping	\$36,323	\$1,407	\$18,681	\$0	\$0	\$56,411	\$4,516	\$0	\$8,674	\$69,601	\$127	
SUBTOTAL 8		\$109,326	\$1,407	\$27,110	\$0	\$0	\$137,844	\$11,597	\$0	\$17,525	\$166,967	\$304	
9	COOLING WATER SYSTEM	\$27,590	\$13,342	\$24,066	\$0	\$0	\$64,998	\$5,893	\$0	\$9,521	\$80,413	\$146	
10	ASH/SPENT SORBENT HANDLING SYS	\$7,024	\$204	\$9,018	\$0	\$0	\$16,246	\$1,497	\$0	\$1,824	\$19,568	\$36	
11	ACCESSORY ELECTRIC PLANT	\$30,957	\$14,518	\$38,223	\$0	\$0	\$83,698	\$7,204	\$0	\$11,468	\$102,370	\$186	
12	INSTRUMENTATION & CONTROL	\$12,210	\$0	\$12,307	\$0	\$0	\$24,517	\$2,160	\$1,226	\$3,442	\$31,345	\$57	
13	IMPROVEMENTS TO SITE	\$3,837	\$2,206	\$8,227	\$0	\$0	\$14,269	\$1,409	\$0	\$3,136	\$18,814	\$34	
14	BUILDINGS & STRUCTURES	\$0	\$31,083	\$29,825	\$0	\$0	\$60,908	\$5,389	\$0	\$9,944	\$76,241	\$139	
TOTAL COST		\$992,992	\$71,611	\$494,810	\$0	\$0	\$1,559,412	\$141,576	\$71,823	\$255,880	\$2,028,692	\$3,688	

Table A-7

Detailed Updated Capital Costs for DOE Bituminous Coal Baseline Case 10

Client: Project:		TOTAL PLANT COST SUMMARY							Report Date: 2012-Aug-23			
Case: Plant Size:		Baseline Case 10 - 1x550 MW net SubCritical PC w/ CO2 Capture 550.0 MW.net					Estimate Type: Conceptual		Cost Base (Jan)	2012	($\times 1000$)	
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies		TOTAL PLANT COST	
				Direct	Indirect				Process	Project	\$	kW
	1 COAL & SORBENT HANDLING											
1.1	Coal Receive & Unload	\$5,337	\$0	\$2,416	\$0	\$0	\$7,753	\$671	\$0	\$1,264	\$9,688	\$18
1.2	Coal Stackout & Reclaim	\$6,897	\$0	\$1,549	\$0	\$0	\$8,446	\$715	\$0	\$1,374	\$10,535	\$19
1.3	Coal Conveyors	\$6,412	\$0	\$1,533	\$0	\$0	\$7,945	\$674	\$0	\$1,293	\$9,911	\$18
1.4	Other Coal Handling	\$1,678	\$0	\$355	\$0	\$0	\$2,032	\$172	\$0	\$331	\$2,535	\$5
1.5	Sorbent Receive & Unload	\$219	\$0	\$65	\$0	\$0	\$284	\$24	\$0	\$46	\$355	\$1
1.6	Sorbent Stackout & Reclaim	\$3,533	\$0	\$642	\$0	\$0	\$4,175	\$352	\$0	\$679	\$5,206	\$9
1.7	Sorbent Conveyors	\$1,261	\$271	\$306	\$0	\$0	\$1,838	\$154	\$0	\$299	\$2,291	\$4
1.8	Other Sorbent Handling	\$761	\$177	\$396	\$0	\$0	\$1,335	\$114	\$0	\$217	\$1,667	\$3
1.9	Coal & Sorbent Hnd.Foundations	\$0	\$6,172	\$8,196	\$0	\$0	\$14,368	\$1,345	\$0	\$2,357	\$18,070	\$33
	SUBTOTAL 1.	\$26,098	\$6,621	\$15,458	\$0	\$0	\$48,176	\$4,221	\$0	\$7,860	\$60,256	\$110
	2 COAL & SORBENT PREP & FEED											
2.1	Coal Crushing & Drying	\$3,107	\$0	\$600	\$0	\$0	\$3,707	\$313	\$0	\$603	\$4,622	\$8
2.2	Coal Conveyor to Storage	\$7,954	\$0	\$1,721	\$0	\$0	\$9,675	\$818	\$0	\$1,574	\$12,068	\$22
2.3	Coal Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.4	Misc.Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.5	Sorbent Prep Equipment	\$6,027	\$258	\$1,241	\$0	\$0	\$7,526	\$634	\$0	\$1,224	\$9,384	\$17
2.6	Sorbent Storage & Feed	\$726	\$0	\$276	\$0	\$0	\$1,002	\$86	\$0	\$163	\$1,251	\$2
2.7	Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.8	Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.9	Coal & Sorbent Feed Foundation	\$0	\$734	\$649	\$0	\$0	\$1,383	\$128	\$0	\$227	\$1,738	\$3
	SUBTOTAL 2.	\$17,814	\$992	\$4,486	\$0	\$0	\$23,293	\$1,979	\$0	\$3,791	\$29,063	\$53
	3 FEEDWATER & MISC.BOP SYSTEMS											
3.1	Feedwater System	\$25,393	\$0	\$8,691	\$0	\$0	\$34,084	\$2,891	\$0	\$5,546	\$42,521	\$77
3.2	Water Makeup & Pretreating	\$9,448	\$0	\$2,948	\$0	\$0	\$12,396	\$1,116	\$0	\$2,702	\$16,215	\$29
3.3	Other Feedwater Subsystems	\$8,614	\$0	\$3,481	\$0	\$0	\$12,095	\$1,023	\$0	\$1,968	\$15,086	\$27
3.4	Service Water Systems	\$1,887	\$0	\$977	\$0	\$0	\$2,864	\$254	\$0	\$624	\$3,741	\$7
3.5	Other Boiler Plant Systems	\$10,408	\$0	\$9,740	\$0	\$0	\$20,148	\$1,815	\$0	\$3,294	\$25,257	\$46
3.6	FO Supply Sys & Nat Gas	\$367	\$0	\$425	\$0	\$0	\$792	\$70	\$0	\$129	\$991	\$2
3.7	Waste Treatment Equipment	\$6,226	\$0	\$3,540	\$0	\$0	\$9,766	\$925	\$0	\$2,138	\$12,829	\$23
3.8	Misc. Equip.(cranes,AirComp.,Comm.)	\$3,599	\$0	\$1,102	\$0	\$0	\$4,701	\$441	\$0	\$1,028	\$6,171	\$11
	SUBTOTAL 3.	\$65,942	\$0	\$30,904	\$0	\$0	\$96,846	\$8,535	\$0	\$17,430	\$122,812	\$223
	4 PC BOILER & ACCESSORIES											
4.1	PC Boiler & Accessories	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$752
4.2	SCR (w/4.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.4	Boiler BoP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.5	Primary Air System	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.6	Secondary Air System	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.8	Major Component Rigging	\$0	w/4.1	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.9	Boiler Foundations	\$0	w/14.1	w/14.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 4.	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$752
	5 FLUE GAS CLEANUP											
5.1	Absorber Vessels & Accessories	\$93,027	\$0	\$19,635	\$0	\$0	\$112,662	\$10,299	\$0	\$12,296	\$135,257	\$246
5.2	Other FGD	\$4,855	\$0	\$5,394	\$0	\$0	\$10,248	\$960	\$0	\$1,121	\$12,329	\$22
5.3	Bag House & Accessories	\$26,873	\$0	\$16,720	\$0	\$0	\$43,593	\$4,045	\$0	\$4,764	\$52,401	\$95
5.4	Other Particulate Removal Materials	\$1,819	\$0	\$1,908	\$0	\$0	\$3,726	\$349	\$0	\$408	\$4,483	\$8
5.5	Gypsum Dewatering System	\$7,379	\$0	\$1,229	\$0	\$0	\$8,608	\$785	\$0	\$939	\$10,332	\$19
5.6	Mercury Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
5.9	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 5.	\$133,952	\$0	\$44,885	\$0	\$0	\$178,837	\$16,438	\$0	\$19,528	\$214,803	\$391
	5B CO2 REMOVAL & COMPRESSION											
5B.1	CO2 Removal System	\$272,013	\$0	\$80,975	\$0	\$0	\$352,988	\$32,396	\$70,598	\$91,196	\$547,178	\$995
5B.2	CO2 Compression & Drying	\$52,854	\$0	\$18,946	\$0	\$0	\$71,800	\$6,606	\$0	\$15,681	\$94,087	\$171
	SUBTOTAL 5B.	\$324,867	\$0	\$99,921	\$0	\$0	\$424,788	\$39,002	\$70,598	\$106,878	\$641,265	\$1,166

Client: Project:	EPRI Post-Combustion CO2 Capture	Report Date:	2012-Aug-23									
TOTAL PLANT COST SUMMARY												
Case: Plant Size:	Baseline Case 10 - 1x550 MWnet SubCritical PC w/ CO2 Capture 550.0 MW,net	Estimate Type:	Conceptual									
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sales Tax	Bare Erected Cost \$	Eng'g CM H.O.& Fee	Contingencies	Cost Base (Jan)	2012	(-\$1000)
				Direct	Indirect			Process	Project	\$	\$/kW	
6 COMBUSTION TURBINE/ACCESSORIES												
6.1	Combustion Turbine Generator	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
6.2	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
6.3	Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
6.9	Combustion Turbine Foundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
SUBTOTAL 6.		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
7 HRSG, DUCTING & STACK												
7.1	Heat Recovery Steam Generator	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
7.2	HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
7.3	Ductwork	\$12,476	\$0	\$7,995	\$0	\$0	\$20,471	\$1,737	\$0	\$3,331	\$25,539	
7.4	Stack	\$11,599	\$0	\$6,654	\$0	\$0	\$18,253	\$1,691	\$0	\$1,994	\$21,939	
7.9	Duct & Stack Foundations	\$0	\$1,239	\$1,482	\$0	\$0	\$2,721	\$254	\$0	\$595	\$3,571	
SUBTOTAL 7.		\$24,075	\$1,239	\$16,131	\$0	\$0	\$41,446	\$3,683	\$0	\$5,921	\$51,049	
8 STEAM TURBINE GENERATOR												
8.1	Steam TG & Accessories	\$73,004	\$0	\$8,429	\$0	\$0	\$81,433	\$7,081	\$0	\$8,851	\$97,365	
8.2	Turbine Plant Auxiliaries	\$481	\$0	\$1,011	\$0	\$0	\$1,492	\$141	\$0	\$163	\$1,797	
8.3	Condenser & Auxiliaries	\$7,662	\$0	\$3,111	\$0	\$0	\$10,773	\$993	\$0	\$1,177	\$12,943	
8.4	Steam Piping	\$28,180	\$0	\$12,219	\$0	\$0	\$40,399	\$3,030	\$0	\$6,514	\$49,943	
8.9	TG Foundations	\$0	\$1,407	\$2,340	\$0	\$0	\$3,747	\$352	\$0	\$820	\$4,919	
SUBTOTAL 8.		\$109,328	\$1,407	\$27,110	\$0	\$0	\$137,844	\$11,597	\$0	\$17,525	\$166,967	
9 COOLING WATER SYSTEM												
9.1	Cooling Towers	\$20,745	\$0	\$6,334	\$0	\$0	\$27,079	\$2,486	\$0	\$2,957	\$32,522	
9.2	Circulating Water Pumps	\$4,077	\$0	\$318	\$0	\$0	\$4,395	\$375	\$0	\$477	\$5,247	
9.3	Circ.Water System Auxiliaries	\$1,045	\$0	\$137	\$0	\$0	\$1,181	\$108	\$0	\$129	\$1,418	
9.4	Circ.Water Piping	\$0	\$8,766	\$7,871	\$0	\$0	\$16,637	\$1,459	\$0	\$2,714	\$20,811	
9.5	Make-up Water System	\$872	\$0	\$1,109	\$0	\$0	\$1,982	\$181	\$0	\$324	\$2,487	
9.6	Component Cooling Water Sys	\$850	\$0	\$646	\$0	\$0	\$1,496	\$135	\$0	\$245	\$1,875	
9.9	Circ.Water System Foundations& Structures	\$0	\$4,576	\$7,652	\$0	\$0	\$12,228	\$1,150	\$0	\$2,676	\$16,054	
SUBTOTAL 9.		\$27,590	\$13,342	\$24,066	\$0	\$0	\$64,998	\$5,893	\$0	\$9,521	\$80,413	
10 ASH/SPENT SORBENT HANDLING SYS												
10.1	Ash Coolers	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.2	Cyclone Ash Letdown	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.3	HGCU Ash Letdown	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.4	High Temperature Ash Piping	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.5	Other Ash Recovery Equipment	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.6	Ash Storage Silos	\$921	\$0	\$2,781	\$0	\$0	\$3,701	\$352	\$0	\$405	\$4,459	
10.7	Ash Transport & Feed Equipment	\$6,104	\$0	\$5,985	\$0	\$0	\$12,088	\$1,102	\$0	\$1,319	\$14,510	
10.8	Misc. Ash Handling Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
10.9	Ash/Spent Sorbent Foundation	\$0	\$204	\$253	\$0	\$0	\$456	\$43	\$0	\$100	\$599	
SUBTOTAL 10.		\$7,024	\$204	\$9,018	\$0	\$0	\$16,246	\$1,497	\$0	\$1,824	\$19,568	

Client:	EPRI	Report Date:	2012-Aug-23								
Project:	Post-Combustion CO2 Capture										
Case:	Baseline Case 10 - 1x550 MWnet SubCritical PC w/ CO2 Capture										
Plant Size:	550.0 MW, net	Estimate Type:	Conceptual								
TOTAL PLANT COST SUMMARY											
		Cost Base (Jan)	2012 (\$x1000)								
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sales Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Contingencies Project	TOTAL PLANT COST \$	TOTAL PLANT COST \$/kW
				Direct	Indirect						
	11 ACCESSORY ELECTRIC PLANT										
11.1	Generator Equipment	\$2,139	\$0	\$345	\$0	\$0	\$2,484	\$223	\$0	\$203	\$2,911 \$5
11.2	Station Service Equipment	\$6,098	\$0	\$2,065	\$0	\$0	\$8,163	\$761	\$0	\$669	\$9,592 \$17
11.3	Switchgear & Motor Control	\$6,999	\$0	\$1,228	\$0	\$0	\$8,227	\$764	\$0	\$899	\$9,890 \$18
11.4	Conduit & Cable Tray	\$0	\$4,889	\$15,662	\$0	\$0	\$20,550	\$1,905	\$0	\$3,368	\$25,824 \$47
11.5	Wire & Cable	\$0	\$9,227	\$16,499	\$0	\$0	\$25,726	\$2,057	\$0	\$4,167	\$31,950 \$58
11.6	Protective Equipment	\$320	\$0	\$1,121	\$0	\$0	\$1,441	\$138	\$0	\$158	\$1,736 \$3
11.7	Standby Equipment	\$1,622	\$0	\$38	\$0	\$0	\$1,661	\$153	\$0	\$181	\$1,995 \$4
11.8	Main Power Transformers	\$13,779	\$0	\$233	\$0	\$0	\$14,011	\$1,068	\$0	\$1,508	\$16,587 \$30
11.9	Electrical Foundations	\$0	\$403	\$1,033	\$0	\$0	\$1,435	\$135	\$0	\$314	\$1,885 \$3
	SUBTOTAL 11.	\$30,957	\$14,518	\$38,223	\$0	\$0	\$83,698	\$7,204	\$0	\$11,468	\$102,370 \$186
	12 INSTRUMENTATION & CONTROL										
12.1	PC Control Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.2	Combustion Turbine Control	N/A	\$0	N/A	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.3	Steam Turbine Control	w/8.1	\$0	w/8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.4	Other Major Component Control	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.5	Signal Processing Equipment	w/12.7	\$0	w/12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0
12.6	Control Boards, Panels & Racks	\$606	\$0	\$374	\$0	\$0	\$981	\$92	\$49	\$168	\$1,290 \$2
12.7	Distributed Control System Equipment	\$6,122	\$0	\$1,103	\$0	\$0	\$7,225	\$670	\$361	\$826	\$9,081 \$17
12.8	Instrument Wiring & Tubing	\$3,751	\$0	\$6,785	\$0	\$0	\$10,536	\$848	\$527	\$1,787	\$13,697 \$25
12.9	Other I & C Equipment	\$1,730	\$0	\$4,046	\$0	\$0	\$5,776	\$551	\$289	\$662	\$7,277 \$13
	SUBTOTAL 12.	\$12,210	\$0	\$12,307	\$0	\$0	\$24,517	\$2,160	\$1,226	\$3,442	\$31,345 \$57
	13 IMPROVEMENTS TO SITE										
13.1	Site Preparation	\$0	\$65	\$1,372	\$0	\$0	\$1,437	\$139	\$0	\$315	\$1,891 \$3
13.2	Site Improvements	\$0	\$2,141	\$2,829	\$0	\$0	\$4,970	\$491	\$0	\$1,092	\$6,553 \$12
13.3	Site Facilities	\$3,837	\$0	\$4,026	\$0	\$0	\$7,862	\$779	\$0	\$1,728	\$10,369 \$19
	SUBTOTAL 13.	\$3,837	\$2,206	\$8,227	\$0	\$0	\$14,269	\$1,409	\$0	\$3,136	\$18,814 \$34
	14 BUILDINGS & STRUCTURES										
14.1	Boiler Building	\$0	\$11,044	\$9,832	\$0	\$0	\$20,876	\$1,841	\$0	\$3,407	\$26,124 \$47
14.2	Turbine Building	\$0	\$16,183	\$15,268	\$0	\$0	\$31,451	\$2,780	\$0	\$5,135	\$39,366 \$72
14.3	Administration Building	\$0	\$780	\$834	\$0	\$0	\$1,614	\$144	\$0	\$264	\$2,021 \$4
14.4	Circulation Water Pumphouse	\$0	\$213	\$171	\$0	\$0	\$384	\$34	\$0	\$63	\$480 \$1
14.5	Water Treatment Buildings	\$0	\$1,148	\$1,059	\$0	\$0	\$2,207	\$195	\$0	\$360	\$2,762 \$5
14.6	Machine Shop	\$0	\$521	\$355	\$0	\$0	\$876	\$76	\$0	\$143	\$1,095 \$2
14.7	Warehouse	\$0	\$353	\$359	\$0	\$0	\$712	\$63	\$0	\$116	\$892 \$2
14.8	Other Buildings & Structures	\$0	\$289	\$249	\$0	\$0	\$537	\$47	\$0	\$88	\$673 \$1
14.9	Waste Treating Building & Str.	\$0	\$553	\$1,698	\$0	\$0	\$2,251	\$209	\$0	\$369	\$2,829 \$5
	SUBTOTAL 14.	\$0	\$31,083	\$29,825	\$0	\$0	\$60,908	\$5,389	\$0	\$9,944	\$76,241 \$139
	TOTAL COST	\$992,992	\$71,611	\$494,810	\$0	\$0	\$1,559,412	\$141,576	\$71,823	\$255,880	\$2,028,692 \$3,688

Table A-8
Updated O&M Costs for DOE Bituminous Coal Baseline Case 10

INITIAL & ANNUAL O&M EXPENSES				Cost Base (Jan):	2012
Baseline Case 10 - 1x550 MWnet SubCritical PC w/ CO2 Capture				Heat Rate-net (Btu/kWh):	13,044
				MWe-net:	550
				Capacity Factor (%):	85
<u>OPERATING & MAINTENANCE LABOR</u>					
<u>Operating Labor</u>					
Operating Labor Rate (base):	40.30	\$/hour			
Operating Labor Burden:	30.00	% of base			
Labor O-H Charge Rate:	25.00	% of labor			
			Total		
Skilled Operator	2.0		2.0		
Operator	11.3		11.3		
Foreman	1.0		1.0		
Lab Tech's, etc.	2.0		2.0		
TOTAL-O.J.'s	16.3		16.3		
				Annual Cost	Annual Unit Cost
Annual Operating Labor Cost				\$	\$/kW-net
Maintenance Labor Cost				\$7,495,808	\$13,628
Administrative & Support Labor				\$13,055,660	\$23,737
Property Taxes and Insurance				\$5,137,867	\$9,341
TOTAL FIXED OPERATING COSTS				\$40,573,838	\$73,769
				\$66,263,173	\$120,476
<u>VARIABLE OPERATING COSTS</u>					
<u>Maintenance Material Cost</u>					\$/kWh-net
<u>Consumables</u>				\$19,583,490	\$0.00478
Water (/1000 gallons)	0	8,081	1.51	\$0	\$3,792,796
Chemicals					\$0.00093
MU & WT Chem.(lbs)	0	39,119	0.24	\$0	\$2,937,530
Limestone (ton)	0	751	30.26	\$0	\$7,053,251
Carbon (Mercury Removal) (lb)	0	0	1.47	\$0	\$0
MEA Solvent (ton)	1,117	1.58	3,146.52	\$3,514,864	\$1,546,159
NaOH (tons)	79	7.89	606.51	\$47,859	\$1,484,821
H2SO4 (tons)	75	7.53	194.09	\$14,615	\$453,426
Corrosion Inhibitor	0	0	0.00	\$206,727	\$9,844
Activated Carbon (lb)	0	1,892	1.47	\$0	\$862,097
Ammonia (19% NH3) ton	0	110	298.21	\$0	\$10,215,405
Subtotal Chemicals				\$3,784,064	\$24,562,533
Other					\$0.00600
Supplemental Fuel (MBtu)	0	0	0.00	\$0	\$0
SCR Catalyst (m3)	w/equip.	0.46	8,077.80	\$0	\$1,162,897
Emission Penalties	0	0	0.00	\$0	\$0
Subtotal Other				\$0	\$1,162,897
					\$0.00028
<u>Waste Disposal</u>					
Fly Ash (ton)	0	572	25.11	\$0	\$4,459,927
Bottom Ash (ton)	0	143	25.11	\$0	\$1,114,982
Subtotal-Waste Disposal				\$0	\$5,574,909
					\$0.00136
<u>By-products & Emissions</u>					
Gypsum (tons)	0	1,159	0.00	\$0	\$0
Subtotal By-Products				\$0	\$0.00000
TOTAL VARIABLE OPERATING COSTS				\$3,784,064	\$54,676,626
					\$0.01335
Fuel (ton)	0	7,380	69.00	\$0	\$157,979,789
					\$0.03858

Table A-9
Summary of Capital Costs for UK CAER + MEA Case

Client: Project:		TOTAL PLANT COST SUMMARY								Report Date: 2020-March-30		
Case: Plant Size:		SubCritical PC w/ CO2 Capture - MEA 580.9 MW, net				Estimate Type: Conceptual		Cost Base (Jan)		2012	(\$x1000)	
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies		TOTAL PLANT COST	
				Direct	Indirect				Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING	\$26,077	\$6,619	\$15,454	\$0	\$0	\$48,150	\$4,218	\$0	\$7,856	\$60,224	\$104
2	COAL & SORBENT PREP & FEED	\$17,787	\$988	\$4,478	\$0	\$0	\$23,253	\$1,976	\$0	\$3,786	\$29,015	\$50
3	FEEDWATER & MISC. BOP SYSTEM	\$65,205	\$0	\$30,624	\$0	\$0	\$95,829	\$8,445	\$0	\$17,247	\$121,521	\$209
4	PC BOILER & ACCESSORIES											
4.1	PC Boiler & Accessories	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$712
4.2	SCR (w/ 4.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.4-4.9	Boiler BoP (w/ID Fans)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 4	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$712
5	FLUE GAS CLEANUP	\$117,815	\$0	\$39,245	\$0	\$0	\$157,060	\$14,436	\$0	\$17,150	\$188,646	
5B	CO2 REMOVAL & COMPRESSION	\$221,689	\$0	\$140,032	\$0	\$0	\$361,721	\$33,572	\$58,006	\$90,660	\$543,959	\$936
6	COMBUSTION TURBINE/ACCESSORIES											
6.1	Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2-6.9	Combustion Turbine Other	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
	SUBTOTAL 6	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	HRSG, DUCTING & STACK											
7.1	Heat recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.2-7.9	HRSG Accessories, Ductwork and Stack	\$24,955	\$1,285	\$16,720	\$0	\$0	\$42,960	\$3,817	\$0	\$6,137	\$52,914	\$91
	SUBTOTAL 7	\$24,955	\$1,285	\$16,720	\$0	\$0	\$42,960	\$3,817	\$0	\$6,137	\$52,914	\$91
8	STEM TURBINE GENERATOR											
8.1	Steam TG and Accessories	\$74,990	\$0	\$8,658	\$0	\$0	\$83,649	\$7,274	\$0	\$9,092	\$100,014	\$172
8.2-8.9	Turbine Plant Auxiliaries and Steam Piping	\$36,283	\$1,446	\$18,835	\$0	\$0	\$56,564	\$4,531	\$0	\$8,702	\$69,797	\$120
	SUBTOTAL 8	\$111,273	\$1,446	\$27,493	\$0	\$0	\$140,213	\$11,804	\$0	\$17,794	\$169,811	\$292
9	COOLING WATER SYSTEM	\$21,813	\$10,808	\$19,483	\$0	\$0	\$52,104	\$4,724	\$0	\$7,672	\$64,500	\$111
10	ASH/SPENT SORBENT HANDLING SYS	\$7,025	\$204	\$9,019	\$0	\$0	\$16,248	\$1,497	\$0	\$1,824	\$19,569	\$34
11	ACCESSORY ELECTRIC PLANT	\$30,653	\$14,300	\$37,668	\$0	\$0	\$82,621	\$7,112	\$0	\$11,315	\$101,048	\$174
12	INSTRUMENTATION & CONTROL	\$12,149	\$0	\$12,247	\$0	\$0	\$24,396	\$2,150	\$1,327	\$3,426	\$31,299	\$54
13	IMPROVEMENTS TO SITE	\$3,886	\$2,233	\$8,332	\$0	\$0	\$14,451	\$1,427	\$0	\$3,175	\$19,053	\$33
14	BUILDINGS & STRUCTURE	\$0	\$31,504	\$30,224	\$0	\$0	\$61,728	\$5,463	\$0	\$10,078	\$77,269	\$133
	TOTAL COST	\$869,625	\$69,387	\$525,269	\$0	\$0	\$1,464,280	\$133,209	\$59,333	\$235,732	\$1,892,555	\$3,258

Table A-10
Detailed Capital Costs for UK CAER + MEA Case

Client: Project:		EPRI University of Kentucky Post-Combustion CO2 Capture Study						Report Date: 2020-March-30				
Case: Plant Size:		SubCritical PC w/ CO2 Capture - MEA 580.9 MW, net						Estimate Type: Conceptual		Cost Base (Jan)	2012	(x1000)
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Contingencies Project	TOTAL PLANT COST \$	TOTAL PLANT COST \$/kW
1 COAL & SORBENT HANDLING												
1.1 Coal Receive and Unload		\$5,337	\$0	\$2,416	\$0	\$0	\$7,753	\$671	\$0	\$1,264	\$9,688	\$16.7
1.2 Coal Stack out and Reclaim		\$6,897	\$0	\$1,549	\$0	\$0	\$8,446	\$715	\$0	\$1,374	\$10,535	\$18.1
1.3 Coal Conveyors		\$6,412	\$0	\$1,533	\$0	\$0	\$7,945	\$674	\$0	\$1,293	\$9,912	\$17.1
1.4 Other Coal Handling		\$1,678	\$0	\$355	\$0	\$0	\$2,033	\$172	\$0	\$331	\$2,536	\$4.4
1.5 Sorbent Receive and Unload		\$219	\$0	\$65	\$0	\$0	\$284	\$24	\$0	\$46	\$354	\$0.6
1.6 Sorbent stack out and Reclaim		\$3,519	\$0	\$639	\$0	\$0	\$4,158	\$350	\$0	\$676	\$5,184	\$8.9
1.7 Sorbent Conveyors		\$1,256	\$270	\$305	\$0	\$0	\$1,831	\$153	\$0	\$298	\$2,282	\$3.9
1.8 Other Sorbent Handling		\$759	\$177	\$396	\$0	\$0	\$1,332	\$114	\$0	\$217	\$1,663	\$2.9
1.9 Coal and Sorbent Handling Foundations		\$0	\$6,172	\$8,196	\$0	\$0	\$14,368	\$1,345	\$0	\$2,357	\$18,070	\$31.1
	Subtotal 1.	\$26,077	\$6,619	\$15,454	\$0	\$0	\$48,150	\$4,218	\$0	\$7,856	\$60,224	\$104
2 COAL & SORBENT PREP & FEED												
2.1 Coal Crushing and Drying		\$3,107	\$0	\$600	\$0	\$0	\$3,707	\$313	\$0	\$603	\$4,623	\$8.0
2.2 Coal Conveyor to Storage		\$7,954	\$0	\$1,721	\$0	\$0	\$9,675	\$818	\$0	\$1,574	\$12,067	\$20.8
2.3 Coal Injection System		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.4 Misc. Coal Prep & Feed		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.5 Sorbent Prep Equipment		\$6,003	\$257	\$1,236	\$0	\$0	\$7,496	\$631	\$0	\$1,219	\$9,346	\$16.1
2.6 Sorbent Storage and Feed		\$723	\$0	\$275	\$0	\$0	\$998	\$86	\$0	\$163	\$1,247	\$2.1
2.7 Sorbent Injection System		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.8 Booster Air Supply System		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.9 Coal and Sorbent Feed Foundation		\$0	\$731	\$646	\$0	\$0	\$1,377	\$128	\$0	\$227	\$1,732	\$3.0
	Subtotal 2.	\$17,787	\$988	\$4,478	\$0	\$0	\$23,253	\$1,976	\$0	\$3,786	\$29,015	\$50
3 FEEDWATER & MISC. BOP SYSTEM												
3.1 Feedwater System		\$25,001	\$0	\$8,556	\$0	\$0	\$33,557	\$2,846	\$0	\$5,461	\$41,864	\$72.1
3.2 Water Makeup and Pretreating		\$9,300	\$0	\$2,902	\$0	\$0	\$12,202	\$1,098	\$0	\$2,660	\$15,960	\$27.5
3.3 Other Feedwater Subsystems		\$8,481	\$0	\$3,427	\$0	\$0	\$11,908	\$1,007	\$0	\$1,937	\$14,852	\$25.6
3.4 Service Water Systems		\$1,857	\$0	\$962	\$0	\$0	\$2,819	\$250	\$0	\$614	\$3,683	\$6.3
3.5 Other Boiler Plant Systems		\$10,408	\$0	\$9,740	\$0	\$0	\$20,148	\$1,815	\$0	\$3,294	\$25,257	\$43.5
3.6 FO Supply System and Natural Gas		\$373	\$0	\$432	\$0	\$0	\$805	\$71	\$0	\$131	\$1,007	\$1.7
3.7 Waste Treatment Equipment		\$6,129	\$0	\$3,485	\$0	\$0	\$9,614	\$910	\$0	\$2,105	\$12,629	\$21.7
3.8 Misc. Equip. (Cranes, air comp, comm.)		\$3,656	\$0	\$1,120	\$0	\$0	\$4,776	\$448	\$0	\$1,045	\$6,269	\$10.8
	Subtotal 3.	\$65,205	\$0	\$30,624	\$0	\$0	\$95,829	\$8,445	\$0	\$17,247	\$121,521	\$209
4 PC BOILER & ACCESSORIES												
4.1 PC Boiler & Accessories		\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$712.3
4.2 SCR (w/ 4.1)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.3 Open		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.4 Boiler BoP (w/ ID Fans)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.5 Primary Air System		w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.6 Secondary Air System		w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.8 Major Component Rigging		\$0	w/4.1	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.9 Boiler Foundations		\$0	w/4.1	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
	Subtotal 4.	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$712

Client: Project:	EPRI University of Kentucky Post-Combustion CO2 Capture Study	Report Date: 2020-March-30									
Case: Plant Size:	SubCritical PC w/ CO2 Capture - MEA 580.9 MW, net	TOTAL PLANT COST SUMMARY									
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies	Cost Base (Jan)	2012	(\$x1000)
5 FLUE GAS CLEANUP											
5.1 Absorber Vessel and Accessories	\$81,343	\$0	\$17,168	\$0	\$0	\$98,511	\$9,006	\$0	\$10,752	\$118,269	\$203.6
5.2 Other FGD	\$4,245	\$0	\$4,716	\$0	\$0	\$8,961	\$840	\$0	\$980	\$10,781	\$18.6
5.3 Bag House and Accessories	\$23,273	\$0	\$14,480	\$0	\$0	\$37,753	\$3,503	\$0	\$4,126	\$45,382	\$78.1
5.4 Oter Particulate Removal Materials	\$1,575	\$0	\$1,652	\$0	\$0	\$3,227	\$302	\$0	\$353	\$3,882	\$6.7
5.5 Gypsum Dewatering System	\$7,379	\$0	\$1,229	\$0	\$0	\$8,608	\$785	\$0	\$939	\$10,332	\$17.8
5.6 Mercury Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
5.9 Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
Subtotal 5.	\$117,815	\$0	\$39,245	\$0	\$0	\$157,060	\$14,438	\$0	\$17,150	\$188,646	\$325
5B CO2 REMOVAL & COMPRESSION											
5B.1 CO2 Removal System	\$168,757	\$0	\$121,275	\$0	\$0	\$290,032	\$26,977	\$58,006	\$75,003	\$450,018	\$774.7
5B.2 CO2 Compression & Drying	\$52,932	\$0	\$18,757	\$0	\$0	\$71,689	\$6,595	\$0	\$15,657	\$93,941	\$161.7
Subtotal 5B.	\$221,689	\$0	\$140,032	\$0	\$0	\$361,721	\$33,572	\$58,006	\$90,660	\$543,959	\$936
6 COMBUSTION TURBINE/ACCESSORIES											
6.1 Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
6.2 Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
6.3 Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
6.9 Combustion Turbine Fundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
Subtotal 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7 HRSG, DUCTING & STACK											
7.1 Heat recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0.00	\$0	\$0	\$0	\$0.0
7.2 HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0.00	\$0	\$0	\$0	\$0.0
7.3 Ductwork	\$12,932	\$0	\$8,287	\$0	\$0	\$21,219	\$1,800	\$0	\$3,453	\$26,472	\$45.6
7.4 Stack	\$12,023	\$0	\$6,897	\$0	\$0	\$18,920	\$1,753	\$0	\$2,067	\$22,740	\$39.1
7.9 Duct and Stack Foundations	\$0	\$1,285	\$1,536	\$0	\$0	\$2,821	\$264.00	\$0	\$617	\$3,702	\$6.4
Subtotal 7.	\$24,955	\$1,285	\$16,720	\$0	\$0	\$42,960	\$3,817	\$0	\$6,137	\$52,914	\$91
8 STEM TURBINE GENERATOR											
8.1 Steam TG and Accessories	\$74,990	\$0	\$8,658	\$0	\$0	\$83,649	\$7,273.67	\$0	\$9,092	\$100,014	\$172.2
8.2 Turbine Plant Auxiliaries	\$494	\$0	\$1,039	\$0	\$0	\$1,533	\$144.84	\$0	\$167	\$1,845	\$3.2
8.3 Condenser & Auxiliaries	\$7,609	\$0	\$3,173	\$0	\$0	\$10,782	\$994.00	\$0	\$1,178	\$12,954	\$22.3
8.4 Steam Piping	\$28,180	\$0	\$12,219	\$0	\$0	\$40,399	\$3,030.00	\$0	\$6,514	\$49,943	\$86.0
8.9 TG Foundations	\$0	\$1,446	\$2,405	\$0	\$0	\$3,850	\$361.72	\$0	\$843	\$5,055	\$8.7
Subtotal 8.	\$111,273	\$1,446	\$27,493	\$0	\$0	\$140,213	\$11,804	\$0	\$17,794	\$169,811	\$292
9 COOLING WATER SYSTEM											
9.1 Cooling Towers	\$16,227	\$0	\$4,954	\$0	\$0	\$21,181	\$1,945.00	\$0	\$2,313	\$25,439	\$43.8
9.2 Circulating Water Pumps	\$3,189	\$0	\$224	\$0	\$0	\$3,413	\$291.00	\$0	\$370	\$4,074	\$7.0
9.3 Circulating Water System Auxiliaries	\$847	\$0	\$111	\$0	\$0	\$958	\$87.00	\$0	\$104	\$1,149	\$2.0
9.4 Circualting Water Piping	\$0	\$7,101	\$6,377	\$0	\$0	\$13,478	\$1,182.00	\$0	\$2,199	\$16,859	\$29.0
9.5 Make-up Water System	\$861	\$0	\$1,095	\$0	\$0	\$1,956	\$179.00	\$0	\$320	\$2,455	\$4.2
9.6 Component Cooling Water System	\$689	\$0	\$523	\$0	\$0	\$1,212	\$109.00	\$0	\$198	\$1,519	\$2.6
9.9 Circulating Water Foundations and Structures	\$0	\$3,707	\$6,199	\$0	\$0	\$9,906	\$931.00	\$0	\$2,168	\$13,005	\$22.4
Subtotal 9.	\$21,813	\$10,808	\$19,483	\$0	\$0	\$52,104	\$4,724	\$0	\$7,672	\$64,500	\$111

Client: Project:	EPRI University of Kentucky Post-Combustion CO2 Capture Study	Report Date: 2020-March-30									
Case: Plant Size:	SubCritical PC w/ CO2 Capture - MEA 580.9 MW, net	TOTAL PLANT COST SUMMARY									
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies	Cost Base (Jan)	2012	(\$x1000)
				Direct	Indirect			Process	Project	\$	\$/kW
10.2 Cyclone ash Letdown	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
10.3 HGCU Ash Letdown	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
10.4 High Temperature Ash Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
10.5 Other Ash Recovery Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
10.6 Ash Storage Silos	\$921	\$0	\$2,781	\$0	\$0	\$3,702	\$352	\$0	\$405	\$4,459	\$7.7
10.7 Ash Transport and Feed Equipment	\$6,104	\$0	\$5,985	\$0	\$0	\$12,089	\$1,102	\$0	\$1,319	\$14,510	\$25.0
10.8 Misc. Ash Handling Equipment	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
10.9 Ash/Spent Sorbent Foundations	\$0	\$204	\$253	\$0	\$0	\$457	\$43	\$0	\$100	\$600	\$1.0
Subtotal 10.	\$7,025	\$204	\$9,019	\$0	\$0	\$16,248	\$1,497	\$0	\$1,824	\$19,569	\$34
11 ACCESSORY ELECTRIC PLANT											
11.1 Generator Equipment	\$2,186	\$0	\$353	\$0	\$0	\$2,539	\$228	\$0	\$207	\$2,974	\$5.1
11.2 Station Service Equipment	\$5,999	\$0	\$2,031	\$0	\$0	\$8,030	\$749	\$0	\$658	\$9,437	\$16.2
11.3 Switchgear and Motor Control	\$6,885	\$0	\$1,208	\$0	\$0	\$8,093	\$752	\$0	\$884	\$9,729	\$16.7
11.4 Conduit and Cable Tray	\$0	\$4,809	\$15,407	\$0	\$0	\$20,216	\$1,874	\$0	\$3,313	\$25,403	\$43.7
11.5 Wire and Cable	\$0	\$9,077	\$16,230	\$0	\$0	\$25,307	\$2,024	\$0	\$4,099	\$31,430	\$54.1
11.6 Protective Equipment	\$315	\$0	\$1,103	\$0	\$0	\$1,418	\$136	\$0	\$155	\$1,709	\$2.9
11.7 Standby Equipment	\$1,651	\$0	\$39	\$0	\$0	\$1,690	\$156	\$0	\$184	\$2,029	\$3.5
11.8 Main Power Transformers	\$13,617	\$0	\$237	\$0	\$0	\$13,854	\$1,056	\$0	\$1,491	\$16,401	\$28.2
11.9 Electrical Foundations	\$0	\$414	\$1,061	\$0	\$0	\$1,475	\$139	\$0	\$322	\$1,936	\$3.3
Subtotal 11.	\$30,653	\$14,300	\$37,668	\$0	\$0	\$82,621	\$7,112	\$0	\$11,315	\$101,048	\$174
12 INSTRUMENTATION & CONTROL											
12.1 PC Control Equipment	w 12.7	\$0	w 12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
12.2 Combustion Turbine Control	NA	\$0	NA	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
12.3 Steam Turbine Control	w 8.1	\$0	w 8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
12.4 Other Major Component Control	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
12.5 Signal Processing Equipment	w 12.7	\$0	w 12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
12.6 Control Boards, Panels, and Racks	\$603	\$0	\$372	\$0	\$0	\$975	\$92	\$53	\$167	\$1,287	\$2.2
12.7 Distributed Control System Equipment	\$6,092	\$0	\$1,098	\$0	\$0	\$7,189	\$667	\$393	\$822	\$9,071	\$15.6
12.8 Instrument Wiring and Tubing	\$3,732	\$0	\$6,751	\$0	\$0	\$10,484	\$844	\$566	\$1,778	\$13,672	\$23.5
12.9 Other I&C Equipment	\$1,721	\$0	\$4,026	\$0	\$0	\$5,747	\$548	\$315	\$659	\$7,269	\$12.5
Subtotal 12.	\$12,149	\$0	\$12,247	\$0	\$0	\$24,396	\$2,150	\$1,327	\$3,426	\$31,299	\$54
13 IMPROVEMENTS TO SITE											
13.1 Site Preparation	\$0	\$65	\$1,390	\$0	\$0	\$1,455	\$141	\$0	\$319	\$1,915	\$3.3
13.2 Site Improvements	\$0	\$2,168	\$2,865	\$0	\$0	\$5,033	\$497	\$0	\$1,106	\$6,636	\$11.4
13.3 Site Facilities	\$3,886	\$0	\$4,077	\$0	\$0	\$7,963	\$789	\$0	\$1,750	\$10,502	\$18.1
Subtotal 13.	\$3,886	\$2,233	\$8,332	\$0	\$0	\$14,451	\$1,427	\$0	\$3,175	\$19,053	\$33
14 BUILDINGS & STRUCTURE											
14.1 Boiler Building	\$0	\$11,195	\$9,966	\$0	\$0	\$21,161	\$1,866	\$0	\$3,454	\$26,481	\$45.6
14.2 Turbine Building	\$0	\$16,446	\$15,516	\$0	\$0	\$31,962	\$2,826	\$0	\$5,218	\$40,006	\$68.9
14.3 Administration Building	\$0	\$787	\$842	\$0	\$0	\$1,629	\$145	\$0	\$266	\$2,040	\$3.5
14.4 Circulation Water Pumphouse	\$0	\$215	\$173	\$0	\$0	\$388	\$34	\$0	\$63	\$485	\$0.8
14.5 Water Treatment Buildings	\$0	\$1,130	\$1,043	\$0	\$0	\$2,173	\$192	\$0	\$355	\$2,720	\$4.7
14.6 Machine Shop	\$0	\$526	\$358	\$0	\$0	\$884	\$77	\$0	\$144	\$1,105	\$1.9
14.7 Warehouse	\$0	\$356	\$362	\$0	\$0	\$718	\$64	\$0	\$117	\$899	\$1.5
14.8 Other Buildings and Structures	\$0	\$291	\$251	\$0	\$0	\$542	\$48	\$0	\$89	\$679	\$1.2
14.9 Waste Treating Building and Str.	\$0	\$558	\$1,713	\$0	\$0	\$2,271	\$211	\$0	\$372	\$2,854	\$4.9
Subtotal 14.	\$0	\$31,504	\$30,224	\$0	\$0	\$61,728	\$5,463	\$0	\$10,078	\$77,269	\$133
TOTAL COST	\$869,625	\$69,387	\$525,269	\$0	\$0	\$1,464,280	\$133,209	\$59,333	\$235,732	\$1,892,555	\$3,258

Table A-11
O&M Costs for UK CAER + MEA Case

INITIAL & ANNUAL O&M EXPENSES		Cost Base (Jan): 2012			
SubCritical PC w/ CO2 Capture - MEA		Heat Rate-net (Btu/kWh): 12,352			
		MWe-net: 581			
		Capacity Factor (%): 85			
<u>OPERATING & MAINTENANCE LABOR</u>					
Operating Labor					
Operating Labor Rate (base):	40.30	\$/hr			
Operating Labor Burden:	30.00	% of base			
Labor O-H Charge Rate:	25.00	% of labor			
		Total			
Skilled Operator	2.0	2.0			
Operator	11.3	11.3			
Foreman	1.0	1.0			
Lab Tech's, etc.	<u>2.0</u>	<u>2.0</u>			
TOTAL-O.J.'s	16.3	16.3			
		<u>Annual Cost</u>			
		\$			
Annual Operating Labor Cost		\$7,495,808			
Maintenance Labor Cost		\$12,112,353			
Administrative & Support Labor		\$4,902,040.14			
Property Taxes and Insurance		\$37,851,102			
TOTAL FIXED OPERATING COSTS		\$62,361,303			
<u>VARIABLE OPERATING COSTS</u>					
<u>Maintenance Material Cost</u>					
		\$/kWh-net			
		\$18,168,529			
<u>Consumables</u>	<u>Consumption Initial Fill</u>	<u>/Day</u>	<u>Unit Cost</u>		
Water (/1000 gallons)	0	7,904	1.51		
			\$0		
			\$3,709,409		
			\$0.00086		
Chemicals					
MU & WT Chem (lbs)	0	38,259	0.24		
Limestone (ton)	0	747	30.26		
Carbon (Mercury Removal) (lb)	0	0	1.47		
MEA Solvent (ton)	1117.065	1.58	3146.52		
NaOH (tons)	79	7.89	606.51		
H2SO4	75	7.53	194.09		
Corrosion Inhibitor	0	0	0.00		
Activated Carbon (lb)	0	1892	1.47		
Ammonia (19% NH3) ton	0	110	298.21		
Subtotal Chemicals			\$3,784,124		
			\$24,454,815		
			\$0.00565		
Other					
Supplemental Fuel (Mbtu)	0	0	0.00		
SCR Catalyst (m3)	w/equip.	0.46	8,077.80		
Emission Penalties	0	0	0.00		
Subtotal Other			\$0		
			\$1,162,897		
			\$0.00027		
Waste Disposal					
Fly Ash (ton)	0	572	25.11		
Bottom Ash (Ton)	0	143	25.11		
Subtotal-Waste Disposal			\$0		
			\$5,574,909		
			\$0.00129		
By-Product & Emissions					
Gypsum (tons)	0	1,159	0.00		
Subtotal By-Products			\$0		
			\$0		
			\$0.00000		
TOTAL VARIABLE OPERATING COSTS			\$53,070,559		
			\$0.01227		
Fuel (ton)	0	7,380	69.00		
			\$0		
			\$157,983,903		
			\$0.03653		

Table A-12
Summary of Capital Costs for UK CAER + H3-1 Case

Client: Project:		TOTAL PLANT COST SUMMARY							Report Date: 2020-March-30			
Case: Plant Size:		SubCritical PC w/ CO2 Capture - Hitachi 2020 610.9 MW, net					Estimate Type: Conceptual		Cost Base (Jan)		2012	
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies		TOTAL PLANT COST	
				Direct	Indirect				Process	Project	\$	\$/kW
1 COAL & SORBENT HANDLING		\$26,077	\$6,619	\$15,454	\$0	\$0	\$48,150	\$4,218	\$0	\$7,856	\$60,224	\$99
2 COAL & SORBENT PREP & FEED		\$17,787	\$988	\$4,478	\$0	\$0	\$23,253	\$1,976	\$0	\$3,786	\$29,015	\$47
3 FEEDWATER & MISC. BOP SYSTEM		\$73,948	\$0	\$33,954	\$0	\$0	\$107,902	\$9,501	\$0	\$19,453	\$136,855	\$224
4 PC BOILER & ACCESSORIES												
4.1 PC Boiler & Accessories		\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$677
4.2 SCR (w/ 4.1)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.3 Open		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4.4-4.9 Boiler BoP (w/ID Fans)		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SUBTOTAL 4		\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$677
5 FLUE GAS CLEANUP		\$117,815	\$0	\$39,245	\$0	\$0	\$157,060	\$14,436	\$0	\$17,150	\$188,646	\$309
5B CO2 REMOVAL & COMPRESSION		\$162,649	\$0	\$99,643	\$0	\$0	\$262,293	\$24,321	\$38,124	\$64,948	\$389,686	\$638
6 COMBUSTION TURBINE/ACCESSORIES												
6.1 Combustion Turbine Generator		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
6.2-6.9 Combustion Turbine Other		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SUBTOTAL 6		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7 HRSG, DUCTING & STACK												
7.1 Heat recovery Steam Generator		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7.2-7.9 HRSG Accessories, Ductwork and Stack		\$24,955	\$1,285	\$16,720	\$0	\$0	\$42,960	\$3,817	\$0	\$6,137	\$52,914	\$87
SUBTOTAL 7		\$24,955	\$1,285	\$16,720	\$0	\$0	\$42,960	\$3,817	\$0	\$6,137	\$52,914	\$87
8 STEM TURBINE GENERATOR												
8.1 Steam TG and Accessories		\$76,865	\$0	\$8,875	\$0	\$0	\$85,740	\$7,456	\$0	\$9,319	\$102,515	\$168
8.2-8.9 Turbine Plant Auxiliaries and Steam Piping		\$37,581	\$1,503	\$19,060	\$0	\$0	\$58,144	\$4,676	\$0	\$8,891	\$71,711	\$117
SUBTOTAL 8		\$114,447	\$1,503	\$27,934	\$0	\$0	\$143,884	\$12,132	\$0	\$18,210	\$174,226	\$285
9 COOLING WATER SYSTEM		\$23,153	\$11,351	\$20,611	\$0	\$0	\$55,115	\$4,998	\$0	\$8,111	\$68,224	\$112
10 ASH/SPENT SORBENT HANDLING SYS		\$7,025	\$204	\$9,019	\$0	\$0	\$16,248	\$1,497	\$0	\$1,824	\$19,569	\$32
11 ACCESSORY ELECTRIC PLANT		\$31,150	\$14,398	\$37,937	\$0	\$0	\$83,485	\$7,184	\$0	\$11,426	\$102,095	\$167
12 INSTRUMENTATION & CONTROL		\$12,172	\$0	\$12,270	\$0	\$0	\$24,442	\$2,253	\$1,278	\$3,591	\$31,564	\$52
13 IMPROVEMENTS TO SITE		\$3,969	\$2,282	\$8,509	\$0	\$0	\$14,760	\$1,458	\$0	\$3,243	\$19,460	\$32
14 BUILDINGS & STRUCTURE		\$0	\$32,435	\$31,099	\$0	\$0	\$63,534	\$5,623	\$0	\$10,373	\$79,530	\$130
TOTAL COST		\$824,445	\$71,064	\$491,123	\$0	\$0	\$1,386,633	\$125,981	\$39,402	\$213,720	\$1,765,736	\$2,890

Table A-13
Detailed Capital Costs for UK CAER + H3-1 Case

Client: Project:		EPRI University of Kentucky Post-Combustion CO2 Capture Study						Report Date: 2020-March-30				
Case: Plant Size:		SubCritical PC w/ CO2 Capture - Hitachi 2020 610.9 MW, net						Estimate Type: Conceptual		Cost Base (Jan)	2012	(\$x1000)
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor		Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Contingencies Project	TOTAL PLANT COST	
	1 COAL & SORBENT HANDLING										\$	\$/kW
1.1	Coal Receive and Unload	\$5,337	\$0	\$2,416	\$0	\$0	\$7,753	\$671	\$0	\$1,264	\$9,688	\$15.9
1.2	Coal Stack out and Reclaim	\$6,897	\$0	\$1,549	\$0	\$0	\$8,446	\$715	\$0	\$1,374	\$10,535	\$17.2
1.3	Coal Conveyors	\$6,412	\$0	\$1,533	\$0	\$0	\$7,945	\$674	\$0	\$1,293	\$9,912	\$16.2
1.4	Other Coal Handling	\$1,678	\$0	\$355	\$0	\$0	\$2,033	\$172	\$0	\$331	\$2,536	\$4.2
1.5	Sorbent Receive and Unload	\$219	\$0	\$65	\$0	\$0	\$284	\$24	\$0	\$46	\$354	\$0.6
1.6	Sorbent stack out and Reclaim	\$3,519	\$0	\$639	\$0	\$0	\$4,158	\$350	\$0	\$676	\$5,184	\$8.5
1.7	Sorbent Conveyors	\$1,256	\$270	\$305	\$0	\$0	\$1,831	\$153	\$0	\$298	\$2,282	\$3.7
1.8	Other Sorbent Handling	\$759	\$177	\$396	\$0	\$0	\$1,332	\$114	\$0	\$217	\$1,663	\$2.7
1.9	Coal and Sorbent Handling Foundations	\$0	\$6,172	\$8,196	\$0	\$0	\$14,368	\$1,345	\$0	\$2,357	\$18,070	\$29.6
	Subtotal 1.	\$26,077	\$6,619	\$15,454	\$0	\$0	\$48,150	\$4,218	\$0	\$7,856	\$60,224	\$99
	2 COAL & SORBENT PREP & FEED											
2.1	Coal Crushing and Drying	\$3,107	\$0	\$600	\$0	\$0	\$3,707	\$313	\$0	\$603	\$4,623	\$7.6
2.2	Coal Conveyor to Storage	\$7,954	\$0	\$1,721	\$0	\$0	\$9,675	\$818	\$0	\$1,574	\$12,067	\$19.8
2.3	Coal Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.4	Misc. Coal Prep & Feed	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.5	Sorbent Prep Equipment	\$6,003	\$257	\$1,236	\$0	\$0	\$7,496	\$631	\$0	\$1,219	\$9,346	\$15.3
2.6	Sorbent Storage and Feed	\$723	\$0	\$275	\$0	\$0	\$998	\$86	\$0	\$163	\$1,247	\$2.0
2.7	Sorbent Injection System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.8	Booster Air Supply System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
2.9	Coal and Sorbent Feed Foundation	\$0	\$731	\$646	\$0	\$0	\$1,377	\$128	\$0	\$227	\$1,732	\$2.8
	Subtotal 2.	\$17,787	\$988	\$4,478	\$0	\$0	\$23,253	\$1,976	\$0	\$3,786	\$29,015	\$47
	3 FEEDWATER & MISC. BOP SYSTEM											
3.1	Feedwater System	\$29,234	\$0	\$10,005	\$0	\$0	\$39,239	\$3,328	\$0	\$6,385	\$48,952	\$80.1
3.2	Water Makeup and Pretreating	\$10,896	\$0	\$3,400	\$0	\$0	\$14,296	\$1,287	\$0	\$3,116	\$18,699	\$30.6
3.3	Other Feedwater Subsystems	\$9,917	\$0	\$4,007	\$0	\$0	\$13,924	\$1,178	\$0	\$2,266	\$17,367	\$28.4
3.4	Service Water Systems	\$2,176	\$0	\$1,127	\$0	\$0	\$3,303	\$293	\$0	\$720	\$4,316	\$7.1
3.5	Other Boiler Plant Systems	\$10,408	\$0	\$9,740	\$0	\$0	\$20,148	\$1,815	\$0	\$3,294	\$25,257	\$41.3
3.6	FO Supply System and Natural Gas	\$383	\$0	\$443	\$0	\$0	\$826	\$73	\$0	\$135	\$1,034	\$1.7
3.7	Waste Treatment Equipment	\$7,181	\$0	\$4,083	\$0	\$0	\$11,264	\$1,067	\$0	\$2,466	\$14,797	\$24.2
3.8	Misc. Equip. (Cranes, air comp, comm.)	\$3,753	\$0	\$1,149	\$0	\$0	\$4,902	\$460	\$0	\$1,072	\$6,434	\$10.5
	Subtotal 3.	\$73,948	\$0	\$33,954	\$0	\$0	\$107,902	\$9,501	\$0	\$19,453	\$136,855	\$224
	4 PC BOILER & ACCESSORIES											
4.1	PC Boiler & Accessories	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$677.2
4.2	SCR (w/ 4.1)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.3	Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.4	Boiler BoP (w/ ID Fans)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.5	Primary Air System	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.6	Secondary Air System	w/4.1	\$0	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.8	Major Component Rigging	\$0	w/4.1	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
4.9	Boiler Foundations	\$0	w/4.1	w/4.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
	Subtotal 4.	\$209,298	\$0	\$134,249	\$0	\$0	\$343,547	\$32,568	\$0	\$37,612	\$413,727	\$677

Client: Project:	EPRI University of Kentucky Post-Combustion CO2 Capture Study	Report Date: 2020-March-30									
Case: Plant Size:	SubCritical PC w/ CO2 Capture - Hitachi 2020 610.9 MW, net	TOTAL PLANT COST SUMMARY									
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies Process	Cost Base (Jan)	2012	(\$x1000)
5 FLUE GAS CLEANUP											
5.1 Absorber Vessel and Accessories	\$81,343	\$0	\$17,168	\$0	\$0	\$98,511	\$9,006	\$0	\$10,752	\$118,269	\$193.6
5.2 Other FGD	\$4,245	\$0	\$4,716	\$0	\$0	\$8,961	\$840	\$0	\$980	\$10,781	\$17.6
5.3 Bag House and Accessories	\$23,273	\$0	\$14,480	\$0	\$0	\$37,753	\$3,503	\$0	\$4,126	\$45,382	\$74.3
5.4 Oter Particulate Removal Materials	\$1,575	\$0	\$1,652	\$0	\$0	\$3,227	\$302	\$0	\$353	\$3,882	\$6.4
5.5 Gypsum Dewatering System	\$7,379	\$0	\$1,229	\$0	\$0	\$8,608	\$785	\$0	\$939	\$10,332	\$16.9
5.6 Mercury Removal System	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
5.9 Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
Subtotal 5.	\$117,815	\$0	\$39,245	\$0	\$0	\$157,060	\$14,436	\$0	\$17,150	\$188,646	\$309
5B CO2 REMOVAL & COMPRESSION											
5B.1 CO2 Removal System	\$109,717	\$0	\$80,886	\$0	\$0	\$190,604	\$17,726	\$38,124	\$49,291	\$295,745	\$484.1
5B.2 CO2 Compression & Drying	\$52,932	\$0	\$18,757	\$0	\$0	\$71,689	\$6,595	\$0	\$15,657	\$93,941	\$153.8
Subtotal 5B.	\$162,649	\$0	\$99,643	\$0	\$0	\$262,293	\$24,321	\$38,124	\$64,948	\$389,686	\$638
6 COMBUSTION TURBINE/ACCESSORIES											
6.1 Combustion Turbine Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
6.2 Open	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
6.3 Compressed Air Piping	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
6.9 Combustion Turbine Fundations	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
Subtotal 6.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7 HRSG, DUCTING & STACK											
7.1 Heat recovery Steam Generator	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
7.2 HRSG Accessories	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0
7.3 Ductwork	\$12,932	\$0	\$8,287	\$0	\$0	\$21,219	\$1,800	\$0	\$3,453	\$26,472	\$43.3
7.4 Stack	\$12,023	\$0	\$6,897	\$0	\$0	\$18,920	\$1,753	\$0	\$2,067	\$22,740	\$37.2
7.9 Duct and Stack Foundations	\$0	\$1,285	\$1,536	\$0	\$0	\$2,821	\$264.00	\$0	\$617	\$3,702	\$6.1
Subtotal 7.	\$24,955	\$1,285	\$16,720	\$0	\$0	\$42,960	\$3,817	\$0	\$6,137	\$52,914	\$87
8 STEM TURBINE GENERATOR											
8.1 Steam TG and Accessories	\$76,865	\$0	\$8,875	\$0	\$0	\$85,740	\$7,455.53	\$0	\$9,319	\$102,515	\$167.8
8.2 Turbine Plant Auxiliaries	\$506	\$0	\$1,064	\$0	\$0	\$1,571	\$148.46	\$0	\$172	\$1,891	\$3.1
8.3 Condenser & Auxiliaries	\$8,895	\$0	\$3,277	\$0	\$0	\$12,172	\$1,121.95	\$0	\$1,330	\$14,624	\$23.9
8.4 Steam Piping	\$28,180	\$0	\$12,219	\$0	\$0	\$40,399	\$3,030.00	\$0	\$6,514	\$49,943	\$81.8
8.9 TG Foundations	\$0	\$1,503	\$2,499	\$0	\$0	\$4,002	\$375.93	\$0	\$876	\$5,253	\$8.6
Subtotal 8.	\$114,447	\$1,503	\$27,934	\$0	\$0	\$143,884	\$12,132	\$0	\$18,210	\$174,226	\$285
9 COOLING WATER SYSTEM											
9.1 Cooling Towers	\$17,180	\$0	\$5,245	\$0	\$0	\$22,425	\$2,058.74	\$0	\$2,449	\$26,933	\$44.1
9.2 Circulating Water Pumps	\$3,377	\$0	\$243	\$0	\$0	\$3,620	\$308.87	\$0	\$393	\$4,322	\$7.1
9.3 Circulating Water System Auxiliaries	\$889	\$0	\$116	\$0	\$0	\$1,005	\$91.83	\$0	\$110	\$1,207	\$2.0
9.4 Circulating Water Piping	\$0	\$7,458	\$6,697	\$0	\$0	\$14,155	\$1,241.34	\$0	\$2,309	\$17,705	\$29.0
9.5 Make-up Water System	\$984	\$0	\$1,251	\$0	\$0	\$2,235	\$204.21	\$0	\$366	\$2,805	\$4.6
9.6 Component Cooling Water System	\$723	\$0	\$549	\$0	\$0	\$1,272	\$114.79	\$0	\$208	\$1,595	\$2.6
9.9 Circulating Water Foundations and Structures	\$0	\$3,893	\$6,510	\$0	\$0	\$10,403	\$978.37	\$0	\$2,277	\$13,658	\$22.4
Subtotal 9.	\$23,153	\$11,351	\$20,611	\$0	\$0	\$55,115	\$4,998	\$0	\$8,111	\$68,224	\$112

Client: Project:	EPRI University of Kentucky Post-Combustion CO2 Capture Study	Report Date: 2020-March-30										
Case: Plant Size:	SubCritical PC w/ CO2 Capture - Hitachi 2020 610.9 MW, net	TOTAL PLANT COST SUMMARY										
Acct No.	Item/Description	Equipment Cost	Material Cost	Labor	Sale Tax	Bare Erected Cost \$	Eng'g CM H.O. & Fee	Contingencies	Cost Base (Jan)	2012	(\$x1000)	
				Direct	Indirect			Process	Project			
10.2 Cyclone ash Letdown		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
10.3 HGCU Ash Letdown		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
10.4 High Temperature Ash Piping		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
10.5 Other Ash Recovery Equipment		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
10.6 Ash Storage Silos	\$921	\$0	\$2,781	\$0	\$0	\$3,702	\$352	\$0	\$405	\$4,459	\$7.3	
10.7 Ash Transport and Feed Equipment	\$6,104	\$0	\$5,985	\$0	\$0	\$12,089	\$1,102	\$0	\$1,319	\$14,510	\$23.8	
10.8 Misc. Ash Handling Equipment		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
10.9 Ash/Spent Sorbent Foundations		\$0	\$204	\$253	\$0	\$0	\$457	\$43	\$0	\$100	\$600	\$1.0
	Subtotal 10.	\$7,025	\$204	\$9,019	\$0	\$0	\$16,248	\$1,497	\$0	\$1,824	\$19,569	\$32
11 ACCESSORY ELECTRIC PLANT												
11.1 Generator Equipment	\$2,231	\$0	\$360	\$0	\$0	\$2,590	\$233	\$0	\$212	\$3,035	\$5.0	
11.2 Station Service Equipment	\$6,037	\$0	\$2,044	\$0	\$0	\$8,081	\$753	\$0	\$662	\$9,496	\$15.5	
11.3 Switchgear and Motor Control	\$6,928	\$0	\$1,216	\$0	\$0	\$8,144	\$756	\$0	\$890	\$9,790	\$16.0	
11.4 Conduit and Cable Tray		\$0	\$4,840	\$15,504	\$0	\$0	\$20,344	\$1,886	\$0	\$3,334	\$25,564	\$41.8
11.5 Wire and Cable		\$0	\$9,134	\$16,333	\$0	\$0	\$25,467	\$2,036	\$0	\$4,125	\$31,628	\$51.8
11.6 Protective Equipment	\$317	\$0	\$1,110	\$0	\$0	\$1,426	\$137	\$0	\$156	\$1,719	\$2.8	
11.7 Standby Equipment	\$1,678	\$0	\$39	\$0	\$0	\$1,717	\$158	\$0	\$187	\$2,063	\$3.4	
11.8 Main Power Transformers	\$13,960	\$0	\$245	\$0	\$0	\$14,205	\$1,083	\$0	\$1,529	\$16,816	\$27.5	
11.9 Electrical Foundations		\$0	\$424	\$1,087	\$0	\$0	\$1,511	\$142	\$0	\$330	\$1,983	\$3.2
	Subtotal 11.	\$31,150	\$14,398	\$37,937	\$0	\$0	\$83,485	\$7,184	\$0	\$11,426	\$102,095	\$167
12 INSTRUMENTATION & CONTROL												
12.1 PC Control Equipment	w 12.7	\$0	w 12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
12.2 Combustion Turbine Control	NA	\$0	NA	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
12.3 Steam Turbine Control	w 8.1	\$0	w 8.1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
12.4 Other Major Component Control		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
12.5 Signal Processing Equipment	w 12.7	\$0	w 12.7	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0.0	
12.6 Control Boards, Panels, and Racks	\$604	\$0	\$373	\$0	\$0	\$977	\$96	\$51	\$176	\$1,300	\$2.1	
12.7 Distributed Control System Equipment	\$6,103	\$0	\$1,100	\$0	\$0	\$7,203	\$699	\$377	\$861	\$9,140	\$15.0	
12.8 Instrument Wiring and Tubing	\$3,740	\$0	\$6,764	\$0	\$0	\$10,504	\$884	\$549	\$1,864	\$13,801	\$22.6	
12.9 Other I&C Equipment		\$1,725	\$0	\$4,034	\$0	\$0	\$5,758	\$574	\$301	\$690	\$7,323	\$12.0
	Subtotal 12.	\$12,172	\$0	\$12,270	\$0	\$0	\$24,442	\$2,253	\$1,278	\$3,591	\$31,564	\$52
13 IMPROVEMENTS TO SITE												
13.1 Site Preparation		\$0	\$67	\$1,419	\$0	\$0	\$1,486	\$144	\$0	\$326	\$1,956	\$3.2
13.2 Site Improvements			\$2,215	\$2,926	\$0	\$0	\$5,141	\$508	\$0	\$1,130	\$6,778	\$11.1
13.3 Site Facilities			\$3,969	\$0	\$4,164	\$0	\$8,133	\$806	\$0	\$1,787	\$10,726	\$17.6
	Subtotal 13.	\$3,969	\$2,282	\$8,509	\$0	\$0	\$14,760	\$1,458	\$0	\$3,243	\$19,460	\$32
14 BUILDINGS & STRUCTURE												
14.1 Boiler Building		\$0	\$11,448	\$10,191	\$0	\$0	\$21,639	\$1,908	\$0	\$3,532	\$27,079	\$44.3
14.2 Turbine Building		\$0	\$16,889	\$15,934	\$0	\$0	\$32,823	\$2,902	\$0	\$5,359	\$41,084	\$67.3
14.3 Administration Building		\$0	\$798	\$854	\$0	\$0	\$1,652	\$147	\$0	\$270	\$2,069	\$3.4
14.4 Circulation Water Pumphouse		\$0	\$218	\$175	\$0	\$0	\$393	\$35	\$0	\$64	\$492	\$0.8
14.5 Water Treatment Buildings		\$0	\$1,324	\$1,222	\$0	\$0	\$2,546	\$225	\$0	\$415	\$3,186	\$5.2
14.6 Machine Shop		\$0	\$534	\$363	\$0	\$0	\$897	\$78	\$0	\$146	\$1,121	\$1.8
14.7 Warehouse		\$0	\$362	\$367	\$0	\$0	\$729	\$65	\$0	\$119	\$913	\$1.5
14.8 Other Buildings and Structures		\$0	\$296	\$255	\$0	\$0	\$551	\$49	\$0	\$90	\$690	\$1.1
14.9 Waste Treatment Building and Str.		\$0	\$566	\$1,738	\$0	\$0	\$2,304	\$214	\$0	\$378	\$2,896	\$4.7
	Subtotal 14.	\$0	\$32,435	\$31,099	\$0	\$0	\$63,534	\$5,623	\$0	\$10,373	\$79,530	\$130
	TOTAL COST	\$824,445	\$71,064	\$491,123	\$0	\$0	\$1,386,633	\$125,981	\$39,402	\$213,720	\$1,765,736	\$2,890

Table A-14
O&M Costs for UK CAER + H3-1 Case

INITIAL & ANNUAL O&M EXPENSES				Cost Base (Jan):	2012
SubCritical PC w/ CO2 Capture - Hitachi 2020				Heat Rate-net (Btu/kWh):	11,744
				MWe-net:	611
				Capacity Factor (%):	85
<u>OPERATING & MAINTENANCE LABOR</u>					
<u>Operating Labor</u>					
Operating Labor Rate (base):	40.30		\$/hr		
Operating Labor Burden:	30.00		% of base		
Labor O-H Charge Rate:	25.00		% of labor		
				Total	
Skilled Operator	2.0			2.0	
Operator	11.3			11.3	
Foreman	1.0			1.0	
Lab Tech's, etc.	<u>2.0</u>			<u>2.0</u>	
TOTAL-O.J.'s	16.3			16.3	
				<u>Annual Cost</u>	<u>Annual Unit Cost</u>
				\$	\$/kW-net
Annual Operating Labor Cost				\$7,480,663	\$12,245
Maintenance Labor Cost				\$11,300,709	\$18,498
Administrative & Support Labor				\$4,695,343.02	\$7,686
Property Taxes and Insurance				\$35,314,715	\$57,807
TOTAL FIXED OPERATING COSTS				\$58,791,430	\$96.237
<u>VARIABLE OPERATING COSTS</u>					
				<u>\$/kWh-net</u>	
Maintenance Material Cost				\$16,965,474	\$0.00373
<u>Consumables</u>	<u>Consumption</u>		<u>Unit</u>		
	<u>Initial Fill</u>	<u>/Day</u>	<u>Cost</u>		
Water (/1000 gallons)	0	9,880	1.51	\$0	\$4,628,558
					\$0.00102
Chemicals					
MU & WT Chem (lbs)	0	47,823	0.24	\$0	\$3,560,901
Limestone (ton)	0	747	30.26	\$0	\$7,010,117
Carbon (Mercury Removal) (lb)	0	0	1.47	\$0	\$0.00000
H3-1 Solvent (ton)	0			\$10,333,699	\$1,700,602
NaOH (tons)	79	7.89	606.51	\$47,914	\$1,484,821
H2SO4	75	7.53	194.09	\$14,615	\$453,426
Corrosion Inhibitor	0	0	0.00	\$206,727	\$9,844
Activated Carbon (lb)	0	1892	1.47	\$0	\$862,097
Ammonia (19% NH3) ton	0	110	298.21	\$0	\$10,215,405
Subtotal Chemicals				\$10,602,955	\$25,297,213
					\$0.00556
Other					
Supplemental Fuel (Mbtu)	0	0	0.00	\$0	\$0.00000
SCR Catalyst (m3)	w/equip.	0.46	8,077.80	\$0	\$1,162,897
Emission Penalties		0	0.00	\$0	\$0.00000
Subtotal Other				\$0	\$1,162,897
					\$0.00026
Waste Disposal					
Fly Ash (ton)	0	572	25.11	\$0	\$4,459,927
Bottom Ash (Ton)	0	143	25.11	\$0	\$1,114,982
Subtotal-Waste Disposal				\$0	\$5,574,909
					\$0.00123
By-Product & Emissions					
Gypsum (tons)	0	1,159	0.00	\$0	\$0.00000
Subtotal By-Products				\$0	\$0.00000
TOTAL VARIABLE OPERATING COSTS				\$53,614,640	\$0.01179
Fuel (ton)	0	7,380	69.00	\$0	\$157,983,903
					\$0.03473