
Articles
https://doi.org/10.1038/s41566-019-0549-5

1SLAC National Accelerator Laboratory, Menlo Park, CA, USA. 2Physics Department, Stanford University, Stanford, CA, USA. 3Stanford PULSE Institute, 
SLAC National Accelerator Laboratory, Menlo Park, CA, USA. 4The Blackett Laboratory, Imperial College London, London, UK. 5Max Planck Institute of 
Quantum Optics, Garching, Germany. 6Physics Department, Ludwig-Maximilians-Universität Munich, Garching, Germany. 7Institut für Physik und CINSaT, 
Universität Kassel, Kassel, Germany. 8Zentrum für Synchrotronstrahlung, Technische Universität Dortmund, Dortmund, Germany. 9Physik-Department 
E11, Technische Universität München, Garching, Germany. 10Applied Physics Department, Stanford University, Stanford, CA, USA. 11Argonne National 
Laboratory, Lemont, IL, USA. 12These authors contributed equally: Joseph Duris, Siqi Li. *e-mail: jcryan@slac.stanford.edu; marinelli@slac.stanford.edu

The natural timescale of electron motion in molecular systems 
is determined by the binding energy, Ip, typically between 8 
and 12 eV. Quantum mechanics tells us that this relation-

ship is given by τ ¼ _=Ip
I

, where _
I

 is the reduced Planck constant. 
Therefore, the relevant timescale for electron motion in molecular 
systems is on the order of a few hundred attoseconds (1 as = 10–18 s).  
Isolated light pulses approaching this extreme timescale were first 
demonstrated in 20011. These early demonstrations employed a 
process called high-harmonic generation (HHG), where a strong, 
infrared laser field was used to coherently drive electrons in an 
atomic or molecular gas, leading to high-order harmonic upcon-
version of the driving laser field2. The extension of time-resolved 
spectroscopy into the attosecond domain has greatly advanced 
our understanding of electron dynamics in atoms, molecules and 
condensed-matter systems3–5. This attosecond revolution has 
been almost exclusively driven by HHG-based sources1,6–17, which  
have been recently extended to reach soft X-ray wavelengths (above 
280 eV) and produce the shortest pulses ever recorded18–21. Extending 
attosecond pulse sources into the soft X-ray domain is particularly 
important because soft X-rays can access core-level electrons whose 
absorption properties are sensitive probes of transient electronic 
structure22–24. Despite these recent achievements in soft X-ray HHG, 
the wavelength scaling of the HHG process leads to a rapid decrease 
in conversion efficiency with increasing X-ray photon energy25. 
This presents a real challenge for the progress of attosecond  

science. For example, the current paradigm based on long-wave-
length high-power lasers is limiting our exploration of coherent 
electronic phenomena in complex systems because of the non-
perturbative nature of strong-field interactions. This could be cir-
cumvented with soft X-ray attosecond pump/attosecond probe 
techniques26,27 that require intense X-ray pulses.

In parallel with the development of HHG, the last two decades 
have seen the rise of X-ray free-electron lasers (XFELs), such as the 
Linac Coherent Light Source (LCLS), as the brightest sources of 
X-ray radiation28–34. The working principle of an XFEL is based on 
the interaction of a relativistic electron beam with an X-ray electric 
field in a long periodic array of magnetic dipoles called an undula-
tor35–37. The radiation–electron interaction causes the electron beam 
to reorganize itself in a sequence of microbunches shorter than the 
radiation wavelength, which results in the coherent emission of 
X-ray radiation with a peak power many orders of magnitude larger 
than the spontaneous level36,37. Compared with laser-based HHG 
sources, XFELs have a large extraction efficiency at X-ray wave-
lengths—typically of order of 0.1% or larger. With a typical electron 
beam peak power in the tens of terawatts range, the resulting X-ray 
pulses have tens of gigawatts of peak power, several orders of mag-
nitude larger than table-top X-ray sources. Furthermore, the pho-
ton energy of XFEL sources is easily tunable via small configuration 
changes of the accelerator or the undulator. The shortest pulse 
achievable with an XFEL is limited by the available amplification  
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bandwidth, which is of similar magnitude to their extraction effi-
ciency ~0.1%35,38. For example, the X-ray bandwidth of the LCLS 
can support pulses shorter than 1 fs for hard X-ray energies39,40. 
However, the shortest possible pulse duration increases to 1–2 fs 
for photon energies below 1 keV (refs. 41,42), where the relevant core-
level absorption edges for light elements are found: carbon (280 eV), 
nitrogen (410 eV) and oxygen (540 eV). Here we report the gen-
eration and time-resolved measurement of hundred-gigawatt-scale 
isolated attosecond soft X-ray pulses with an XFEL. The bandwidth 
limitation of the XFEL was overcome by compressing the electron 
beam through the resonant interaction of the electrons with a high-
power infrared pulse generated by the beam itself.

Figure 1a shows a schematic representation of our experimental 
set-up, named X-ray laser-enhanced attosecond pulse generation 
(XLEAP). The energy distribution of the electron beam is modu-
lated by the resonant interaction with a high-power infrared laser 
pulse in a long-period undulator (or wiggler). This modulation 
is converted into one or more high-current (∼10 kA) spikes by a 
magnetic chicane. The spikes are subsequently used in the undu-
lator to generate short X-ray pulses, a method termed enhanced 
self-amplified spontaneous emission (ESASE)43. This bunch  

compression method effectively broadens the XFEL bandwidth and 
allows the generation of sub-femtosecond pulses in the soft X-ray 
spectral region. In our experiment, rather than using an external 
infrared laser as originally proposed by Zholents43, we employ the 
coherent infrared radiation emitted by the tail of the electron beam 
in the wiggler to modulate the core of the electron beam44. This 
method results in a phase-stable, quasi-single-cycle modulation, 
and naturally produces a single high-current spike that can generate 
an isolated attosecond pulse. Figure 1b–e shows the measured initial 
current profile and the evolution of the phase space of the core of 
the electron bunch during the three stages of ESASE compression.

After separating the broad bandwidth X-ray pulses from the 
spent electron bunch, the X-ray pulses are focused and temporally 
overlapped with a circularly polarized, 1.3 μm, infrared laser field in 
a velocity map imaging spectrometer45. Photoelectrons ionized by 
the X-ray pulse receive a ‘kick’ proportional to the vector potential 
of the infrared laser pulse at the time of ionization46. Through the 
interaction of the ionized electron with the dressing infrared laser 
field, the temporal properties of the X-ray pulse are mapped onto 
the final momentum distribution of the emitted photoelectrons47–49. 
This technique was originally called the ‘attosecond streak camera’, 
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Fig. 1 | Diagram of the XLEAP operation. a, Schematic representation of the experiment. The electron beam travels through a long-period (35 cm) wiggler 
and develops a single-cycle energy modulation. The energy modulation is turned into a density spike by a magnetic chicane and sent to the LCLS undulator 
to generate sub-femtosecond X-ray pulses. After the undulator, the relativistic electrons are separated from the X-rays and sent to a transverse cavity 
(labelled XTCAV) used for longitudinal measurements of the beam. The X-rays are overlapped with a circularly polarized infrared laser and interact with 
a gas jet to generate photoelectrons. The ejected photoelectrons are streaked by the laser and detected with a velocity map imaging (VMI) spectrometer. 
The momentum distribution of the electrons is used to reconstruct the pulse profile in the time domain. b–e, The measurements of the ESASE modulation 
process. b, The measured current profile of the electron bunch generated by the accelerator. The tail of the bunch has a high-current horn that generates a 
high-power infrared pulse, represented by the red squiggle, which is used for the ESASE compression. c–e, The longitudinal phase space of the core of the 
electron bunch in three different conditions: with no wiggler and no chicane we measure the electron distribution generated by the accelerator (c); after 
inserting the wiggler we observe a single-cycle energy modulation generated by the interaction between electrons and radiation (d); after turning on the 
chicane the modulation is turned into a high-current spike at t = –5 fs (e).
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and is routinely used to measure the temporal profile of isolated 
attosecond pulses from HHG sources50. In contrast to measure-
ments done with HHG sources, in this work we are able to diagnose 
the single-shot pulse profile, rather than an average pulse shape. 
Moreover, the shot-to-shot fluctuations (or jitter) in the relative 
arrival time between the X-ray and optical field present at an XFEL 
facility51 makes single-shot measurements necessary. This measure-
ment scheme was originally demonstrated with X-rays at the LCLS 
by Hartmann et  al., who recovered the ‘time–energy structure’ of 
self-amplified spontaneous emission (SASE) pulses produced by the 
LCLS42. We have adapted this technique to measure the sub-femto-
second structure of the X-ray pulses produced by XLEAP.

Results
Figure 2a shows a single-shot measurement of the ‘streaked’ photo-
electron momentum distribution, which we use to reconstruct the 
full temporal profile of the X-ray pulse49. The raw data are filtered 

and downsampled (Fig. 2b) before being fed into the reconstruction 
algorithm, which returns a pulse profile and corresponding photo-
electron distribution (Fig. 2c). The robustness of this algorithm has 
been tested at length in ref. 49, and is detailed in the Supplementary 
Information. Figure 2 also shows representative temporal profiles 
retrieved from the reconstruction at photon energies of 905 eV  
(Fig. 2d) and 570 eV (Fig. 2e). Figures 2f and g show the distri-
bution of pulse widths (full-width at half-maximum (FWHM) of 
the intensity profile) retrieved from two large datasets at these pho-
ton energies. The data show that the XLEAP set-up generates sub-
femtosecond X-ray pulses, and we find a median duration of 280 as 
FWHM (480 as) at 905 eV (570 eV). The pulse duration fluctuates 
on a shot-to-shot basis and half of the single-shot measurements fall 
within a 110 as (170 as) window at 905 eV (570 eV). This amount 
of fluctuation is consistent with numerical simulations of ESASE 
XFEL operation (see for example ref. 52). The estimated uncertainty 
on the single-shot pulse duration is between 10% and 30% of the 
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measured duration depending on the pulse energy and the ampli-
tude of the streaking laser field (a discussion on the experimental 
uncertainty of the measurement can be found in the Supplementary 
Information). The median pulse energy is 10 μJ at 905 eV and 25 
μJ at 570 eV. However, due to the intrinsic fluctuations of SASE 
XFELs38 we observe pulses well above the mean value (up to 250 
μJ for 570 eV, corresponding to a peak power in the hundreds of 
gigawatts). We note that for the 570 eV dataset we were only able 
to obtain converging reconstructions for pulse energies higher than 
130 μJ, corresponding to the top 8%, due to a different gas density 
setting and lower count rates. However, since the data at both ener-
gies do not show a significant correlation between pulse energy and 
duration (Fig. 2h,i) we believe that the average pulse duration from 
this sample is representative of the entire dataset.

In a separate set of experiments, we measured single-shot X-ray 
spectra with a grating spectrometer. Figure 3 shows a range of sin-
gle-shot X-ray spectra recorded for 650 eV and 905 eV photon ener-
gies, and the distribution of the measured bandwidth (FWHM). 

The median FWHM bandwidth is 7.5 eV and 5 eV for the 905 eV 
and 650 eV datasets respectively. The statistical distribution of pulse 
energies in Fig. 3e shows a better relative stability than in Fig. 3f 
largely due to more stable electron beam conditions. The Fourier 
transform limited (FTL) duration for a bandwidth of 7.5 eV (5 eV) 
is 240 as (365 as). The average pulse duration recovered from our 
reconstruction at similar energies is within a factor of two of the 
FTL value. This discrepancy is due to the beam energy chirp intro-
duced by longitudinal space-charge forces within the high-current 
ESASE spike53 and the corresponding undulator taper required  
for sustained resonant interaction between X-rays and electrons 
(see Supplementary Information). From the undulator taper, we 
infer a residual chirp in the emitted X-rays of roughly +12 eV fs–1 
(+5 eV fs–1) for the 920 eV (605 eV) data. The positive sign indi-
cates that the higher-energy photons arrive first. This is consistent 
with the measured time–bandwidth product. Ripples in the spectral 
intensity are visible in the 650 eV spectra and are due to interfer-
ence with satellite pulses. The pulse energies of these side pulses can 
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be inferred from the single-shot spectra and are typically less than 
0.3% of the main pulse for 650 eV and negligible for 905 eV.

Considerations for pump–probe spectroscopy
To put the results of our work in context, we detail the development 
of isolated attosecond pulse sources in Fig. 4, where we compare the 
measured pulse energy from existing attosecond light sources with 
the requisite flux to saturate the ionization of 1s electrons in vari-
ous atomic systems. The saturation level serves as a coarse approxi-
mation to the energy required for a pump–probe experiment, and 
sources within two orders of magnitude of saturation are likely to 
be useful for pump–probe studies. The pulse energy produced by 
HHG sources decays very rapidly with the photon energy and is 
several orders of magnitude below the threshold for nonlinear 
interaction in the soft X-ray range (E > 280 eV). Conversely, our 
method can produce isolated attosecond pulses with tens of micro-
joules of pulse energy, increasing the available pulse energy at soft 
X-ray wavelengths by six orders of magnitude, and reaching intensi-
ties sufficient for attosecond pump–attosecond probe experiments. 
Note that Fig. 4 reports the pulse energy measured for the experi-
ments shown in Figs. 2 and 3, as well as other experiments using the 
XLEAP set-up at different photon energies. The highest observed 
median pulse energy is ∼50 μJ.

In addition to high single-pulse photon flux, the application of 
this technique to attosecond pump–attosecond probe experiments 
requires the generation of pairs of synchronized pulses. Ideally, 

these pulses could have different photon energies, allowing for 
excitation at one atomic site in a molecular system to be probed at 
another54. To this end, ESASE can be easily adapted to generate pairs 
of pulses of different colours using the split undulator method55.  
In this scheme, the LCLS undulator is divided into two parts sepa-
rated by a magnetic chicane, as shown in Fig. 5a. The ESASE current 
spike is used to generate two X-ray pulses of different energies in 
the two undulators. The magnetic chicane delays the electrons with 
respect to the X-rays, thus introducing a controllable delay between 
the first and second X-ray pulses.

Figure 5 shows the results of such a double-pulse ESASE experi-
ment at the LCLS. Two pulses with an average pulse energy of 6 μJ 
each and an energy separation of 15 eV were generated (Fig. 5b). The 
timing jitter between the two pulses was not measured, but numeri-
cal simulations indicate that it is shorter than the individual pulse 
duration (see for example ref. 52). We note that the energy separation 
range in our experiment is limited by the tuning range of the LCLS 
undulator (roughly 3% of the photon energy55), but this scheme could 
be used with variable-gap undulators and allow fully independent 
tuning of the two colours. This will be possible with the upcoming 
LCLS-II upgrade, enabling continuous tuning between 250 eV and 
1,200 eV (ref. 56). The temporal separation can be varied from a mini-
mum of 2 fs up to a maximum of roughly 50 fs. Smaller delays could 
be accessed with a gain-modulation scheme57. Improved two-colour 
operation with higher peak power and delay control through overlap 
will be achieved with the planned upgrade of the XLEAP set-up52.
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Using the split-undulator scheme shown in Fig. 5a, one can also 
generate two pulses of the same photon energy and with mutual 
phase stability. Unlike the case of two different colours, where the 
two pulses are seeded by noise at different frequencies and are 
uncorrelated, in this case the beam microbunching that generates 
the first pulse is re-used to generate a second pulse, and the two are 
phase-locked. Figure 5c–f shows the measured spectra under these 
conditions. The spectra exhibit stable and repeatable fringes, which 
implies that the phase between the two pulses is stable to better than 
the X-ray wavelength. From the variation in the spectral fringes we 
can infer a phase jitter of 0.77 rad, or 0.5 as between the pulses. In 
this case the delay can be varied from 0 fs to roughly 5 fs, beyond this 
value, the delay chicane will destroy the X-ray microbunching and 
hence the phase stability of the pulses. This level of interferometric 
stability could also be achieved for two different colours by exploit-
ing harmonic microbunching generated in the first undulator37, and 
tuning the second undulator to a harmonic of the first pulse.

Summary and conclusions
We have demonstrated a source of tunable sub-femtosecond X-ray 
pulses with unprecedented peak power using an XFEL. The pulses 
were generated by an electron bunch modulated by interaction with 
a high-power infrared light pulse and compressed in a small mag-
netic chicane. To diagnose the temporal structure of these pulses 
we used an attosecond streak camera and measured a median pulse 
duration of 280 as (480 as) at 905 eV (570 eV). With an eye towards 
pump–probe experiments, pairs of sub-femtosecond pulses were 
demonstrated using a split-undulator technique, showing control of 
the delay and energy separation. We have also shown that for short 
delays, two pulses of the same colour can be controlled with inter-
ferometric stability, a result that could be extended to two-colour 
operation by exploiting harmonic microbunching.

These pulses have photon flux millions of times greater than 
what can be achieved with any existing attosecond soft X-ray source. 
Such a marked increase in pulse energy will enable a suite of non-
linear X-ray spectroscopies, such as attosecond pump–attosecond 
probe experiments26,58 and four-wave mixing protocols54, that would 
be impossible with any other existing technology. Moreover, the 
achieved photon flux will enable single-shot X-ray imaging at the 
attosecond timescale. Since the scheme developed in this work is 
based solely on a passive modulator, our technique is easily scalable 
to MHz repetition rates, which are envisioned for the next genera-
tion of XFELs34,56. Whilst HHG-based sources have driven the atto-
second revolution over the past two decades, MHz-repetition-rate 
XFELs, combined with the results presented here, pave the way for 
a new era of attosecond science.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
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Methods
XFEL set-up. The XFEL at the LCLS is composed of a high-brightness linear 
accelerator (linac) and a magnetic undulator. The XLEAP beamline is composed 
of a long-period wiggler and a magnetic chicane before the undulator section. 
The accelerator and undulator/wiggler parameters used in this experiment are 
summarized in the Supplementary Information. X-rays generated in the undulators 
are focused with a pair of Kirkpatrick–Baez mirrors to a spot size of ∼55 μm 
diameter (FWHM). More information on the XFEL parameters is given in the 
Supplementary Information.

Streaking laser set-up. The streaking laser pulse is derived from a 120 Hz 
titanium-doped sapphire laser system synchronized to the accelerator. 10 mJ, 
800 nm laser pulses are compressed to ∼40 fs, and the compressed pulse is 
used to pump an optical parametric amplifier (TOPAS-HE, Light Conversion) 
that produces 500 μJ pulses at a wavelength of 1,300 nm. The 1,300 nm pulse is 
spectrally filtered to remove any residual pump light or any other colours made by 
the optical parametric amplifier. A quarter-wave plate (Thorlabs AQWP05M-1600) 
is used to produce circularly polarized laser pulses, which are then focused with 
a 750 mm focal length CaF2 lens. A dichroic mirror (R1300/T400-550) is used 
to steer the beam into a vacuum chamber. The streaking laser field is combined 
with the XFEL beam using a silver mirror with a 2-mm-diameter drilled hole, and 
both pulses come to a common focus in the interaction region of a coaxial velocity 
map imaging apparatus45. The laser is focused to a diameter of ∼110 μm. More 
information on the laser configuration along with additional figures showing the 
experimental geometry are available in the Supplementary Information.

Photoelectron spectrometer. Our experiment was performed at the Atomic, 
Molecular, and Optical physics (AMO) beamline of the LCLS. Photoelectrons 
produced by two-colour ionization are collected in our coaxial velocity map 
imaging apparatus45. Photoelectrons are extracted in the direction opposite to 
the laser propagation direction, as shown in the Supplementary Information. 
Extracted electrons are detected with a microchannel plate detector coupled 
to a P43 phosphor screen. The phosphor screen is imaged onto a high-speed 
charge-coupled device (CCD) camera (Opal1k) via the 2 mm holey mirror that 
couples the streaking laser into the chamber, and through the dichroic mirror. 
The CCD camera records images of the phosphor screen at the repetition rate of 
the accelerator, 120 Hz. A target gas is introduced via a molecular beam source, 
which crosses with the XFEL and streaking laser beams in the interaction region. 
For the two X-ray photon energies considered in the main text, we use neon 
as the target for the 905 eV pulses and CO2 as the target for the 570 eV pulses. 
More information on the experimental set-up and analysis of the measured 
photoelectron momentum distribution is given in the Supplementary Information.

Data availability
A subset of the raw data used to produce Figs. 2–5 is publicly available at figshare 
(https://figshare.com/projects/Tunable_Isolated_Attosecond_X-ray_Pulses_with_
Gigawatt_Peak_Power_from_a_Free-Electron_Laser/65741). This repository also 
contains a copy of the analysis script used to invert the photoelectron momentum 
distributions. All other data that support the plots within this paper and  
other findings of this study are available from the corresponding authors on 
reasonable request.
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