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In inertial confinement fusion implosion experiments, the presence of residual anisotropic fluid motion within
the stagnating hot spot leads to significant variations in ion-temperature measurements using neutron time-
of-flight detectors along different lines of sight. The minimum ion-temperature measurement is typically
used as representative of the thermal temperature. In the presence of isotropic flows, however, even the
minimum DT neutron-inferred ion temperature can be well above the plasma thermal temperature. Using
both DD and DT neutron-inferred ion-temperature measurements, we show that it is possible to determine the
contribution of isotropic flows and infer the DT burn-averaged thermal ion temperature. The contribution of
large isotropic flows on driving the ratio of DD to DT neutron-inferred ion temperatures well below unity and
approaching the lower bound of 0.8 is demonstrated in multimode simulations. The minimum DD neutron-
inferred ion temperature is determined from the velocity variance analysis, accounting for the presence of
isotropic flows. Being close to the DT burn-averaged thermal ion temperature, the inferred DD minimum
ion temperatures demonstrate a strong correlation with the experimental yields in the OMEGA implosion
database. An analytical expression is also derived to explain the effect of mode ` = 1 ion-temperature
measurement asymmetry on yield degradations caused by the anisotropic flows.

I. INTRODUCTION

For inertially confined imploding capsules, neutrons
are produced by Deuterium-Deuterium (D-D) and
Deuterium-Tritium (D-T) nuclear fusion reactions within
a three-dimensionally (3-D) distorted hot spot. The
neutron production rate is determined by the fusion
reactivity averaged over an approximate Maxwellian
distribution1. The width of the distribution measures
the ion thermal temperature2 or the ion thermal veloc-
ity in the center-of-mass frame of a nuclear fusion reac-
tion. Since D and T ions are not in a complete thermal
equilibrium, neutron yields produced by D-D and D-T
reactions depend on slightly different ion thermal tem-
peratures. The apparent ion temperature inferred from
the width of neutron energy spectrum is averaged over all
burn distributions within each fluid element with varying
ion thermal temperature and density profiles in space and
time. In the presence of flow effects1,3, broadening and
deviations from Maxwellian distribution occur, leading to
varying apparent ion temperatures along with different
lines of sight (LOS’s). The temperature to describe neu-
tron yields, however, is the ion thermal temperature or
Brysk2 ion temperature, inferred from the width of neu-
tron energy spectrum averaged over burn distributions
within each fluid element without the effects of Doppler-
shift1,3 in neutron velocities.

a)Electronic mail: kwoo@lle.rochester.edu

In National Ignition Facility implosion experiments,
DD ion temperatures were inferred4 with values well be-
low that of DT. These experiments exhibited ratios of
DD to DT ion temperatures between 0.8 and 1 and small
variations in ion-temperature measurements among dif-
ferent lines of sight. These results indicate the pres-
ence of residual fluid motion within the hot spot at peak
compression4,5. Consequently, apparent ion tempera-
tures, which are inferred from the width of neutron en-
ergy spectra2, are larger than the real thermal ion tem-
peratures. This leads to underestimating the inferred
hot-spot pressures6 used as a performance metric for in-
ertial confinement fusion (ICF) implosions.

For a nonstationary fusion plasma, neutron velocities
are Doppler shifted1,3,7 by fluid motions along a given
LOS. The resulting width of the neutron energy spec-
trum is broadened. Since the fluid motion varies in space,
the apparent ion temperatures, which are inferred from
the width of broadened neutron energy spectra, are not
only larger than the real thermal ion temperature but
also vary among different LOS’s. This ion temperature
asymmetry is uniquely determined by the behavior of
the variance of hot-spot fluid velocities1,3. Signatures
of ion-temperature asymmetry were observed in both 3-
D simulations5,8,9 and experiments4 dominated by low
modes. The velocity variance caused by fully turbulent
flows3 is homogeneous in space. This isotropy gives rise
to turbulent residual kinetic energy, which consequently
inflates apparent ion temperatures uniformly in 4π.

In this work, the velocity variance analysis9 is applied
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to examine the 3-D effects of large isotropic flows. Strong
correlations between the isotropic velocity variance and
the ratio of DD to DT minimum ion temperatures are
observed. (The terminology of minimum ion tempera-
ture in this work refers to the global minimum of ion
temperatures measured by any detector, unless stated
otherwise.) Two applications to derive the DD mini-
mum neutron-inferred ion temperature and the DT burn-
averaged thermal ion temperature are presented. The
DD minimum ion temperature is derived by the remov-
ing the anisotropic velocity variance from a simultane-
ous DD and DT ion-temperature measurement along the
same single LOS. Resulting DD minimum ion tempera-
tures demonstrate a strong correlation with the experi-
mental fusion yields in the OMEGA implosion database.
A hot spot of an implosion subject to multi-mode veloc-
ity perturbations is shown to exhibit large isotropic flows,
resulting in a neutron-inferred ion temperature that is
smaller for DD neutrons than that from DT neutrons.
Ti asymmetries for mode ` = 2 are shown to depend on
the competition between residual kinetic energies driven
by the converging Rayleigh–Taylor (RT) spikes along
the poles and the radially outward expanding bubble
at the equator. The correlations between low-mode ion-
temperature measurement asymmetries and residual ki-
netic energies are investigated in detail. The yield-over-
clean (YOC, defined by the ratio of 3-D to 1-D fusion
yields) is derived through an analytic relation depend-
ing on the ratio of maximum to minimum DT neutron-
inferred ion temperatures for mode ` = 1.

This paper is organized as follows: In Sec. (II), prop-
erties of the neutron energy spectra are discussed, includ-
ing the Doppler velocity broadening and the treatment
of flow effects. In Sec. (III), properties of the isotropic
velocity variance are discussed, including the methods to
derive the DD minimum ion temperature, the DT ther-
mal ion temperatures, and the analytic relation that de-
scribes the yield degradation in terms of mode ` = 1 Ti
asymmetry. Section (IV) summarizes our conclusions.

II. FLOW EFFECTS IN NEUTRON DIAGNOSTICS

A. Neutron Diagnostics

In ICF experiments, hot-spot ion temperatures are in-
ferred from the width of neutron energy spectra measured
along a given LOS. The center-of-mass (CM) motion of a
DT ion pair and the relative kinetic energy of DT ions in
the CM frame produce the thermal velocity broadening
centered at E0 = 14.1 MeV, the birth energy of a neutron
in a DT fusion reaction2:

D + T→ 4
2He (3.5 MeV) + n (14.1 MeV). (1)

An alpha particle gains a birth energy of 3.5 MeV from
the total nuclear energy release of Q = 17.6 MeV. For a
stationary fusion plasma, the shape of a neutron energy

spectrum is a Gaussian distribution2. The width is given
by the energy variance σ2

B, which is proportional to the
DT thermal ion temperature T thermal

i :

σ2
B =

2mnT
thermal
i E0

mn +mα
, (2)

where mn and mα are neutron and alpha-particle rest
masses, respectively. For a nonstationary fusion plasma,
the CM frame velocity of DT ions is Doppler shifted or
boosted by the fluid velocity ~v. Non-relativistically2, the
amount of Doppler shift in the mean neutron energy µ is

given by µ−E0 = ~v · d̂
√

2mnE0. The angles θ and φ for

the LOS unit vector d̂ = sin θ cosφx̂+sin θ sinφŷ+cos θẑ
are measured in the laboratory frame.

Effects of Doppler shift in neutron velocities are
manifested in the shape of neutron energy spectra
fLOS(En) observed along a given LOS. Since DT pri-
mary neutrons encounter only negligible scatterings with
the cold DT shell, the shape of spectra fLOS(En) ≈∫

Exp[−(En − µ)2/(2σ2
B)]dN is effectively described by

the superposition9,10 of Doppler-shifted Gaussian energy
spectra, produced by all fluid elements. The burn distri-
bution dN(En) measures the number of neutrons with
kinetic energy En, and N =

∫
dN is the total num-

ber of neutrons. This approach readily captures the
formation of non-Gaussian spectra driven by flow ef-
fects without expensive efforts of direct numerical neu-
tron transport modelings11. In experiments12, the ap-
parent ion temperatures T inferred

i = 4E2
FWHM(mn +

mα)/(E0mn16 ln 2) measured along a given LOS are in-
ferred from the full width at half maximum(FWHM)2

4EFWHM = σB
√

8 ln 2 of Gaussian-fitted neutron energy
spectra from Eq. (2).

B. Flow Effects

For nonstationary fusion plasmas, the exact relation
between thermal ion temperatures and flow effects is
governed by the variance1,3 of the neutron-production
spectra in velocity or energy space. A brief summary
of relativistic1 neutron kinematics is given in Appendix
A. By introducing the normalized burn-averaged bracket
〈(...)〉 =

∫
(...)fLOS(v′′n)dv′′n/

∫
fLOS(v′′n)dv′′n , the statistics

of neutron velocities are obtained from Eqs. (A8)–(A9).
Non-relativistically, a beam of neutrons arriving at a de-

tector, parallel to a given LOS unit vector d̂, has the
mean anisotropic neutron velocity

〈v′′n〉 = v0 + 〈κ〉+ 〈~v · d̂〉. (3)

This result is obtained from the first moment of the neu-
tron energy spectrum. Since the DT CM velocity vDT

cm

is isotropic in space, its mean is zero, i.e., 〈vDT
cm 〉 = 0.

The shift due to DT relative kinetic energies in Eq. (A4)
is small, i.e., 〈κ〉 = v0〈K〉/(2Q) ' 1.47 km/s · keV−1 ×
5T thermal

i,keV , where 〈K〉 ' 5T thermal
i is used1,2.



3

The general treatment of flow effects for an arbitrary
shape of the neutron-production spectrum in the velocity
space is given by the nth moment mn = 〈(w − w̄)n〉
with respect to a velocity variable w ≡ v′′n − v0 along the

direction of d̂. The mean is w̄ ≡ 〈w〉 = 〈κ〉+ 〈~v · d̂〉. The
second moment is the velocity variance

var[w] = var
[
vDT
cm

]
+ var [κ] + var

[
~v · d̂

]
(4)

+ 2
{

cov
[
vDT
cm κ

]
+ cov

[
κ(~v · d̂)

]
+ cov

[
(~v · d̂)vDT

cm

]}
.

Definitions for the covariance and variance between any
two scalars given by f and g are cov[fg] = 〈fg〉 − 〈f〉〈g〉
and var [f ] = 〈f2〉−〈f〉2, respectively. Three covariances
in Eq. (4) can be neglected because the CM frame veloc-
ity, the small shift κ, and the fluid velocity are indepen-
dent of each other. Flow effects caused by non-Gaussian
distributions are characterized by higher moments such
as the skew m3/var[w]3/2 and the kurtosis m4/var[w]2.

Multiplying both sides of Eq. (4) with the DT to-
tal reactant mass MDT = (mD + mT), the neutron-
inferred ion temperature T inferred

i = MDT · var [w] is
shown to depend on the sum of the thermal ion tem-
perature T thermal

i = MDT · var
[
vDT
cm

]
and the velocity

variance

T inferred
i = T thermal

i +MDT · var[~v · d̂]. (5)

The magnitude of var[κ] is negligible compared with the
variance of the ion thermal velocity and the variance
of the hot-spot flow velocity. The effect of DT relative
motion1,13 mainly shifts the neutron velocity spectrum in
the w-space by a small amount of κ along the direction of
LOS, without altering the shape of the spectrum signifi-
cantly. Microscopically, ion temperatures, which measure
the collective random motion of ions, are represented by
the variance operation. Equation (5) indicates that the
variations in apparent ion temperatures are uniquely de-
termined by the behavior of the variance of the hot-spot
fluid velocities. By replacing MDT with the total reac-
tant mass MDD in D–D fusion reactions, the same form
is valid to describe DD inferred ion temperatures. The
Brysk thermal ion temperature2 is recovered in the limit
of zero velocity variance, whereas the Murphy fully tur-
bulent flows3 are recovered in the limit of zero anisotropic

part of var[~v · d̂].

III. ANALYSIS OF VELOCITY VARIANCE

A. Interpretation

The influence of 3-D flow effects on apparent ion tem-
peratures is governed by the properties of velocity vari-
ance, contributed by both isotopic and anisotropic flows.
For instance, isotropic flows lead to minimum apparent
ion temperatures well above thermal ion temperatures.
To describe this phenomenon, the method of velocity

FIG. 1: A sketch for the hot-spot flow structure
and the configuration14 of seven nTOF detectors in
OMEGA: six nTOF for DT’s and one nTOF for DD’s,
to infer hot-spot ion temperatures. The petal detec-
tor for DT temperatures and the 13.4 m nTOF for DD
temperatures are located at the same line of sight.

variance decomposition9 is applied.

The fluid velocity vector ~v =
∑3
i=1 viêi and the LOS

unit vector d̂ =
∑3
i=1 giêi are substituted into the veloc-

ity variance, followed by an expansion into six compo-
nents. The resulting apparent ion temperatures in Eq.
(5) can be rewritten as9

T inferred
i = T thermal

i +MDT

3∑
i,j=1

gigjσij . (6)

The indices correspond to Cartesian coordinates: 1→ x,
2 → y, and 3 → z, respectively; êi is an orthonormal
unit vector. Three geometrical factors, g1 = sin θ cosφ,
g2 = sin θ sinφ, and g3 = cos θ, specify the polar θ and
azimuthal φ angles for a given LOS. The six components
of velocity variance σij = 〈vivj〉 − 〈vi〉〈vj〉 measure the
flow structure. For indices i = j, σ11, σ22, and σ33 are
called ”directional variance”. For indices i 6= j, σ12, σ23,
and σ31 are called ”covariance”. For DD temperatures,
the DD total reactant mass MDD is used in Eq. (6).
The burn-averaged brackets for σDD

ij are calculated by

DD burn distributions fDD
LOS.

The interpretation for directional variance and covari-
ance is as follows: The fluid velocity is decomposed into
a burn-averaged component 〈~v(t)〉 representing the mean
flow and a variation component4~v(~x, t) representing the
perturbed flow:

~v(~x, t) = 〈~v(t)〉+4~v(~x, t). (7)

With the azimuthal symmetry, even-m single modes
have zero covariances in order to conserve vanishing to-
tal translational momenta of the whole imploding cap-
sule on the plane P⊥ orthogonal to the rotation axis.
Without the azimuthal symmetry, capsules for odd-m
single modes translate on the plane P⊥. Magnitudes
of covariances for odd-m modes decrease with the az-
imuthal mode number because the azimuthal asymmetric
flows are located within the cold bubbles, where neutron-
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production rates are low. These properties reveal that
covariance terms σ12, σ23, and σ31 measure the degree
of azimuthal asymmetry. For 1-D spherical symmetric
implosions, capsules are centered at the origin. The 1-D
radial flow has zero covariances.

Since 4~v is the perturbed component in the back-
ground of a translational mean flow 〈~v〉, the directional
variance, from its defintion σii = 〈4vi4vi〉, is propor-
tional to the nontranslational component of the hot-spot
fluid kinetic energy KEnontrans

hs,i = Mhs〈4v2i 〉/2 along di-
rections of three Cartesian axes i = x, y, z:

σii = 〈4v2i 〉 = 2KEnontrans
hs,i /Mhs, (8)

where Mhs is the hot-spot mass. For turbulent flows,
the terms 4vi can be treated as random variables with
zero mean flows 〈vi〉 = 0. The covariances, which also
measure the correlations among all i 6= j components
〈4vi4vj〉 = 〈4vi〉〈4vj〉, asymptotically approach to
zero. The flow is homogenous with respect to all LOS’s.
The latter are characterized by unit vectors along the
radial direction originated from target chamber centers.
Apparent ion temperatures TLOS = Tth + KEnontrans

hs,r ·
(2MDT/Mhs) are therefore inflated, uniformly in 4π, by
the isotropic hot-spot fluid kinetic energies from the ra-
dial component of the flow. The velocity variance in Eq.
(5) is essentially reduced to the form of isotropic velocity
variance discussed in Ref.3

For azimuthal symmetric flows such as 2-D distorted
implosions, covariances are zero. The variation in appar-
ent ion temperatures TLOS = Tth +

∑3
i=1 KEnontrans

hs,i g2i ·
(2MDT/Mhs) depends on the competition of nontransla-
tional fluid kinetic energies among three orthogonal di-
rections.

In general, as shown in Fig. (1), the 3-D hot spot con-
tains isotropic flows originated by counterflows along the
radial direction. They are not measurable in the first
moment of the neutron-production spectra but broaden
the width of spectra uniformly in 4π, causing Tmin > Tth.
The residue ~vaniso = ~v − ~viso is the anisotropic flow, rep-
resented by an anisotropic hot-spot flow vector, as shown
by the large black arrow in Fig. (1). The maximum and
minimum inferred ion temperatures occur when condi-

tions d̂LOS ‖ ~vaniso and d̂LOS ⊥ ~vaniso are satisfied, re-
spectively.

The challenge to infer the hot-spot real thermal tem-
perature requires separating the isotropic flows and ther-
mal temperatures. As mentioned in Ref.9, six DT ion-
temperature measurements complete the reconstruction
of the six components of the velocity variance. Whereas
in this work, we show that the thermal ion temperature
can be extracted by introducing a seventh measurement
for the DD ion temperature along the same LOS of a
DT neutron time-of-flight (nTOF) detector. The steps
in Sec. (III C) – (III E) for the overall method to de-
termine the ion thermal temperature are summarized as
follows: (1) determining the anisotropic portion of the
apparent DT ion temperature in the 4π angular varia-

FIG. 2: Flow patterns for modes ` = 1 and 2 at 7%
implosion velocity perturbations. The distorted cold
shell is filled with the blue color. Only flow patterns are
drawn inside the hot spot bounded by the contour of
Te = 0.5 keV.

tion from six apparent DT ion temperature observations,
(2) determining the isotropic contribution from isotropic
flows from by comparing the DD and DT apparent ion
temperatures along a single line of site, (3) and determin-
ing the ion thermal temperature by removing the effect
of the isotropic contribution from the minimum apparent
DT ion temperature.

B. Properties of Isotropic Velocity Variance

The isotropic velocity variance is the global minimum
of the velocity variance in Eq. (5). For single modes, it
has a simpler form9 given by

σiso(t) = Min[σxx(t), σyy(t), σzz(t)]. (9)

This result is obtained by decomposing the directional
variance into a constant part σiso and a varying part
4σii ≡ σii − σiso with respect to all LOS’s. As dis-
cussed in Sec. (III A), covariances for single modes ap-
proach zero. Apparent ion temperatures in Eq. (6) be-

come TLOS = Tth +MDT(σiso +
∑3
i=14σiig2i ), where the

unit vector property
∑3
i=1 g

2
i = 1 is used. Because of az-

imuthal symmetry, the form of isotropic velocity variance
for 2-D modes is σiso(t) = Min[σxx(t), σzz(t)].

The time evolution of directional variances in Eq. (9)
affects the temperature measurements. A particular case
is the mode ` = 2 perturbation, which exhibits time-
varying z-directional variances. In the rest of this work,
the 3-D hydro code DEC3D15 was applied to simulate
the flow effects on ion-temperature measurement asym-
metries caused by deceleration-phase Rayleigh-Taylor hy-
drodynamic instabilities. Initial radial velocity perturba-
tions are seeded at the inner shell surface at the time of
peak implosion velocity in 1-D LILAC 16 simulations. Ef-
fects of single modes are presented in Sec. (III B) and
(III F), whereas effects of multimode are presented in
Sec. (III C) and (III E). Different DD or DT ion ther-
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FIG. 3: Comparison of time-integrated burn-averaged
directional variance 〈σxx〉 and 〈σzz〉 between modes ` =
1 and 2 against different initial velocity perturbations.

mal temperatures and velocity variances are calculated
by the time-integrated burn-averaged measurements in
DEC3D simulations. As shown in Fig. (2), before the
pair of RT spikes reach the center, perturbations along
the poles dominate over perturbations on the equatorial
plane. The latter are driven by the expanding bubble.
After the RT spikes reach the center, the burn volume of
the hot core along the poles is reduced significantly, lead-
ing to decreasing burn-averaged z-directional variances.
Perturbations of radial flows on the equatorial plane con-
tinue to grow regardless of the initial perturbation am-
plitudes. As a result, the isotropic velocity variance
σ`=2
iso (t) = Min

[
σbubble
xx (t), σspike

zz (t)
]

is governed by the

competition between σbubble
xx (t) and σspike

zz (t) over time.
For modest ` = 2 perturbations, the time-integrated,
burn-averaged z-directional variance is larger than that
in the x direction and vice versa in strongly perturbed
` = 2 distorted implosions.

Figure (3) compares the time-integrated burn-averaged
〈σxx〉 and 〈σzz〉 between modes ` = 1 and 2 against dif-
ferent initial velocity perturbations. The blue and red
curves represent apparent ion temperatures measured at
LOS ẑ and x̂, respectively. Only mode ` = 2 exhibits a
transition from 〈σzz〉 > 〈σxx〉 to 〈σzz〉 < 〈σxx〉 at increas-
ing initial velocity perturbations. This is caused by the
increasingly large donut-shaped warm bubble. At a large
perturbation level of 14%, the flow of ` = 2 transits to
anisotropic as discussed in Ref.8. Mode ` = 1 has a van-
ishing isotropic velocity variance caused by the negligible
〈σ`=1
xx 〉 or 〈σ`=1

yy 〉, whereas its large ion-temperature mea-

surement asymmetry is caused by the growing 〈σ`=1
zz 〉.

Since modest perturbations are more frequent than large
perturbations in high-performance ICF implosion exper-

FIG. 4: The ratio of 〈σzz〉/〈σxx〉 for single modes ` = 3
to 12 characterizes the magnitudes of isotropic velocity
variance.

iments, mode ` = 2 is expected to contribute signifi-
cantly to the isotropic velocity variance with only a small
anisotropic contribution.

Figure (4) compares the ratio of 〈σzz〉/〈σxx〉 for single
modes ` = 3 to 12 simulated by 1%–14% implosion veloc-
ity perturbations using DEC3D. The x-directional vari-
ance is shown to not overtake the z-directional variance.
Two-dimensional m = 0 modes are shown to be more
anisotropic than 3-D m 6= 0 modes with 〈σzz〉/〈σxx〉 > 2.
This occurs because RT spikes along the poles grow faster
than spikes on the 2-D rings. As a result, velocity fluc-
tuations in 2-D modes are slightly more anisotropic than
those in 3-D modes. The latter have velocity fluctuations
that are about uniform in 4π. Three-dimensional modes
are shown to lie inside the range R: 1 ≤ 〈σzz〉/〈σxx〉 ≤ 2,
in which the flows are close to isotropic because 〈σxx〉 and
〈σzz〉 are about equal. Two-dimensional modes ` = 5 and
6 are shown to approach the range R at large perturba-
tions.

The maximum isotropic velocity variance in Eq. (9)
occurs when all directional variances are equal and large
σmax
iso = Min[σii � 0]; simultaneously, the anisotropic

parts vanishes 4σii = 0. This results in small variations
in ion-temperature measurements along different LOS’s.
At the transition, defined by 〈σzz〉/〈σxx〉 = 1, from mod-
est to large perturbations, mode ` = 2 satisfies the condi-
tion to maximize the isotropic velocity variance accord-
ing to Eq. (9). Mode ` = 2 is a special case due to the
competition of nontranslational hot-spot fluid kinetic en-
ergies between σzz and σxx. The mechanism to produce
a large isotropic velocity variance requires breaking the
azimuthal symmetry to form 3-D radial flow structures
within the hot core, thus increasing the overall magni-
tudes of directional variances.
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C. Properties of DD and DT Minimum Ion Temperatures

Isotropic flows are keys to account for the difference
between DD and DT minimum ion temperatures:

TDD
min = T thermal

DD +MDDσ
DD
iso ,

TDT
min = T thermal

DT +MDTσ
DT
iso , (10)

where quantities without the label “(t)”are referred to as
“time-integrated, burn-averaged”. Labels of (...)inferredi

are omitted. The ratio of DD to DT minimum ion tem-
peratures from Eq. (10) is

TDD
min

TDT
min

=

(
α+

MDDσ
DD
iso

T thermal
DT

)(
1 +

MDTσ
DT
iso

T thermal
DT

)−1
, (11)

where α = T thermal
DD /T thermal

DT is the ratio of DD to DT
burn-averaged thermal ion temperatures. The fraction
of residual kinetic energy frke is defined as the ratio of
the isotropic velocity variance to the DT burn-averaged
thermal ion temperature:

frke = MDTσ
DT
iso /T

thermal
DT . (12)

In Eq. (11), about 3% small difference between T thermal
DD

and T thermal
DT in DEC3D multi-mode simulations is ob-

served in Sec. (III E). This observation is in close
agreement with 1-D and 2-D HYDRA simulations for
NIF highfoot implosions reported by Gatu et. al.4 and
Kritcher et. al.17, respectively. The profile effect has a
non-negligible impact to derive the thermal ion temper-
ature in this work. Since the ratio T thermal

DD /T thermal
DT is

shown to be about constant in Sec. (III E), we account
for the profile effect by treating the ratio as the aver-
aged value obtained from simulations, i.e. α ' 0.97. For
hot-spot temperatures at a few keV, the diffusion mean
free path of thermal ions is much less than the hot-spot
radius so DT ions are rapidly thermalized through colli-
sions. The ion-loss effect18 on reducing hot-spot fusion
reactivities is neglected, because the escaping of faster
ions tends to occur at higher temperatures � 10 keV for
ignition-relevant implosions. Under these conditions, ion
distributions are close to the Maxwellian. At subignition
temperatures 1 ∼ 5 keV, the burn-averaged velocity vari-
ances for D–D and D–T reactions are shown to be closed
in Fig. (5). The ratio of DD to DT minimum inferred
ion temperatures in Eq. (11) is

TDD
min/T

DT
min =

(
α+ frke ·

MDD

MDT
· σ

DD
iso

σDT
iso

)
(1 + frke)

−1
.

(13)
Substituting Eq. (8) into Eq. (12),

frke =

(
6

1− Pe/Phs

)
·

KEnontrans
hs,i,DT

IEhs
, (14)

FIG. 5: Comparison of isotropic velocity variance be-
tween DD’s and DT’s in multimode simulations. D–D
and D–T fusion reactivities are used to calculate the
burn-averaged bracket for the velocity variance.

where Phs = Pi + Pe is the total hot-spot pressure, Pe/i

is the electron/ion pressure, IEhs = 3
2PhsVhs is the total

hot-spot internal energy, and Vhs is the hot-spot volume.
The value within the bracket in Eq. (14) equals 12, as-
suming thermal equilibrium between electrons and ions,
and neglects the small mass deficit in fusion reactions. In
Eq. (14), frke measures the fraction of nontranslational
isotropic hot-spot fluid kinetic energy to the hot-spot in-
ternal energy.

Murphy3 defined the kinetic energy fraction fMrke =
EM

k /(E
M
k +EM

th) as the ratio of the hot-spot fluid kinetic
energy EM

k to the total hot-spot fluid energy EM
k + EM

th
such that EM

k /E
M
th = frke/4. Here EM

k = 3
2Mhsσ

DT
iso and

EM
th = 3

2 (nD + nT + ne)T
thermal
DT Vhs. The hot-spot mass

is related to its volume by Mhs = 1
2 (mD + mT)niVhs.

The total hot-spot ion number density ni = nD + nT
is assumed equal to the electron number density ne
for a fully ionized DT plasma. A factor of 3 is re-
quired to express Murphy’s total hot-spot kinetic energy
EM

k = 3KEnontrans
hs,i,DT because our definition of σiso in Eq.

(9) accounts for only nontranslational hot-spot fluid ki-
netic energy in one direction. The ratio in Eq. (13) has
a lower bound of 0.8 in the limit of large frke. At the
first-order expansion with respect to small frke in Eq.
(13),

TDD
min/T

DT
min ' α+ frke(0.8− α), (15)

the ratio drops linearly with the fraction of isotropic
residual kinetic energy.

To approach the limit of TDD
min/T

DT
min → 0.8, more

isotropic flows and lower thermal ion temperatures are
required to increase frke in Eq. (12). Multimode per-
turbations satisfy this requirement because the superpo-
sition of isotropic velocity variance from modest ` = 2
and 3-D m 6= 0 modes can lead to large isotropic flows
within the hot spot. Simultaneously, large-amplitude
multimode perturbations can degrade the thermal ion
temperature by converting less of the shell’s kinetic en-
ergies into hot-spot internal energies15.
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FIG. 6: Comparison of DD/DT minimum neutron-
inferred ion-temperature ratio with the kinetic energy
fraction fMrke in multimode simulations. The black line
is the analytic curve using Murphy’s definition fMrke =
EM

k /(E
M
k + EM

th) in Eq. (13).

A set of multimode simulations by superposition of the
same single mode with random phases is carried out. The
initial multimode velocity perturbation spectrum is given

by Am` =
∑N
i=1(4v/v0)Y m` (θ + θi, φ+ φi), where θi and

φi are random phases for the ith single mode, N = 20 is
the total number of random phases assigned for a given
Y m` single mode, and 4v/v0 is the initial velocity per-
turbation.

Figure (5) shows similar isotropic velocity variance be-
tween DD’s and DT’s due to their small difference in
temperature dependence between D–D and D–T fusion
reactivities in simulations. Figure (6) shows a significant
reduction of DD/DT minimum ion-temperature ratio to
the level of ∼ 0.9 by a rapid increase in kinetic energy
fraction fMrke. Single-mode perturbations were observed
to exhibit small values of frke < 0.3, which is insufficient
to degrade the DD/DT minimum ion-temperature ratio.
The hot spot in a multimode perturbation, however, is
filled with enhanced isotropic flows, and, simultaneously,
the hot-spot thermal ion temperature is degraded to give
a large frke ∼ 0.3 to 1 or fMrke ∼ 0.1. A good agreement
is obtained between the simulation result and the black
analytic curve given by Eq. (13). The global minimum

of the velocity variance var[~v · d̂] behaves in the same way
as Murphy’s velocity variance in fully turbulent flows,

whereas the variation part of var[~v · d̂] contributes to ion-
temperature asymmetries.

D. DD Minimum Ion Temperatures

Equation (10) indicates that the DD minimum ion
temperature is closer to the thermal ion temperature
than DT’s, due to a smaller total fusion reactant
mass MDD/MDT = 0.8. Consider a simultaneous ion-
temperature measurement for DD and DT along the

same single LOS:

TLOS
DT = TDT

min +MDTσ
DT
aniso, (16)

TLOS
DD = TDD

min +MDDσ
DD
aniso. (17)

As urged in Sec. (III C) , DD and DT anisotropic veloc-
ity variances are approximately the same, i.e., σDD

aniso '
σDT
aniso. The DD minimum ion temperature can be derived

by removing the common anisotropic part:

TDD
min = TLOS

DD − (TLOS
DT − TDT

min)

(
MDD

MDT

)
. (18)

Here the DT minimum ion temperature TDT
min can be ei-

ther extracted from the six-LOS’s method9 by simply
taking the global minimum of all available DT ion tem-
peratures. The error propagation is about 0.3 keV for
the derived TDD

min in Eq. (18).
Figure (7)-(a) shows a poor correlation with the DD

ion temperatures measured by the 13.4 m nTOF. Figure
(7)-(b) shows a strong correlation between the derived
DD minimum ion temperature using Eq. (18) and the
experimental yield in OMEGA implosion database. In
this plot, the minimum DT ion temperatures are taken
as the global minimum among all available DT temper-
atures. The application of the six-LOS’s method is not
considered here, because the current OMEGA configu-
ration of six nTOF’s for DT temperatures, as shown in
Fig. (1), produces about 1-keV error. The propagated er-
ror is larger than the measurement error, which is about
0.2 keV, from the minimum measured value. To min-
imize the error propagation in the six-LOS’s method,
a new nTOF at a new line of sight has been proposed
in OMEGA. The observed strong scaling ∼ T 4 of the
experimental yields with the derived DD minimum ion
temperatures is in agreement with the temperature de-
pendence for the DT fusion reactivity19. Since the D–D
reaction has a smaller total nuclear reactant mass than
DT’s in Eq. (10), the derived DD minimum ion temper-
ature is closer to the burn–averaged thermal ion temper-
ature. This observation agrees with 2-D HYDRA simu-
lations for NIF highfoot implosions reported by Kritcher
et. al.17. In Fig. (7)-(c), the experimental yields was
shown to scale as ∼ T 3.64 with the measured DT mini-
mum ion temperatures, which is slightly worse than the
correlation with the derived DD minimum ion tempera-
tures. The DT’s standard deviation for the relative fit-
ting error is shown to be slightly larger than DD’s It is
expected that the correlation with the thermal ion tem-
perature is even better than either DT and DD minimum
ion temperatures due to the presence of isotropic flows.

E. DT Thermal Ion Temperatures

By performing DD and DT minimum ion-temperature
measurements, the degeneracy between thermal ion tem-
peratures and isotropic flows can be recovered because
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FIG. 7: Inferring for the DD minimum neutron-inferred ion temperatures in the OMEGA experiments using Eq.
(18). Comparison of correlation between experimental yields and (a) the DD ion temperatures measured by the
13.4 m nTOF, (b) the derived DD minimum ion temperatures, (c) and the minimum of all measured DT ion tem-
peratures.

TABLE I: DEC3D multimode perturbation (unit for temperatures is keV and
√
σij is km/s). The imaginary num-

ber i =
√
−1 is used to represent the square root of negative covariances.

Variables T thermal
ion T inferred

min T inferred
max

√
σ11
√
σ22
√
σ33
√
σ12
√
σ23
√
σ31

DD 2.86 3.47 3.83 134 152 122 34.9i 32.6i 17.4i
DT 2.95 3.72 4.20 135 154 122 36.1i 34.5i 8.86i

FIG. 8: Comparison of the derived and the DT burn-
averaged thermal ion temperatures in DEC3D multi-
mode simulation for a strongly perturbed hot spot. The
inset is the 2-D x–z plane for the hot-spot temperature
at stagnation.

the isotropic velocity variance is multiplied with differ-
ent DD’s and DT’s total reactant masses. Consequently,
thermal ion temperatures can be solved from Eq. (10).
First, the solution of frke is expressed in terms of DD/DT

minimum ion-temperature ratios using Eq. (13):

frke =
α− TDD

min/T
DT
min

TDD
min/T

DT
min −R

DD/DT
M R

DD/DT
σ

, (19)

where R
DD/DT
M ≡ MDD/MDT and R

DD/DT
σ ≡ σDD

iso /σ
DT
iso

are ratios of DD to DT total reactant masses and
isotropic velocity variances, respectively. The DT mini-
mum ion temperature in Eq. (10)

TDT
min = T thermal

DT (1 + frke) (20)

can be inverted to solve for the DT burn-averaged ther-
mal ion temperature T thermal

DT = TDT
min/(1+frke) using Eq.

(19). The required minimum ion temperatures can be
obtained from the global minimum for DT ion tempera-
tures reconstructed from the six-LOS’s method9 and the
derived DD minimum ion temperatures in Sec. (III D).
However, the derived T thermal

DT has a 4× larger error prop-
agation than the derived TDD

min in Eq. (18).

To solve for the thermal temperatures, the seventh
temperature that should be added to the original six-
LOS’s ion-temperature measurements9 is DD’s. It forms
an invertible LOS matrix M̂LOS from the exact relation
of Eq. (6) that describes six DT and one DD apparent
ion temperatures

~T7 = M̂LOS · ~X7. (21)
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The column vector ~T7 = [{TDT
i=1,..,6, T

DD
7 }] contains the

seven ion-temperature measurements, whereas the state

vector ~X7 = [{T̂ th
DT, σ11, σ22, σ33, 2σ12, 2σ23, 2σ31}]MDT

contains the DT thermal ion temperature and the six
hot-spot flow parameters. T̂ th

DT = T thermal
DT /MDT is the

normalized DT thermal ion temperature. The explicit
form for M̂LOS can be written as

1 g11g
1
1 g12g

1
2 g13g

1
3 g11g

1
2 g12g

1
3 g13g

1
1

1 g21g
2
1 g22g

2
2 g23g

2
3 g21g

2
2 g22g

2
3 g23g

2
1

1 g31g
3
1 g32g

3
2 g33g

3
3 g31g

3
2 g32g

3
3 g33g

3
1

1 g41g
4
1 g42g

4
2 g43g

4
3 g41g

4
2 g42g

4
3 g43g

4
1

1 g51g
5
1 g52g

5
2 g53g

5
3 g51g

5
2 g52g

5
3 g53g

5
1

1 g61g
6
1 g62g

6
2 g63g

6
3 g61g

6
2 g62g

6
3 g63g

6
1

α βg71g
7
1 βg72g

7
2 βg73g

7
3 βg71g

7
2 βg72g

7
3 βg73g

7
1


. (22)

The matrix elements are determined by matching Eq. (6)

with the state vector ~X7, where β = MDD/MDT. The so-
lution for the thermal temperature and six components

of velocity variance is given by ~X7 = M̂−1LOS · ~T7. In a spe-
cial case, when the seventh temperature is chosen as DT’s
with α = β = 1 in Eq. (22), M̂LOS is not invertible. This
is because in a hot spot filled with turbulent flows, all
seven DT temperatures are reduced to one single appar-
ent ion temperature TDT = T thermal

DT +MDTσiso with two
unknowns: thermal ion temperatures and isotropic flows.
Equation (22) represents the least number of LOS’s for
multiple DT and DD ion-temperature measurements to
separate the real thermal ion temperature from isotropic
flows and the six components of velocity variance.

The existing nTOF configuration in OMEGA as shown
in Fig. (1) can form the invertible LOS matrix to solve
for thermal ion temperatures with about 0.8-keV errors.
As a result, the correlation between experimental yields
and the derived thermal ion temperatures according to
the matrix inversion given by Eq. (22) is not as robust
as that with the derived DD minimum ion temperatures
as shown in Fig. (7) – (b). Error propagations in the
matrix inversion from Eq. (22) is suppressed by adding
more LOS’s or reallocating the positions of LOS’s.

The viability of the method to infer the thermal ion
temperature is demonstrated by a DEC3D simulation
database for strongly perturbed multimode distorted im-
plosions as shown in Fig. (8). The spectrum of an
initial multimode perturbation contains Legendre modes
` = 1 to 12 including 2-D modes m = 0 and 3-D modes
m = `even/2. The initial velocity perturbation is uni-
form for the whole spectrum. The database of multimode
simulations in Fig. (8) shows that the burn-averaged
T thermal
DD is about 3% smaller than the burn-averaged
T thermal
DT due to the profile effect as shown in Fig. (9).

This general trend can be applied to set α = 0.97 in
Eq. (22) to obtain a better agreement between the de-
rived and the DT burn-averaged thermal ion tempera-
tures. However, a few percent deviations from the gen-
eral trend are observed. The deviations are shown to
grow with perturbations, caused by the different DD and
DT time-integrated neutron production profiles within a

FIG. 9: Comparison of DD and DT burn-averaged
thermal ion temperatures in DEC3D multi-mode simu-
lations in Fig. (8).

3-D hot spot.
The 2-D temperature profile for a perturbed hot spot

in a sample of multimode simulations are given in Fig.
(8). In this simulation, the large hot-spot flow isotropy
leads to a DD/DT minimum ion-temperature ratio of
TDD
min/T

DT
min = 0.934 and a moderate maximum to min-

imum DT ion-temperature ratio of TDT
max/T

DT
min = 1.13.

Table (I) summarizes the thermal, the maximum and
minimum inferred ion temperatures, as well as the six
hot-spot flow parameters in this simulation. The square
roots of three directional variances give the magnitudes of
nontranslational velocity fluctuations

√
〈4vi4vi〉 ∼ 100

km/s, in which the magnitude is close to the DT ions’

thermal velocity given by
√
T thermal
i,DT /(mD +mT) = 238

km/s. Differences between DD and DT directional vari-
ances and covariances are observed to be small, as dis-
cussed in Sec. (III C).

F. Residual Kinetic Energy

Another application of Ti asymmetry is to describe
yield degradations in the presence of large anisotropic
flows. Previous studies15,20 showed that the YOC is a
strong function of the RKE:

YOC ' (1− RKEtot)
µ (23)

for implosions perturbed by low modes. The normalized
total residual kinetic energy at stagnation is RKEtot =
RKEhs + RKEsh and µ = 4.4 to 5.5. The normalized
hot-spot and shell residual kinetic energies are defined
as RKEhs = (KE3D

hs − KE1D
hs )stag/KE1D

max and RKEsh =

(KE3D
sh −KE1D

sh )stag/KE1D
max, respectively. Here KE

3D/1D
hs

and KE
3D/1D
sh are the 3-D/1-D hot-spot fluid kinetic en-

ergy and the 3-D/1-D total shell kinetic energy, respec-
tively. KE1D

max is the maximum 1-D in-flight shell’s ki-
netic energy. To apply this result in experiments, RKE
must be interpreted in terms of observables of implosion
asymmetries.
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For mode ` = 1, the ratio of maximum to mini-
mum neutron-inferred ion temperature is dominated by
the nontranslational hot-spot fluid kinetic energy along
the direction of the jet. For initial velocity perturba-
tions in the form of spherical harmonics, the jet of mode
` = 1 without any phase shift in DEC3D15 simulations
is parallel to the z axis. For single-mode perturbations,
the covariances are zero, so that the ratio of maximum
T̂DT
max(θ = 0) to minimum T̂DT

min(θ = π/2) neutron-inferred
ion temperature is(

TDT
max

TDT
min

)
`=1

=
T̂ thermal
i + σDT

iso +4σDT
33

T̂ thermal
i + σDT

iso

. (24)

Since mode ` = 1 has negligible nontranslational fluid
kinetic energies 4σ11 = 4σ22 → 0 along x, y direc-
tions, the isotropic velocity variance in Eq. (9) is ap-
proximately zero σDT

iso → 0. The anisotropic velocity
variance is reduced to the z-directional variance, i.e.,
4σDT

33 = σDT
33 −σDT

iso ' σDT
33 such that

(
TDT
max/T

DT
min

)
`=1
'

1 + σDT
33 /T̂

thermal
i . We define the fraction of the total

nontranslational hot-spot fluid kinetic energy as f totalrke =
frke +fanisorke , where the isotropic part frke is given by Eq.

(12) and the anisotropic part is fanisorke = 4σii/T̂ thermal
i .

By substituting f totalrke = σDT
33 /T̂

thermal
i , the Ti ratio in

Eq. (24) is rewritten as(
TDT
max/T

DT
min

)
`=1
' 1 + f totalrke . (25)

Two approximate hot-spot fluid properties for mode
` = 1, observed from large ensembles of DEC3D
deceleration-phase simulations, are used in the following
derivations: The first property is

M3D
hs σ

DT
33 /2 ' KE3D

hs /3, (26)

such that the flow structure of mode ` = 1 approximately
satisfies 〈4v23〉 ' 〈v23〉/3. This relation is shown in Fig.
(10)–(a). The expression for f totalrke is obtained by replac-
ing the isotropic nontranslational hot-spot fluid kinetic
energy with M3D

hs σ33/2 in Eq. (14). The latter is one
third of the total hot-spot residual kinetic energy by Eq.
(26) so that f totalrke ' 4KE3D

hs /IE
3D
hs , where IE3D

hs is the 3-
D hot-spot internal energy. The ratio of 3-D hot-spot
kinetic energy to internal energy is rewritten as

KE3D
hs /IE

3D
hs =

(
IE1D

hs

IE3D
hs

)(
KE1D

max

IE1D
hs

)(
KE3D

hs

KE1D
max

)
. (27)

Three different terms on the right-hand side of Eq. (27)

are (1) IE3D
hs /IE

1D
hs = 1 − RKEtot, which results from

the conservation of total energy at stagnation15; (2)

IE1D
hs /KE1D

max ' 1/2, which is a good approximation for
1-D implosions because typically about a half of the shell
maximum kinetic energy is converted into the hot-spot
internal energy at stagnations; and (3) KE3D

hs /KE1D
max '

RKEtot/2 using the second property RKEhs ' RKEsh.

FIG. 10: Survey of fluid properties for mode ` = 1: (a)
for the first property of 〈4v23〉 ' 〈v23〉/3 in Eq. (26) and
(b) for the consequence of second property in Eq. (28).

The resulting Eq. (27) is then reduced to

KE3D
hs /IE

3D
hs ' RKEtot/(1− RKEtot). (28)

However, the correlation of Eq. (28) is not strong as
shown in Fig. (10)–(b) with an increasing number of
outliers when ` = 1 perturbations are intensified. Equa-
tion (25) becomes a unique function of the total residual
kinetic energy,(

TDT
max/T

DT
min

)
`=1
' 1 + 4RKEtot/(1− RKEtot), (29)

which is inverted to give

RKEtot = ξ/(1 + ξ). (30)

The ion-temperature measurement asymmetry parame-
ter ξ = (1/4)(RT − 1) ≥ 0 is a function of the ion-
temperature ratio RT = TDT

max/T
DT
min. Therefore, the yield

degradation through Eq. (23) is an expression of the
neutron-inferred ion-temperature measurement asymme-
try parameter ξ,

YOC = [1− ξ/(1 + ξ)]
µ
. (31)

Equation (31) is simplified by fitting the YOC against
the ion-temperature ratio in terms of a simple power law
YOC = (RT )−bfit . For the value of µ = 5, the best fit is

YOC ≈
(
TDT
max

TDT
min

)−1.53
. (32)

For mid/high modes or fully turbulent flows, the
anisotropic velocity variance decreases significantly, lead-
ing to small ion-temperature measurement variations
among different LOS’s. Simultaneously, the hot spot
contains large isotropic flows, resulting in larger min-
imum neutron-inferred ion temperatures than the true
thermal ion temperatures. The two fluid properties for
mode ` = 1 are not held by other modes in simulations
because different flow structures have their own scalings
for Eqs. (26) and (28).

To study Eqs. (31)–(32), DEC3D hydrodynamic data
at stagnation, simulated by 1% to 14% initial velocity
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FIG. 11: Yield degradations versus ion-temperature
measurement asymmetries for single modes. The black
curve is given by Eq. (32).

perturbations, are post-processed by a Monte Carlo neu-
tron transport code IRIS3D11. The ion temperatures
are inferred from the width of neutron energy spectra
using 16 detectors at LOS’s distributed from the north
to south poles uniformly at a fixed azimuthal angle φ = 0
in IRIS3D. Figure (11) shows the yield degradation ver-
sus the neutron-inferred ion-temperature ratio. Result
of mode ` = 1 are shown accurately lying on the fitting
curve given by Eq. (32). This is the first result to explain
the yield degradation caused by mode 1 ion-temperature
measurement asymmetries in terms of analytic models
of residual kinetic energies and velocity variance anal-
ysis. In OMEGA implosion database, A. Lees showed
that the fitting exponent was close to -1.3 by perform-
ing machine-learning data analysis. The close match of
the fitting exponents implies the existence of mode ` = 1
asymmetry in OMEGA database for implosions with ion
temperature ratio Tmax/Tmin > 1.1. In general, the cor-
relation between yield degradation and Ti asymmetry de-
creases with increasing isotropic flows. For instance, 2-D
modes ` = 3 to 4 exhibit a weaker Ti asymmetry because
of decreasing anisotropic flows. Mode ` = 2 and other
mid/high modes ` > 4 exhibit a much weaker Ti asym-
metry because their high-velocity fluid motions driven
by vorticity are located within cold bubbles, which con-
tribute only negligible Doppler velocity broadening.

IV. CONCLUSION

In conclusion, a systematic analysis of 3-D effects of
large isotropic flows on DD and DT neutron–inferred
ion temperatures is presented. Strongly perturbed multi-
mode perturbations are shown to produce a large content
of isotropic flows within the hot spot, resulting in smaller
DD than DT minimum neutron–inferred ion tempera-
tures. The presence of large isotropic flows leads to the

ratio of DD to DT minimum ion temperature approach-
ing the lower bound of 0.8. The method to infer the
DD minimum ion temperature through the removal of
the anisotropic velocity variance is derived. The result-
ing DD minimum ion temperature is shown to demon-
strate a strong correlation with the experimental fusion
yields. A method to infer the DT thermal ion tempera-
ture through simultaneous DD and DT ion-temperature
measurements at different LOS’s is described. Reason-
able agreement is observed with strongly perturbed mul-
timode simulations. An analytic expression is derived
to explain the anisotropic flow effect of ion-temperature
measurement asymmetry on yield degradations for mode
` = 1.
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Appendix A: Kinematics of neutrons

The relativistic motion of a single neutron along a
straight line transport parallel to the LOS unit vector

d̂ is described as follows: Consider a Lorentz boost of
a neutron momentum pn in the CM frame of a DT ion
pair by its CM frame velocity vDT

cm relative to the neutron
momentum p′n observed in the fluid rest frame. Both p′n
and vDT

cm are components parallel to d̂:

p′n = γcm(pn + vDT
cm En/c

2), (A1)
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where En = mnc
2 + Kn is the total mass energy of the

neutron in the CM frame, c is the speed of light, and
mn and Kn are the rest mass and the relativistic ki-
netic energy of the neutron in the CM frame, respectively.
The Lorentz factor γcm = (1 − β2

cm)−1/2 is a function of
the DT ion-pair CM frame velocity through the factor of
βcm = vDT

cm /c. The kinetic energy of the neutron in the
CM frame is obtained from the DT nuclear fusion energy
release Q and the relative kinetic energy K of DT ions
in their CM frame21:

p2n
2mn

= K0 +
µ

mn
K, (A2)

where K0 = mαQ/(mn + mα) = mnv
2
0/2 is the neutron

birth energy and µ = mnmα/(mn + mα) is the reduced
mass of DT fusion products. Let p0 = mnv0 be the neu-
tron momentum at the zero DT relative kinetic energy
limit K = 0 and substitute p0 =

√
2µQ into Eq. (A2) to

expand the neutron momentum pn = p0
√

1 +K/Q with
the relative kinetic energy K,

pn '
(

1 +
K

2Q

)
p0. (A3)

Substitute Eq. (A3) into Eq. (A1) and expand the
Lorentz factor γcm ' 1 + β2

cm/2 to first order to obtain
the neutron momentum in the fluid rest frame,

p′n = p0 +
K

2Q
p0 +mnv

DT
cm +41 +42, (A4)

where 41 = βcmKn/c and 42 = β2
cm(pn + vDT

cm En/c
2)/2

are two relativistic correction terms. The neutron veloc-
ity p′′n observed in the laboratory frame parallel to d̂ is
obtained by the second Lorentz boost by the fluid veloc-
ity ~v,

~p′′n · v̂ = γv(~p
′
n · v̂ + vE′n/c

2), (A5)

~p′′n · v̂⊥ = ~p′n · v̂⊥, (A6)

where E′n = γvmnc
2 is the total mass energy of the neu-

tron in the fluid rest frame and γv = (1− β2
v)−1/2 is the

Lorentz factor as a function of the fluid velocity through
βv = v/c. Here v̂⊥ is a unit vector perpendicular to the
direction of the fluid velocity unit vector v̂ = ~v/v. Only
the component of the neutron momentum ~p′′n · v̂ paral-
lel to the fluid velocity is Lorentz boosted. Expand the
Lorentz factor γv ' 1 + β2

v/2 and add Eqs. (A5) and
(A6) together to obtain the neutron momentum vector
~p′′n = (~p′′n · v̂)v̂ + (~p′′n · v̂⊥)v̂⊥ in the laboratory frame:

~p′′n = ~p′n +mn~v +
β2
v

2

[
mnv + ~p′n · v̂ + vE′n/c

2
]
v̂. (A7)

Magnitudes of neutron momenta p′′n = ~p′′n·d̂ and p′n = ~p′n·d̂
parallel to d̂ are obtained by taking a dot product on both

sides of Eq. (A7):

p′′n = p′n +mn~v · d̂+
β2
v

2

[
mnv + ~p′n · v̂ + vE′n/c

2
]
v̂ · d̂.

(A8)

Non-relativistically with βv → 0 and 41 = 42 → 0 in
Eq. (A4), Eq. (A8) is reduced to a simple momentum

addition p′′n = p′n + mn~v · d̂, where p′n is given by Eq.
(A4). The non-relativistic neutron velocity v′′n = pn/m

′′
n

detected along d̂

v′′n = v0 + vDT
cm + κ+ ~v · d̂. (A9)

is the sum of the neutron birth velocity v0 =
√

2K0/mn,
the DT center-of-mass velocity vDT

cm in the fluid rest frame
that contributes to the primary thermal ion temperature,
a small positive velocity shift κ = v0K/(2Q) > 0 due to
the DT relative kinetic energy, and a Doppler velocity

shift ~v · d̂ due to the fluid velocity in the nonstationary
fusion plasma.
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