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Abstract

Data fields sampled on irregularly spaced points arise in many applications in
the sciences and engineering. For regular grids, Convolutional Neural Networks
(CNNs) have been successfully used to gaining benefits from weight sharing and
invariances. We generalize CNNs by introducing methods for data on unstructured
point clouds based on Generalized Moving Least Squares (GMLS). GMLS is a non-
parametric technique for estimating linear bounded functionals from scattered data,
and has recently been used in the literature for solving partial differential equations.
By parameterizing the GMLS estimator, we obtain learning methods for operators
with unstructured stencils. In GMLS-Nets the necessary calculations are local,
readily parallelizable, and the estimator is supported by a rigorous approximation
theory. We show how the framework may be used for unstructured physical data
sets to perform functional regression to identify associated differential operators
and to regress quantities of interest. The results suggest the architectures to be
an attractive foundation for data-driven model development in scientific machine
learning applications.

1 Introduction

Many scientific and engineering applications require processing data sets sampled on irregularly
spaced points. Consider e.g. GIS data associating geospatial locations with measurements, LIDAR
data characterizing object geometry via point clouds, scientific simulations with unstructured meshes.
This need is amplified by the recent surge of interest in scientific machine learning (SciML) [2]
targeting the application of data-driven techniques to the sciences. In this setting, data typically takes
the form of e.g. synthetic simulation data from meshes, or from sensors associated with data sites
evolving under unknown or partially known dynamics. This data is often scarce or highly constrained,
and it has been proposed that successful SciML strategies will leverage prior knowledge to enhance
information gained from such data [1, 2]. One may exploit physical properties and invariances such
as transformation symmetries, conservation structure, or mathematical knowledge such as solution
regularity [1, 3, 7]. This new application space necessitates ML architectures capable of utilizing
such knowledge.

Implementations in TensorFlow and PyTorch are available at https://github.com/rgp62/gmls-nets
and https://github.com/atzberg/gmls-nets.
1. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC.,a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.



For data sampled on regular grids, Convolutional Neural Networks (CNNs) are widely used to exploit
translation invariance and hierarchical structure to extract features from data. Here we generalize this
technique to the SciML setting by introducing GMLS-Nets based on the scattered data approximation
theory underlying generalized moving least squares (GMLS). Similar to how CNNs learn stencils
which benefit from weight-sharing, GMLS-Nets operate by using local reconstructions to learn
operators between function spaces. The resulting architecture is similarly interpretable and serves as
an effective generalization of CNNss to unstructured data, while providing mechanisms to incorporate
knowledge of underlying physics.

In this work we show how GMLS-Nets may be used in a SciML setting. Our results show GMLS-
Nets are an effective tool to discover partial diferential equations (PDEs), which may be used as a
foundation to construct data-driven models while preserving physical invariants like conservation
principles. We also show they may be used to improve traditional scientific components, such as
time integrators. We show they also can be used to regress engineering quantities of interest from
scientific simulation data. Finally, we briefly show GMLS-Nets can perform reasonably relative
to convNets on traditional computer vision benchmarks. These results indicate the promise of
GMLS-Nets to support data-driven modeling efforts in SciML applications. Implementations in
TensorFlow and PyTorch are available at https://github.com/rgp62/gmls-nets and https:
//github.com/atzberg/gmls-nets.

1.1 Generalized Moving Least Squares (GMLS)

Generalized Moving Least Squares (GMLYS) is a non-parametric functional regression technique to
construct approximations of linear, bounded functionals from scattered samples of an underlying
field by solving local least-square problems. On a Banach space V with dual space V*, we aim to
recover an estimate of a given target functional 7x[u] € V* acting on u = u(x) € V, where x, X
denote associated locations in a compactly supported domain 2 C R¢. We assume v is characterized

by an unstructured collection of sampling functionals, A(u) := {\; (u)}j\[:1 C V.

To construct this estimate, we consider P C V and seek an element p* € [P which provides an optimal
reconstruction of the samples in the following weighted-¢5 sense.

N
* : 2

pt = argmmz (Aj(u) = A5(p)" w(Aj, %) (1)
peP j=1

Here w(\;, 7%) is a positive, compactly supported kernel function establishing spatial correlation

between the target functional and sampling set. If one associates locations Xj, := {x; };Vzl C Q with

A(u), then one may consider radial kernels w = W (||x; — X||2), with support r < €.

Assuming the basis P = span{¢1, ..., daim(p) } and denoting ®(z) = {¢i()};_1 _ gim(p)> the

optimal reconstruction may be written in terms of an optimal coefficient vector a(u)

Pt =@(x)Ta(u). (2)

Provided one has knowledge of how the target functional acts on P, the final GMLS estimate may be
obtained by applying the target functional to the optimal reconstruction

T,Z(L[u] = 7%(®)Ta(u). 3)

Sufficient conditions for the existence of solutions to Eqn. 1 depend only upon the unisolvency of A
over V, the distribution of samples X}, and mild conditions on the domain §2; they are independent
of the choice of 7%. For theoretical underpinnings and recent applications, we refer readers to [9,
25-217].

GMLS has primarily been used to obtain point estimates of differential operators to develop meshfree
discretizations of PDEs. The abstraction of GMLS however provides a mathematically rigorous

This paper describes objective technical results and analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United
States Government.

* Work supported by DOE Grant ASCR PhILMs DE-SC0019246.



approximation theory framework which may be applied to a wealth of problems, whereby one
may tailor the choice of 7%, A, P and w to a given application. In the current work, we will
assume the action of 7% on PP is unknown, and introduce a parameterization 7, E(CID), where £ denote
hyperparameters to be inferred from data. Classically, GMLS is restricted to linear bounded target
functionals; we will also consider a novel nonlinear extension by considering estimates of the form

3 [u] = gz (a(w), &)

where g ¢ is a family of nonlinear operators parameterized by £ acting upon the GMLS reconstruction.
Where unambiguous, we will drop the X dependence of operators and simply write e.g. 7"[u] =
ge(a(u)). We have recently used related non-linear variants of GMLS to develop solvers for PDEs
on manifolds in [9].

For simplicity, in this work we specialize as follows. Let: A be point evaluations on Xp,; P be 7, (R?),
the space of m"-order polynomials; let W(r) = (1 —r/ €)", where f, denotes the positive part of
a function f and p € N. We stress however that this framework supports a much broader application.
Consider e.g. learning from flux data related to H (div)-conforming discretizations, where one may
select as sampling functional \;(u) = f su dA., or consider the physical constraints that may be

imposed by selecting I’ as be divergence free or satisfy a differential equation.

We illustrate now the connection between GMLS and convolutional networks in the case of a
uniform grid, X;, C Z%. Consider a sampling functional A\(u) = (u(x;) — u(x;)), and assume the
parameterization 7x ¢ (®) = (&1, ..., gim(p) )» Xi,; = X; — X;j. Then the GMLS estimate is given
explicitly at a point x; by

=Y & <Z qba(xk)W(xik)qSﬁ(xk)) .
WX, o
bp (%)W (xi,5) (uj — ;).

Contracting terms involving «, £ and k, we may write T,}(}i [u] = >, e(7, A)ij(u; —u;). The collection
of stencil coefficients at z; € X}, are {c(7,A);;} ;. Therefore, one application for GMLS is to build
stencils similar to convolutional networks. A major distinction is that GMLS can handle scattered
data sets and a judicious selection of A, P and w can be used to inject prior information. Alternatively,
one may interpret the regression over P as an encoding in a low-dimensional space well-suited to
characterize common operators. For continuous functions for example, an operator’s action on the
space of polynomials is often sufficient to obtain a good approximation. We also remark that unlike
CNN s there is often less need to handle boundary effects; GMLS-nets is capable of learning one-sided
stencils.

1.2 GMLS-Nets

From an ML perspective, GMLS estimation consists of two parts: (i) data is encoded via the
coefficient vector a(u) providing a compression of the data in terms of P, (ii) the operator is regressed
over P*; this is equivalent to finding a function q¢ : a(u) — R. We propose GMLS-Layers encoding
this process in Figure 1.

This architecture accepts input channels indexed by « which consist of components of the data
vector-field [u]® sampled over the scattered points X},. We allow for different sampling points for
each channel, which may be helpful for heterogeneous data. Each of these input channels is then used
to obtain an encoding of the input field as the vector a(u) identifying the optimal representer in IP.

We next select our parameterization of the functional via g¢, which may be any family of functions
trainable by back-propagation. We will consider two cases in this work appropriate for linear and
non-linear operators. In the linear case we consider q,i(a) = ¢Ta, which is sufficient to exactly
reproduce differential operators. For the nonlinear case we parameterize with a multi-layer perceptron
(MLP), g¢(a) = MLP(a). Note that in the case of linear activation function, the single layer MLP
model reduces to the linear model.

Nonlinearity may thus be handled within a single nonlinear GMLS-Layer, or by stacking multiple
linear GMLS-layers with intermediate ReLU’s, the later mapping more directly onto traditional
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Figure 1: GMLS-Nets. Scattered data inputs are processed by learnable operators 7[u| parameterized
via GMLS estimators. A local reconstruction is built about each data point and encoded as a coefficient
vector via equation 2. The coefficient mapping g(a) of equation 4 provides the learnable action of
the operator. GMLS-Layers can be stacked to obtain deeper architectures and combined with other
neural network operations to perform classification and regression tasks (inset, SD: scattered data,
MP: max-pool, MLP: multi-layer perceptron).

CNN construction. We next introduce pooling operators applicable to unstructured data, whereby for
each point in a given target point cloud X;""9, ¢(z;) = F ({x;]5 € X, |zj — 24| < €}). Here F
represents the pooling operator (e.g. max, average, etc.). With this collection of operators, one may
construct architectures similar to CNNs by stacking GMLS-Layers together with pooling layers and
other NN components. Strided GMLS-layers generalizing strided CNN stencils may be constructed
by choosing target sites on a second, smaller point cloud.

1.3 Relation to other work.

Many recent works aim to generalize CNNs away from the limitations of data on regular grids [4,
6]. This includes work on handling inputs in the form of directed and un-directed graphs [23],
processing graphical data sets in the form of meshes and point-clouds [20, 29], and in handling
scattered sub-samplings of images [6, 8]. Broadly, these works: (i) use the spectral theory of graphs
and generalize convolution in the frequency domain [6], (ii) develop localized notions similar to
convolution operations and kernels in the spatial domain [24]. GMLS-Nets is most closely related to
the second approach.

The closest works include SplineCNNs [8], MoNet [11, 15], KP-Conv [24], and SpiderCNN [28]. In
each of these methods a local spatial convolution kernel is approximated by a parameterized family
of functions: open/closed B-Splines [8], a Gaussian correlation kernel [11, 15], or a kernel function
based on a learnable combination of radial ReLu’s [24]. The SpiderCNNs share many similarities
with GMLS-Nets using a kernel that is based on a learnable degree-three Taylor polynomial that is
taken in product with a learnable radial piecewise-constant weight function [28]. A key distinction
of GMLS-Nets is that operators are regressed directly over the dual space V* without constructing
shape/kernel functions. Both approaches provide ways to approximate the action of a processing
operator that aggregates over scattered data.

We also mention other meshfree learning frameworks: PointNet [19, 20] and Deep Sets [29], but
these are aimed primarily at set-based data and geometric processing tasks for segmentation and



classification. Additionally, Radial Basis Function (RBF) networks are similarly built upon similar
approximation theory [5, 18].

Related work on operator regression in a SciML context include [3, 7, 13, 14, 16, 17, 21, 22]. In
PINNSs [17, 21], a versatile framework based on DNNs is developed to regress both linear and
non-linear PDE models while exploiting physics knowledge. In [3] and PDE-Nets [14], CNNs are
used to learn stencils to estimate operators. In [7, 22] dictionary learning is used along with sparse
optimization methods to identify dynamical systems to infer physical laws associated with time-series
data. In [16], regression is performed over a class of nonlinear pseudodifferential operators, formed
by composing neural network parameterized Fourier multipliers and pointwise functionals.

GMLS-Nets can be used in conjunction with the above methods. GMLS-Nets have the distinction of
being able to move beyond reliance on CNNs on regular grids, no longer need moment conditions to
impose accuracy and interpretability of filters for estimating differential operators [14], and do not
require as strong assumptions about the particular form of the PDE or a pre-defined dictionary as
in [17, 22]. We expect that prior knowledge exploited globally in PINNs methods may be incorporated
into the GMLS-Layers. In particular, the ability to regress natively over solver degrees of freedom
will be particularly useful for SciML applications.

2 Results

2.1 Learning differential operators and identifying governing equations.
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Figure 2: Regression of Differential Operators. GMLS-Nets can accurately learn both linear and non-
linear operators, shown is the case of the 1D/2D Laplacians and Burger’s equation. In-homogeneous
operators can also be learned by including as one of the input channels the location z. Training
and test data consists of random input functions in 1d at 10 nodes on [0, 1] and in 2d at 400
nodes in [0, 1] x [0, 1]. Each random input function follows a Gaussian distribution with u(x) =
>k &k exp (i2mk - x/L) with & ~ exp(—a1k?)n(0,1). Training and test data is generated with
a1 = 0.1 by computed operators with spectral accuracy for Nyyqipn = 5 X 10* and N5 = 10%.

Many data sets arising in the sciences are generated by processes for which there are expected
governing laws expressible in terms of ordinary or partial differential equations. GMLS-Nets provide
natural features to regress such operators from observed state trajectories or responses to fluctuations.
We consider the two settings

ou
5¢ = Llu(t, )] and Llu(z)] = —f(2). (6)



The L[u] can be a linear or non-linear operator. When the data are snapshots of the system state
u™ = u(t™) at discrete times t" = n/At, we use estimators based on

u7L+1 —un

N LH{uF}rex; €. (7)

In the case that L = {n + 1}, this corresponds to using an Implicit Euler scheme to model the
dynamics. Many other choices are possible, and later we shall discuss estimators with conservation
properties. The learning capabilities of GMLS-Nets to regress differential operators are shown in
Fig. 2. As we shall discuss in more detail, this can be used to identify the underlying dynamics and
obtain governing equations.

2.2 Long-time integrators: discretization for native data-driven modeling.

— Initial condition Regressed FVM
— Exact solution True operator FDM
— Regressed FDM . True operator FVM

— Regressed FDM
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Figure 3: Top: Advection-diffusion solution when At = Atcpr. The true model solution and
regressed solution all agree with the analytic solution. Bottom: Solution for under-resolved dynamics
with At = 10Atcpr. The implicit integrator causes FDM/FVM of true operator to be overly
dissipative. The regressed operator matches well with the FVM operator, matching the phase almost
exactly.

At/Atcrr,  Lrpmer Lrpm  Lrvimes Lrvm

0.1 0.00093  0.00015  0.00014  0.00010
1 0.0011 0.00093  0.0011 0.00011
10 0.0083 0.0014 0.0083  0.00035

Table 1: The ¢5-error for data-driven finite difference model (FDM) and finite volume models (FVM)
for advection-diffusion equation. Comparisons made to classical discretizations using exact operators.
For conservative data-driven finite volume model, there is an order of magnitude better accuracy for
large timestep integration.

The GMLS framework provides useful ways to target and sample arbitrary functionals. In a data
transfer context, this has been leveraged to couple heterogeneous codes. For example, one may
sample the flux degrees of freedom of a Raviart-Thomas finite element space and target cell integral
degrees of freedom of a finite volume code to perform native data transfer. This avoids the need to
perform intermediate projections/interpolations [12]. Motivated by this, we demonstrate that GMLS
may be used to learn discretization native data-driven models, whereby dynamics are learned in the
natural degrees of freedom for a given model. This provides access to structure preserving properties
such as conservation, e.g., conservation of mass in a physical system.

We take as a source of training data the following analytic solution to the 1D unsteady advection-
diffusion equation with advection and diffusion coefficients @ and v on the interval Q@ = [0, 30].
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To construct a finite difference model (FDM), we assume a node set N =
{zo =0,21,....,25y_1,2y = 30}. To construct a finite volume model (FVM), we construct
the set of cells C = {[z;,zi11], zs, zix1 € N,i € {0,..., N — 1}}, with associated cell measure
u(c;) = |zip1 — x;| and set of oriented boundary faces F; = d¢; = {241, —x;}. We then assume
for uniform timestep At = t"+! — ¢™ the Implicit Euler update for the FDM given by

u Tt —

1Tti = Lrpmu™tt; ¢, &)

To obtain conservation we use the FVM update

n+1 n
i Y

1
At ple) > / Lrvulu¢] - dA. (10)

feF;

u

For the advection-diffusion equation in the limit At — 0, Lrpares = a - Vu + vV2u and
LFvM,ex = au + vVu. By construction, for any choice of hyperparameters £ the FVM will be
locally conservative. In this sense, the physics of mass conservation are enforced strongly via the
discretization, and we parameterize only an empirical closure for fluxes - GMLS naturally enables
such native flux regression.

We use a single linear GMLS-net layer to parameterize both Lz pys and Lpy s, and train over a
single timestep by using Eqn. 8 to evaluate the exact time increment in Eqns. 9-10 . We perform
gradient descent to minimize the RMS of the residual with respect to . For the FDM and FVM
we use a cubic and quartic polynomial space, respectively. Recall that to resolve the diffusion and

advective timescales one would select a timestep of roughly Atcrz, = min (1221, 1288,

After regressing the operator, we solve the extracted scheme to advance from {u? = u(z;, to)}i
to {u’;fmal } . As implicit Euler is unconditionally stable, one may select At > Atcpy at
the expense of introducing numerical dissipation, "smearing" the solution. We consider At €
{0.1AtcrL, Aterr, 10Atopr } and compare both the learned FDM/FVM dynamics to those ob-
tained with a standard discretization (i.e. letting Lrpar = LFpa,er- From Fig. 3 we observe that
for At/Atcrr, < 1 both the regressed and reference models agree well with the analytic solution.
However, for At = 10Atcrr, we see that while the reference models are overly dissipative, the
regressed models match the analytic solution. Inspection of the /5 —norm of the solutions at /7% in
Table 1 indicates that as expected, the classical solutions corresponding to Lrpas,ez and Lry s ex
converge as O(At). The regressed FDM is consistently more accurate than the exact operator. Most
interesting, the regressed FVM is roughly independent of At, providing a 20x improvement in
accuracy over the classical model. This preliminary result suggests that GMLS-Nets offer promise
as a tool to develop non-dissipative implicit data-driven models. We suggest that this is due to the
ability for GMLS-Nets to regress higher-order differential operator corrections to the discrete time

dynamics, similar to e.g. Lax-Friedrichs/Lax-Wendroff schemes.

2.3 Data-driven modeling from molecular dynamics.

In science and engineering applications, there are often high-fidelity descriptions of the physics based
on molecular dynamics. One would like to extract continuum descriptions to allow for predictions
over longer time/length-scales or reduce computational costs. Coarse-grained modeling efforts also
have similar aims while retaining molecular degrees of freedom. Each seek lower-fidelity models that
are able to accurately predict important statistical moments of the high-fidelity model over longer
timescales. As an example, consider a mean-field continuum model derived by coarse-graining a
molecular dynamics simulation. Classically, one may pursue homogenization analysis to carefully
derive such a continuum model, but such techniques are typically problem specific and can become
technical. We illustrate here how GMLS-Nets can be used to extract a conservative continuum PDE
model from particle-level simulation data.

Brownian motion has as its infinitesimal generator the unsteady diffusion equation [10]. As a basic
example, we will extract a 1D diffusion equation to predict the long-term density of a cloud of particles
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Figure 4: GMLS-Nets can be trained with molecular-level data to infer continuum dynamical models.
Data are simulations of Brownian motion with periodic boundary conditions on = [0,1] and
diffusivity D = 1 (top-left, unconstrained trajectory). Starting with initial density of a heaviside
function, we construct histograms over time to estimate the particle density (upper-right, solid lines)
and perform further filtering to remove sampling noise (upper-right, dashed lines). GMLS-Net is
trained using FVM estimator of equation 10. Predictive continuum model is obtained for the density
evolution. Long-term agreement is found between the particle-level simulation (bottom, solid lines)
and the inferred continuum model (bottom, dashed lines).

undergoing pseudo-1D Brownian motion. We consider the periodic domain 2 = [0,1] x [0,0.1],
and generate a collection of N, particles with initial position =, (¢t = 0) drawn from the uniform
distribution U[0, 0.5] x U[0,0.1].

Due to this initialization and domain geometry, the particle density is statistically one dimensional.
We estimate the density field p(z, t) along the first dimension by constructing a collection C of N
uniform width cells and build a histogram,

NP
p(.’l?,t) = Zz]lmp(t)EC]1$€c- (11)

ceCp=1
The 1,¢ 4 is the indicator function taking unit value for z € A and zero otherwise.

We evolve the particle positions x,(t) under 2D Brownian motion (the density will remain statistically
1D as the particles evolve). In the limit N,,/N — oo, the particle density satisfies a diffusion equation,
and we can scale the Brownian motion increments to obtain a unit diffusion coefficient in this limit.

As the ratio N, /N is finite, there is substantial noise in the extracted density field. We obtain a
low pass filtered density, p(z, t), by convolving p(z, t) with a Gaussian kernel of width twice the
histogram bin width.

We use the FVM scheme in the same manner as in the previous section. In particular, we regress
a flux that matches the increment (p(z,t = 10) — p(z,t = 12))/2A¢t. This window was selected,
since the regression at ¢ = 0 is ineffective as the density approximates a heaviside function. Such
near discontinuities are poorly represented with polynomials and subsequently not expected to train
well. Additionally, we train over a time interval of 2At, where in general kAt steps can be used to
help mollify high-frequency temporal noise.

To show how the GMLS-Nets’ inferred operator can be used to make predictions, we evolve the
regressed FVM for one hundred timesteps and compare to the density field obtained from the particle



solver. We apply Dirichlet boundary conditions p(0,¢) = p(1,¢) = 1 and initial conditions matching
the histogram p(x, ¢ = 0). Again, the FVM by construction is conservative, where it is easily shown
for all ¢ that fQ pdx = N,. A time series summarizing the evolution of density in both the particle
solver and the regressed continuum model is provided in Fig 4. While this is a basic example, this
illustrates the potential of GMLS-nets in constructing continuum-level models from molecular data.
These techniques also could have an impact on data-driven approaches for numerical methods, such
as projective integration schemes.

2.4 Image processing: MNIST benchmark.

MNIST Input GMLS Features
Classes Image all) a2 al3] ald]
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Figure 5: MNIST Classification. GMLS-Layers are substituted for convolution layers in a basic
two-layer architecture (Conv2d + ReLu + MaxPool + Conv2d + ReLu + MaxPool + FC). The Conv-2L
test are all Conv-Layers, Hybrib-2L. has GMLS-Layer followed by a Conv-Layer, and GMLS-2L
uses all GMLS-Layers. GMLS-Nets used a polynomial basis of monomials. The filters in GMLS are
by design more limited than a general Conv-Layer and correspond here to estimated derivatives of
the data set (fop-right). Despite these restrictions, the GMLS-Net still performs reasonably well on
this basic classification task (bottom-table).

While image processing is not the primary application area we intend, GMLS-Nets can be used for
tasks such as classification. For the common MNIST benchmark task, we compare use of GMLS-Nets
with CNNs in Figure 5. CNNs use kernel size 5, zero-padding, max-pool reduction 2, channel sizes
16, 32, FC as linear map to soft-max prediction of the categories. The GMLS-Nets use the same
architecture with a GMLS using polynomial basis of monomials in x, y up to degree pyrder = 4.

We find that despite the features extracted by GMLS-Nets being more restricted than a general CNN,
there is only a modest decrease in the accuracy for the basic MNIST task. We do expect larger
differences on more sophisticated image tasks. This basic test illustrates how GMLS-Nets with a
polynomial basis extracts features closely associated with taking derivatives of the data field. We
emphasize for other choices of basis for p* and sampling functionals );, other features may be
extracted. For polynomials with terms in dictionary order, coefficients are shown in Fig. 5. Notice the
clear trends and directional dependence on increases and decreases in the image intensity, indicating
c[l] ~ 0 and ¢[2] ~ 0,. Given the history of PDE modeling, for many classification and regression
tasks arising in the sciences and engineering, we expect such derivative-based features extracted by
GMLS-Nets will be useful in these applications.

2.5 GMLS-Net on unstructured fluid simulation data.

We consider the application of GMLS-Nets to unstructured data sets representative of scientific
machine learning applications. Many hydrodynamic flows can be experimentally characterized using
velocimetry measurements. While velocity fields can be estimated even for complex geometries, in
such measurements one often does not have access directly to fields, such as the pressure. However,
integrated quantities of interest, such as drag are fundamental for performing engineering analysis
and yet depend upon both the velocity and pressure. This limits the level of characterization that can
be accomplished when using velocimetry data alone. We construct GMLS-Net architectures that
allow for prediction of the drag directly from unstructured fluid velocity data, without any direct
measurement of the pressure.



We illustrate the ideas using flow past a cylinder of radius L. This provides a well-studied canonical
problem whose drag is fully characterized experimentally in terms of the Reynolds number, Re =
UL /v. For incompressible flow past a cylinder, one may apply dimensional analysis to relate drag
F to the Reynolds number via the drag coefficient Cy:

2F, UL
=Cyqg|— ). 12
pUZA " < v ) 12
The U, is the free-stream velocity, A is the frontal area of the cylinder, and Cy : R — R. Such
analysis requires in practice engineering judgement to identify relevant dimensionless groups. After
such considerations, this allows one to collapse relevant experimental parameters to (p, Uy, A, L, V)
onto a single curve.

25 » Training data

@ GMLS-Net test data

Drag coefficient

1 | R | L
le+06

100 10000

le+08

Reynolds number

Figure 6: GMLS-Nets are trained on a CFD data set of flow velocity fields. Top: Training set of
the drag coefficient plotted as a function of Reynolds number (small black dots). The GMLS-Net
predictions for a test set (large red dots). Bottom: Flow velocity fields corresponding to the smallest
(left) and largest (right) Reynolds numbers in the test set.

For the purposes of training a GMLS-Net, we construct a synthetic data set by solving the Reynolds
averaged Navier-Stokes (RANS) equations with a steady state finite volume code. Let L = p =1
and consider U € [0.1,20] and v € [10*2, 108} . We consider a k — € turbulence model with inlet
conditions consistent with a 10% turbulence intensity and a mixing length corresponding to the inlet
size. From the solution, we extract the velocity field u at cell centers to obtain an unstructured point
cloud Xp. We compute C; directly from the simulations. We then obtain an unstructured data set
of 400 (u); features over X}, with associated labels C;. We emphasize that although U, and v are
used to generate the data, they are not included as features, and the Reynolds number is therefore
hidden.

We remark that the k£ — € model is well known to perform poorly for flows with strong curvature such
as recirculation zones. Here, in our proof-of-concept demonstration, we treat the RANS-£ — e solution
as ground truth for simplicity, despite its short-comings and acknowledge that a more physical study
would consider ensemble averages of LES/DNS data in 3D. We aim here just to illustrate the potential
utility of GMLS-Nets in a scientific setting for processing such unstructured data sets.

As an architecture, we provide two input channels for the two velocity components to three stacked
GMLS layers. The first layer acts on the cell centers, and intermediate pooling layers down-sample
to random subsets of Xj,. We conclude with a linear activation layer to extract the drag coefficient as
a single scalar output. We randomly select 80% of the samples for training, and use the remainder as
a test set. We quantify using the root-mean-square (MSE) error which we find to be below 1.5%.
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The excellent predictive capability demonstrated in Fig. 6 highlights GMLS-Nets ability to provide
an effective means of regressing engineering quantities of interest directly from velocity flow data;
the GMLS-Net architecture is able to identify a latent low-dimensional parameter space which is
typically found by hand using dimensional analysis. This similarity relationship across the Reynolds
numbers is identified, despite the fact that it does not have direct access to the viscosity parameter.
These initial results indicate some of the potential of GMLS-Nets in processing unstructured data sets
for scientific machine learning applications.

3 Conclusions

We have introduced GMLS-Nets for processing scattered data sets leveraging the framework of GMLS.
GMLS-Nets allow for generalizing convolutional networks to scattered data, while still benefiting
from underlying translational invariances and weight sharing. The GMLS-layers provide feature
extractors that are natural particularly for regressing differential operators, developing dynamical
models, and predicting quantities of interest associated with physical systems. GMLS-Nets were
demonstrated to be capable of obtaining dynamical models for long-time integration beyond the limits
of traditional CFL conditions, for making predictions of density evolution of molecular systems, and
for predicting directly from flow data quantities of interest in fluid mechanics. These initial results
indicate some promising capabilities of GMLS-Nets for use in data-driven modeling in scientific
machine learning applications.
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A Derivation of Gradients of the Operator 7, [u].

A.1 Parameters of the operator 7.

We give here some details on the derivation of the gradients for the learnable GMLS operator 7[u] and
intermediate steps. This can be used in implementations for back-propagation and other applications.

GMLS works by mapping data to a local polynomial fit in region €; around x; with p*(z) ~ wu(zx) for
x € §;. To find the optimal fitting polynomial p*(z) € V to the function u(z), we can consider the case
with A\j(x) = §(z — ;) and weight function w;; = w(xz; — ;). In a region around a reference point x* the
optimization problem can be expressed parameterically in terms of coefficients a as

2
a*(xl) = arg arélﬂ%l;ln Z (u]' — p(xj)Ta> Wij.
J

We write for short p(z;) = p(x;,x;), where the basis elements in fact do depend on x;. Typically, for
polynomials we just use p(z;,z;) = p(x; — ;). This is important in the case we want to take derivatives in
the input values x; of the expressions.

We can compute the derivative in a, to obtain
oJ
—(x;) = 0.
6@[ ( 1)

This implies

[Z p(wj)wijp(wj)T} a= Z wiP(w5)u;.
Let ’ ’

T

M= [Z p(z;)wi;p(z;) ] ;T = wyp(e;)uy,
J J

then we can rewrite the coefficients as the solution of the linear system

Ma*(z;) =r.
This is sometimes written more explicitly for analysis and computations as
a*(zi) = M 'r.
We can represent a general linear operator 7(z;) using the a* representation as
(@) = a(w:)" a" (z:)

Typically, the weights will not be spatially dependent q(x;) = qo. Throughout, we shall denote this simply as q
and assume there is no spatial dependence, unless otherwise indicated.

A.2 Derivatives of 7 in z;, a(z;), and q.

The derivative in x; is given by
. oM~" _1 0r
a (zi)=—F—T1+M
In the notation, we denote p(x;) = p(z;, x: ), where the basis elements in fact can depend on the particular ;.
These terms can be expressed as

OM 1 o OM 1
Bxi =—M 8171 ’

oM 0
T O | ) PR
j 7

where

9 T
+ p(zj, i) (%P(%’,xi)) Wij

T 8wij
8Ii '

+  p(xj,z)p(e), ;)

The derivatives in r are given by

or 0 Ow; ;
92 = zj: [(@p(xj)> ujwij + p(x))u; Bx;} .
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The full derivative of the linear operator 7 can be expressed as
o) = (aw)” )o@ + ate)” (pma’(@) )
In the constant case q(x;) = qo, the derivative of 7 simplifies to
0 . 0 .
(e = af (e’ (o).

The derivatives of the other terms follow more readily. For derivative of the linear operator 7 in the coefficients
a(x;), we have

o .
MT(%) = q(z:).
For derivatives of the linear operator 7 in the mapping coefficient q values, we have
0
dq(z;)

T(x;) = a(z;).

In the case of nonlinear operators 7 = q(a(x;)) there are further dependencies beyond just x; and a(z;), and
less explicit expressions. For example, when using MLP’s there may be hierarchy of trainable weights w. The
derivatives of the non-linear operator can be expressed as

0 . 0
B @) = G (ala).
Here, one relies on back-propagation algorithms for evaluation of g—:’v. Similarly, given the generality of g(a),
for derivatives in a and x;, one can use back-propagation methods on q and the chain-rule with the expressions
derived during the linear case for a and x; dependencies.
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