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Postdoctoral Poster Set-up
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Materials I
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September 25, 2019
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Plenary Review & Overview
Reliability
Break
Analytics
Materials II
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Materials II [Continued]
Break
Power Electronics
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The Office of Electricity leads the

Department of Energy's efforts to

ensure a resilient, reliable, and flexible

electricity system. OE accomplishes

this mission through research,

partnerships, facilitation, modeling and

analytics, and emergency

preparedness. The DOE OE has

partners in academia, industry, state

and federal government, professional

organizations and standards bodies.

Our participating institutions offer

enhanced opportunities for networking

and visibility within the energy storage

research and development space.
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Sandia
National
Laboratories

30
Journal
Articles

22 Published
Under
Peer Review

Patents

Granted

6 
Applications
Filed

Conference
Proceedings

5 TechnicalReports

50
Technical

Presentations

Invited Talks

•
Seminars and Webinars

CESA, IEEE, and prominent
universities



Pacific Northvvest
NATIONAL LABORATORY

Peer reviewed journal
articles published

Including ACS Applied Energy
Materials, Advanced Materials,
Nanoscale, ChemSusChem

PNNL Technical
Reports issued

WA CEF installation, Nantucket,
Hawaiian Electric

OAK RIDGE
National Laboratory

11
Journals

4
Conferences

15
Talks

presentations Intellectual Property

MRS, ECS, ACS, IEEE, Beyond Li-ion,
ESA, State Energy and Utility

Commissions, World Bank, US-Korea
Clean Energy Policy Summit

Professional Societies
Organized (2) 2018 MRS Fall symposium on ES Technologies

Organized ECS Symposium on Flow Batteries

Organized International Collation Energy Storage

Co-chair IEEE Energy Storage Collaboration Team (ESCT)



The number of
presentations

for each thrust
area are

reflected in the
chart and

table.
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There were 61
poster

presentations
and 44 plenary
presentations

at the 2019
Peer Review.

The average
score for all

presentations
and posters
was 8.08/10.
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The mission of the Electricity Advisory Committee is to provide advice to the U.S. Department of
Energy in implementing the Energy Policy Act of 2005, executing the Energy Independence and
Security Act of 2007, and modernizing the nation's electricity delivery infrastructure.
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Travis Anderson Sandia National Laboratories

Mitchell Anstey Davidson College

Anant Argawal The Ohio State University
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Michael Aziz Harvard University
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Ross Baldick University of Texas at Austin
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Postdoctoral work is inclusive of all the thrust areas.
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Operando Investigations of Bismuth Additives on the Rechargeability
of Mn02 in Alkaline Batteries

Andrea M. Bruck, Matthew Kirn, Joshua Gallaway
Northeastern
University

Department of Chemical Engineering, Northeastern University

Northeastern
University

 Background  
ZrOfiri012 alkaline ballades have boon identified ae a viable option for the

modernization of grid wale energy storage due to their projected cost

{-$54/kWh}, scalehility. and tater CiamperreetS wPoerl compared to nrmaqueoue
alternatives. For this system to reach its maximum capaorly. the full riAri".12*

ream couple max be reversible Owr thousand9 of cycle9 with high masa
loading The following reaction has been proposed to occur in alkaline systems;

Mn02 4 X Hp xe- ivincit„jori), xr:IH• where x - 2

Recently, success in dichargeability > 2000 cycles has been demonstrated with

the incorporation of wrioue electrode conelituents which alter the furidamental

discharge and 'charge process and form the 45-MnO2 (birneseitali on this fest Cyder

WhiCh iS identified as the reversible reaction.

ilassrai EC m[.: Journsi d The bedromemr &coy.
/20110115.1.1,41e314N.4.7

VOW IC IL RintreiVilbelis. ewer. (M17] & 191219

  icjio1nO2 as model material
Potassium birriessite was synthesized in

our lab. Considering bimessite as the

reversible phase we want to understand;

(1.) What rs the role of 91205 in the electrode I

(2) What is the meChanirgn for filln02
reversibility

pi What ia the optimal way to incofporate
Si lila the electrode*

.94

rixamamo •

XRD

—11:444•1444144
01:44n4damIrn

VFW.

1211111

Ramon

40

*CC sae NO MI MO SDI 414 7.141

 Opera ndo studies of k,Mn02

.Syrichfritree Enerey Vieperatwe I-IW Diffraction
Fully intact battorie1 are cycled at Argonne

National Lab'el Advanced PnOtOn Sekirce

+•• The white beam (-50-200 WO penetrateS the
cell casing and subsequent diffraction on the
internal material Changes are detecled

Hon-destructive technique

identifies intermediates
and kinetically &men

reactions that may be

unstable for ex eitu 04.444i

characterization

a

a * F 4
44•441 n.94444

clItwlmlinpro

Calafter et ; Aimed Pe4er Rogow QOM Wt.

11111111

.441r
Awe met

din41.11.

darii*

3 3 5 I 41 &s
d CA)

Moat notably, no intermediate phases such as
Min0.01-1 r.)1 M ri204 were deteCtird hy diffraction
experiments indicating a iwnphese react inc

Laberatortbased Raman Spectroscopy For nco-a-yetelline intermedietee

A..bSnessite Ri70,

;

Birnessite. Mop, and

fild[01-16 and IN metal could

.1 ;. In the presence ef Eli2O3

be identified

small quaritilice ad Mrlis0.4
form but cliSOppeer durkig the
wood plateau
Di203 aupp.resse$ the
formation of the irreversible

phase end arms for the full

conversion to Mn(OFI)2

9 vilfk„....

1E1 lig Wei gill
Immmim
El

rikezeld el rla
Joo.reir 0
Errerserwrisa4
~art% I19e44
271, ltu7s4

1

2 ;
nomad 4.9 marip4

EDXRD collaboration 
Metthair Kim (hierdwastern) arid David Admit
(Undo) textatg 4lit94ajeal et ta4441linel 045.1.0 Oi
MS. INF 141811kutIona are warier' together for the

operanclocriaraetenzatian
of battery roactrons.

Sandia
National
Laticiatogic

$ummanf and lied Stag§

14 .11. I f F1 Pl. VI It P 5 44 4.4 MM W ma as as

6r1.4wra*LJourrial d Fhe ardor/mm*1ml Sculety.(.201399165.121'.112047
Drffraction methods detect two crystalline phases in the reversible

reactico. birnessite flelnO:i and k1n(01-1)2

2. flowevet Raman spectroscopy revealed the formation of fiiIns.C14 during
discharge which is suppressed in the presence of ni,o,

S. We are specilicalV intereited in the final plateau of the 6scherge
where Elipa redox activity ia poueible with the disappearance Of hiri304

Our next -bearish ne run is scheduled at P. SLS-II for XAS to bettor probe the
redox activity of Fti and Mrl with improved temp4.arol resolution.
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Interfacial Engineering in Sodium Batteries
Martha M. Gros5.Arnaritia Perecd.Stephen Percival. Leo Small. Babu Chalamala. and Erik D. Spoerke (PI)*

Sandia National Laboratories, Albuquerque, NM, USA
margroserandia..zov *erispoer qisandia.gov

Motivation & Objective: High temperature operation of traditional molten sodium batteries has restricted their deployment due to issues with
high material costs, longevity, parasittc energy losses, and safety. Ville are developing low temperature {4 1.504C} molten sodium balteries that

promise safe, oost-effective. and reliable energy storage for the elecrthd grid.

Overview: Molten Sodium
(WO Batteries
• Molten Na anode

• NaSICON separator

• 25 mol% Nal in AlBr5 catholyte

Redox Chemistry:
No +e

2e- -0 
0E0, - 3.24V

2No + 13- 2,Vd* +3.1 

111•50161*L5Vei1 {.1064•41 CiaY40•11.1•01.14

Nal/Vetting on NaSICON
Contact Angle Measurements

Surface Roughness:

-LA.& spice ok••••:a... me••••e••••••,...
"iv Dor.1.1 Rouip Solace Flo-pp Steam

{4Wraa1i (Cra.4•13aulee}

• SUrfaCe froViness has strong effect on NO wetting
• Polishing not enough, not always practioal

Unpalix had

Approaches ln Literature: ...151•FismsoLivoNff
3 MAI • • ...11.1.0 *mod Xrd
Jr•s• im.11101r1.1•111.1

ty. win. • J .1!• aar
tr... 1113...Jii CITY 03,3

o

•

110 121:1 160
tenverelere ft)

Na -Ste alloy:

• No improvement
in contact angle
by alloying Na
with Sn

Sn-based Coating:

200nirl SOO nm
trr

•

12 litibed

• Ail coatings and alloys researcried
al < 150'C studied on r•A11202

• Coeliac( angles achieved in
literature slill tco high

- Standard P130 showed no
imorovemerrt 911 NaSICON

• Sn invesligalled as alloying metal
%vim eoci Na• concluctivity

Symmetric Cell Cycling

rm..' 1.0

z 06
00

1-06

• Critical Thickness: Thickness of
Sn-based coabng below which
COrnpfete allOying OCCurS

• incomplete alloying (excess coaling)
results in poor contact angle

-le elm
—More Sri CM*

1.5  
a 1113 20 30 40

Tana IN

Drastic reductions in overpolentials
make functional battery testing

fees i hie

50 OD 70

Challenges in Low Temperature Molten Batteries
• Temperalure > 100•C b marnilain Na in molten slate
• Poor Na wetting on ceramic separator
• Low corarnic ionic conduclivily
▪ Unknown inieractions belween ceramic & caiholyte
• Cathatyte rnaterialS seleClien - molten al low temperatures
• Materials compatibility with molten sett catholyte
• Poor charge trpnofer at cathode current collector

Catholyte-Current Collector
Interface

Full Cell Assembly:
• Mollen Na anode
- NaSCCON separator

• Anode. side. Sit-based coaling
• 25%131% Nal in Al6r, calltolyte
• Different cathode current

collectors tested

Full Cell, Single Charge;
lionc

4.2

— 4

I 36:

3.4
OCv •
32 a

— .ftrivatalCF
- tr las-nacw24)
- W Red

24 fie ea se tee
otOrcreg Capacity

important Properties of
the Current Collector
• Fast Charge Transfer
- High surface Area
• Chemrcally &

Electrochemically inert

• TUngSten {VII} rod: high Slability, !Ow
surface area

• Carbon Fell (CF) - 1000x surfaca
area of W rodk but na improvement in
overpotential
- poor charge transfer

• Activation of CF: thermal treatment
by treating 400-C in air, or acid
treatment by cleaning ...0.411.10.11V HCi

• Activated CF dramatically lowers
overpotential

0.16 Am cal
0.3 ma cma
25x &CC marl**

Full Cell Cycling, 110°C
God: a. SO cede', K 150M

Battery frozen
& thaw isd

a !lir
2 '•0 100 200 300 400 51X1 600

Tree {ht
▪ integration of Sn-based coating and activated CF enables long-term battery

cycling: Battery achieves D 150 cycles!
• Even after freezefthaw. interfaces remain intact

Conclusions & Future Work
• Flrat darricanatralion qr bong lawn cycese ol a luny miten sodium battery al 111eC

made mei* by integrallen qf $&00100 coaling cn NaSIC.Ctl md adivaled carbon
felt cathode currant ccalectar

• Technical Advance el Sn-beeed coating -Surrece Treatments of NeSlCON Ceramics
itg irmorcwors mown interlaces.' 50; 15128. Seplambv. 2019.

• Fulure ...via*: Further reduclion ince operseing temperature arid increased scaling of
battery system operalien and periormance

Careful tailoring of material interfaces is critical to high battery performance at low operating temperatures

MS*

• im1.1•1m. lim31m3

••1.1,

I443 i•LYS.E. "INC
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Energy Storage Analysis for Regional Demonstration Proiects
Alexander Headloriu Nguyen, Ray Eyrrie • &walla National Labaratorles

Overview
In FT! 9. we performed analyses to assist with planning, project development, and valuation for: the Eugene Water & Elecole Board in OR. Atrisco
Heritage High School in Albuquerque. NM, Minnesota Power. BQ Energy in NY, and the NELHA research campus in HP. In these analyses, we optimize
the benefits from energy storage for the customers for different grid applications such as peak demand charge reduction. PV utilization, and time-of-use
race structures. Below is analysis from two particularly interesting cases.

M•101•01,41:wir
0,1141=1-MS.
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—1-7r.-21111

Commurf Distributed Generation in NY

Background
Recent changes to pricing in NY includi Lodauks r,o incrcaso the %elm of
energy storage. BQ Energy, a coremunity distributed generation developer in
NY. requimted analysis of three cliflerent solar protecrs kw- energy scocage
antegration.

Unique Considerations
Value Stacking in NY
• Six value streams
• Time-oFtenerasion windows.
• Generation 'Timis

Systern Configuration',

• DC vs.,AC coupling

Analysis
• PV modeled With PVIA.
• AC-tiedi.Dcrtied, DC ex9et5.5. charging
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illlinftgeacton Prantemork

jr....A.kron • op; .uarr..r.cc.t.airt)
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Results
• Value from coincident peak discharge pm. scheduled calls (30,4 and

LBMP arbitrage 0190
- AC DC tied similar wsluc in low ereergi appliCatiOn$

t▪ .
2

—1•10.1.

14

17.
• CC rod
• ;51mm+.

iz

Project Status
• SQ Energy soliciting energy storage prwosals kor Prcojects A $i

Energy Storage and Large Scale Hydrogen
Production — NELHA Research Campus

Badcground
The NELHA campus will sow support a large water electrolysis facility
generating hydrogen for three fuel cell buses. Eariy tests of the facky mom
than doubled die peak dermsnd for rhe campus.

Unlque Considerations
Hydrogen Production

• 250k1N electrolyzer
• Flexible operation from I 0. WO%

Analysis
• Time-oi.use snd flat rate options
- Wish and vnthout hydrogen facility
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Results
No Hydrogen Production
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With Hydrogen Productlun
• Flexible operation would save -V50001year

EŠ value decreasts with dercooti illifeM1/1
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Project Status
• NaHAf HMI IrriestlgatIng hydrogen fatillty Interface and contralto lower demand
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Zincate-Blocking Polymeric Separators for Zn/MnO2 Batteries
Igor Kolesnichenko51 David Artiot1I Matthew Lim52 Timothy N. Lambert,1*

Gautam jungsang Ch0,3 Mkhacl Nyce,3 Sanjoy Banerie&
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Reliability Testing of Lead Acid Battery
Module for grid services
Nlimat Shamir), Vilavanur V Viswanathan, Damon Choi, Alasdai
Mark Gross, David M. Reed, Vinoent L. Sprenkle

8attery Materials & Systems Group, Pacific Northwest National Laboratory

r J. Crawford, Ed Thomsen.Pacific Northwest
NATIONAL LABORATORY

ichland, WA 99352 Proud!). Opercre.vd by Baneie 196.

Introduction:
Tha advanced ce carbon-enhanced negative elecirode lead acid battery modules. art used for
renewable Energy Slow Applications due io their high cyck life., low coat and susuinability,
However. lbae is still a let lO nadersland tem of refgabikty Gar grid services- A lead acid
battery medules has been tested for grid services mach as frequency regulation_ 1.-c91 procedure
End realism= ithown below.

WI ea surerne II IS
• VOttege
• Carrent
a Charge...and Discharge Capacity

c-- tiR and Discharge Energy
- Curnulatim Discharge Encrgy
• Round-nip efficiency PIE).
• internal Resialanoe

Figure 1: Carbon Bantry gilef; C&D technologies)

Objectives of the Project
• Develop a reliable tesiing protocol for lead acid balmy module for grid sevices.
* {Jim fundamental undmsganding of degradation meehanism cif Lead Acid idignecy module

while used For grid services.
* Compare multi! with whet battery chemistries to &guanine a reliable. application sitecific

battery technology I'm-grid SCINiee51.

Testing Procedure
a) Capacity Teat 11 mown gbe battery capaciiy per cycling isonditioas desuihed. Cnocily
tem has been performed periodically co determine the capacity degradation of barmy.

faippayap•-Ox.woullhampaapepr

■
IOW VOW IWO

ri„1,1 —Ormmlal -*Immo"

Frequeary Regulation Test The rrequency regulation(FR) signal from. the us noH-oF.
Energy Storage Perfemsance Prolmol is apphed. Power is normalized wilb respect to the
raced power over a 2"1-hou- gime period.

to
14,1 V. $1011:101 II A' C140 Ftestili

2. Discharge at 10-hour late {17.241
ro 111:1.10:. Rest 1 how
Charge to g!gr... igen 1 hour
Repeat steps 2-3 thrice.

15 111.

14*

lblrd Poveur 1240 WW1
initial SCIC St%
The 90C is reduced try 13% lek one FR cycle

-} The Battery module is charged back to initial
SOC atter one FR cycle.

• 11.
Timm ihrl

c) Reslstence Test A charge pulse and discharge pulse is applied The internal
resistance is calculated as the ratio ofilhe change in. voltage and current al the end ofpulse.

hie hablan.1:41k

.EM

• Resistance ls measured 11 even/10%6.90C
dec mine nit ing from 101)% SOC
second pulse width

4Dieing puke ASCIC
-0 !ire:email resistance = AV/AA

Results and Discussion:
Ah Capacity and RTE as firnlIsaga)

Capacity Test dates
9/4 9/21 3115 Sir19 Itio

90%

09%

= Mahan* caarchy -ATE

O 10030 ROM 30000
Cummulative Discharge Energy (Whli

Rcrund trip Efficiency {WEI oi Frequency Regulation test

a

-.-F1/ Twit
-FR Tett WWI
= FP Tett (GM
--FR tack WM

  - 

-FPI Tut {0/61
- FR Tits Will

• Noma cydat 
15 20

• Raied Capacity is 172 Ah measured inirial capacity is-..ts Ah
4:4. Round Trip l.ffieicncy (R.E1i) is constant for all capacity tests. The FR
RIF changed only 1% over die Ws( LILIfatiCill.

‘r..• 3.13f% decrease in Ah capacity. Capacity loss due To loss or active
inalcrial: inc mire of !CM; doc-s not play a. niajor rolc (RIF:
unchaiipc5)

Psgist Test Result
Nati um on aela

1
Paulsboro' Puliselast

2

Resistartec

increasoi if" with
time-

* Further pulse lesL
bc dont! to determine
thc dcgradagion
poofilc of hi:ad iguitl

ninaale.

Future Work:
• Peak slaving grid service tesging wilt be perfamsecl-

• Degradation will be compared ivigh dna for volagikYR signal

• Tbe remits will be analyzed to characterize the perfomianet reliability of kad
acid bottoy muds& fur grid laprieci.

• sonic tests will he conducted for other battery chemistry medules and the
rwallts Venftticcl-
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Synthesis ofAdvanced Magnetic Materials for
inductors and Transformers

lyier E.,Stewns. Todd C. Monson, Charles J. Pearce. Riley E. Lewis, Jessica N. Dyer, Mark A. Rodriguez. Bonnie
McKenzie, Sara Dickens & Stan Atcit-ty

Sandia National Laboratories, Albuquerque, NM 87 l 85
Project Objective
The skee requiremenu ot power eleanonlim are determined kr/ the hecessaly components. linnet:lc materish contribute to thit$ signmicwitt and co maxlmlze efficiency and size.
new magnetic materials are required. Onc of the main challenges ha-s been developing materials that work in conjunction -nith high frequency semiconductor switches, This year,
we sou& to Fabricate lron nkride/Ml-P layered composlte transForrnet cores and demonstrate decreased losses ln conspanscn to neat lron nlirlde at frequencies up to lÐ0
and temperatures of 150 ̀..C. To achieve this, we have Focused on identifying and optimizing synthetic routes to yield phase pure iron nitrides and then incorporating them into
coroposFee&This has resulted in rraxerfele wtth good performance up co I MAT.

Hard (permanent) magnet Soft magnet

H giti") istenssusemCIF M. = satuieliOrsitHerseeitalittn
=

Hysteresn and Eddy current Fosses
Develop new sort rnagnetk rnaterlah that work in
conjunctien with high fres:wiener iemitiOnductan-
Sleitchcs

H {MANIA

ate

gm •
gon

teeneior tote '11 Frodnonve
Magnedc Material

1.20 1.15

reek

H igh

-

• 9d.
' VITFLOPERM

acuumschmelze)

,50 • Metgras 2605SC 1,60 1.17 High

A: • Ferrite (Ferroseutot) i nu Low

51 stul la? 1305 Low
IQ 1$ 2} Sa 05

Prilitratuatrg
r-FrAl la, b• 20. Law

—4— F. biLeg ArEFfims -6.3% ffi Sid
—6—iihnoory Amble Ferric /Oil

144.4 HQ tivi. our.. rm,.i £4.P.P444N1111
comoc ne!..n.

aaisi v. • WO. • .10.N4

Current rnagnerlc materials experience
significant loss as frequency is increased

=
11,44,4N hal a hlgher saturation pobrintion
CD and electncil restnaricy than SI steel
Use of abundant elements (Fe and NI will
keep cosu

Meuthesis. efrecuive for earty transition metals.

MY„, L MyN 4 I- IX

Group 1.1 Pratfurr

TIC14

HI;

Crel,
MrJ

T1N
Zrhi

VH id1N
Ct. up

Mrs H, Mn

Synthesis and purification of iron nitride

"..• Effective for group
4-7 molt

P Reactions with group
8 - 10 metals generate
roo much heat
Decompteitiou to
elemental metal

▪ CorrenL methods don't work for Fe and NI
▪ Na.t4A rilailDri

Esgaitilnlitchtel

Exceis solvent should
act as heat sink and
allow for isolation of
desired product

+
Palau
MO

artrem
▪ Mixed product If all materials are combined az

I:regimens
fezhi Is only product if FeCI3 Is added at 80
plfmfo

▪ Fen precursor results in Fe..314 (higher Fe
concentration)

mirture Di F. Fejlti

Jl

P. Using a heat treatment. commercial
Fe6,,,,,N tin be converted to. '9'5 W.
phise pure Fe4N

Incorporation of iron nitride into soft magnetic composites
Von niMde ilgitcH2),)11-12

:P. Ball milk% was used to generate a fine
mixture of iron nitride and
he3tansetrelenetlemine

▪ Cornpositas hart successfully been
iormed using a Lland l•(L,$ molar
ration of Mon ukridel
hestametklenediaminc and combining
the mixture writh an epoxy

* Several systems are Ink% evaluated
based on molecular weight o1d-I-5

morauEli

► 
.1>

t
04,

Ir.qdd.1.1

P Preininary data indicate low core loss at high
frequent)?

Output
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Novel Phenazine Derivatives as Anolytes for
Aqueous Redox Flow Batteries
Nadeesha P. Namhukara Wellala, Aaron Etollas, Ruozhu Feng, Vijayakumar Murugesan,
XIII Zhang, Zimin Nie, Yuyan Shao, David Reed and Wei Wang

Battery Materials & Systems Group, Pacific Northwest National Laboratory,
Richland: WA 99354

Introduction: The redox flow baneries (RFB) are promising
candidate iu giid energy storage due to high safety, independent tuning

of energy end power and sealability.

>All Vanadium RFE

• lligh energy 4:apa6iy

- .Long Tenn stability

lligh cost

'ft.-Organic REFS

Easy funetionalizatiou

• • • Low cost

7,8-Dlbydroxyphen azInc-2-sulfonlc acid (DHPS)

High solubility (1.4 M in 1 M

NaOH and 1,8 M in 1M KOH)

High reversible anolyte capacity 65

Ald'1

Energy efficiency >75%

Capacity retention 90% after 500

cycles

•••• Mom pinition of DH PS

Stplb

N
DWI

laiwiNer 41 hi i mem*

Olaydram.r.b.r.
1:1441,-;41v.

Objective: Discover how various. substituiion groups in

phone:zinc derivatives affect solubility and slabi lily

Results and Discussion:
e

Phenatine Derhative i c1=:

2.3-eb1decArpriama.f•e-kovecopiummise1

Redox Flow Battery Performance

..:>DHP-bii-propy1-S02- (nit M)

Significant capacity loss is due to

pozcipiiation of decomposed

anolyte

•

a

Ili AN

C.cloPlmlm

1 DIIP-bis-propyI-S0,2'

decomposes to its mono-

substituted derivative

Cent &cc Amlyte: DHP-bi pmni-S012- IE 41.5 KFigo4'o.2 MKin:PO4
embed pr., ee.stmas wrivit saiNient

Pacific Northwest
NKnoNAL LAD:RAI-Ow

Proudly Operatvd by Base* SiniVe .114:A5 5

NMR Study on Cilpacity LOSS (41 NMR in DMSO-4)

Plienweine De riN c 11

' Decumposiliun Pathviati

map.-ob,~5.03..

a
aPtpinir nh

411

1.41-PAAFO.yiS4744.rl4 (1.443FrP)

> ReduX Flow Battcry Performance

11,4-DH P (0.42 M )
21

ir •

•

•

clorlyabra

--Solubility of deprotonated

DIIP is 036 M l M Na01.1

E and 0.53 M in 2 M KOH

1.6% capacity decay after 200

cycles (0408% per cycle.

0.076% per day)

Condi iurc Arvilyte; 1..44/117 m 2 /4 KOH
Cadsolyir:. reerss Kje(CNVE.ye(a1),, iS 2 M KOLL

Summary:
Capping of phenoxy groups of 2.3-DHP with propyl sulfonate groups

does not protect self reduction

1.,4-1)11P has low solubility but higher cycling stability compare to

MIPS

Future Work:
• .-Develop new phenazine derivatives to further study effect of

substitalion pattern on solubility and stability

• :- Study the decomposition pathways of due new phenazine

derivatives

Modify thc stablc phcnazine derivatives to improve their solubility
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Advanced Cathodes for intermediate-Temperature
Na-Metal Halide Batteries
Xiaowen Zhan, Xiaochuan Lu, Jeff F. Bonnett, Nathan L. Canfield, David M. Reed, Vincent L. Pacific
Sprenkle, and Guosheng Li*

Northwest
Battery Materials & Systems Group, Pacific Northwest National Laboratory, Richland, WA 99352

Background: IT Na-rm Battery Technology

2NaCI + NI (discharge state) 4-3 2Na + NICI1 (charp state)
201 

r.
Yl 

amen.

Mee

Ko 0ie

LEIOLI TIMM eniffKI

1 

Ian

nA Li 1—

J I "'
Ds •

Enr. draly
1:00004.000*X:E

Gyals railwr • Cyde numb.

Slow celf degradation (particle growth) and excellent cycling stability'
Low-cost polymer sealing"

Challenge: Limited Rate Capability @ Lower T

..1.11••••111......*••••••1

PNNL solutions
• Anode interface engineering

▪ Bilayer BASE design'
▪ Na/BASE wetting agents'

Ob @dime: Determine the cathode reaction kinetics and further

\,„!nprove the rate performance.

(-

N

O.

From Ni/NaCi to NiMax (Br and Cathode55

Theoretical Reactions;

2NeCl + NI tt• 2Na + NICI2

C= 2.60V at 190rt

,iNaBr + NI .4*. 2Na +

F. = 2 57 V at Pg.fleC

2Nel + ZNa + lyllt

Com 246Vat 190.0

gin
▪ Same IR drop of 0.013 V

(1.3 ohm) for Di and D2 "
- Extra overpotentlaf for

D2 possibly from miss
diffusion

X RD &Synchrotron 11R-
X RD:
• Dlffererrt Naar,,C11-.

mixed phases identified
• NiPruCla_z, rather than

NIBT2 forms during
charge

??

f,

ao

44.

14

-41 28V

1.01010411thsla

h101101:0•0ela

MEI NT..

▪ 100 1E0
• SOC. Vn*4001.

4.1

'1]

as 77 
Nei 

As }

NATIONAL LABORATORY

Origin of Extra Discharge Plateau

317-1.;:j '41

1{11NO(ES)

- 7.}0

;!2=;
a • .0.1ae,
....We* •

!-0.10fri;
4.4-0100-e
0.91010.-0

••sisis0.... e

Dr/Cl ion exchange!

xN a Br + NaMcl, cz, Mad
• Confirmed by LC-Mass result: x 0.24

Overall cell reiction!
2Na9r,C111,4 Ni4;;;IL2No +0115ruCII.x, I M 238 VM

Superior Rate Performance of NaBr/Ni

HERM

1111
Coll•M 06.•

Fast Salt Dissolution 4 Rate Enhancement
Francilar•Savolk: 1, a 001-463nFACO=}1r1 Diffusivity from Cur

-

1

41-14•411, • WS

ma, 19).104

.t.ax 10.

Similar diffusion: thin NiBr, layer

Solubility from ICP
Earn0Le SaiLmblirty

PRKI

Mier

HW niCa%

Finer raft dissahrtion (rate.

drtermrereg step); high rate
capability

t-2

CS 00111

Conclusions:
* The NaadNIarthadiedefivered 174 Whiekg at 100 mA ("0,80, which is 2.5

times of conventional NECVNI cells.

• The SU periar rate capability of NatrjrNi is ultimately attributed ta the faster

Sedum bramide salt dissahrtion, which enabks easier or anian transfer.
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VALIDATED
RELIABILITY
AND SAFETY
PERFORMANCE

Each of the collaborative laboratories has a significant focus

on safety and reliability of grid energy storage systems. This

effort includes coordinating DOE Energy Storage Systems

(ESS) Safety Collaborative which bring together stakeholders

from industries that range from national laboratories, electric

utilities, standards organizations, and manufacturing

companies. Sandia also provides workshops and organizes

technical conferences, including the Energy Storage Safety

Forum, an annual technical meeting for the worldwide

research community.
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Multi-scale Thermal Stability of Lithium-lon Batteries as a

Function of Chemistry and State of Charge
Heather Barkhottz, Yuliya Preget; Sergei lvanov, jill Langendori, Loraine Torres-Castro, Joshua Lamb, Babu Chalamala, and Summer Ferreira

Motivation & Objectives
Experimentally quandly Li-ion tottery laiture at the materials level during abusive and non-
abusive condifions to enable:
...krorrned decision making about preferred operating conditions far difgerent batterlee
...modeling of battery degradation and thermal propagation
...uanslation of b Ilure understanding to technologes for Intervention
...safe and reliable energy storage for i resilient grid

• Relate component co whole cell failure for popular commercial Li.ion chemi Ltries
• Compare falkire response from fully charged to fully discharged state

  Milestones  

•VVIlok cal calonmetry for LCO,LFP, NCA at 0, 50, 75,
And 100% SOC
•CsIorirnetry cif separator. anode. and cathode
components at O. 50, 75, and I OC% 50C

  Whole Cell Failure  
figctwinr-A•acerriuy (AK) 41 l 0650 Worn

4. • ma.tac
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Multi-scale Comparison

Kai coade culla:W. Q.:els/16m so roomy only In cornblcatIon wIN scbect

770

p

LCS

1:16

150

a a
•

a

46

LF* clEmde d.Pes not viol:M.66e Up thermal runaway

a

4

•

Miff 'raw cent rot awl, cape .99o1imi-rn

ris  

E

xoa

I 150

50

•
•

■

z.

• .70 ay

%WC

so

Dill5tre•tial saraing egertmci7

.11

lY

I 

:.14•

I ...-
ma-

•

E. o .• • .• TI• sr
lid•••••1,13

41,

•

NJ

.L3

'PP

41464.4.44

Conclusions
• Variability in key AFIC temperatmes can be traced back to cell component chemistry and SOC
• SEI decomposition Is typically the onset of thermal runaway and don not wary widn SOC
• LH cathode &es not contribtrte to runaway; metal oxkles contribute only in combination with solvent
• Importance tf standard calm-lime:Ty protocols to get "true onset temperatures
Publications: Barkbahz et al./. Power S °toxin 201 9,43.5.n67n

Shurta et al-i. eectrochem. Soc. 2019.166. I2.A24904X2.5.02.
Presentations:201I9 Electrochemical Soder, Spring Meeting
Othir Dcwlopirotrit Of nation-wide calorimetry colaborative

funded by the U.S. Department al Eneept Office or Electric ily,Energy Storage program.Dr.
Imre GyLik, Program Director

se:imomLikirma.
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Durability and Reliability of Commercial Lithium-lon Cells as a
Function of Chemistry and Cycling Conditions

Yuliya Freger, Heather Barkhohz, Armando Fresquez, Summer Ferreira, and Babu Chalamala

Motivation & Objectives
Experimentally quantify Li-lon battery failure at the materials level clurii-ig abrasive and non-
abusift condrtions w snablc
—informed decision malting about preferred operating tantirtionS for erfferent batteries
--modeïrg of battery degradation and thermal propagstion
—translation of %lime understanding to technologies for intervention
...safe and reliable energy rtorage for a reaient grid

• Understand difference in aging behavior at a function of chemistry. environment, and use
case for popuLsr commercial Li-ion chemistries

• Relate fading performance to changes in core electrochemical and materials properties.

  Milestones

.Corriplete cycling of LFR NCA N MC cells to $O% capacity

.Corriplete calendar aging of LFR NCA, NMC to BO% capacity

Study Design

INmign el experiment approach ...fFth two telli Item% tetet t6nreakra,111 wFthlr.
Elkini/riSligar ip.K.icasForps.

NCA N MC

Camentrodicalguoiarcrou

LFP NC&
KIM ljEamascsig

1.LAh 3.2 Aim
3.3 V 3.5 V

nrNc
ELGI:ficod

3.0M

Masi illscriarge
etwrint

311A. GA 20 A

operatkir amirc 010 WC

clocking. ronedikeu for a <A

DOCI.Tamporitara, Ditaltit.p Ritthe

4041:1%. WC. &SC fl- I Cok. VC. IC 1:1-11.04%. UT. IC 4040r.. Is.C. 3C
MICK, O.SC 4.102%, 254C, I C D.4.1:10%, 2.5*C, 2C 20.5011425'C. 3C
0.15.0%.25•C. O.SC Ct. I 1:0%.35•C, I C WC, 2C 0-1110%, IVC.

•Cliarce rrst ak.aqt C.2

M....F.13 • 13-S.•11.11

414▪ 1 • nap •••....
ii14.11.4nirl.4.31.11411.141.11

.4-41.•
1.1.44.1.1.4144 A RF 41F. MP- 1,1
...1-111 • -MI • N.. -11.
444.. R4- 1.1...1.3-41...19-11114 1.1.41.4441
4 14 .
▪ 11414.4.1.1111

WG11.41111.1dd 4.14.0 • 412C . 4LIC iC
WELL 1.....40.L 4.1C-FL•JC•IK•4C-1C

-

FL •
IS r;

111
re-41.411414114
411.1144.44 OMAN

FE •
.14 ...MAK-X.4W;

i 

M=. HAIN.*

Performance

eve if...

WC MEI 4 mar ica.suchaseeuraink fu5 sc.wg arid dOcharp rmerer rhroveipac cnsr dacren in:41u

Troparahore Oapandaoca

se:PC Dependence
1St

ox

Broader Trends  
Ccropritaa to p-crlaus examplos

WAY rp.dad urne caOtlielone

Ima.411

1•-••••••Iii.

Condusions

Ff

ox

C ..14.1
El rm.-

144.14

/se

M.G

us

.

14.414.

•
•

•

1.4.44•4.

I '7-

1••

..... ......... ............. .....

Terrspermtaire 4,9401 wing 144 to.n11.1.3.1 betwtar.

degradrliOn ratetsalatirtt it eharttettry daptlidara

2

a

4

-111-01,

1.,1•1

44

BroadTricals
ILFP cemertemxif b.pg t WC anti NM 24 5. 35 •C
NCA imd NMCparrienhatt tem:Rive te. Ma/rip

consistunt LIfoaranas

ctersorable agreelmeris mum diffeotric iSldkS fOr
Cad r7'C144.b.4 7k..112r C4144411204

• Nuivalent full cycle taint is the most common literahire metric, hut other metrks such, as dischare energy are more useful for application
• Dependence on diferent 'Atrial:des i# 12rcedk cOnSiatent across the literature, and highly chemistry-speed-it {especially temperature)
Presen tadons: 2.0 CB Battery Safety Conference, 2019 Energy Storage safety a Reliabwity Forum. 2019 Electrothenaleal Society. Spring Meeting
Other; Development of publicly accessible battery data mix:4ton. analytics tool
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Heat Release from Thermal Decomposition of Layered
Metal Oxide Cathodes in Lithium-lon Batteries

Randy C. Shurtzjohn C. Hewson
Fire Science ond Technology, Sandia Nampo! Laboratories.Aibuquerque, NM

introduction  
• Szitionary correof storage systems (ESS) are increasingly deployed to maintain a

robust and reSilient grid.
• As system size inCreS4e5. financial and safety issues become important topics.
• Holistic approacIxelectrothernistnt materials. and whore-cell abuse vrill t1

knowledge gaps.
:4) s cnablc knowledge to be applied different scenarios and larger scales.

• Existing thcrmal runaway models successful for Mital thermal runawl*
• Model features needed to evaluate safety for large Li-lon systems include:

• Applicability co bauerits with &Ferenc form iiietcrs, chemistries, SOC.
• Predictions dependent on material properties.
• High-temperature chemistry to predict cantading failure.

• Thermodmamic; proYpde a foundation for modeling chemical heat release

Decomposition of Layered Metal Oxides Predicting Cathode Heat Production 
• De-lichiated (high $0c) MO, cathodes experience multi-step decomposition • Heats of reaction can now be calculated for decomoosroon of any Lia4101 with
• M.ost steps produce or/gen  except for exothermic • ArlArary M (single me[als or mixtures of Ni,Co,Mn. &MAI)

• Arbio-ary x (low x ■ high, SOC)
• Required assembling a new compilation of 32 formation enthalpies from 42 sournm
• ,Electrolyte solvent DDrnbustion adds more heat (-472 ltYmol py for EC)

MriCa0141•RMENFAC•HCA

SO

-m

Calorimetry Data Demonstrate Effectiveness of
Predictions for Pure ark 1*•1( d MetalS)xides
• Calculated ht.'s generation with full combvstion oF 'event compared to calorimetry dati
• Explains trends observed for different =tin of charge (x) and pure or mixed metal oxides (M1
• SO calorimetry measurements ex-tr-acted from 24 sources, scrutinized and processed for comparisons

403

—it

a QI 02 CI A# .D.s. 0.6 02 as 1

—RI —Ri

a Idcep L7 2.3trp daip Ai 1 ef 9101:15 ■ Maelled Taal

Conclusions and Next Steps

Predicted and
Measured Heat
Release Agree

for 3
Commercial
Cathodes with
Varying SOC

• First demonstration of heat release predictions from arbitrary metal oxide-5 with varying SOC
Allows rapid, a priori leery Assessments for candidate Li-ion cathode materials

• Faclikates identification of chemical evenes from thermal data
• Distribution to occur through publication and 410vdoprriert of a web-based heat-release calculator
• Cathode thermal runaway model; to be dcvclopcd will utilixc these predictions as a sub-model
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Energy Storage Models for Risk-Averse Optimization
David Rosewater (Sandia). Ross Baidick (UT Austin), and Surya Santoso (UT Austin)
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Requir.ententl
• Architecture
• Modeling
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201.8 — PAR submitted to leec

2019— wG Kickoff meetEng

2020— Drafting Sections

2021 — Review/Editing

411. 2022 — Balloting

David Rosewater
(working group chair)

IEEE P2686 Recornrnended
Practice for Battery Management
Systems in Stationary Energy

Storage Applications

A new working group has formed within the IEEE energy storage and

stationary battery (ESSR) committee to develop a recommended practice tor
battery management systems (MS).

Well-designed battery management is critical for the safety and longevity of
batteries in stationary applications. This document is intended to inform
battery system designers and integrators in the challenges of BMS design
and will assists in the selection between design options by supplying the
pros and cons of a range of tec h n i ca I solutions.

Many aspects of battery management design require integration with other
systems such as energy management or charge control systems. System
integration can be made difficult or impossible without a minimal level of
communication interface and control interface standardization. To address
this issue, this document will offer recommendations and best practices for
interface design to streamline system integration.

The scope of the working group's efforts includes collating and

communicating information on the design, installation, and configuration of
battery management systems in stationary applications, including both grid-

interactive, standalone cycling and standby modes, The document we are
working on covers BIAS hardware, software, and configuration. Hardware
capabilities in large systems include! grounding and isolation; passive and
actkre balancing; and wired or wireless sensors. Software capabilities

include! algorithms for optimal operation with reduced risk; best practices

for verification and validation; alarms; and communication with external

systems. Common settings are discussed along with setting selection

methods. Battery types that this document covers include lithium-ion,

sodium-beta, advanced lead-acid, and flow battefies. General factors for
other types are provided.
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Reliability Testing of Li-ion Batteries for
Stationary Applications
Daiwon Choi, Alasdair J. Crawford, Nimat Shamim, Vilayanur V.
Viswanathan, Ed Thomsen, Mark Gross, David M. Reed, Vincent L.
Sprenkle

Pacific Northwest National Laboratory, Richland, WA 99352

introduction To increase the utilization af intermittent renewable

energy resources, cost effective, safr and long cycle He elerirochernical energy

storage is required1. Therefore, various types of lithium-ion batteries are
currently deployed for stationary energy storage applications clue to high
voltage, energy density& and tong e-yee life. However, state-of-the•art lithiu rn-
ion battery performance as a stationary energy storage is not well explored
and understood comPared to vehicle application in terms reliabilityi. in this

work, four different LI•ion battery chemistries including fICA and LFP type cells
are subjected to grid duty cycles specified to frequency regulation and peak
shaving services. Our test setup, protocol and updated results will he
compared and discussed.

Objectives and Methodology
J Deareiop staridardliedtestirc protocoh for industry spedik reliablitty
J Understand degradation or DC components and AC modules under grid duty

Di in parallel with field deployed system enable testing under controlled and
accelerated conditions -develop State ig Health model
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Summary and Perspective
• LFP cells:haw bettor aging, Capacity and oneigy retention,
.;1 FreqUenCV regulation service degreles the least per energy utilized-
• Even with Sante battery chemistry cycling stability wiles with cell engineering.
3 fly/di:lanai/3es and be applied foe in-s/tu battery health monitoring
3 1-ligiber SC}C Level degradc-s tho balm the most
3 Whole dir.solvtionaccum liv KA and HI& cells

— 
Future Work
J Test methods developed here wil be applied to larger energy storage modules and

systems includirg LI-ion, lead acld, high temperature sodium and flow batteries.
3 Additional 192 test channels will be installed for better resolution and response

lime including temperature. Eitv. resktaibre, At impedance. cyclic valtammetry
monitoring.

JI Testing more battery chemistries from difierent vendors
J in-operandotpost-mortern cell characterization using advanced techniques.
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Battery Reliability Laboratory at PNNL
David Reed, Daiwon Choi, Vilayanur Viswanathan, Alasdair Crawford
Ed Thomsen, Nimat Shamim, Mark Gross, Vince Sprenkle Pacific Northwest

Battery Materials & Systems Group,

Pacific Northwest National Laboratory, Richland, WA 99352

Lotroductioo; To racy:WM< the developmeert and deployment of enemy storage krito the
davit imiliarituenre. it im Iffir ideibility od banetirs asskl haticry icsicririzeirb.
for ircrrased acceptance of thc technedopr. The perks-ounce avid lifetime of stofto.:
rayratiens wider gyid dirty cycles "timid he quantified and disseminated throughout the
indintry, ln rirraiingi hem lechno1vigco tinted Leader grid dirty cycic-s. $/k"uld hc.
Pr.04 In dirso rasecKek mimed go degradation mining of the achnolagy.

■

Objectives
Establish r veor/d class. buitery gesting labontoly to prediix the lifetime of
battery eumponcnis

maw en-ailc characterizatiou facilitieo (Lc, NMlt. Xl3S, Mk APT.
me) to undastand dogroiation mechanisms or batteries total under grid
duty cycles_
ClUille innovative material solutions to existing Technologies to increase
reliability by unclermanding Maierials-Porforroance rotations for various
battery kehnologks
Provide battery operation guidehnes and independent validation of
performance to end users to maximiy:e bauery lifetime
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Future Work

• Phase 11 wiU provide additional capacity, technalogieo, and tettersicycicr5
rna.

• Tmlitig linked to Laid deployed systems lu validate component performance.
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Introduction: Vanadium rains new bitterie9 (VFRE.5 euirers from perfOrMillei
fading over long cycling. To fundarneelally understand the reliability cind degradation

mechanism, and Co everinn[ly dcmlop models for aging prediction that can hdp Tod= the

dumlion and cost nsiocialed with real lifetime logs, ic imperative foe their in real analicalLorm
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■

•

•

i ntroduction
Stationary energy storage syStAMS (ESS) are inCreasingly deployed FO maintiin
robust and resilient grid_
As system size increases. fininciil and safety issues become irrportant topics.
Holistic approach: electrothernlin materials. and whole.cell abruse will ill
knowledge gaps.
Simple passive monitOring of a cell Or battery ia often unablc to identify thc onset
of faihre uniil it is IWO late to intervene.
The prevention of catastrophic failure requires detection of internal fauin well
before they have developed to the point of no return.
Understanding the degradation tnethanisrns of the battery components during
abusive conditions is essential to influence the development ni neW carrIpe,nent
designs that are more resilient to abusive c4nditions-
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Failure Mechanisms of Overcharged NMC Pouch Cells
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* The dQfdV circulated after
mild OC demonstrated
loss of lithium inventory

and active material.
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• The analysis of the XRD
diffractograms depicted
the decomposition of the

cathode.

VVhat happens if the initial
SOH is compromised?
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• The SEM images revealed
the presence of dendrites
and the degacrnation of the
mesccarbon mkrobeads.

• The initial SOH of three cells was manipulated. and the abuse
response wat characterized-

, The Oilitt SOC to thermal runaway decreased as the initial
SOH was aggravated.

■ The overall resistance in the form of magnitude as a function
of the state of charge presented the failure marker at 140%
SOC.incisperkient of initial SOH.
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Mitigation of Failure Propagation in Multi-Cell Lithium-ion Batteries
LoralneTon-es-Castrodosbua Lamb.june Stanley, Chris Grosso and Lucas Gray

introduction
* Stationary energy storage systems MSS) are increasingly deployed to maintain a

robust and resilient grid
a As system size Increases, financial and afecy issues become Important topics.
- Holistic approach: electrochemistry. materials, and whole-cell abuse will illl

knowledge gaps.
* Safety of LIB has long focused on the impact and aftermath of a single cell failure,
a Failure of a single cell (inlkie a pack) may so-fey have little impact on Me saisty of ;

the system however. the thermal and electrical Impact on other cells in the pack 3
may be sufficient to same a cascading runaway effect. 3

* Work presented here exarnin.m the failure propagation behavior of small battery
modules and multi-modules constructed with pouch cells, and the development of
propagation mitigation strategies.

sdem
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Methodology
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6 Peak temperatures reached
-400 °C.
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not observed beyond the initial

failed cell.
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■ Full failure propagadon.
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• Cells within the target lS3P
module were rapidiy ceosumed

• Outer modules did not ininate
thermal runaway undl -110
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• inMal failuro immediately consumes
cells within the cenual 153P

module.
▪ Outer moduks show signs of failure

-20 seconds after initial initiatiOn.

a As the size ind complexity of battery packs increases, singe cell hares within a - a barriers were used as a means of passive thermal management to slow or halt
pack become sIgnilcantiy more likely - this work looked at the mechanisms of how a
single-cell failure mlght impact a larger battery, as well as haw it might be mitigated.
• [knifing the SOC exhibited a meaningful inpact on propagating failure:: however,
thls comes at a hlgh cost to Mil energy storage-
a Unmichpied fully charged pouch cells saw a complete consumption of the packs,

thermal runaway propagation between cells.
•lf plums limited propagation to a singlc cell, while lire" pbtes arrested it
altogether far sin& mndule battery packs.
aThe same plates between modules oF a 3S3P pith configuration were riot sufficient
to mitigate the failure propagation.
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Predicting Limits of Cascading Thermal Runaway in
Li-lon Pouch Cells

Andrew J. Kurzawski, John C. Hewson
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Introduction  
• Stationary 'anew storage :yams (M) are increasingty deployed to maintain a

robust and resilient grid_
- As systern size inCreaSe5. financial arid safety issues become important topics.
• Holistic approack:electrothernistnt materiaLs.and whole-cell abuse will All

knowledge gaps.
• Models enable knowledge to be applied different scenarios and larger scafes.

• Casiaiding failure in Li-lon systems depends on thermal and chemical processes:
• Heat generation from chemical reactions.
• Conductive heat transfer through and benveen cells_
• Convective heat transfer To surrounding gasin.

• Comparison between experiments and models provides a mcaaurc of modcl
performance and elucidates data beyond what is measured,

Finite Element Model of Pouch Cells
• Discretization in one cirection (a)
• Mult-layered system of batteries and spacers
• System of 5 Li CoO2 3 All pouch cells
• Empirlail chemical reaciions

• SEI decomposition
• Anode-electrolyte (Shum)
• Cs throde-electrolyte
• Short circuit

4 EXperirriantill data
• Nail penetration in lint cell
• State of charge (SOC) 50-1100%
• Copper and aluminum spacers
• Measimed skin temperature

with thermocouples between cells

100% Soc
• Predlcied heat release over

heat capaciejc Q/cp = 207 ma.

6 Heat release per rn as r ir
519 j1g 

eoo

BON SOC Este,
4 TWo of lour experiments

propagated, but simidations "'
do not propagate.

• Qft, clecreased by 6,7% X I"'
6 Heat release per masa is

dial jig
• Need so improve short

circuit modcl for the naiL

1111001Vriir
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70

4sides

Battery Spacer

Limiting High-Temperature Rates
• initial investigations with

empirical reactions found
propagation velocity at peak
temperatures to be over-
predicted by —2 orders of
rnagnitucle-

• Velocity scales with Me reaction
rate and thermal rriffusivity as

V iw dr.a.
• We prnlR hlgh temperature rates

whik fixing the onset rate by
adjusting the Arrhenius pre..
exponential and activation energy
together.

Model and Experimental Comparisons
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100 150 24.0 1.50.
Erie CO

104 IN*

awl

LEI L2 LI le LI}
In-urn]

13

80% SOC
• Solid lines = Experrnents
• Dashed lints = Simuktisns

Replicate 80% SOC experiment
does not propagate.
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1/32" Copper Spacers
100% SOC
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-nme is!

200 190 atia

i3.2" Al 5paCcr5
• Net heat capactry increase of 15%
▪ threp decreased by 13%

▪ Predicted arid observed propagation nil occurs but slower.
113.2" Cu Spacers
• Nct heat caoadry increase of 21%
• Qfcp decreased by 17%

• Observed propagation occurs but predictions 6i1 bo propagate-

Summary
• Both models and experiments shoe homogeneous distribution

of heat CapaCity it more eflittist at mitigating propagation than
heterogeneous disiribution of heatuipacity_

• short circtit model contributes to differences.
• Pntolctions more sensitive to heat capacity changes than reality.
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Thermal Runaway Testing and Database Development of
Large-format Li-ion Cells at ORNL and SNL
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  introduction
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internal pressure measurements during the thermal runaway
of cylindrical lithium ion batteries
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Abstract
Under abuse opacittions, batteries ekthibft a build up of pressure during thermal
runaway until Ina vent mechanism bursls (or 'ruptures). The abllrty to measure
this pressure rise is important to understand theme] runaway and onset ol
venting failure& Delicate componenls wilhiM Cylindric:MI cells make direclly
acoesSirkg ite inside al the betery impractical, so measurement ol the cylindrrcal
case's mechanical response lo the pressure build up ayoids this limitation. Here.
experiments are per:lamed to demonstrate bow stain gauges may be used to
perfaml nonirwasive pressure measurement oil balteries under !hernial abuee
conditions. A laboratory scale lest apparatus has been constructed tor these
experiments, and analOcal expresstons have beer. established to describe
internal preseure as a function 01 strain.

Figure 1:Strain gauges
mounted to an empty HQ,

1065D size batter/ case SIMI°

Case Stacked Suain Gaugel

LrgiadMel Strai:

Strain measurement test fixture
A last apparatus was constructed to measure case slram under thermal abuse as shown in Figure 2. Tha central chamber was built from a 4-NPT SiZa steel pipe with
all 87 mm diamelsi by 3108 rnm focg interim. Elec!ricel heaters ralsd at 2.&110 %V are wrapped around the pipe end ars capablrf ol heating /he chamber's interior al
9.57-Cimln. A double-pane insulalion slruclure is used arong with helium inside lhe chamber lo increase the heating rate. A remote data aoquisition syslem measures
caso strain, chamber pressure, and the temperatures of the battery, interier gas. arid chamber wall. This systenn also switches healer relays and operates purga
valves. A battery holder was fabricated to minimize heal conducliork tarn chamber [...rails while securely holding the battery and multiple lhermccouples.

ll-t5Lrumerltalicin
Batlery

Heater Wrep,

Window

Batten; Holder

Pressure as a function of case strain
Pressure contained within an enclosed cylinder will cause miachanicai stress
along its length (kingitudinal, L) and circumference (hoop, h). Ta measure stre&S
componenlis. strain gauges are adhesively bonded lo the oulcide al the cylinder
wall as shown in Figure 1. Analyrical expressions relate hoop and longitudinal
slresses to the contained pressure [11:

P PD
Crlt = arbd LTL VP

The slrain on lite cylinder can be expressed ift both directions as functions ol the
slress components and thermal expansion [21:

ai 0 FOrL
eil = — atfr and EL = —

E 
- caT

The above expressicris may be cornbined and simpliled into a single expression
for internal pressure as a function at case strain measurements independent of
thermal effects; 4E17

13 =   (f et.)
0(1 v)

nsulatiOn Strudure

Fig u-e 2: Annolated SclidWarks model and pl-kotoraphs ci various aspects el the lest apparahis lor Ihe case slrain rrbeasuremen] esperimenl

Thermal response of 18650 format battery case
Ari open, cyhndrital 1885D battery taN; was heated from arnbieir. La 180 C al
approximately 4-Cimin to evaluate systematic errors. Shown in Figure 3. raw
strain measurements were collected then corrections for gauge thermal output•
gauge rotation, gauge transverse senailivity, and cylinder curvalure were made.
The maximum devialion from zero Wain corresponds to ark appareni pressure el
160 HPa. Si nCra Mara IS no aossible build up 01 pressure in the open oyincier, this
rnay be used as ark upper hound lor rneasurement uncertainty due to the thermal
response for :this specific gauge and cylinclef

12e

:CO

-20
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Conclusions
A method lor measuring 1he build up of pressure during thermal runaway was developed from the measurement ol case strain. An analytical expression was
formulated far pressure as a function of cese strain values. A test fixture was designed arbd fabricated to measure strain under therrnal abuse condttions. An irkttial iriel
auardiliad uricertainty due to gauge thermal response. Another trial daribinslrated liaa ability to measure pressure Ou lid up via tha isochoric heating 01 a CO, cartridge.

Ongoing research
Live baltery abuse tests will focus on determining lhe accisacy oil lhe internal pressure measuremenl raelhadolagy's accuracy and quantitatively descxibing the lrends
al the IllaalTlal pressure build up prior tp ventrg miset La brand, model HE2 batteria$ will be lested becaase the lithium cobatt oxide call-bode chemislry it, known ID
dernonslrale venling falures trader !normal abuso [41 These vent caps burst around 1.206 MPa *Noll will ba LSO./ to evaluate tha measurement accuracy [84.

Figure 3: Raw and
corrected strain
measurements for

empty 18850 bartery
case varsu
terriperalLire

riikeia *lad
Rep ionprxd nal War.

• tormc hid 1,:dp
pdrtuw lonsEl-ruezirmir

Carbon dioxide (CO2) gas cylinder internal pressure
A closed {prEISSLI rized) mei cylinder tilled with 12 g ol CO2 was heated unlil the
point al burst, and a second trial with an apen (unpressurized) carlridge was
performed as a baseline. Pressure, calculated from strain, ts shown against
lemperature in Figure 4. Closed calridge pressure build up is varripared to an
lsochoric heating of CO2 wilh the same spectiic volume as the cartridge [3]. The
cartridge yielded prior to burs[ causing an upward trend in apparent pressure.

O

— ,wircs.•
—Gorri NM,*

— C.03, istcrom Moro (12 in lea)
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Figure 4: Cartridge pressure during heatiag (left) and images il an inlact and
burst cartridge (right)
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EQUITABLE
REGULATORY
ENVIRONMENT
& ANALYTICS

The equitable regulatory environment thrust area supports

research to enhance the energy storage regulatory

environment through: estimating the value of energy storage

for different applications and scenarios; developing control

strategies that maximize revenue or benefit to the grid;.
--

identifying new control strategies and applications for energy

storage; assessing public policy to identify and mitigate

barriers for energy storage; developing standards; and

evaluating projects.



Planning Considerations for Energy
Storage in Resilience Applications
JB Twitchell, SF Newman, RS O'Neil, MT McDonnell

Abstract
ThIs %work presents the proceedings and lessons learned at a
conference workshop that discussed Vie role of energy storage in
supporting electric system resilience, which took place at the
Natural Entire Laboratory a Hawaii Authority's (NELHA)
Confereme on Energy Storage Trends and Opportunities in

December 2018- A lixation-based framework for resilience
planning ks presented, as is a microgrid planning tool capable of
identifying resource mixes that will meet site.specific resilience
needs. Case studies of successfulty deployed resilience projects
born around the U.S. clemonStrate the proposed planning
principles in practice, and takeaways from a workshop discussion
itientify additional research needs.

Energy Storage and Resilience

kr-ek ineteva

From a site.based perspective, resilience is about
acquiring i backup source of generation to meet energy
needs when the grid is down. Traditionally, the only option
for this was a backup generator. But with high upfront
costs and limited operation tor revenue generation, thls
was an ementive proposition that effectively limited
resilience to entities that have a mission-critical need for
ito such as hospitals and military bases.

Due to its operational flexibility, en.argy stonge devices
can he paired with generation resources to provide a
range of monetizable grid services when not being used
tor resilience. That revenue can offset the system's cost
and enable a broader range of facilities to liwest In
resilience on a cost-effective basis,

Pacific
Northwest
NAT it.m.A L L ABOR ATO RY

Problem Statement
Reliabira-vis an objecthre concept defined by mandatory standards and reporting
metrics. These standards and metrics faclitate the development of tangible planning
objectives and make relability a monetizable service. Reliability standards are firm
requirements Oat a utility mst meet-

Resilience i$ a subiecthre concept, lacicing specific standards arid metrics, or even an
agreed-upon definitiOn, Lacking those, tangible planning objectives cannot be readily
developed, and resilience is not a monetiaable service. Absent standards, resilience is a
goal that is pursued subject to Cr:At ettkivervaš.

Defining Resilience in Terms

of Reliability Metrics

System Average interruption Duration (SAIIDI) is a
commonty used reliabiliry metric that measures bow
tong, in minutesf the average customer is %without
service during the year- To 'ensure thalt uncoritr011a
external events do not mask reliability issues. SAID!
Settreš are "normalized" by removing major verAs.
While these events are filtered out of reliability
reporting, they provide* starting point for Identifying
resilience needs, as demonstrated in these 5AIDI scores
from Hawaiian Electric Companies subsidiaries:

Ulilitr

Howailork
Orrark
Maul Elitirtric

Flawari Elocirk
t •

Minya *Go-
tiormalitariSAIDI
Swam, 2003-3017

&ANIL.
Noe Mir Lend DiaftreinceDUO! 541:14.515.
2.1=-2017
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V24 12ca 653§1
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if we want to improve resilience, these la
rnajOr events are where we start
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A Locational Approach to Resilience Pianning
1. None critital loads. Identifying specific loads that must be maintained in a grid outage breaks resilience into achievable, incremental objectives.
2. Identify major events of concern. Under 5tanding the shape of the resilience need is necessar}F to establish tangible planning objectives.
3. Establish planning objectives. Defining suCCeSS firSt - what the resilient assets will be expected to do - wilt translaM IMO dear objectives.
4. Engage in iterative site and local grid planning. Local grid needs will define values for tbe project to pursue, and projects may drive needs for

communication and control upgrades on the local grid to enable their value.
5. Throughout tho proarts, considar questlons of ownership, cost alkication, and rata design:Mese policy decisions have significant ramifications ors

the valued resilience assets and how they will be used.

it

ENERGY
1 his work was funded by the Energy Storage
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Model Predictive Frequency Control of Low Inertia
Microgrids with Energy Storage Systems

SOUTH DAKOTA
STATE UN INIEFI-541-rt

Ujjwol Tamrakar, 1 David A. Copp, 2 Tu Nguyen. 2 an Ci Reinaldo Tonkoski 1

South Dakota Slate University, 2 Sandia National Laboratories

Conlact information. tonkoski@rieee.org

Sandia
National
Labor atolies

1. Motivation and Objectives

• Fast-frequency control strategies are required in low inertia
rnicrogrids to maintain frequenoy.

• Energy storage systems (ESSs) can provide energy buffer
required for fast-frequency services.

• However, ESSs need to be dispatched optimally from a technical
as well as economical point-of-view.

• Model Predictive Control (MPC) approaa proposed.

- Allows system operator to dispatch ESS optimally
as per systern requirements and conditions

• Incorporate ESS constraints

Rarnp-rate lirnits

N‘L. 

• Converter size lirnits

2. Methodology

Optimization

I C011atl434

I 1. Frequency Dynamics Model:

2. Formulation of the Model Predictive Control:

/*T.- r

minimim = E (4 nAp,
-t

iiubjiM TO

- 134m /60," T

IAN vk e

S T.-

41 Cost Funchlorr

System Ermarales

Peak Raw Limit

Rampqrracc Limit

13. Optimal Control Action:

:= —Pr AP/ =

3. Results and Analysis 

3A. Effect of Varying Weighting Parameters

• S 3lem Paramelers: M .= 4 S. D 5%. Tsp. 0.2s
• MPC  T = D.025, T= 1 s (Prediction Horizon)

;

Ep Od

4.1
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Ihniabon M Tcrm tailrll
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•
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• Varying parameters allows system operator lo play belween
frequencylROCCIF reduction vs, energy usage from ESS.

• intuitively control systern dynarnics.

3B. Constrained Vs. Unconetrainted Operation

- Wo UPC MPC —Com.Lesiftwa PAPC

0

113

6
▪ O

b.

a

mithrti Ffequgncy due to
Rowel Constraint

in

Hirer MICOF due M. Power

Constrain?

Coma pa Fred tad 1'4

P

0.)

4. Conclusions and Future Work

▪ Fast acting ESS based on IVIPC able to reduce frequency
deviation and ROCOF.

• Weighting paramelers allows system operalor to control
behavior as desired.

• Verify controller performance with Power-Hardware-in-the-
Loop Simulations at SDSU's Microgrid Lab.
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Distributed Controls Using Energy Storage for improved Grid
Stability and Resilience

Roghieh Biroon, Pisu (Clemson University) and David Schaenwaid (Sandia NoSand Laboratofin
Etna: roixfoll@Cfemson.edui.paup@arnson.edu.ivwr Mripoe@soricliam

Abstract
This poster illustrates modeling, simulation, and control design approaches to develop and ultimately deploy
a distributed control strategy using energy storage to improve power grid stability and resilience.

Motivation System Modeling and Case Study
A distributed approadi to wide-area control
design has the potential to improve grid stability
over a wider area while increasing the robustness
to failure of any one actuator than is possible in a
centrafized approach. Energy storage systems are
excellent candidates to implement this strategy.
Energy storage can absorb/discharge both active
and reactive power to the grid with very fast
response times.

inkr &wham

WIN. PQM
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IpoN141ropsi
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Project Objectives
• god: Develop control algorithms for wide-area power grids using

distributed energy storage for power injection to improve grid stability.
• Scheduliw Project is currendy 6 months into a planned 3 year duration.
▪ Year l Tasks: Develop battery modd incorporating inverter dynamics
to enable use of the ilring anOe as a control input, Simulate and
analyze oscillation dynamics of case study model. Design decentralized
control algorithm to damp inter-area oscillations in case study smem.

• Year_2_Tasks: Conduct sensitivity analysis on control performance to
storage size and locations. Design a hierarchical control strategy
allowing remote measurement feedback at selected storage sites,

▪ Year 3 Tasks2 Develop case studies for larger grid models refle•chng
actual grld dynamics. Extend control design to transkent stabiliqt

—1*irdr•rg)

• k,
%•7,, .L7-1'46'411

Battery Model
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System Equarion

= IPGIA/G - EPHlatir

Control Design Approach
Decentralized control using overlapping decompositions' will be
designed for the system. This approaches is more practical in large.
scale systems since no exchange of information among different
areas is necessary which makes the control design easier to
implement in wide-area power systems.

a-

x xa, x3. xi, x,, x,fr
Conclusions

• Battery model has been developed incorporating inverter

dynamics to enable use of the firing angle as a control input.
• Simulations and eigensystem analysis has been conducted on

a three area power system for case study.

• Control design approach will initially focus on a decentralized
strategy using the overlapping decompositions method.

• Future virork will include sensitivity analysis of control

perforrnance to location and size of energy storage in grid,

• Performance comparisons of decentralized control stracegles
vs. hierarchical control approaches will also be studied.

• initial control design objective will be on small signal stabllity
with investigations into translerit stability planned for Year 3.

• Future work will also address larger case study models

reflecting dynamics from actual power grids,

Arm
Id" CI CI.149911. 0.101.4.9,111111-0 saNni

S4.91. 4)41:4"...14.1•14.-rA4P4Mi Nu-

Acknowledgements

Funding provided by US DOE Energy Storage Program rnanaged by Dr. Imre Gyuk of the DOE Office of Electricity.
GENEkor

Na1S4

•••6•111•1-•mEmlemmgniml
111.1.W Imlowl,61.111.11•11•ILL

m•-•••••••“•-ere0,1•—••••1

INTE3.#.3
WE.% il*.94K

AfirLa_ posz
Latinetrin

cm. ...march mac.Am,

P 



Energy Storage Planning for Clean Energy Target
David A. Copp I, Tu IL Ngurao2, Robb Thorn soo3, Raymond H. Elyrno2, Babu R. Chalamala2
' University of California at Irvine, CA 2 Sandia National Laboratories, Nil 3 Retired Fellow at NIST,

Ernoit dcopp©Liciedti. tunguy@scrndia gov, robbrn@toost net, rhbyrne@scradiagov, bol-rolern@sendia.gov

Abstract
In thls work, we developed an optimization approach to analyze the amount of energy storage and renewable generation
required for 100% clean energy target. Given locations of renewable generation, we solve an optimization problern to find
the amount of solar PV and vilnd resources at each slte and to size energy storage to balance a utillty's demand. Case
studies are conducted using historical weather and demand data from a medium-sized utility in New Mexico, USA.

Methodology
A mathematicat optimization
problem is formuhted the
objective of minimizing energy
resource sizes whlle ensuring
that the utility's demand is met at
all times.

The constraints of this problem
include:
• Storage constraints: state

of charge constraints,
• Power balance constraint:

load must be met.
Curtailment constraint;
renewable curtailment must be

• Interconnection
constraint: the energy
exchanged with other regions
must be limited.

7.10'.

5 24
2

WEIN liP

Formulation

Objective function:

minimize .J(, p"ad°)
;47' 41' 41".

if 46'1 Tr"

+ arl'r + rdr
d=1.

K
4. wry Epr E K E tirnekgr.4-
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Storage cind renewable constraints:

< ark < (1 —

Nk 1.1 11318* Iffer 74/.

AK = -FA

Power boience constraint

= E Pri -FEW, + - prt + pr"
J-1

Curtailment and intercanneclion constraints:
<

W
Firr < rk~ orrir.111.• < 111 <

SEAM.=

Key takeaways:
• FV+ES need is dominating against wind.
• Larger ES to accommodate wind vs RV.
* Energy exchange leads to less resources

Casa Studies— Resuhz
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Case Studies
• Case studies are conducted using
different historical demand profiles and
weather data from 2016 to 2018.1n each
case. we analyze dfferent trade
scenarios.

1.1414i rm. 4.411.• 11alsw.eflni Illownror 19*

Case Description

1 2018 demand and TMY data

2 2017 demand and weather data

3 20 I 6 demand and weather data

4 Case l with only solar resources

5 Case l with only wind resources

5 5
21

4 ' 11114

p.) Timer Allow.' nil Ihnikrx.

Conclusions
in this work, energy storage and renewable resources planning for clean energy target have been studied. Spedfically, the
contributions include: C. An optimization approach for sizing required renewable resources and energy storage to balance
the demand of a utillty w[th 100% renewable generation. 2. Results from case studies for a utility in New Mexico.
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Utilization of Existing Generation Fleet Using Large Scale
Energy Storage Systems

Tu A. Nguyen and Raymond H. Byrne
Emit tungliy@sandia  rhtrkfroeiasandia.gor.

Abstract
In this work we developed an optimization framework to evaluate the benetlt of large-scale energy srorage system (ESS) for
utilizing an existing generation fleet that often operates at suboptimal working conditions due to peaky nature of the load.
The objective Is DO find the optimal schedule for therrnal units and the ESS that minimizes the daily system operatIng cost.
Case studies are conducted to evaluate the operating cost savings by using ESSs for a utility company in Alaska.

Methodology
An FULP problem is formulated to
find the optimal schedule for thermal
units and the energy storage system
(ESS) that minimizes the dally
operating cost of a generation fleet.
The constraints of this problem
include:
• Energy storage constraints:

state of charge constraints.
■ Power balance constraint: load
must be met.

• Reserve constraint: minimum
spinning reserve must be met_

The assumptions include:
• ESS operation does not impact

hydro scheduling.
* Maximum capacities of

transmission lines have not been
reached (i.e., congestions do not
occur.)

Forrnulation

Objective function:
24 11.:
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i=1 s=1
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Case Studies —Annual Savings

Casa I -Ma EIS DM 5.209 12211.940 154.150 32.40E29"

{age 3 

-4ippiAniaMWh

34.7124.41107 1214.237 59.414 3.1374.055 411?.244
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Case Stu d ies
Case studies are conducted
evaluate the operating cost savings
by using ESSs for a utility company
in Alaska:
■ I combined cycle, 4 gas units
• Minimum spinning reserve:

I OMW if not isianded. 40M1N if
islanded,

• Natural gas price: 7.921Mcf.
• Variable O&M cost and start-up

cost for each unit are given in the
following table.
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Case Studies —Thermal Units Schedule

Lrnit 2 - Schedule

Jre1t 2 5c1146.44 .145
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-UM 2 • Sehedule -41:44WPICIPIWko ESS

Conclusions
In this srudy, the benefits of large-scale energy storage system (ESS) for utilizing an existing generatlon fleet have been
studied. Specifically, the contributions include: l . An optimization framework for scheduling ESS and thermal units to
minimize operation cost; 2. Results from case studies for a utility in Alaska.
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Siting Energy Storage for Resilient Distribution Systems
Randy C. Brost, rthrost sand !alai,/ 

Prolecz Goals 
• Algorithm to design storage and other distribution

system components to assure societal benefit

during long-term ouiage.

• Explore semantic graphs for rimilient distribution

system ditsign.

'Why Semantic Graphs?

• Highly flexible representation kr data spanning
mixed topic areas.

• Graph analysis is a strong tool for managing
brge problem combinatories.

• Explicit analysis of both data and relationships.
• Avoids weighting functkn problems.

Example:
Existing infrastructure

a

FYI 9 Progress'

- Grid sernintit grapir

▪ ISetthICA thodel
e Cmospa dal 4134

▪ Soipacu bends lima
▪ Exerting 4. potential

e "Nem models IWO& Are,

• Resilient ‘ntribution tonriguraunn design
• Storne f diesel temporal anititiis

• Python code in progress, open source planned

fT20 Future Workl
• Improivd powerferuirgy analysis
• Multi-temporal
• Multiihrear
• Lik-cyde cestanabsis
• Geespaud equity
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Sandia's energy storage materials science program focuses on

technologies that can be grouped in three main categories.

Electro-chemical technologies include lead-acid, lithium,

sodium, and zinc; and flow batteries. Mechanical technologies

include flywheels, compressed air, and pumped hydroelectric

storage. Electrical, chemical, and thermal technologies include

capacitors, hydrogen, and thermal storage, respectively.
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Advanced Membranes for Flow Batteries
Cy Fujimoto

Anion Exchange Membrane (AEM):

I, Polymer that contains bound
positive charges.

2. Alkaline stable AEM allows for
new electrochemical applications.

3.There is no accepted alkaline
gable  "'state of the art" AEM.

An len exchange
mernlaranu

Handful of small AEM companies 
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Third Party Durability Study:
investigate lEC/Conductivity Loss and Mechanical Loss in l M KOH at 80 QC for 1000 hrs.
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Process ofAEM Synthesis:
IEC control important for fow battery membranes, however membrane process (Process l) that vas originally used lacked IEC
control. To improve control, a new process vas developed (Process 2) and provisional patent is being pursued.
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Conclusions/Future:
1.High interest in atkatine stable anion exchange membranes,
2.Various polymers are being investigated, but the SNL polymer has shown promising durability.
3.Issues in controlling polymer IEC was due to processing condition used (Process 1 ).
4.Devetoped Process 2 that has shown fuR conversion of alkyl bromide to ammonium; better IEC controt.
5.Mernbrane commerciaLization
6.Flow battery testing of new potymer architectures (Travis/Harry), send to collaborators.

Acknowledgements: This work was supported through the Energy Storage Program, managed by Dr. Imre
Gyuk, within the U.S. Department of Energy's Office of Electricity,
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Electrochemical Energy Storage through
Ligand-Based Charge Manipulation

Prof. Mitchell R, Anstay4a Ellen Warner34EL David Choi,a Claudia Herhandez,a Nicholas Kehriefiy,a
Alexa M. Gmenwood,a Jonathan Nicoleau,a Prof. David N. Rlauch,e Prof. Neil C. Tomsoho
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Anderson and lhe following ma111ulions:

The rde of redox-eclye &nal molecules In tuner"' systems vary considerably as the syslem., and as needs, change. Redox flow batteries

pradornium.ly relv on nadeculer eleolmlytes few charge sacrage. Lithmrn-tased tahenes employ overcharge pfolieciews in the Wm oi arome1k

hydrocmbons. Redox shakes ere <ANY•Olify being inve.sLigaied to assist in the development or rolhium-eir be:Retries. In al cases, the re00.-ec1ies
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oxidalian Mete. Malecular-scale struclural changes are not necesserly detnrnental to perkeTriance, tut wtthout knowledge of MeV existence, the

tools to predic1 their presence, fins the ability to contTol 11412. MdChaniaills funtlion feud poa-sible decomposilion) can be a black box.
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Next Generation Cell design and Material

Optimization for Sodium Batteries
5tephen I- Peniv&I, Martha Caws., Leo j- ChabreoLl. Erik D-Spoarkel

Sandia National. Laboratories., Albuquerque, NM, USA
Iperepe@tancliiigeAi edsooerigsnntlia Ea.". (P.1)

Motivation
Ninften sedrum bateertet offer great premise aa a safe, low cer# ond s.catable saisnian to grid scale energy storage, but

hlgh (Verdant temperatures ilr.275 'CI and sad precipkation at 'lower temperatures Brisk their performance and

Recent pragrees has riernaartrated kwer operatrag temperatures but new engineering is necessary to enable Hp

throughbert tert.Ing to determine key parametem such as interfacial wetting and coinpaable materials.

Objective:. Hew can fast and rehlabie testing he achieved through new cell engineering and what mote6oli orid

interfaces are key to sutcessfuI battery operation?

Inee aimed to engineer new test cells to be .Interchangedble, re-usabie ond facilitate cotholyte and anolyte rateroetion

with charge transfer interfaces.
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Previous Battery Cell Design
• Demonstrated tamability &new Nal-ANIr)

clie:rnistry

Ca nude with available glass cell' parts not
ditUgnea Par moher salt battery testing

• Optirnizasion needed for
reliable battery testinzi

New Cell Designs
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throughput and functional geometry
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Impact Summary
• Engineered cell geometry and materiah to enable reliable high throughput testing of new sodium battery chemistries

• Careful design has produced a rt.-usable, interchangeable cell test platform that k safe and easy to use.
• This design has facilitated flrst ewer demonstration cif high cycle life testing of a molten sodium battery at 110 °C.
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Solid State Separator Development for- Sodium-Based Batteries
Amanda Perettl, Eric Coker. Mark Rodriguez. Manna M. Gross, and Erik D. Sposirke (Ply

Sandia Narienal Laboralones. Albuquerque, NM, USA
asperet@sandia.gerw 'edspoenasandia.siav

Motivation: We aim to develop zero-crossover solid state separators to enable safe, low cost, long cycle-hfe low temperature
(<150°C) grid-scale sodium-based batteries.

Maim Sexeven
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Key Separator Properties!
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I Thermal Analyses of Solid State Reaction
2ZrSi.04 Na3PO1 --> Na3Zr2PSi2012.

Differential Thermal Analysis and
Therrnagravimetric Analysis
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Understanding thermal analyses and phase behavior can lead to improved ion conductar synthesis.
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Radialene Radicals for Aqueous Redox Flow Batteries
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♦

f7
UNC CHARLET=

Department of Chemistiy, University of North Carolina at
Charlotte, Charlotte, NC, 28223

Abstract
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E I uc i dating Molecular Transport through
Membranes in Flow Batteries

Leo J. Small, Harry D. Pratt III,Travis M. Amderson.

Sandia National Laboratories.Albuquerque, NM.USA

lismall@sandia.gov„ tmander@sandia.rx

Rectors flaw batteries (Bras) offer a readily scalable solution to

grfd scale energy storage. Understanding ion transport through RFEis

enobies design of more efficient. longer-fasting RH3s, Here we

feveroged previciusfy explored concepts of ion crossover in RFas to

identify key membrane properties in aqueous systems and use thls

knowledge to improve a higher wattage nonagaeout system.
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Lithium-Pretreated Hard Carbon as High Performance
Sodium-ion Battery Anodes

Biwei Xiao, David Reed, Vince Sprenkie and Xiaolin Li

Pacific Northwest National Laboratory, Richland, WA 99352

Introduction Hard carbon MO has beCD iimmi to be un important
anode material for sodium-iort batteries (S1.13.0. While competitive equity
has been achieved using 1 lc, the performance is still plaguoci by the low
initial Conlombic efficiency (ICE) due io the carbonate electrolyte
decomposition Mal fonns a thick solid electrolyte inicrphase (5E1) and
irmversibly trapped Na ions within the nano-pores. IT is viral io develop an
electrolyte solvent Ns an alternative lo conventional carbonate electrolyte and
an approach to offsei the low ICE.

Objectives
u Develop an ackanced electrolyte that doei nut intensively decompose, or

cc-intercalate into the layers of HC..
U Achieve >90% Coulombic efficiency.

Methodology

Results and DisellsSion:

a) TEGDME compared to !carbonate electrolyte
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TEUDME shows improved perromunee compared lo carbonate electrolyte.

b) A IMD simulation of TEGDME electrolyte
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Ert-wilnent irtercams the ICE in both electrolytca, but the stability
is only retained in -I.EGD.ME, this approach is able to achieve sigrtilicantly
impmed full cell performance.
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Development of sulfide based solid state
electrolyte for Na-ion batteries
Atif AlZalirani s, DaiweL Wang 0, Xiaoliri Li c. David Reed c. Dongliai Wang b
a Department of Matenal Science and Engineerm, Penn State University, University Park, PA 10802
b Department of Methanica I Engineering, Penn Slate Univerarty, Unwersity Park, PA 116802
c Energy and Environmental Directory, Pacific Northwest Naironaf Laboralory. Richland, 1.n.rA 59352

Introduction:
Nr-ion battery is a promising low wit and high performatme battery for grid-scale
energy mange and the solid state design rie inflammable Emd hence has greet
potential to further improve die baucry safety, Sulfide-based Mi.-ion solid
clecirolyrcs made of low east earih abundant ekments have kgb ionic
conductivities, which maims them u dizimbic t:buice rur tow-wet solid-sirle
batteries. Despite thyNC advantages, the low conductivity end potential telecast of
hazardom Il2S when contacting moisture. environment pows a great challenge fnc
using the sulfidc-basod Na-ion solid-siate electrolyte for large %ilk manufacturing,

Objective:
■ Devolurment nf low-cost, mnisture. smble sulfide-based Na-inn solirklate

electrolyte without camprorniing the high irmiu conductivity 21i Mem

Caltrieratkiro-

Approach:
• the gencral approach is to develop highly conductive sulfa:le-based solid state

electrolyte and improve the moisrure stability.
• lmproving the inniu conductivity
1 Appropriate ekrnerita1 doping to lower the activation enagy, expand

the crystal lattice and reduce the hter-S binding aiergy
• Introduce Na ion vacancy Amer= by alievalent cation substiation.
• knowing die moisture stabiliry

Anion-subsiinnion with more stable 1131i0T1 (i.e.. niirogen) in Na3PS4
• 'Understanding the stractural-thermal-ionic conductility-rnoinare sensitivhy

tuntlaliuti as fundamental guidance fut new electrolyte development

Results and Discussion:
0 Highly cosaductie sulfide electrolyte

A nion ic duping (e.g, Arseskir duping) in tel711) 12 r:., .0*. I:1:12111i c
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b.) Highly conductive nioistare stable electrolyte

Structurt evolution and thermal stability with doping level
aP1
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Moisture sensitiviti or NM-a solid electrolyte
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Future Work:
• tuvcsfigaic the mechanism of 1H25: suppression in NMN-a aolid slaw

eketrolyte,
• Develop aolid-atare Na-ion battery Waiting the moisture stable NPSN-x

suhd-stateelecmulyle.
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Monitoring the State-of-Charge of a Vanadium Redox
Flow Battery with the Acoustic Attenuation Coefficient:
An ln Operando Noninvasive Method

Xiagqin Zang, Li= Yan, Yang Yarig, Huilin Pan, Zimin Nie, Zniqun Daniel Deng, Wei Wang

Energy arid Environment Directorate, Pacific 040f7hwesi National Laboratory, Richiand. WA 99054

Background
Redo; flow betteriec ore incr.23Arigly rixognired ax u 1mmLixin¢ imhaislcop for iMegralFing
electric* produced by met; Oble loro Ihe MA energy Tnix. As mere and mare llow
bascry systems ckasloycd f Cc 19414 itstiff%, lb4ir operanenal elfitieney, Safely, and reliability
become major challenge--

;- Maximiziriz efficiency while maintaining relibk and safe charge-d.ischarge cycLing
IL-quire* duar ilboatilurirke taiiihr banally albalbs-Ackerisc (See).

▪ Existing methods for SOC nnoniteaing, including the occu-eicuit ee11 voltage methed and
optical scuetroseopie approaches, are either off-line or expermice or unrcliabk. Thus, the
low-cost, real-time and reliable SOC monitoring technology is urgently made&

▪ Sound speed is sensitive to temperature, which makc5 the SOC measurement unreliable in
fluctuding icmpaihne conditions,

Objectives
▪ To design an ultrasonic probirg kvice to monitor I kg. SOC with Ihe sconlie properties of
elecirolytes saraudium haurrin. on-Line nod riurpirevasivelly;

• Io find a reliable ruemurement of SW dun can week in the fluctuating terOpnaillre
conditions.

Experimental Approaches
irAt: Tremecure Lhe %Dyad TIM' und. 444)4144c CaCrliMiC011 or the

▪ ElEctrolrE mplalliurla EL LI•cc tacpraciaillmliauls md Saw brellICIINIIICEN bit establish the

benehinzrk curveS brnieeen SE.X.' And ar,OUS'bc ii-Ope1tie$7.

operapda lealklatIon the gonad speed Mai attenuation occiThAent of the
electrolyte sallitiffl ill the salVerldb elrege-discharge cycle. compare the SOO' estimated by
the acoustic method the ICP titration results.
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Conclusion lind Future NVork
a The draigrcd ultrascaic Fed:ring approach can aocaralely monitor the SOC of
vanadiurn redox flow batteries in operarda, in rag time and at low cost. regardless of
fluctuating tanperahares.

• In d'el futuna. a battery health and reliability menitoring will he developed fee
flow %Haim with the ultrasonic probing approach mad machine learning methods.

Aekilowledgiemen15
work iu %imparted by the U,S, fileparimern ur hmagy's !POWs) °Mee oC 19ec4iciy

Energy Saxage Program and the Office of Teclukolzogy Transitions. PNNL is operated by
Bindle blemoria/ Institute for the DOE under coobact DEA003-76111,01.330.

Cerrta Ce. Warm
Manorial Scientist
Electreehernicai Matcriab &Systems Group
Erwin. I& ElWibogrrwrital 'Directorate
Padflc Nort h we a tie lona I labor-stare

wetwangteonnl.gov 1509/1.7240517

I



Regenerated hydrogen-iron flow cell for low-cost
distributed long-duration energy storage

Litao Yan, Yuyan Shad and Wei Wang

Contact:

tiackground arid motivation

> Redcie flow hatrerlim 2ls]l can provide some cri[ical services in many

grid energy application;

> Hydrogen metal {e.g. Iron and vanadium) flow cells take the advantages
of fast reversible kinetics, excellent performance arid lowrcost. reactant
materials;

> Water management plays a vital role in achieving a highly reversible
hydrogen metal flow battem

> Hydrogen based llow cell has great potential for long-duration energy
storage WS, 10-200 hours] due to the compressibility of the hydrogen
and the low-cost and earth abundance active materials.

Objective

> Develop a high reversible capackty hydrogen Iron flow battery with the
assistance of water management;

`x, Develop a cost effective, flexible, and compact regenerative flow cell

system far long term energy storage.

Hydrogen metal (e.g. Fe and V) flow cells

L.) MEM {b} ̀  

01 OA 44 *4
C*44414 CAM

Figure 1. Schematics af the %wicking mechanism of Hydrogen-metal flow cell
ilapthargeirdischarge profiles fol. hydrogen Won {bl and hydrogen vanadium flow cell
lc}, Camera densky: 300mAian2l

14.

Challenges of hydrogen metal flov.. cells

> The add concentration gradient between two electrodes provides the drive
force to drag water molecular to Fran electrode, leading to dried membrane;

> Dried membrane results in Icwr capacity amil low electrochemical
performance. i eat., low coulombic efficiency and poor cycling performance.)

Pacific Northwest
NATIONAL LABORATORY

Proudiy Opyrated Bellew sirree JUfr5

Water management on hydrogen iron flow cell;

> Cycing water vapor in the hydrogen electrode during charge process:
> and MS vats( ragroration process after 50" cycle in the ion electrode.
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Figure 2. Cyde performance: CE and EF (a): discharge capacity lb) (cut off moitage from 0
ta 1.2 14:Voltage profile at differeracydes,11", 25", SOT', 51th, 80° and 1006) (cut off___...)
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(Future work: LDS system builds on hydrogen iron flow cell
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I ictife 3 Sc hematies of the working mechanism& LDS system

Advantages'.

▪ The regeneration of the iran redox couple can reduce energy bearing materials
cost and volume in flow battery system;

> higher electrochemical compression of the hydrogen side of the cell can
signikantly rednClaSySiern footprint ;

> higher round-trlp efficiency n.75% for LDS of 8-200 hours.
> Icnver slalom cost.

u'ork on Itydrogicro iron flow toll is sopporred by rho U.5 Depsitmrint of Loewe's (DOE) 0251x. cd
DERANIMIN FIT C14, Advanced Rewards ProjectsAgency-Eaerff (ARPA-E) through Award DE-AR00:10686. 17NNLiga

ENERGY multiprngronh notional lolionwsry operated hy Handle for 1X1h 'under Corinna DilErAVI/541)Rl I



POWER
ELECTRONICS

The DOE OE Energy Storage power electronics thrust area

advances power conversion systems (PCS) for grid-tied and

off-grid applications. This is driven by the development of

new semiconductor switching circuits, as they determine the -

overall cost, reliability, and performance of the converter. Next --1:::-

generation PCS use advanced semiconductor materials-1;.;4.:-..., 

y; 

known as wide band gap semiconductors (i.e. Silicon Carbide

and Gallium Nitride) that allow for faster switching

frequencies, improved voltage breakdown characteristics, and

higher operating temperatures.

- •
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Medium Voltage Direct Current Power Electronics
for Alaska Remote Community lnterties

shirazi, M. A. Moorkem, L Cassel Alaska Cerkter f
W. Thomson, Alaska Village Electric Cooperative

S. Atcitty, Sandia National Labortories

Ylikw-Km**Irwirn Oda Whom within low drool earelders4 kr FOVX robborark
Sou CR iln“..}Vivagasmeemer 1.41-e zirr"-F-1 ....Els".201 WW1 FrINA.
knamell 11511, /D11
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Background:

* High cost of energy in remote Alaska communities: 2018 average cost in 240 remote Alaska communities (combined SO WV load) was $0,36/kklih
* Overhead MVAC interties reduce operatl rig costs, but expensive to install and limited in distance: Cost of $3SOK-.$100K/rrille arid limited to -2.0 rnl.

• Cable based distribution offers lower installation costs acorss remote and pemtafrost terrain but charging current !knits distance for AC distribution

MVDC inter-ties:
• MVOC cable intert les offer longer distance coverage, reduced voltage drop, and reduced conduction losses.
• firlVDC networks also facilitate integration of large-scale battery energy swage systems, PV and wind power plants.
• rovOC networks offer enhanced flexibility and mailability than their AC counterparts doe to simplified synchronization and controllable power flows

• Ava ilability of sub-MW MVDC power electronics is currently the most significant factor limiting exploration of MVOC ¡Mertes in Alaska.

Objectives and approach:
4 identify region and utility partner to perform technoeconomic feasibility and for potential future deployment opportunities
s Explore techno-econornic feasibility of bilVDC i-iterties to connect villages in rernote Alaska, comparing cost of MVOC intertie vs. MvAC intertle vs_

continued islanded operation (in progress)
.• identify state-of-the-art in tilVDC power converters and M0151 promising a rchitectures for lower power applications
▪ Validate dynamic performance of the MVIDC network using switching-leirel controller hardware-in-the-loop simulations (future)

Partners:
• Alaska Center for Energy and Power, university &Alaska Fairbanks

• Sandia National Laboratorie;
• Alaska Village Electric Cooperative

Period of Performance:
.• August 22, 2018—August 21. 2021

Activities to date:
• identified utility partner and target region for technotconomic analysis;
• Studied siate•of-the•art and trends in I-IVDC anti MVDC converter topologies, cable, and manufacturers. Identified dual-active bridge {DAB) in

conjunction with low voltage AC-DC as most promising topology for lower voltages a ncl power levels.

▪ Compared costs of AC vs. DC and overhead vs. underground transmission,
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X7R Cer-amic Capacitor Lifetime For- Pesudo-DC-Link Topologies
Jonathan Bockl,Lauren Gartenls, Harlan Brown-Shaklee I, Derek Wilkei, and Carl Fitzgerald 1

i} &India National Laboratories. *Now at Naval Research La boratory
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Capaci tor Design Dilemma: Piick TWQ
. Capacitor Energy Density,

2, Operating Temperature, or
3. Likti me

Temperature and Er., accekrate dielectric
degradation and reduce mean time to failure

CV' 
Vrair. 2 e

Energy denslry is proportional to the square of
electric field (operafing maltase)

A

V-

Multilayer Ceramic Capacitor Characterization
Floating electrode design reduces mechanical
degradation associated with thermal cycling

Schematic

LayerThicknes5

WS:

SEM Micrograph

Mkrostrmture

lnitjal impedance Shows Normal

Behavior

44

35

g 15
10

5

11 lin ]i ZO 111 Al

..r.cmcitimean)

High toliwattp-it inv•Nlanct irt wa1
wIdely-accepted 3 RC model

41

AC Aging at Vr. 255°C 
Extension of lifetime in AC conditions Occurs

DC and AC HALT performed at lOx the rated
vologe and l25•C above the rated temperature.

- bre atteltrition needed kr drriely
eoptrirrwras
Low waiter impac item- mad for experiential ease.
Let5 margin etlitS 04 Wog espi lor Powet
Vcwonic applications

Preli-rlinary studies suggest bipolar switchin can
increase die eine to failure.

Corrunercaierits iirm ceramic craw bait;
natOria,,r3ly lerre pre...near qutWelbull (alit
Softiocs u4 mg di4 Wit4nflnn findrip (NUN
two lriaalt molar 4.11it tarnpPO.

Post- Degradation Characterization

54099 KUM

Clair iiiirweea In pa r-dngrads own laireitwea eclat beeiiiedriotie ec
coneannt Curroit reason isi11147.11.711.1 lodes loraulare crige
help "spare looneet
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IE iemis Lee. a6wit1

Futur•eWork
413-SarripleAC1441T Synem being bullt ¿continuation funding
dttrar* OCIC Vehicle Tec Mu" urgy mat

• Alcures for longer tesitilowqr aetelieraitions while
mainuinkrs timer tIaLli e011.et9i4n

• PiALTTaiOrtig *Tuve will be Wed ter 1roppinig Orrernporwmt•
FreepentrokAnge Space under AC tofwiltlockt

• Ige .rxmnstkri at Palk for !Ca ovirwoluge ar.d
creerterriperahre has been sibcrim....

• Gn Ne extensioei be obalredior lower irequentles
las ac4olerat.ed C0r1410Urri1

• CM, ti.g...ai.pseitort Tieslef when i imerri is fiat
urpirr ins 11.Dar-nFght 4artie...10.44f freql.tencyl or
rrMrsr apalarity each day

Conclusions
I) AC conditions extend lifetime of ceramic

capacitors
1) AC degradation likely tied to oxygen

vacuity migration and proceeds via
oxygen diffusion

3.) Further HALT and StatistIcs are required
to deterrnIne the Impact to MLCC
lifetimes

This work made possible by Dr. knre Gyuk and the Department of Eneryo opike of Electricity Delivery and Energy ReliabiNty (130E-GE}
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Advanced Gate Dielectrics for Wide-Bandgap Devices:
Structural and electrical properties of epitaxial MgO on 4H-SIC

Petur T. Dickens', Michael T. Bruintiach', Paul 'Km l Rebema Chow', Kevin Ferri.% Stan Alicia-O, M Jun F. Illigfeld3,.
and Etizabeth A. Piths:fey'

Pcmity1L-AnamSaaa.r Vitgirns

Motivatiorl

• Power conversion systems arc the enabling technology for modern
power electronics and energy storage.

• The mctal.oxide.semiconductor field effect transistor (MOSFET) is
dm heart of priwet tOroverdon system&

• Wide bcindgap semiconductor devices provide the opporcaray to
irnpowe the performance th nigh ftcW6i to higher voltages.

tempe-ratures. and switching speak.

• l 14 racvcr, high temperature and high voltage SiC 11110617E1'4 arc
cklr Fundy unavn.thibtc duc tcl il;swA with aoxidc layer

Objettive: Develop new cotide layers. MgxCal...0. rehicti are
deslgned to be chemlcally, structurally. and electrically compaeble

with SC for a more reliable and resilient transistor,

Background •

▪ 4(5., or] gam insulator triust:

I — — -dr

ti MCO
* *OKI •

• e No SiC

•
• have sufficiently large band pp 

a
■ have > 1 eV conduction band offset

• be chemically compatible with the semicondtictor

• Mg,,Ca1.10 (NIC.09 is an alloy of M.g() and Calk which have lattice
constants that can match directly to SiC.

s To &Mop gate oxieles with reliable perfrirtnance. it IR essential to
understand the role cif interface chemistry lind hand offsets.

Technical Approach 

• Ve will investipre the structural, spectroscopic, and eleerrical
properties of epiranial MO cm 4H-SiC grown hy molecular beam

epitasy NnE) at valiral5 krnperattn-c5.-

• Our $.001.1 wili Ix io optimize Mg° growth for a more
resilienr and reliabk gate dielectric.

Metrics 

Structural prripertics

4 Abrupr 4'pirami.L1 viten...Ex

4 i IiRly click-rim olliailiniry

l. Spociftzscopic propetUes

4 large band nffsei

111. Electrical properdes

4 !AM' ElWrErric kallaw rurrarn

DEVin

Gaerf NNW •
Suboistif.:

Mrorl 

NeS4

Aldit1.1?".5111.

a-a• anm ••
I m•—• 4-1-1-rn-•-•

-44 -1—Pa Le 414
raamuim,- am. =.
a Ea ai.I.1.1
4.4171.•

J. Structural frpperties.
• t using difrracriort.

5how4 he5r
• Ili rm. ;• .nier...are unaged using trail antissii )11 elto.r431. micniscopy

1r01

4 Abrupr interface, no evidence of intermixing

lese Oman SFC 

•

♦

110 ma 110 364 .130
&me limmuhana fl;:p

11. Spectroscopic Properties
• Conduction 4.111d1 4 retii.1 x. ray phr ro n

• - ----
CSO (eV)specrniscopy (XPS).

Mc ratio
E‘it.

tl, ._ CE10
e`
w ; u 
G.:. -. 1vp..0 
-0 E ;-- - E meD

slii—t.—..kraut!)

MgO Growth
Tr m pr! rat u rr

200
20D

100

3-0 ± MOS
29 ±0.1.3
2.9 #

4 Lsio tor ill growth
temperatures

111. Eiecirical Properties 

▪ Current-voltage measurements

performed cm MOS capacitors.

4 Lira, leakage curreni in filmis.

▪ 390 n'C demonstrates berm' leakage I •
characteristics than Sial up to

in•
1,3 MV/crn.

conclusions

• Ale )deiticiristrates all iir..11cri R iu he a good gate
in Si(7.:

I. Structural conwatibiliq

11. Large CBO

1111. I eci.w gate leakage

Tamil/A.1A at a gr•atatb temperature of 30lX1.-C.

Future Work 
I C. a...4 partrpert.hip v,:rill Auburn Llnirt,rsity, Prof. Sark 'Jahr.
• Characterize ihe mterrace us.rng C-V analysis on low doped SiC (I nin cm 1).
• Fabneme MOS.FET clencra ro rcsr performance nrid rrliability nf nrannors

using the advanced saw dicirctric.

lirVe gratetulty acknowledge Dr. !Imre Gyuk and itie DOE Offic of
Electricity Energy Storage Program for funding this work O Seprit
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Advanced Gate Dielectrics forWide-Bandgap Devices:
Structural and electrical properties of epitaxial MgO on 4H-SiC

Peter T, Dickens', Michael T. Brunibaell', Patd Kornlal, Rebecca Chirx', Kevin Ferri', Stan &witty', Jon-Paul Marla', Jon F. Ihlefuld3,
nnd Elitabeth A, Faisiley!

7.4 drinul i_dwrramen-.. 3 111i-dmayirazi4 Sum 43niwc-eidrN verwart.,.

Motivatipn

g Power conversion systems 'arc the enabling techmilogy for inodern
power eicerronies and energy storage.

• The I-nerd-oxide-8m iconductor field efiecr iransistiir (MiC)SFliT) is
heart of power crinversit ta113.

• bandgap scmieondueror devices providc die opportunity to
irriprnve thc perfrirma rice through access to higher Voltages,
temperarures, and switching speeds.

■ However. high temperature and high mitage SiC MOSF12..Ts are
currently unavailahle tine Tr 1. iSSLIcti with oxide later Wri111117lidV.

Objective: Develop new oxide layers, which are
designed to be chemically, structurally, and electrically compatible

with SIC tor a rnore rellable and resilient warislstor.

Background
• .

04C0 I
▪ a • 4-014

• A . • • sicg A good gate insulator must;
440• have sufficiently large band g-ap

- have > 1 eV conduCcion hond offSet

▪ ehernicalh- compatible with ihe sernieoridiletor

• 3.1g,(:a,(11 {741CO) is an alloy of Mg() and e..a0■ which have lattice
constants that can march directly to SiC.

• rl 'E 11 develop gate rmides with reliable perforrnariee, it is essential trr
understand the rnic nf interface chemist:1. and band offsets,

Technical Approach 

• Nx.,, uyjl inNe$Ogate the structural, spacrooscopic, and elLetrical
properties of epitaxial 11fg0 on 4.1-I-SiC grown by rris 1.1001112.r beam

epitaiy (MLW:.) at various temperatures.

• Our goal will bc to optimize Mg0 growth for a rnOre
resilient and reliable gate dielearic.

1. &Tumuli...1i pn.li,etties

4 Abrupt opimial trutriraes
4 bligh dielectrie crystallinity

1 1. Spectroscopic properties

4 a ar,44e band 4 Off$C1

W. Electrical properties

4 iA AV dirk-erne leakage eurrero

Device design:

.11;:e Meta/
Subswaea

tisCi :Metal Caatact

S.L.,•=t1.1%91.

a• nema ul

—1-.1,4•••••

•

Structural Properties
• Crystalliniry measured lasing 1.-roy {lii frac rk tn.

4 :WPC shows best erystalliniry

• Mg( interface irrEigcd using 1 ransrnissiore electron microscopy

4 Abrupt interface. no 'evidence of intermixing

♦

ug0.44.4.rd oe Sie

0

•

•-

_ . •
29d N.d .1613 42}}

Growl% Tarniposidu rt

13.

d 9
a 4

H 42

11. Spectroscopic Properties 
• Conducrion band offset (C110) musured usiny. \ ray phoroclectron

specrroscopy irX PS}.

a

ro

MgO Growth
Temperature

200 'IC

C110 (eV)

&OS

1(00

ioct
19 I 0.1?

r9*(11:4

I cV CB° for all growth
temperatures

111. Electrical Properties
▪ Curnffit-vdtgge alcimirerlic

performed on MICA capaeirorit.

4 Love Icaltage current irt Mom.

6 3E.10 °C_ dernorto.t rates better leakage

characteristics than Si.0, up tio

1.5 iiiiiV/crn.

Conclusions
▪ z,IgC) demonstrates all properties needed bc a good gate

insulator on SC:

Structural compatibility

1 3, Large Cll.()

EL Lc= gate leakage

• (irliwth by Mill., iw quitnizeii 311 ;1 grr 111.711 IRIfilp<farLIffir. isf Ygrcr

nab PIM Ithuxril

Future Work
- Sirategic parmership initiated with .%.uburn L'rtiversity, Prof. Suit Dahr.

• Charatterire the interface using C-V analyais =bra? doped SiC

• Fabricate Mit )5FET devices to TM performance and of nansisTors
using the arivanced gave dielectric

We gratefully acknowledge Dr. Imre Gyuk and die DOE Office or
Eleclricity Energy Storage Program for funding ihis work
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Wide Bandgap Power Electronics Reliability
O. Slohodyan, T. Smith, J. Flicker, A. Binder, R. Kaplar, S. Atcitty

Laimmeolies, .711bficierlfiC, NM 87185 USA

Novel gallium nitride {GaN} devices have potential to help
modernize the power grid by making energy storage more
flexible and resilient. GaN

VS,
Si
SIC

Vertical Gallium Nitride Power Diodes
verticaL gatLiurn nitride (v- GaN diodes take futt
advantage of GaN to reduce size, decrease
weight Et increase efficiency for power systems.
- Bat wo_ro, rernams estaDLU)ing reLiability

under rea1istic conditions for v-GaN diodes.

Doub[e-pulse test circuit (DPTC) can be used to
operate and stress a device by continuousry
switching it between ON a OFF states.
- Altows reliabiLity testing of v-GaN devices

under reatistic operating conditions.

GaN Erift -egion

ri.}161%hil layei

cq v-GoN Diode Pre- Ft Post-
Stress Current-Voltage
Characteristics
-Observed changes relate to
material defects and af{ect
overal.l. system performance

•m•

pp, } -

wa-

an • 11 -

.rintnnrLr. raggedrams.

Intreeted leakage

with !Arms

%Tall change in. Vic

pre fa final past.sErn§

CUrA-S.C.rellIC Nr<1 0th<1

-.1.501. • 1.758 -MOD -70 58U :SO

linkage 06

Objective: Understand defects of v-GaN devices and correlate thern to device degradation a reliability.

Deep-Level Transient Spectroscopy Theory

4131.11.

N▪ EER
E.

Deep-Levet Transient Spectroscopy {MIS) probes defects
in crevices by performing transient capacitance
measurements at different temperatures.

ii▪ na";'" Enabtes measurement of defect trap energies.

Performed DLTS rneasurements of an unstressed packaged
bare 1200 V-rated v-GaN diode die fabricated by Avogy,

  - Applied voltage samples defects in device drift region
-.VAT near p-n junctfon.

Yearly Milestone: Verify utility of DLT5 for defect analysis of v-GaN devices.

DLTS Results
Peaks at 10 - 15 X n- 25K Peak at 25 - 50 K

16 12 Li Li kl 1.1 14
Terkommyel (K)

Obtained several va[id DLTS peaks - further data
-recriperatere C49

Peak at 140 - 200 K
ULU,

- a

11.6 148 IN 16)

rempon.ffeint]
220 11!

Peak ct 280 - 380 K

anatysis is needed to determine defect parameters.

Conclusion Et Future Work: 
• Successfutly probed defects near p-n junction of an unstressed v-GaN high-voltage diode using DLTS.
> Next step is to determine defect energies Et correlate defects to degradation of stressed v-GaN diode.
> Begin stress-testing of v-GaN diodes beyond the DPTC in true power converter.

Recent Pu blicat ion s: O. StoboJyan, T. Smith, J. Flicker, S. Sandoval., C. Matthews, M. Van Heukelom, R. Kaptar, and S. ithcitt "Hard-Switching Reliability Studies of 1200
V Verl a:a l Gar# MN Diodes,' MRS Cornrrumicatleras, vol.. 8, nn. 4, p. 1413 lpecember ma)
Nr- veliadi$. R- Kapiar, J. Zharrig, 5, Khalil. J. Flicker, J, Plettse, A, eincier, s. mcItty, P. iftera, M. Balwwski, 04. Fiollls, ".ITR'w 2019: Cnapter 5: Formulating a RoaOmap tor wBG
and trinc. Materials and Devices", !IEEE Power Electronics Society {September 2019}

.443tranyisignianorat - The aultvws thank Cr. Mr 141-1154111 k 4r Clam 01le, both kernerthrtiknaw loc suppLying Efiethadel far
Olt Md. The chracEefincim wl.,..miurrkrered try sht Ef•M'ffe Warr cragsdn maciated Ifeee Mt CrIX 4:rhiCe ea
Elecorkoryk biuS tort 46e4mINI wtri M Avesty 14.013CeSed. rhe SW1TC1iES pwarbro fiqftsled tor et iLn FO16o4 cerArmii.r. Tlx

1111ENEll6Cir

••-•„., . yam.% or.pre.snd 1.9 iYM pm.i.ar can not ncem.tarin,..roprn-sant rha .1115..A. ai -.1r IF.S. ronfarnm.por al- Fe...raw or th.a. U.S. CaNtrrarnent.
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stOAK RIDGE Development of a Battery Chemistry Agnostic
Secondary Use Energy Storage System eiNERaY

Madhu Chinthavalt Michael Starke, Steven Campbell, Shilpa Marti, Raclha Krishnamoorthy, Mitch Smith, Ben Dean

Oak Ridge National Laboratory

Objective

• Develop a secondary use system solution to multiple battery system With
different chemistries and ages.

• The system should be plug-a ncfpl ay and demonstrate multiple uti lity-
based USG cases as defined by Phi NLAANDIA testing protocols.

Approach

Overall approach Is to develop a system design,
simulate the system, develop hardware., and

demonstrate technology.

• The system is to be designed such that:

— compatible to multiple different voltages and
power levels to meet secondary use design
considerations,.

be low cost arid modular,

— utiliae intelligence to provide means of safety
and integratiori.

— Utility scale (1OOkW)

Design

FY18

Simulate

Prototype

FY20.

Test

Overall Approach

Results

Grid
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CHIL Results:

• Preliminary validation of the

system controls and the power-
stage design iising real-time
platform has been completed.

• The batteries discharging (Boost
mode) into the grid at 125 A rated
currerrt Is shown In the figure to the
left.

• The corresponding wid phase
voltages and the phase currenta at
lErD I-1z, unity pf are shown in the

figure to the left.

• The distortion in the phase currents
was approximateiy 3,8236,

CIIIL multi highlighting the discharge of the batteries (Discharge current
Fq end the osrresponding 3-ph voltages end carrents

 I Distributed Optiinization

Developed agent.based
framework for flexible
system integratian with

wide-rano of hardware
i(BMS, converters, etc.)

• lmplemerrted distributed
optimization far imra-

system dispatch using ES
net present value

• Demonstrated agent
system across multiple

network deviCeS %Inning

energy storage models

• Demonstrated energy
arbitrage use case.

las

A

I 4

§ 43

1.
— 11,111ME I
— 5.1114102

1.111.

31:4) 40,

Distributed optimization results

 Irniardware Prototype

OM. AC/DC Consorter ORM DCMC Converter Spier, Hew
Technologies
mu Tour

• Designed the dc-dc power stage and inve.rter power stages.

• The semiconductor losses were evaluated, and the thermal analysis was
performed on the power stages.

• The overall layout for the integrated 50-kw prOtOtype was completed-

Conclusions, Challenges, and Future Work

Conclusions: 

• Developed distributed hardwave„ control, and optimising system to
suppert multiple c hem istrieš and ages for secondary Lise.

• completed the hardware-in-the loop platform with the system mociets
and control hardware in a real-zi me platform and validated the control

architecture.

future Work:

• DevelOpment of hardware prototypes.

• Integration of the E5S software interface with the HIL platform

• Run Saridia/I)NriL use cases to demonstrate optimization and controls in

systems is functional.
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*OAK RIDGE
•

Residential deployment of a secondary use
energy storage system

L. 1 uermnotnr10

4,51/ ENERGY

Michael Starke, Madhu Chinthaveli, Zeng Rong, Zheng Sherig, Steven Campbell, Mitch Smith, Ben Dean
Oa k Ridge National Laboratory

Objective

Develop and deploy a secondary use energy storage system in
collaboration with Habitat for Humanity.

• Examine use cases and evaluate potential atoriomic savings.

Approach

• Socondary-use Battery statem 

• ORtIL provided power electronic
conversion system and supporting
integration software to run use cases
and integrate energy Storage

Wang:140V-

• sows New Technologie s provided
battery

• makiit;at for Hu rnanity prowl lied site
location and site preparation-

Figural. installation Configuration at Site

• Ikebind_tha_Meter use case: Behind the meter use cases were evaluated.
Utility meters are limited to single directional service to reduce surge of
photovoltaic Installations behirid the meter.
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Balm }; lam

111:01/rgaluazg
1:13414.4111
ig141.3 

H14.5.1pm Uri wilmli.
144.340.• Mk climb

• PE Ma 3m=1 idll#DEINI:r 13.111 km.
Riad IE r. Ibm.I•FmamJi.pm-mi Eft pa.,1dra,
dmmihrial4p mindkilbaldnr nihmt

• XrillaelrillIddiff mialr &at
ki ibM%ibM.Ridirli Mai La, limir

ElnmahindINF maiming luiday• g.amaingd

!dr RAM

10,111.4141M1

Pre 1.9C111.1.4111 11 Nona
er.r. mos mg 11+1111. Wri

TEE 111611011•11 IL 114 rm. WI
544:011.1)20k1r SUM. wall
4.1....k.:141Tilvill rw111%

Figure 2. Rate structures available

- Communication Setup:. The communication infrastructure was setup to
support closed loop control and elimination of load during critical peak
hou rs.

1
1,̀1,1k1R14 11111.1-.1

• 1 11.R.4.42r PL.1.11• 4,

Figure 3. Softiware — Agent System Architecture

Figure 4. Energy Storage System

Results

• Preliminary Laboratory testing and evaluation on hardware for economic
evaluation. Utilized load developed baseline curves to examine load
changes arid optimal potential.

• Communication

delays lead to small
t ra nsient signatu res

in energy pushed
back. Most of the
energy is negated
bo a zero-net flow.

• ECOnorniC
COmparieon Of Mal
energy consumption
between rate
structures shows that
the energy storage
will riot induce
significant losses due
ta overall SO%

efficiency.

Eniergy storage can
save money through

2 faCtors:

- Eliminate load
during critical peak

- Etectricity price is

half of traditional
during non-peak.

Figure 5, CfePad low control example to cancel Poad

— Standard
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Figure 6. Economic Comparison

4 5 6

Conclusions, Challenges, and Future Work

• Conrclusi oeis: 

- A secondary use energy storage system has been deployed and Is still
undergoing evaluation_

- The utilization of a secondary use energy storage system for behind
the enetvr applications has significant economic potential however
Challenge5 exist.

• Chailenoes: 

- utilities are not providing opportunities to do hi-directional metering.
This is to spur off ierge investments on behind the meter resources-

- Use cases require additional infrastructure to support cost reduction.

• Future work:

- Discuss possibility of licensing orf Spiers New TechnologieS with Wall_

- Data review at site.
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OAK R I DG E Engineering Routes Towards Synthesis and Performance of Layered Oxide Odra&
Cathode Materials for Sodium-ion Batteries Office of

Electricity
Mengya LI, Yaccal Bal, Rachid Easehll, Ruhul Amin, llias Belharouak, Jianlin LI, David L. Wood 111

Energy and Transpertalion Science Division, Oak Ridge Nalional Laboratory, Knoxville. TN 37932

Background Crystallinity and impurity level Electrochemical impedance Spectroscopy
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Medium-voltage Power Electronics for Grid-tied
Energy Storage Applications

Rang NU Bola/ear, Dr. Kristen Booth, Dr. Jin Wrong, AirantAganvað, and Or. StanfeyAktit

PRO.' ECT OBJ ECTIVES
Storage Integration wlth the grid is ill1Creasiney knoortant due to an
upward brend In use of renewable scarves of e Meta. Compared milli the
thaclitionall sillICOP-based power sotem designs, the closigris bawl on wide
haindgap llii1116) devices base shown improved pericaniance rot
✓oltage, high•power density. end high•switching frequency applications due
to malarial properties.

This project giros to build a power electronic comierter with medium.
Vaitaga SIC deettoes for ono& stoop syretoroš in o rnediurrhineltage
distrIbutien grid.

Key

• Tsar i: Gate drive and auxiliary power supply design for mediumyoltago

SIC devICOS. I 1

■ r 2; Med lurn•oottage discrete SiC device evaluation and modeling.

• Tsar 3: Power module fabrication and DC/DC comeriet development-

IVIV GATE DRIVER tic =LARY POW1ER SUPPLY
A 6.5 kikated gate &dyer with a 15 IV self,sustafailng auxiliary power supply

delfelOped. Rig align can provide. Itigb perfOrManbe power oenwersien
from a 4..S kV Debug,
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FY (nap lierrieting System WU Storage Proposed PC•DOPonlistis Disko

• implemental:Eon with meelum-weitege DO bus simplifies the system
structure and increases the efficiency of the energy storage system,

• Application of medium.voltage SIC devices Increases power density and
reduces pone r loss [lithe De/ rtc otr1VOrbil, and

• High 5w6kohlog fre euenuf of SIC deiices le ads to fast dpiamlc response
and low mu runt ripple ivhich improves the stability and newer quality of
the power grid anti intrea se the lifespan of the battery-

GENESI C 3.3 KV SIC MOSFET EVALUATIONS
Shert-Olmun Teat

• Tait mailer - 2.2 kV.
Vz, • 18 V. room temperature.

• Maximum short circuit
5115telning Wye • T ps.

• !Sate driver desaturati en
grotto-don time c- 1 ps.

Do WU le pulse Test:

• Test condition: V„ - 2.4 kV, Ve, V loll
temperature.

• SW 0 ri dVidt - 25 kV/pr,, - 850 pi;

SW eft dly dt = 53 kV/ps, - pi.
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Smart GaN-Based inverters

for Grid-Tied Energy

Storage Systems
introduction

* Energy storage systems and high-power bidirectional
converters are the backbone of the future grid.

* &technology has relatively high conduction losses compared
to wide banclgap switches.

* GaN switthies can operate at higher switching frequencies.
* By 2022, over 40 GW of energy storage systems will be

installed in grid.connected applications,

in this project, a GaN-based multllevel Inverter Is proposed for
ene rgy sto rage a pp I icati on s. This converter i nte rfaces sta nda rd
battery storage pac ks. These storage pac ks have a nom ina I
voltage of 850V to 900V a rui can reach a low level of 600V
un de r depleted con d iti on s. Hence, a multilevel inverter i s
proposed to corwert this range of input voltage to a 4SOV grid-
tied output. The proposed converter is modular and can ragne
from 20 kW to 200 kW.

Technical Approach
A neutral-po3nt clamped multilevel inverter is selected to realize
a 20-kW bidirectional inverter module. Then overalli nverte r is I
comprised of 1 to 10 modules working in parallel.
• The converter will emulate the natural dampening behavior

of droop controllers.
• By adding virtual rotating mass dynamics to the control

algorithm, overall inverter will appear as a synchronous
generator and can participate in stabilization of the local grkl.

• Stac ked printed circuit boards (PCB) whit h include surface
mount GaN switches will be used to maximize modularity and
!reduce the manufacturing cost.
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Specific Objectives
• Designing 3U rack-chassis-based enclosures for frwerter

modules
• Conduct thermal analysis on the enclosures
• Controls and hardware for hot-swap capabilities
• Validate final metrics: efficiency of at least 98.6%, weight <

2.2 lb./kW„ volume <0,1 ft-VkW, noise <45 d8a
• Reliability testing including active bypass and hot.swap

features
• IEEE 1547 and LPL 1741 and 3.741-SA testing for islanding, fault

ride-through__

• UL certification testing
• Remote control and monitoring backbone structure

development

r

f

• Mehdi Ferdowsi, CEO
14790 R l3State oute
St. James, MO 65559
erdowsl@innocit.corn
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Pourya Shantsk, cro
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PREDICTING RELIABILITY, IMPROVING SAFETY AND RESILIENCY
IN GRID CONNECTED BATTERY ENERGY STORAGE SYSTEM

Kaushik Rafashekara, Harish Krishnamoorthy, Stanley Atcitty ,
I. BACKGROUND AND OBJECTIVES

• Energy storage deployments MI grove 10-fold over the next 5 years.

> High string voltage affects both the potential for shock and the potential_
for arc-flash/blast [Sandia, 2015] - major concern at high penetration.

• Hence, objectives of this project are;

4 Investigate modular, transforrner-less multilevel inverter topologies
for grid connected battery energy storage systems (BESS).

•S• Explore self - battery management system (EMS) arid state of
charge (SoC) balancing methods for battery/inverter modules
interfaced to the grid to improve BESS flexibility as viell as reliability.

+ Implement hardware test set-up to analyze device behavior (SiC
MOSF ET, battery, etc.) under different operaling conditions.

• Study Li-ion battery characteristics and fault tolerant operation
through the interfacing converters and assess BESS resiliency.

Evaluate the component-level remaining useful life (RUL) index for
SEC-FET and Li-ion batteries; then predict the systenn-level RUL for
grid connected modular OES converter system through anatytics.
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II. SOC BALANCING METHOD
> For long life and reliable operation of BE$$. the SoCs of battery

rnoduies neoo to be equatzed through efiA$.
CI We propose a self BMS to perform SoC balancing among the

battery modules using current controlled operation of cascaded
H-bridge pits) interfacing converter.

> Performs fast SoC balancing by operating the converter at rated
ctirrent irrespective of the amount of power flow.

> Power transfer from a higher SoC battery module to a bwer SoC
battery module is achieved without compromising the amount of
povver flow among the BESS and the grid.
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111. RUL PREDICTION FOR LI-ION BATTERY
RUL prediction is critical to the implementation of condition based
maintenance (CBM) and prognostics and health management
(PH M) for battery system.

✓ A Particle Filler (PF) based algorithm for predicting the RU L of Li-
ion battery to interface with converters for the safe operation of
BESS is implemented_

▪ The estimated capacity of Li-ion battery is considered as 1h8
hea[lh condilion indicator of Li-ion baltery and used as the input of
PF algorithrn to predict the RUL of battery.

RUL estimation algorithm predicts the time to failure of BESS
with certain probability to avoid unscheduled downtime.

!I.E. M.,. MONTY

• 

41m....-..1.•-.1e•-•

S..

I em-i r • •

.1.1•MY,M 

Marl *Ma STA alblaritrlarn allot MT WAN 00.011.0.rdf SS KW lei

1.11.1. WA At ROI il-Trr.lbiWn- 411... the wawa a/ Miry* NS aar ta

HS...4 171

IV. ONGOING WORK — HARDWARE EVALUATION
> Online SoC esti mat ion through open cfrcult battery voltage calculation.

> Building hardware setup to implement rated current operation of CHB
converter to perform SoC Palancing a rniang battery modules.
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V. CONCLUSION AND FUTURE WORK
> Conventional battery systems use dedicated BMS for cell SoC balancing

and module level balancing, which adds cost and control complexity.
This can further affect the life of battery modules.

> Further. there is no existing technique to preclsely predict the RUL. of
BESS, including the batteries arid the power converters.

• In this project. we propowl a fast SoC balancing scheme with a self-
BIAS using interfacing modular converters for grid integration.

> We were able to achieve a 65 % improvement in the rate of SoC
balancing using rated current operation, when comp. ned with
conventional UPF operation at half the system power exchange.

> A 1 kW, 5-level hardware prototyPe is being set-up to implement the
oted current operation fOr SeC balancing among Bros..

> A systerri-levell health monitoring algorithrn is being developed to
predict BESS RUL with an error of less than SOO Hrz. in about 20 years.

ACKNOWLEMEMENT: The investigators gratefully acknowledge support
for this work from Di Imre Gyuk and the Office of Electricity at U.S. DOE.
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INDUSTRY
ACCEPTANCE:

DEMONSTRATIONS
The DOE OE Energy Storage power electronics thrust area

advances power conversion systems (PCS) for grid-tied and

off-grid applications. This is driven by the development of

new semiconductor switching circuits, as they determine the

overall cost, reliability, and performance of the converter. Next

generation PCS use advanced semiconductor materials

known as wide band gap semiconductors (i.e. Silicon Carbide

and Gallium Nitride) that allow for faster switching

frequencies, improved voltage breakdown characteristics, and

higher operating temperatures.



STRATEGIC OUTREACH
Sandia collects key information on current and future storage

technologies and acts as a clearinghouse for the information

so that it can be effectively disseminated among key

stakeholders and the community. Outreach activities include

conducting strategic communication initiatives, managing the

Energy Storage Systems website, improving the DOE Global

Energy Storage Database, updating the DOE Energy Storage

Handbook, and organizing the Peer Review meeting and

formerly the Electrical Energy Storage Applications and

Technologies International Conference.



Helix Power:Technical Challenges for
Energy Storage in Metro Rail Applications

Application; Metro train application is challenging duc to
MW-F power levels, short duration. high cycles. and space
constraints.

Metro Train Power Prof.lc Helix Flywheel

mfb-

Form factor comparison!Compact form factor Is required -II
for realistic systemwide deployment of the technology,

HELIX
F !MY

COMPFT1TOR I Kiokir SYSTEM pm:all:es ArKI iceiwcr puiverr
*wheels operatIpz in paralltill

am.rrn1 Immdmils OE.

A systemwide wayside depkyrnent with metro systems
requires the ability to retrofit in space constrained areas.

Benefit summary; Flywheel energy storage has the
potential to reduce metro train energy use by 35%
(energy captured during braking can support 30-50% of
the energy required for acceleration).* Thesc benefits
have nor been reali7ed to date because of the technical

difficu I ty meeting the requirements of the applicatiori.

Technical specifica dom. Meeting the technical specification
drives the economics as fewer units are required.

Setorods
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Substation impact Each lMW unit has the potential to
reduce peak demand at rush hour up to 500kW,

!

fredAirequerperruk

Metro train

lamIalansfal

peak reductions will free substation capacity '
in urban areas.

Path ro commercialization: Helix Power plans to run a pilot.
test in 2020. a commercial unit tcst in 202 I. and begin
wayside deployment in 202.1.
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The BEAM Training Center at Santa Fe Comrnunity College
Stephen Gomez% Bill Kipnis), 'Frank Currie, Luke Spangenburgt, Ondine Frauenglassl, and Camilla Busta mantel

laa 
nta Fe Community College (SFCC) is an emerging leader in the implementation of distributed energy generation

nd in the development and delivery of educational and training programs to prepare students for corning chang-
es in the energy sector. SFCC is currently implementing the Building tnergy Automation and Microgrid (BEAM)
Training Center partially funded through a grant from the U.S, Economic Development Administration, Support
from NSF/NM-EPSCoR New Mexico SMART Grid Center is funding a faculty position to create degree programs to
train students in installation, commissioning, data collection, and integration of clean energy assets and energy
storage systerns into operational microgrids.

Santa Fe CornrnumityCcilege; 2 Siemens; 3 Sandia National Laboratories
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accommodale new Distributed Energy Technologies degree and certiricates
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The new faculty member will oversee the BEAM-TC consisting of two student training centers offering the first
community college curriculum providing students with a comprehensive energy education.

• New Faculty hire — October 2019

•1q Training Center - B.E.S:f. Laboratory

• a new program suppoited by the National Science Foundation. lt consists of
HVAC equipment and automation hardware and software.

42nd Training Center - 11,000 fe aquaponics greenhouse ananogrid"

• powered by natural/bio-/syn-gas, solar Pv, and biofuels

• nested within the campus microgrid

• managed with a METASYS building automaton system in combination with a
Siemens rnicrogrid management system.

Once the SFCC microgrid is operational, it will serve as integral training tool in the BEAM Training Center and will
include energy storage curricula developed in cooperation with Sandia National Laboratories
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The Nanogrid at Santa Fe Community College
tephen Gdimezj, Henry Mignardoe, Luke Spangenburg1, Bill Kipnis'. Frank Currie3, Nazar Al-Thayati. and
Dan Borneo'
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___INEll

II, 
SFCC --

--- ----- -=7CONTROL 7-... --)
i- ,---,.....--,-

I 
ENvi ROKM E NT ....

;,- .R101.3LTLFRE

The SFCC Microgrid Has Four Distinct Purposes:

1. Utility and operations cost savings

2. Resiliency from power interruptions and outages

3. Islanding from the utility grid

a. Student Educaflon

Santa Fe Community College (SFCC), Sandia National Laboratory (SW), and Siemens are leading the effort

in the development, design, installation, and commissioning of a rnicrogrid system for the operation of a
11.000 ft' aauaDonics greenhouse ("the nanogrid"). The Production Greenhouse is Dowered by carnous al-m

ternative power systems including: solar PV, solar thermal, and natural gas/biogas/pyrolysis gas; in addi-

tion, using reclaimed wastewater and biodigester compost for growing media.

.The DOE-Office of Electricity provided partial funding, managed by SNL, to
provide a permanent battery energy storage system,

.The nanogrid will operate, and be nesred within the campus microgrid,

with the both microgrids capable of bi-directionai power management,

.The purpose is to demonstrate resiliency in food production, critical [oad

protection, and peak shaving to reduce energy demand charges.

a There is no intention to export power to the grid from the battery.

.SFCC Plant and Operations staff will manage campus util[ties using a META-
SYS building automation system in combination

with a Siemens microgrid management system.

.SFCC will provide a framework to facilitate DOE-
OE/SNL projects in the context of its energy stor-

age test bed.
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Global Energy Storage Database (GESDB) Updates
S. Roberts, J. Hernandez, Sandia National Laboratories

•

14

dap 14011
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•

The DOE Global Energy Storage Database (GESDB) is a go-to source for
unbiased, accurate, and up to date information on energy storage projects and
policies. The free database, managed by Sandia National Laboratories, is publicly

accessible and simple KO use, The GESCLB provides an open-access resource for
detailed enera storage project technical characteristics and applications. This
resource allows individuals to contribute data through a thin:I-put-J., vetting process.
View Khe database at www.energystongeex.qhmige.o.rg,

Functionality

Projects
Navigate energy storage prolects with the evorr-ready resul .
appearing on the page's map. Narrow your starch results br

kigkTadviaal Data Financial and Ownership Data, And Geographicai
*IDtmTha.ese three menus provide you with data poin to ts furthet.

narrow or broaden their search resuli3.

Policies
Our new State Energy Storage Policy pages feature suite energy
offices. antl public utilities commissForis information, and
comprehensive energy storage policy analysis for each scam as
well as Federal Energy Regulatory Commission or FERC policies.

1.4 

Data Visualitation
Users may use this page to visualize various aspe€ts of the

projects in the database. stich as installations Over lime. Prcyleas by
Chvnership oncl ISOMTOLTop a Countries by installed Copuoify. and
Use Case5.Additionalbt you can filter by technology typer status.
and country to further refine their %earth rcluests.

instalialions Over Time

tl 1

KIE GNAW 'FeLovy
lana• rd..a..1.

lialr1=11

1.1%. KW. C4..#.14 1.0-0:144t.

1-reGIMPFro.,11 4r1 gpid-spnrm-6-14.11..m.nry 4Smnrh-rprapralavslinrterwr

Vale Erg Prilarol

..n.•-m-•-em.1•-••••••••-ewir.wilmlwami • laldiRrr.71•1•imileem.,

•-1.1-• -A-

The GE5DI3 is vital to the energy storage industry. This
research-grade tool is widely used by in-dustn.s.
policymakers.academia, and investors around the vvorld.
No other source of information matches the
international credibility of the DOE.backed GESD6 or
provide the private data sources with energy

irifrastructure data appear co use are GESCS with
respect co depfoyment Information.

CurrentTasks

VerificatkumiVallirlation
• Migration 1 tornpAete rebuild of database

• Fixing of various iiTTIL encoding and character encoding errors
▪ Fixing incorrect Announcement. Cornmissioning.Construction.
Decommissioning dates
Normalization of Rated Power, Capacity,& Duration values

- Vetting additional -SOO projects far inclusion in the database

New Developments.
Released new comprehensive FERC Policy Energy Storage Policy Pages
Released Australian Energy Storage Portal (AESDB)

ISSiim.• Swop/ halm.

616.111.141601 Inastaakilia
.many.mrsrey..mom. 1

113E-

MEM ••••I

-• .1= =

a

Future Developments
. Collaboration with QuESt tin new ISOIRTO tool
. lrnprovernenim on DataVisualization Page I Site Speed
• GESDB Operating Manual -All purpose manual {or usersr acirninistrators & i

L
developers of the database

Acknowledgments: This work was supported by Dr, irnre
Gyuk through the Department of Energy Office of Electricity.
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CESA y AEnergy Storage Technologdv manceent Partnership
The Energy Storage Technology Advancernent Partnership (MAP) is a federal-state funding and
information sharing project, managed by CESA, that aims to accelerate the deployment of electrical
energy storage technologies in the US. ESTAP is funded by US DOE-OE through a contract with Sandia
National Laboratories.

Examples of CESA Deployment Projects
Albuquerque Public Schoo[s Energy Storage
Proiect at Atrisco Heritage Academy High School

Exarriplid. CEŠA Elate Energy ateralirre Policy Support

• GESA Votes cncogy slOrage polir;v wCrIsing grOup C,A, CO, CT. DC, IA,. IL,. Mk MC,
NC. Mi. MN, NH. MJ, NM, NY, OR, PA, RI, VAL. VT, WA, VIM

• cuslorner battery programa in five slates MA, NH, RI, VI)

• CT Gruen Bank, GT DEEP - support barbs" rabata dela" rodkrooads wens program

MA COER, MassCEC - resiency and battery grant program tachrical essistanos,

55 ;On leCriniOrdi asaltarice
• cepanment Convnerce review storage study riccosats, support shiny

NH Pakc Urkty Commission - pfesent at conferences, support raikty customer
pccogript leijul6104y revrre

EMIARD - !WWII! st ES wCairig ;reap, Suppsil ataEe Wm, WW14

OR DOE -8upporl starege grant prcgram, %vile sabot/ Wel icr Enemy Truai or OR

RI Office of Energy Resources - presenit at RI iSITIVKIE summit

• VT Dal:lit-stilt Of Put* Sepicc, Losim7ature,121.1C - atolribule to ES gudy, intstcd
logls.lalyee cAminitlee, partldpete INJC dna:et

WA State Energy Office- review grid modernizaticri grant proposals

oTrIm 4571,14m

1,41,

PPIP.P4W1191
AIWA WO.

4pOPIRer /plate

ESTAP Currant Project and Policy Locations

4•1•4

WW1

(o)CleanEnergyStates Alliance
Eugene Water & Electric Board Energy Storage

Project at Howard Elementary School,
Eugene, OR

II
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State Energy Storage Deployment Projertg:
AKI Cordova hydro-storage project, Homer Electric storage project
CO: Gunnison Rural Electric Coo p storage p roject

IA: Alliant energy storage project

MA: Sterling Municipal Lighting District islandable stonse project
MN; Minnesota Power batten,' storage project

NM: Albuquerque Public Schools Atrisco Heritage Academy HS praject

OR: Eugene V‘rater & Electric Board microgrid

Puerto Mo.; Villalba municipal microgrid project

VT: Green Mountain Power Stafford Hill microgrid, McKnight Lane
redevelopment

Exceptional service in the national interest
Sandia
National
Laboratories

www.cesa.org
I
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Eugene Water and Electric Board /
Korean Consortium Energy
Storage Project Pacific
Kendall Mongir(11 , Patrick 13a11.1=11 , Jan Alaml, Di IN-1, Xu Ma1. Vanthika Foledari. and MEI price2 Northwest

. 2EWEE:

Project Overview
Til e Eugene Water and Eleclric Board (EWEB) t Kaman Canscrlium
Ediergy Slefage Prejed is a multi-national inliairve inCludielg EWES ald a
group of Korean partners klyesung, Stilrisegurii Engineering and
Cansinuction. and BlueSigma - that ind0rporates the deployment of three
lithium-ion ballades al DNEB's Roosevelt Operations Center (ROC) in
ugrinift. Oregon. fn exchange for honding the storaige systems. Me

Korean Energy Technology Evaluation arid Planning (KETEP) group is
seating information as lo now U.S. energy markels arid Ptililles function in
order ta better inform future investment appartunities. Peak tiocOnvest
National Laboratety (PNNL) waš engaged by the U.8 Departrrient or
Energy 10 MA with EINE aid 1:11U KUre-Ori pd Mors iri evaluating the
LechriNecortomic performance of the energy: storage system (ESS)

Objective and Approaches
Oblective: To Inform on potential economic opportunities and the variety
of use oases the easel Ls capable of pcoviding 10 both the today and the
customer.

AppreeCtles:

• PNNL worked wIth all the pcipled partners lo discuss and define use
cases eppilible ,10 the luimiLion and collect the noeessary claim lo
ovaIunte

• Methods and inpuls were defined and refined for use case evaluation
so that aft benefits and costs could be accurately captured.

• PNNI:s. ealtery Storage Evaluolion Tool (BSET) was employed to
simulate a year of battery eperallan and derive ado-name benefit of
maim* co-optimized uS43 cases ac MSS numerous scenarios.

Energy Storage System
The ESS will be lithium-ion. It will consist el three oompanantš aftenng a
combgned 1 MIN 2 !With of power and energy capacities. respectively.
The expected usable lifis of the .syskam is 10 year&

The three systems and their locations al the ROC are designated as
follows:

▪ 750 RW/1.5 MINh will at Ma acnlnialradvafacllfly;

▪ 126M250 klfAi unil at the warahnuse facility; and

▪ 125 ION1250 ItV1fn unit at the fleet 'wading,

The two smaller 125 kW unite vd1 be held far resiliency purposes only,

leaving the 750 liVe battery Rid seek addidormi economic benefit streams.

Cornpuler Rendition 125 lektv
storage. componwit

Computer Renditien at 7501161V
Stowe Cornonnant

shikr IQNA Al:LIARA WY

Energy Storage System Services Evaluated
The following services were evaluated within the prafirninary economic
aserissment from a variety of perspectives end acmes multiple ecenahoe;

1. Energy Arbitrage

2. Bonneville Penver Administration
IBM) Balancing Coat Reduorion

3, Capacity/Rae:mica Adequacy

il. Demand Charge Reduction

5, Tranarnts-slan Charge Reduction

5. !Demand Response (DR)

7. Energy imbalance Market {ESA)
parbdtpatan

B. ResiliencyrOutage Mibgabon

Battery Storage Evaluation Tool BSET}
BS ET was used ID run a orie-year simulation cif energy storage operations
at the ROC. The model lees used to perfacm a look-ahead optimization
hourly to dstannina Iris badery base cps/aging poinl. The simulation was
;hen used to determine the actual unire operation. BSE7 determines ihe
annual ixstue elf eech seriice odd tne number of hoora the eystam %egad
oplimally be engaged in praviding each service.

Control Strategy Development
As part or the technology demoradrative Inluadva. PINNL is also developing
contrd cepabiklies far the baltery system. To bundle multiple use eases, a
ruleibased control and coordination strategy is being considered at this
phase of the proteet. As mare information is gelhered and dala eallectect,

optimization-driven central strale0t5 %Pal be uTad.

Results of Preliminary Economic Analysis
• when apbmisation rrom Ins costomar's

perspective, there is approximately
59,5Xlin annual benefile to the
customer and little impact on EWEB.

• Under Ina ba.sa case. which ciptirnlzas
fof EWEB's benefit under currently

observed condilices, the total benefit is
$1.8k annually ta the utility.

• When perlicipalion is also
considered, tolal annual benefits
increase lb $361i..

• Seven different clay.abead DR
seenarios were modeled arid the allow!
DR valuo. On avoraigia, was feund to be
daLwedn $9.214 and 515.367 psi. year

• By enabling continued operations far B
hours, energy salmi would increase by
S227,3173.

Next Steps
• After leslaliallon. begin

performing battery testing.

• Calculate resiliency benefits to
customers

• Evaluate tradeoffs idetween the
customer and the ably gong
Pareic-cplinkal paths.

• Finalize economic asses5ment

oler.di Near eida as. Barra

laa

lLm•i••
• •••••••••

Imaia•
NZ

Kendall Mongird

Pacific Northwest National Laboratory

P.O. Box DEPS

Richland. WA 5952

071)9113-71W

liandallimongird@pna gov
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Sizing Tool for a Cost-effective and
Resilient Microgrid

Di UVxi, Son Huang, Xu Ma, Patrick Balducci, Tao Ft.r, Vanstiika Fotodar.Avijit Das

PROJECT OVERVIEW
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METHODOLOGY AND INNOVATION
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Washington Clean Energy Fund (CEF) Grid
Modernization Projects: Economic Results
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RESULTS OF ECONOMIC ANALYSIS
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Nantucket Island Energy Storage System
Economic Assessment
Vanshika Fotedar, Xu Mia, Patrick Balducci, Jan Alam, Tom McDermott, Di Wu, Bilal Bhatti,
Kendall Mongird, Bishnu Bhattarai, Alasdair Crawford, Sumitrra Ganguli
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Battery State of Health Model
Alasdair Crawford, Vilayanur Viswanathan, Daiwon Choi, Vineet Joshi,
Di Wu, Jan Alam, Kendall Mongird r Patrick Bald ucci
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introduction: ubiumk.oattery performance degradation depends
on ambient & operating temperature, rale, depth of decharge, number of

CyOlee, end cluriatio-i at various states of charge and temperature. Very raw

models exist that take inlo aocounl muttiple modes of degradation or inctude

the effect of temperature changes during opefadon. Thls electrotherrnel modal

addresses those gaps-

Objectives:
• Develop ele6-trolaermal model based on fast principles taking arta account

multiple degradation pathways to predict performance and degradation

• Identify the most important design and operating parameters that agent
battery stale of health

• Find siAable electrode aroWtecture & cell design for various grid services
• Enhance battery management systems to oplinize battery throughput

I Inform the top down model with key findings from electrothermal model

I Enable Battery Storage Evaluation Tod tESET) to incorporate degradation

cosi into market transactions— Improve nal benefits over useful battery aft

Approach:
• Pseudo-2d model using COMSOL Muttiphysies 5.4

• Model ValkiatiOn I:100e using litefature and in-homse data
• Solid Electrolyte Interphase {Se) formation 041 already formed SE I

■ SEP formation on freshly exposed graphite upon. SEI SYn CraeltirV

• Glapilite Wive material 1055 due to fracture
■ LINum plating and cathode ifissolulion

■ SEI forrnation effect on electrode porosity and electrolyte effective

conductivity and diffusivity

■ Effect of ambient &operatirig conditions, electrode archftecture & cell design

Results and Discussion:
a) Exchange current de risly I reaction rate constant
sw.
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SEI exchange
current density
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tharge transfer rate
Wristarrt decreases,

Ratio of SEI and
charge transfer rata
constant is a key
metric-

• WM excess anode,
electrode potential
al end of charge
less negative —
lower driving force
for SEP rennetlem.

▪ Higher Wive
malarial fraction
increases lortuosay_
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Ambient and operating condftiona

AB.

Tamedraam44404

• Degradation rate increases at higher temperature

• High ternparature increases MI formation aad cathode dissolution rat*

▪ High C rates lead le higher temperature, nigher stress on SEI tilm end
gtapiite particles

▪ Greater loss of iliNurn and aolite rnaterial capacity

d) Particle size and WI effect on structural mechanics

9..04.42
4

Krenlrer P4.44.44 4.4ar.+4444.44) WI 4-4 Pk XII 4.2

irrannen

▪ Optimum radius is 6 microns. Panicle slress increase at radius x 0 microns
• 1-1101 current (l} and high cal votrage {V) contribute to higher streas levels

e), Top down model results for various duty cycles

.14.41.m.=
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• Ewe

61141im FE dim.= re

• rn-noute 16650 NMC-Gr data
• Key degradation mechanisms

from electrothermal model
used as inpul

• Active material loss,
cumulative discharge enerqy,
square mot of Mat SEI
formed, cathode triSsolu'don,
age most important

• Capedly loss predicted withal'
1Q% after 500 oydes

Future Work:
■ Model multi-electrode pouch arid cylindrical cells

■ Model multi-cell modules

■ Predict safety bentrilor of oaks end modules with chenglog SOH
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Energy Storage Control Capability Expansion at
Portland General Electric's Salem Smart Power
Center
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Energy Storage Analysis for Regional Demonstration Projects
Ale's.c.dr Hurd41.11. Nolte, nay Orme.- Seethe HilifrMMl Labormoriti

Overview
In FYI 9. we ptrforrrted arialyses to assist with planning prolect development and valnatiOn for: the Eugene Water a Electric Board lh OR. AtrIsco
1-teritage High School in Albuquerque, NM, Minnesota Power, BQ Enerzy in NY. arrd the NELHA research campus in 1-11.. In these analyses. we optimize

the benefits from energy st.orage for the customers for cfilferent grid applications such as peak demand charge reeltiction,PV arid time-of-use

rate soructu res. Below arial)gis from two particuLlrhe interectiN
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Com rnunky Distributed Generation in NlY

RaticgrOund
Recent changes to pr-,cing in NY nrclude updates to increase tee value el
energy storage. erg Energy, a corrniundry *imbued gentrarion doweloper In
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Energy Storage and Large Scale Hydrogen
Pro-duction — NELHA Research Campus

Background
The NELHA campus will soon support a large water electrolysis taffy
generating hydrogen for three fuel cal buses. Earty sesta oF the talry morn
than doubled the p*sk daarld ior the orrip...

Unique Considerations
Hydrogen Production
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AnairSis
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Results
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• Flexible operation. would =re -$.2SCIODfretr
ES nalue decreases wish demand response

Results •
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Safety Considerations for BESS: 1 22 West

Before, During and After Commissioning

Susan Schoenung, Longitude l 22 West, inc.
Dan Borneo, Sandia National Laboratories

Abstract:
Safety is a significant factor in the use of battery energy storage, as the desirable high energy density has the disadvantage of
fire risk. While the commissiOning process is intended to check for both satisfactory system performance and safety features,
attention to other considerations both before and after commissioning are needed to ensure long life and safety of the system.

r Design and ConstructioTi r

Elements of the Battery Energy Choosing the right battery
Storage system (BESS)
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State Regulatory Commission Energy Storage Outreach and Education
Howard Passell, SNL

Energy storage technologies (ES) and their
importance in the grid are advancing faster
than policy makers and regulators can keep
up. ES economics and valuation are complex
and challenging. Reaching out to states'
regulatory commissions and offering them
educational workshops on topics associated
wfth ES is an important way to Increase and
enhance ES adoption across the country_

PROJECT OBJ ECTIVES, METRICS Sr MILESTONE5

OBJECTIVES OF THE PROJECT

• To make contact with regulatory COITIMI5Sior15
in

each state and offer t.ducaltirinal workshops

• To design workshops to meet specific needs in
each state or group of states

• TO proyide wen for the states to expertise
frOrn a varier/ of national labs and institutions

• To open channels between states and experr3
for
future contact and continued assimance

METRICS
• Number of worldhops and number of participants

FUTURE MILESTONES
.3-4 workshops per year

LOOKING FORWARD

20 19-2020 ProspectiveWorkshops
ktwa CMOs Bawd C'17.'44

•

• A series. of 2-hour workshops with NM PaC heels in Oct
2019

PROJECT RESULTS

RESULTS

• Grid Energy Storage Introductory
Training_for the Hawaii PUC, Honolulu,
Dec. 7,-2018, —40 participants

4 California Energy Commission (CEC)

4 Energy Storme Academy, Sacramento,
June 2019-, —30 participants

- Southeast Energy Storage Symposium
and PUC Workihop, Birmingham, July_

8
17- I 8_, 2019, — 100 participants overall,
with PUCs represented and 25 PUC
commissioners or staff

WHAT CAME OUT OF THE WORK?

• Southeastern energy Storage Sen-nnar and
Worksho_p: Report on Proceedings and Lessons
Learned.Twitchell, H.D. Passell, R.S. O'Neil. PNNL

e Ongoing collaboration with PNNL, ORNL,
CESA, Quanta Technologies

ElDay-long worl.mhop scheiJ wed with Nevada PUC for jan.20210
Early planning underway with l'1 't iii 41.

• lowa Utilities Board

▪ New Jersey Board of Public Utilities

• Texas PUC

• alifornia Energy Commission (a second workshop)

PROJECT TEAM — Partnem & Collaborators

INSTITUTIONS 

• Sandia National Labs

• Pacdit Northwest National Lab

• Oak Ridge National Lab

• Southern Research

OENEliGY

Lamas „vv.,"

PistRic Nce-thyiest
• Clean Energy. States Alliance (CM) "-*.`k

PEOPLE

Quanta Technologies SACIA K RIDGE
L.6.-mu.rjr

Howard Passel!, SNL

• Jeremy Twitchell. PNNL

• Michael Starke, ORNL

• Ber Taulm. Southern Research

• Todd Olinsky-Paul.CESA

• Ralph Masiel lc.. Quanta Technologies

lerAOSMINIIrry

SkrPet Arlioncx

12:1wa,=.
11116iEitgi

FVk*Sia CI =is'
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Sandia National Labs Demonstration Summary
Benjamin Schenkman, Sandia National Labs

Dan Borneo, Sandia National Labs

Objective: Energy, mirage is u key to erpolikrig modernization of the ekaricity grid.including the succesIsfuir integration of
renewable and distributed energy resources. The DOE OE Energy Stvroge Program useS ie DemonstratiOnsTearn rit Sandia National
baboratorie5 te address makiPle chagenges It the wittespreod deplertrnent of energy storage: cost, erection of an equitable regulatory
erbironment, safety ond re/Willey, ond industry occeptance. The team support$ development, deployment, and research across
multiple storage technologies and applications from transmission constrained regions In Alaska to hurricane-prone Puerto Rico, arid
from the offgrid rural comers of the Navajo Nation to the leading edge of waning educational progrorm
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Demonstration Milestones in FY19
• Engineering and manufacturing drawings are complete

for the prototype l MN/2500A flywheel and building
the kwheel has been initiated

• Controls for Urban Electric Power ZnrinO2 for grid
tied applications has been completed and will be
deployed in Navajo Triba I Uulity Authority territory

▪ Economic Analysis has breen completed for Homer
Electric Association (Alaska), Gunnison Electric
Cooperative (Colorado), Minnesota Power (Minnesota),
Roanoke Electric Cooperative (North Carolina) and
VIllalba (Puerto Rico)

• Completed RFP development and Issuance for energy
storage system based on Sandia economic analysis for
Albuquerque Public Schools (New Mexico),ANZA
(California), and Electric Power Board (Tennessee)

• Commissioned I MVV/ I MVVh energy storage system in
Cordova.AK for increasing hydroelectric capacity

• Collected and collecting enerte storage data to refine
models, develop degradation algorithms and evaluate
performance from Cordova Electric Cooperative
(Alaska), Green Mountain Power (Vermont), Sterling
Municipal Lighting Department (Massachuseus), Eugene
Water and Electric Board (Oregon), Sandia (New
Mexico), Santa Fe Community College (New Mexico)
and Energy Market Authority (Singapore)

9,(

Demonstrations and Analysis Coming Online
• Alliant Energy in lowa installing a 2 MIN / 2.8 M1N11 energy

storage system to incre:ase renewable production capacity
• City College of New York demonstrating a SOkW 1 I6OkWh

Zinc Manganese Dioxide system for peak shaving
• Three off-grid Urban Electric Power systems for Native

American residential loads In the NavaioTribal Utilky Authority
territory

• Seminole Tribe of Florlda procuring solar plus storage for 8
buildings to offset daily electric costs

▪ Enew storage utilization in a resilient rnicrogrid using the
campus oi Santa Fe Community College

• Evaluate using Sandia analytics to determine the tradeoff
between PV curtailment and energy storage within NELIIA
campus

• increase analytic capabilities to Ind ude an energy storage siting
tool

Onikkiow
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Sandia trional iaboratortes

Rechargeable Solid-State Copper Sulfide Cathodes for Alkaline
Batteries: Importance of the CopperValence State

Jonathon Duay, Thnothy N. Lambert,a Maria Kelly and ¡van Pineda-Dorninguez
Department of Photovoltaics and Materials Technology, Sandia National/ Laboratories; Albuquerque, New Mexico, USA, 87185
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The Department of Energy's Office of Electricity (DOE OE)

energy storage research program relies on collaboration and .---
partnerships with a range of stakeholders, including other

national laboratories, universities, electric utilities, industry,

federal and state agencies, and international consortia. These  

partnerships help enable the rapid adoption of new R&D and

provide guidance for developing appropriate policy and -   .

regulatory framework.
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Using Hydro and Energy Storage for- Resiliency in Puerto Rico
Frar-k Currie, Aexander Headiq Darr BOrrreo
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Municipilitiev. in the interior a Puerto Rico
went we* without power after hurricane
Maria. 'This work focuses on using energy
storage and existing hydrodeccric facilities to
creAte an independent mountain region
rninigrid that would require no transmission
ties lo PREPA basrlosel generation assets.
An optaniaafion minimized energy storage

and PV requirements to a function of
hydroelectric capacity actor. The tegutm
shim kyclro and energy storage can be
used coopenitively ro increase rmaieriee and
vaarly mime furore capacity investments
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▪ Improve solar profit" to reflect

rrnikipattirs-vecific differences
• Integrate ReNCAT to nicdiFy load

Foal* to refleGt load ctiticality
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Update on the Natural Energy Laboratory of Hawaii Authority
ESS and Microgrid Projects
Laurence Sornbardier, Gregory Barbour, Keith Olson, Natural Energy Laboratory of Hawaii Authority (NELHA)

Daniei Borneo, Benjamin Schendkrnan„ Alexander Headley, Sandia National Laboratories
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Energy Storage Valuation at San Carlos Apache Tribe
Rodrigo D. Trevizan,Tu Nguyen and Stan Atcitty

Abetram Sr.211 C2.406 Apache Tribe (SCAT) is located in 2 SpAndy populated region that has limited power generation and trinsiti2314311 L'ESCHIMCS. Currently,
the energy tariffs are high sorl the system suffers from frequent power inierruprions. In this smiy, ae 1121:r tinstmel the benefits of Energy Storage Systems
MAC) sE5 ivrloa• *mils imprEtve power cinallsy for the nibs.. We haw crtoduesed camt evAltroiLip8 l5rhinri-thr-Eneser FASs rEsr a cat.im Alla A
hospital Rrsults show that energy stnrage has the potential to reduce electricity COSts and provide backup power For critical 1oads daring several hours.

Challenges at SCAT
• P{,paitiuni:: upland 10,000 prople
• Areas 2,900 sq. miks (2x Rhode Island)
• Seattered loads — three power provide=
• San Carlos Irrigation Project (SCIP)

Benefits of Energy Storage

• 1-ncrcasc reliability for critical loads
• Reduce electricity coos
• Behind-the-metcr (MAI) cost sayings

Time of use (T011) euera
- Arizona Public Service (AP5) Demand

• Graham County Electric (:ooperative lacrease value cif scittr

• llinitcs.i electric power resources
• Small solar PV, utility-scale planned

▪ Limited transmission
• Only 1 691cV transmission line OOP)

issum
• Avcragc 100 outages per year
• Could affect 4,000 to 6,000 people

• Cost of electricity above statc average

i
Projea Goal:

Provide technical assistanix tu the Tribe
to eltable informed dedsion making with
respect ro furure planning of Renewable
Energy Portfolio arid show how FS  can
enhimcc system rcliabJity

• Assumptions:
No hourlv load data al,Lailabk - estimates
Backup pouvr by KSS only

• Assuming 2 cases for backup power:
Reduction of load to NM or 40r1/6

• Case l - Apache Gold Callno/Resort
• Planned 1,100 kW solar PV

• Case 2 - San Carlos Apache Healthcare
Hospital

Planned 2410U to 3,000 kW scar PV
• Techno-econornic analysis using

QuESt 61M

• • A' 
#014AnC4

PIZ MIVOMTENI

ior
4 

PP

itl

Case Studies
• Two BTM apphortion$ fur FSS
• Case I — Apache Gold Casino/Resort

• AP5 (E-35) Primuy
• Case 2 — San Carlos Apachc Hcalthcarc

SCIP — Large commercial

Overview of Transolission and Distribution. ScSkelkit

Pretiminaxy Results nuestTool bill comparison: Deituandr.barges:

Ir111111 011 C5'c I .11111111011
ca-2: -.111111111111 c2-; .111[1111111i

•▪ .-

Case 1

C.2ie Solar E55 E 55 Backup time Backup time Yearly
power power eaparlty a 20% load (dl. 40% load charges

Total yearly Say ing5 Reduction
savings demand peak demand

Case l Casino hi 00 kW 500 kW 1,000 kWh

Case 2 Hospital 2.000 kW 500 kW 100 kWh

• ESS can reduce costs and improve reliability
of critical load centers in SCAT

• Apache Gold Casino/Rizott
511:1] kW/I,000 kWh system can reduce
costs with electricity in about 14%

$.87 h 193 h 5601,080,77 583,959.77 $83,867.13 4723 kW (3.39r.)

8,65 h 4.33 h $7 l 6.0113.93 $69.365. I 3 $73.74220 478.26 kw pal 350

Conclusions
Up to 5,8 haus of backup power

San Carlos. Ap:ache Healthcare Hospital
500 kW/2,000 kWh system can reduce
annual oasts with electricity in about 104fo
Up to 8,6 holes hackup power

• r-uture work
Obtain load data - Hospital & C.asino
BTM analysis far other sites
Front-of-the-meter analysis (laility-Scale)

Acknowledgement: Funding was provided by the US DOE OE Energy Storage Program managed by Dr. Imre Gyuk
of the DOE Office uf. Electricity.
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MATERIALS I

The Pacific Northwest National Laboratory (PNNL)

Electrochemical Materials and Systems group comprises

materials scientists, ceramists, metallurgists, and mechanical

engineers engaged in research and formulation of advanced

cost-effective lightweight materials, power generation

sources, engine exhaust remediation, advanced

manufacturing processes, prototype devices, and pilot-scale

process development. Their program aims to develop and

demonstrate novel energy storage technologies that can

meet economic and performance targets for broad market

penetration. Research areas include emissions, fuel cells,

high-temperature electrochemistry center, transportation

materials, and vehicle and transportation technologies. --
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Effect of ZnO-Saturated Electrolyte on Rechargeable

Alkaline Zinc Batteries at High Depth-of-Discharge
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Zincate-Blocking Polymeric Separators for Zn/MnO2 Batteries
Igor Kolesnichertko,1 David Arnot,1 Matthew lim,2 Timothy N. Lambert,1*

Yaday,3 Jungsang Cho,3 Michael Nyce,3 Sanjoy Banerieel
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Enabling Natural Graphite in High Voltage
Aqueous Zinc-Graphite Dual-lon Batteries
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