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The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-
state physics, such as electrical resistivity in metals [1], carrier mobility, optical transition and
polaron effects in semiconductors [2, 3], lifetime of hot carriers [4–6], transition temperature in BCS
superconductors [7], and even spin relaxation in diamond nitrogen-vacancy centers for quantum
information processing [8–10]. However, due to the weak EPI strength, most phenomena have
focused on electronic properties rather than on phonon properties. One prominent exception is the
Kohn anomaly, where phonon softening can emerge when the phonon wavevector nests the Fermi
surface of metals [11]. Here we report the discovery of a new class of Kohn anomaly in a topological
Weyl semimetal (WSM), predicted by field-theoretical calculations, and experimentally observed
through inelastic scattering on the WSM tantalum phosphide (TaP). Compared to the conventional
Kohn anomaly, the Fermi surface in a WSM is degenerated into multiple topological singularities
of Weyl nodes, leading to a distinct nesting condition with chiral selection, a power-law divergence,
and a non-negligible dynamical effect. Our work brings the concept of Kohn anomaly into WSMs
and sheds light on elucidating the EPI mechanism in emergent topological materials.

In 1959, Walter Kohn proposed the anomalous phonon
dispersion behavior in a metal, which arises when elec-
trons lose their dielectric screening [11]. This anomaly,
known as a Kohn anomaly, directly images the Fermi sur-
face on the phonon dispersion, and overturned the long
belief that the weak EPI can only lead to negligible ef-
fects on phonon properties. Intuitively, a Kohn anomaly
occurs when electronic states k1 and k2 near the Fermi
surface are parallelly nested by a phonon with wavevec-
tor q ≡ k2−k1. This is a stringent condition only met by
a single q ≡ |q| value at q ≈ 2kF , where kF is the Fermi
wavevector. Extensive research has delved into the role
of Kohn anomalies in conventional [12] and unconven-
tional superconductors [13, 14], carbon materials such as
carbon nanotubes [15], graphene [16–18], and graphite
[19], as well as other low-dimension systems such as 1D
conductors [20] and topological insulators [21].

The recent development of WSMs [22–25] offers a new
platform to realize exotic phonon properties, such as the
phonon Hall effect [26], chiral magnetic effect [27] and
chiral anomaly in phonon spectra [28]. As such, WSMs
could serve as an intriguing platform to study Kohn
anomalies due to the presence of topologically protected

Weyl nodes and 3D linear-dispersive Weyl fermions.

In this work, we theoretically predicted and exper-
imentally observed a new type of Kohn anomaly in
WSM, which exhibits a few novel features. First, since
the simply-connected Fermi surface in a conventional
Fermi liquid evolves into disconnected topological sin-
gularities of chiral Weyl nodes, the condition to achieve
Kohn anomaly becomes largely relaxed: since EPI does
not change chirality, for two Weyl nodes sharing the
same chirality located at kW1 and kW2, a phonon with
q ≈ kW2 − kW1 can directly lead to the anomaly.
In particular, for our chosen material of type-I WSM
TaP, which contains two sets of inequivalent Weyl nodes
{kW1} and {kW2}, there is a subset of nodes satisfy-
ing kW2 − kW1 ∈ {kW2} [24]. As a result, phonon q
values can be chosen directly at Weyl nodes. Second,
instead of a logarithmic divergence as in a Fermi liquid
or a weak power-law divergence as in graphene [29], the
Kohn anomaly in a WSM shows a stronger power-law di-
vergence. This counterintuitive result originates from the
3D dispersion. Third, in WSM, the Debye frequency ωD
can be higher than the Fermi level EF , indicating a non-
negligible dynamical effect, since the frequency depen-
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dence of the dielectric function occurs on the scale of ωD.
Such a dynamical effect leads to softening within a finite
regime in the Brillouin zone instead of at an individual
q point. This contrasts with the conventional Fermi liq-
uid, where static screening suffices since ωD � EF . Our
work represents the first reported observation of Kohn
anomaly in a topological nodal semimetal, and offers a
new tool for probing the EPI characteristics in a broader
category of topological materials.

FIELD-THEORETICAL TOPOLOGICAL
DYNAMICAL SCREENING

The dielectric screening from inter-node scattering via
a phonon q = kW2 − kW1 is computed for 3D linear dis-
persive Weyl fermions using E(k) = ±vF |k− kWj | − µj ,
where vF is the Fermi velocity and j = 1, 2 denotes differ-
ent Weyl nodes at chemical potential µj . The polariza-
tion operator Π(ν, q) from the inter-Weyl-node scattering
can be written as (Supplementary A):

Π(ν, q) ≈ − (vF q′)
2

24π2

(
ln
∣∣∣ 4(vFΛ)2

(vF q′)
2−ν′2

∣∣∣+ (vF q
′)2−ν′2

10Λ2 − 1
3

)
(1)

where q′ = |q + kW1 − kW2|, ν′ = ν − µ1 + µ2 and
Λ is a momentum cutoff. Since the dynamical di-
electric function εr(ν, q) can be written as εr(ν, q) =
1 − 4πe2Π(ν, q)/(κq2), we see immediately that Kohn
anomaly with a strong power-law divergence can occur
when vF q

′ → ±ν′, where the momentum derivative of
dielectric function diverges:

∂εr
∂q
∝ (vF q

′)
3

(vF q′)
2 − (ν′)2

(2)

The divergence condition for Kohn anomaly implies
that the momentum mismatch δq ≡ q − (kW2 − kW1)
can be compensated by a finite dynamical effect ν′. Con-
sequentially, a patch of q values in momentum space
with small momentum mismatch can still experience a
Kohn anomaly. In fact, the simple divergence condi-
tion vF q

′ = ±ν′ will persist even with finite doping.
The density plots of the real and imaginary parts of
−Π(ν, q) at finite doping and temperature are shown in
Figures 1a and 1b (additional temperatures in Figures
S1-S2). The divergence appears as a sharp peak along the
line vF q′ = ν′, and is further visualized along constant-
frequency ν′0/µ = 1 and constant-wavevector q′0/kF = 1
cuts in Figures 1c and 1d, respectively in reduced di-
mensionless unit, where µ ≡

√
µ2

1 + µ2
2, and kF ≡ µ/vF .

Figure 1e is a plot of −Re[Π(ν, q)] in δqx–δqy space in-
tegrated from 0 to ν′, which is proportional to the mag-
nitude of phonon softening and reveals a negative contri-
bution emanating from the zero-mismatch condition as
a result of the divergence at vF q′ = ±ν′. The diver-
gence is alleviated here by a small numerical imaginary
part mimicking the considerations of additional scatter-
ing terms. Line cuts in δqx–δqy space shown in Figure

1f reveals a broad dip in −Re[Π(ν, q)] that does not nec-
essarily occur at the zero-mismatch condition, thereby
demonstrating the existence of a non-negligible dynami-
cal effect. It is worthwhile mentioning that although the
polarization in Figure 1c and 1d shows a sharp diver-
gence, the distinct condition to fulfill Kohn anomaly in
a patch of q values eventually leads to a broad "bowl-
shaped" softening in the Brillouin zone, which qualita-
tively agree well with the experiments without knowing
the EPI coupling constants. The EPI, embodied through
an expression for Π(ν, q) characteristic of WSMs, results
in an distinct renormalization of the bare ionic phonon
frequencies within a range of q-space conducive to a dif-
ferent nature of Kohn anomaly.

PHONON DISPERSION

TaP crystallizes in the body-centered tetragonal space
group I41md (109) (Figure 2a) and hosts two sets of in-
equivalent Weyl nodes, denoted W1 and W2 (Figure 2b).
We first present the phonon dispersion measurements of
a TaP crystal (Supplementary B and Figure S3) along
a high-symmetry loop Γ-Σ-Σ1-Z-Γ (Figure 2c with data
in Figure S4) using inelastic X-ray scattering (IXS). We
focused on the low-energy phonons (<25 meV), which
include the Ta optical phonons but not those associ-
ated with motion of P atoms. The phonon energies are
extracted using damped harmonic oscillator models to
convolute with the instrument resolution functions, and
then fitting the measured spectra (details in the meth-
ods). Figures 2d-2e present two representative sets of
measurements along high-symmetry lines Γ-Σ and Γ-Z,
respectively (other directions in Figure S5), where ex-
cellent fitting quality is achieved. The resulting phonon
dispersion is shown in Figure 2f (and Figure S6 for lower
temperatures), along which the intensity of fitting the in-
trinsic scattering after deconvolution is plotted as a color
map. Grey lines designate ab initio phonon dispersion
calculations for which the procedure is detailed in the
methods. Further data was collected using inelastic neu-
tron scattering (INS), which upholds the dispersion from
IXS (Figure S7). The excellent agreement between ex-
periments and ab initio calculations indicate a level of
reliability of computational phonon spectra, which serves
as a basis to compare phonon dispersions away from high-
symmetry lines.

OBSERVATION OF TOPOLOGICAL CHIRAL
KOHN ANOMALY

We present experimental signatures highlighting the
presence of a Kohn anomaly at the W2 Weyl node. In
our TaP sample, the W1 Weyl nodes are well below EF
(∼ −60meV), while W2 nodes are a few meV above
EF (Figure 3a). As a result, W1 represents a much
larger carrier pocket than W2. We carried out IXS mea-
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surements at q values near a W2 Weyl node located at
kW2′ = (0.271, 0.024, 0.578) (Figure S8). Even without
fitting, the phonon softening at the Weyl node can be
seen clearly from the original data in Figure 3b. The
fitted phonon dispersion relation of the highest acous-
tic and the lowest optical phonons along kx and ky di-
rections within the plane containing kW2′ are shown in
Figures 3c-3f. Strong phonon softening is observed at
both T = 18K and T = 300K, and in both kx and
ky directions. These results are in sharp contrast with
ab initio calculations, which do not show the phonon
softening, but rather flatband or monotonic dispersion
shown as solid lines. The consistent softening behavior
at multiple q points, the large magnitude (> 2meV), and
the absence of softening in ab initio calculations without
EPI consideration, overall strongly suggest an EPI na-
ture of the phonon softening. Additionally, the phonon
softening takes place at all measured temperatures, in-
dicating possible topological robustness. Such softening
can be understood as a Kohn anomaly from inter-Weyl
node scattering. In fact, it is possible to nest a W1 elec-
tronic state at kW1 = (−0.518,−0.014, 0) with another
W2 state kW2 = (−0.271, 0.024, 0.578), both with "+"
chirality, via a phonon q = kW2 − kW1 ≈ kW2′ , with a
mismatch |q−kW2′ |/|kW2′ | ∼ 4%. Details relating to dif-
ferent nesting combinations are listed in Supplementary
C. The schematics of this nesting condition are shown in
Figures 3g-3h. As mentioned previously, the dynamical
effect significantly reduces the mismatch and further en-
ables the Kohn anomaly to manifest at q ' kW2′ . In
particular, the dynamical correlation almost exactly re-
produces the strong phonon softening feature at Weyl
node kW2′ : with vF ∼ 1.5× 105m/s in TaP and the mo-
mentum mismatch being vF δq ∼ 50meV, ν′ ∼ 60meV
largely compensates for the mismatch, thereby facilitat-
ing the satisfaction of the divergence condition and agree-
ing with the observation in Figures 3c-3f.

PHONON CHARACTERISTICS AT
ADDITIONAL POINTS

The IXS measurements carried out near a W1 Weyl
node (Figures 4a and S9) present a contrasting re-
sult. When phonon q is near a W1 node kW1′ =
(0.518, 0.014, 0), there is no clear indication of phonon
softening at all measured temperatures, where measured
phonon dispersions agree very well with ab initio calcula-
tions in Figures 4b-4e). This is largely due to a lack of a
scattering channel that can simultaneously conserve mo-
mentum and chirality. For momentum-conserved scatter-
ing, although phonon nesting condition can still roughly

be met by considering scattering from kW2 to kW2′ ,
where q = kW2′ − kW2 = (0.542, 0, 0) ≈ kW1′ (mis-
match |q− kW1′ |/|kW1′ | ∼ 5%) (Figure 4f), the W2 and
W2′ nodes have opposite chirality ("+" and "−", respec-
tively), prohibiting the EPI to occur. On the other hand,
for a chirality-conserved scattering q = kW2′ − kW2,
where kW2 = (−0.271,−0.024, 0.578) gives the W2 node
paired with W2′ and has "−" chirality, the ∼ 8% momen-
tum mismatch is simply too large to compensate even
with dynamical effect considered. Moreover, the low car-
rier concentration of the hole pockets at W2 nodes fur-
ther decreases the overall EPI contribution. As such, the
magnitude of the Kohn anomaly at W1 should be im-
perceptible relative to the results at W2. This analysis
corroborates the IXS data.

In addition to the two types of Weyl nodes, one may ex-
pect a Kohn anomaly to emerge at the Γ point. However,
the chirality-conserved scattering channel (say, W1 and
W1′) has large momentum mismatch away from the Γ-
point, while the momentum-conserved channel (say, W1′
and W1 with kW1 = (0.518,−0.014, 0) does not preserve
chirality as shown in Figures 4i-4j. A mixed behavior is
observed from Raman scattering measurements as shown
in Figures 4g-4h. A weak softening ∼ 1.2meV is observed
for the lower optical phonon at the Γ-point, but not for
the higher-energy optical phonon. As a result, the intra-
node scattering may still happen and requires further in-
vestigation.

To summarize, we theoretically formulated and exper-
imentally demonstrated the Kohn anomaly in a WSM,
which can lead to the anomalous broad-range phonon
softening behaviors arisen from the scattering between
the topological singularity of chiral Weyl nodes. Un-
like a conventional Fermi liquid, in TaP, with 8 W1
nodes and 16 W2 nodes, numerous q regimes in the
Brillouin zone can achieve Kohn anomalies. Moreover,
in contrast to the conventional Fermi liquid with only
static screening and logarithmic divergence dεr/dq ∝
ln(|q− 2kF |/4kF ), or graphene and 2D electron gas with
∂εr/∂q ∝ 1/

√
q2 − 4k2

F , we find a highly distinct di-
vergence condition at vF q

′ → ±ν′ with a leading term
∂εr/∂q ∝ (vF q

′)3/[(vF q
′)2 − ν′2], where dynamical ef-

fects play a critical role with explicit Weyl node lo-
cation dependence and chirality selection. The Kohn
anomaly identified in our work highlights a previously
overlooked instance of EPI in WSMs, and can offer a
ubiquitous tool to extract the EPI strength, as carried
out in graphite [30], to elucidate the interplay between
chiral Weyl fermions and phonons. Our discovery adds
to the rich array of exotic EPI effects realized in novel
topological materials.
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MATERIALS AND METHODS

Single crystal synthesis of tantalum phosphide.
Single crystals of tantalum phosphide (TaP) were
prepared using the chemical vapor transport method. 3g
of Ta (Beantown Chemical, 99.95%) and P (Beantown
Chemical, 99.999%) powders were weighed and mixed
together inside a glovebox. There were subsequently
flame-sealed inside a quartz tube and then heated to
70◦C to be dwelled for 20 hours before a pre-reaction.
Afterwards, the obtained TaP powder was sealed inside
another quartz tube with 0.4g of I2 (Sigma Aldrich, ≥
99.8%) and this tube was horizontally placed in a two-
zone furnace. To improve the crystal size and quality,
instead of setting a 100◦C temperature difference, we
gradually increased the temperature difference from zero
up until the point the I2 transport agent started to flow.
This process seems to be furnace- and distance-specific.
In our case, the optimal temperatures for the two zones
were 900◦C and 950◦C, respectively, and the distance
between the two heating zones is constantly optimized.
With the help of the transport agent I2, the TaP source
materials were transferred from the cold end of the tube
to the hot end and condensed into single-crystalline form
within 14 days. The single crystals are centimeter-sized
and have a metallic luster (Figure S3). The Fermi level
information of this sample is well-characterized in a
separate study [31].

Computational details. All ab initio calculations
are performed using the Vienna Ab Initio Package
(VASP) [32–34] with projector-augmented-wave (PAW)
pseudopotentials and Perdew-Burke-Ernzerhof (PBE)
for exchange-correlation energy functional [35]. The
geometry optimization of the conventional cell was
performed with a 6x6x2 Monkhorst-Pack grid of k-point
sampling. The second-order and third-order force
constants were calculated using a real space supercell
approach with a 3x3x1 supercell. The Phonopy package
was used to obtain the second-order force constants used
in the calculation [36].

Inelastic X-ray scattering experiments. Inelastic
X-ray scattering measurements were performed on the
high-energy resolution inelastic X-ray (HERIX) instru-
ment at sector 3-ID beamline of the Advanced Photon
Source, Argonne National Laboratory with incident
beam energy of 21.657keV (λ = 0.5725Å) and overall
energy resolution of 2.1meV [37–39]. The incident beam
focused on the sample using a toroidal and KB mirror
system. The full width at half maximum (FWHM) of
the beam size at sample position was 20x20µm2 (V×H).
The spectrometer was functioning in the horizontal
scattering geometry with a horizontally polarized ra-
diation. The scattered beam was analyzed by diced
and spherically curved silicon (18 6 0) analyzers work-
ing at backscattering angle. The measurements were
performed at temperatures of 18K, 60K, 100K and 300K.

Inelastic neutron scattering experiments. Inelastic
neutron scattering (INS) was performed at the HB1
polarized triple-axis spectrometer at the High-Flux
Isotope Reactor at the Oak Ridge National Laboratory.
We used a fixed Ef = 14.7meV with 48′−40′−40′−120′
collimation and Pyrolytic Graphite filters to elimi-
nate higher-harmonic neutrons. Measurements were
performed using closed-cycle refrigerators between
room temperature and the base temperature of 4K.
INS measurements were also performed at the BT-7
double focusing triple-axis spectrometer [40] at the
NIST Center for Neutron Research at the National
Institute of Standards and Technology. At this research
facility, we used the same fixed final energy with an
open−80′−80′−120′ collimation and Pyrolytic Graphite
filters. Measurements were performed at 10K.

Analysis of IXS and INS experimental data.
Statistical error is taken to be square root of the number
of counts from Poisson statistics. Repeated IXS scans
were performed for certain q points and subsequently
merged together to reduce statistical noise. Spectra
obtained from constant wavevector IXS scans (mea-
suring intensity of counts versus energy transfer) were
normalized by area and fitted using Lorentzian peaks
that were convoluted with a pseudo-Voigt function,
used to simulate the instrument resolution function,
measured before the experiment took place. The number
of Lorentzian peaks, corresponding to the number of
phonon modes, added to the fitting core was known
from ab initio phonon dispersion calculations within
the measured energy range. Each fitting peak has
parameters corresponding to center, full width at half
maximum (FWHM) and amplitude. The latter was fur-
thermore modulated during the fit to take into account
the longitudinal and transversal modes of propagation
with respect to the scan direction. In our case, due to
the inadequate energy resolution necessary for a precise
FWHM measurement, more care was taken into the fit
to extract accurate peak center locations, corresponding
to the energy of the phonon mode. Plots of the phonon
dispersion shown in Figures 2f and S6 are created by
plotting the fitting core after deconvolution with the
instrumental resolution function. The INS scans were
treated in an analogous manner by using the Data Anal-
ysis and Visualization Environment (dave) software
[41] and neutronpy based on the ResLib program
package. The resolution function was calculated with
knowledge of the monochromator and analyzer crystals,
the collimation as well as the sample configuration of
our experiment in neutronpy. The phonon modes were
modeled using Lorentzian functions as was done for IXS.
For the INS data, the intensity near the elastic peak was
difficult to resolve for phonon modes located near this
energy transfer due to poorer energy resolution and were
therefore neglected in favor of extracting phonon modes
with larger energy transfer with these INS data scans.
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Raman scattering. Raman spectra were measured
on a Horiba LabRam spectrometer under backscatter-
ing configuration with laser excitation of 364nm. The
laser power was set to 4.1mW and accumulation time of
30 seconds was used to ensure a sufficient signal to noise
ratio. The parallel-polarized analyzer was coupled to the
spectrometer with incident light linearly polarized along
the x-axis of the TaP crystal. A 50x long working dis-
tance objective was used to focus the laser beam and
collect the scattered beam. The measurement was done
at room temperature.
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Figure 1. Field-theoretical calculations of polarization operators arisen from inter-Weyl-node scattering. Density
plot of the a, real, and the b, imaginary part of the polarization function −Π(q′, ν′) at a finite temperature of 1K and with finite
doping where q′ = q+kW1−kW2 and ν′ = ν−µ1 +µ2 (derivation and plots at other temperatures given in the Supplementary
materials). c. Line profile of negative Re[Π(q′, ν′0 = µ)] and Im[Π(q′, ν′0 = µ)] at a constant frequency ν′0/µ = 1. d. Line profile
of negative Re[Π(q′0 = kF , ν

′)] and Im[Π(q′0 = kF , ν
′)] at a constant wavevector q′0/kF = 1, where divergence at vF q

′ = ν′

is maintained. e. Density plot of −Re[Π(qx − kWPx , qy − kWPy )] integrated over 0 ≤ ν ≤ ν′, which represents a realistic
experimental setup scanning along certain directions within the Brillouin zone near the Weyl node. Line cuts at different values
of qy −kWPy = n(ν′/µ)kF where the deviation n = 0, 0.25, 0.5, 0.75 and 1 are shown in f. There is a noticeable dip in −Re[Π]
for line cuts near qx ∼ kWPx and qy ∼ kWPy demonstrating the key role of dynamical effect when observing Kohn anomaly
near the Weyl node, yet even away from the Weyl nodes, softening can still exist.
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Figure 2. Phonon dispersion of TaP. a. Crystal structure of TaP with corresponding b, Brillouin zone and featuring the
locations and Berry curvature signs of paired Weyl nodes W1 (orange) and W2 (purple). c. Schematic of linear dispersive
Weyl fermions, where W1 is a large electron pocket while W2 is a small hole pocket alongside indication of high-symmetry loop
within the Brillouin zone. d. IXS data (scattered points), fitting curves (solid orange lines) and fitting core functions (dashed
purple lines) along Γ-Σ, and e, Γ-Z directions. f. Low-energy phonon dispersion of TaP at 300K along high-symmetry loop
Γ-Σ-Σ1-Z-Γ. Scattered dots represent extracted phonon modes from measurements. The grey lines denote ab initio calculations
of the phonon dispersion, and the color map represents resolution-deconvoluted core-function intensity of the spectra.
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Figure 3. Direct observation of Kohn anomaly at W2 Weyl node. a. Location of the W2 Weyl node in energy and
momentum space. b. Phonon spectra near W2 Weyl node along ky direction in momentum space, with central thicker line
denoting the location of W2′. Strong phonon softening at W2 Weyl node is observed. Error bars represent one standard
deviation. Dispersion of two representative phonon modes near W2 at c, 18K and d, 300K along kx direction, as well as e and
f, along ky direction. Solid lines correspond to ab initio calculations, where their discrepancy with experimental data highlights
the strong softening when approaching the W2 node. The interval between measured points is 0.05. g. Schematic, seen from
(001) plane, of the connection of electronic states at topological nodes kW1 and kW2 by a phonon q = kW2 − kW1 ≈ kW2′ . h.
Similar to g but from a general view angle in reciprocal space.
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Figure 4. Phonon characteristics at W1 Weyl node and Γ-point. a. Location of the W1 Weyl node in energy and
momentum space. Dispersions of two representative phonon modes obtained from IXS data near W1 at b, 18K and c, 300K
along kx direction as well as d and e, along ky direction. Experimental phonon dispersion agrees excellently with ab initio
calculations (solid lines). f. Schematic of the connection of two equivalent electronic states at kW2 and kW2′ by the phonon
q = kW2′ − kW2 ≈ kW1′ , the W1 node near which IXS measurements were performed. g. Schematic seen from (001) plane of
the connection between two equivalent electronic states at kW1′ and kW1 by the phonon momentum q = kW1′ − kW1 ≈ Γ. h.
Raman peak shifts of TaP collected at room temperature at laser excitation 364nm. i. Comparison between Raman-measured
phonon modes at Γ point and ab initio calculations, which is the same dispersion seen in Figure 1f. j. Close-up of the two W1
nodes near the zone boundary that connect as a small q ≈ Γ vector.
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SUPPLEMENTARY MATERIALS FOR TOPOLOGICAL SINGULARITY-INDUCED KOHN ANOMALY
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Appendix A: Derivation of polarization and dielectric functions for Weyl semimetals

1. Introduction

In the study of graphene, the dynamical polarization function Π(ν,q) is one of the fundamental quantities required
to understand physical properties of the system such as screening due to a charged impurity and the existence of
collective excitations such as plasmons. Prior to its investigation in a Weyl semimetal, Π(ν,q) had been extensively
studied for graphene. In this section of the paper, we examine in greater detail the dynamical polarization function
for a Weyl semimetal which has the possibility of exhibiting topological Fermi arcs on the surface and as well as
phenomena such as the chiral magnetic effect in the bulk.

To derive the polarization function Π(ν,q), we will consider a simple continuous model which can be used to describe
Weyl semimetals and nodal-line semimetals. Expanding around the Γ point, we consider a Hamiltonian in momentum
space with tilted Dirac cones as the following

H(k,d) = ~vF (k · σ + pd · kI2)− µI2 (S1)

where k = (kx, ky, kz) is the momentum and σ = (σx, σy, σz) are the Pauli matrices. In addition, vF represents the
Fermi velocity, d is a unit vector, p is a dimensionless parameter which will be referred to as the tilting parameter,
and µ represents the chemical potential. The Hamiltonian above has the following eigenvalues

E± = ~vF (pd · k± |k|)− µ (S2)

Near the band crossing at the Weyl point, the low-energy bands can be linearized in the variation k′ = k−kWi of the
k vector with respect to the position kWi of the Weyl node Wi which in our case, i ∈ {1, 2}. Note that the subscript
i does not necessarily refer to the subset of inequivalent Weyl nodes as it does in the main text. As such, we can write
the Hamiltonian as follows

H(k′,d) = ~vF (k′ · σ + pd · k′I2)− µI2 (S3)

with eigenvalues

E± = ~vF (pd · k′ ± |k′|)− µ (S4)

The propagator is given by

G(iωn,k
′,d) =

1

(iωn + µ− ~vF pd · k′)I2 − ~νFk′ · σ
=

(iωn + µ− ~vF pd · k′)I2 + k′ · σ
(iωn + µ− ~vF pd · k′)2 − (~vFk′)2

(S5)

For convenience, we set the constants ~ = vF = 1 during the subsequent intermediate calculations. The relation
between plasmons and the polarization function is provided by another important quantity that emerges in solid state
physics, the dielectric function ε(ν,q), which is given by the relation

εR(ν,q) = 1− V0(q)ΠR(ν,q) (S6)

where ΠR(ν,q) is the retarded polarization function and V0(q) = 4πe2/κ|q|2 is the bare Coulomb potential with
dielectric constant κ. For simplicity, we will omit the superscript R used for retarded quantities, i.e., we write for the
retarded dielectric function εR(ν,q) = ε(ν,q). This notation will also be used for other retarded quantities.
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If we consider the inter-Weyl node scattering from the neighborhood of kW1 with the chemical potential µ1 to the
neighborhood of kW2 with the chemical potential µ2, as discussed in the main text, the corresponding polarization
operator Π(iν,q) in the Matsubara frequency domain under the random phase approximation can be written as

Π(iν,q) =
1

β

∑
n

∫
d3k

(2π)3
Tr [G(iν + iωn + µ1,q + k1,d)G(iωn + µ2,k2,d)] (S7)

with k1 = k− kW1 and k2 = k− kW2, respectively.

2. Derivation of the polarization function for Weyl semimetals

To showcase the results at finite temperature, we return to Eq. (S7). We do the following transformations: k0 =
iωn + µ2, q0 = iν + µ1 − µ2, k′ = k− kW2, and q′ = q + kW1 − kW2.

Π(iν,q) =
2

β

∑
n

∫
d3k′

(2π)3

k0(k0 + q0) + k′ · (k′ + q′)(
(k0 + q0)2 − E2

k′+q′

)
(k2

0 − E2
k′)

(S8)

Afterwards, we perform the summation over Matsubara frequencies according to [42]:

1

β

∑
n

k0 (k0 + q0) + k′ · (k′ + q′)

(k2
0 − E2

k′)
(

(k0 + q0)2 − E2
k′+q′

) =− 1

2πi

∮
dz h(z)g(z)

=− 1

2πi

 −i∞−δ∫
i∞−δ

dz h(z)
1

2
tanh

(
βz

2

)
+

i∞+δ∫
−i∞+δ

dz h(z)
1

2
tanh

(
βz

2

)
=− 1

2πi

 −i∞−δ∫
i∞−δ

dz h(z)

(
1

2
− 1

e−βz + 1

)
+

i∞+δ∫
−i∞+δ

dz h(z)

(
−1

2
+

1

eβz + 1

)

h(z) =
(z + µ2) (z + µ2 + q0) + k′ · (k′ + q′)

((z + µ2)2 − E2
k′)
(

(z + µ2 + q0)
2 − E2

k′+q′

)
g(z) =

1

2
tanh

(
βz

2

)
Ek′ = |k′|

where the function g(z) has simple poles at iωn. We can divide the above expression into two parts in order to have
two contributions for Π(iν,q), the vacuum part and the matter part, such that

Πvac = − 1

2πi

i∞∫
−i∞

dz
1

2
(h(z) + h(−z)) (S9)

Πmatter =
1

2πi

i∞+δ∫
−i∞+δ

dz h(z)
1

eβz + 1
+

1

2πi

−i∞−δ∫
i∞−δ

dz h(z)
1

e−βz + 1
(S10)

At this point in the derivation, we can simply evaluate the term corresponding to the vacuum part by using z = iω

Πvac(iν,q) =

∫
dωd3k′

(2π)4

(
(iω + µ2)(iω + µ2 + q0) + k′ · (k′ + q′)

((iω + µ2 + q0)2 − |k′ + q′|2)((iω + µ2)2 − |k′|2)

)
+

∫
dωd3k′

(2π)4

(
(iω + µ2)(iω + µ2 − q0) + k′ · (k′ + q′)

((iω + µ2 − q0)2 − |k′ + q′|2)((iω + µ2)2 − |k′|2)

)
≈− q′2

24π2

(
ln
(
−q2

0 + q′2 + 4Λ
)
− ln(−q2

0 + q′2) +
8Λ3

(−q2
0 + q′2)3/2

arctan

(√
−q2

0 + q′2

2Λ

)
− 4Λ2

−q2
0 + q′2

)
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where we relabeled k′ = k again, set q′ = |q′| and omitted the constant terms. We analytically extend the result
above into real frequencies by iν → ν + iδ:

Πvac(ν,q) = − q′2

24π2

(
ln

(
4Λ2 + q′2 − ν′2

q′2 − ν′2

)
+

8Λ3

(q′2 − ν′2)3/2
arctan

(√
q′2 − ν′2

2Λ

)
− 4Λ2

q′2 − ν′2

)
(S11)

with ν′ = ν − µ1 + µ2. Notice that we have introduced a momentum cutoff Λ since the integral over the momentum
diverges. Afterwards, we can expand Eq. (S11) in the case that Λ� 1 to obtain:

Πvac(ν,q) ≈ −|q
′|2

24π

(
ln

∣∣∣∣ 4Λ2

|q′|2 − ν′2

∣∣∣∣+
3(|q′|2 − ν′2)

10Λ2
− 1

3

)
(S12)

In order to obtain the real and imaginary parts of Πvac, we can use the generalized Kramers-Kronig relation [43].

Re[Πvac(ν,q)] = Re[Πvac(0,q)] +
E

π
P
∫ ∞
−∞

dω
Im[Πvac(ν,q)]

ω(ω − E)

Im[Πvac(ν,q)] = Im[Πvac(0,q)]− E

π
P
∫ ∞
−∞

dω
Re[Πvac(ν,q)]

ω(ω − E)

(S13)

Therefore, Πvac is given by

Πvac(ν,q) = − q′2

24π2

(
ln

∣∣∣∣4Λ2 + q′2 − ν′2

q′2 − ν′2

∣∣∣∣+
8Λ3

(q′2 − ν′2)3/2
arctan

(√
q′2 − ν′2

2Λ

)
− 4Λ2

q′2 − ν′2
+ iπΘ(ν′ − q′)

)
(S14)

where we have considered Im[Πvac(0,q)] = 0. The imaginary part of Πvac(ν,q) is given by

Im[Πvac(ν,q)] = −Θ(ν′ − q′) q
′2

24π
(S15)

The real part of Eq. (S14) is given by

Re[Πvac(ν,q)] = − q′2

24π2

(
ln

∣∣∣∣4Λ2 + q′2 − ν′2

q′2 − ν′2

∣∣∣∣+
8Λ3

(q′2 − ν′2)3/2
arctan

(√
q′2 − ν′2

2Λ

)
− 4Λ2

q′2 − ν′2

)
(S16)

We see that the logarithm always carries an imaginary part since its argument is negative. Let us evaluate the matter
component of the polarization function.

Πmatter =
1

2πi

i∞+δ∫
−i∞+δ

dz h(z)
1

eβz + 1
+

1

2πi

−i∞−δ∫
i∞−δ

dz h(z)
1

e−βz + 1

=
1

2Ek′

(
Ek′ (Ek′ + q0) + k′ · (k′ + q′)

(Ek′ + q0)
2 − E2

k′+q′

)
1

eβ(Ek′+µ2) + 1

+
1

2Ek′

(
Ek′ (Ek′ − q0) + k′ · (k′ + q′)

(Ek′ − q0)
2 − E2

k′+q′

)
1

eβ(Ek′−µ2) + 1

+
1

2Ek′+q′

(
Ek′+q′ (Ek′+q′ + q0) + k′ · (k′ + q′)

(Ek′+q′ + q0)
2 − E2

k′

)
1

eβ(Ek′+q′−µ1) + 1

+
1

2Ek′+q′

(
Ek′+q′ (Ek′+q′ − q0) + k′ · (k′ + q′)

(Ek′+q′ − q0)
2 − E2

k′

)
1

eβ(Ek′+q′+µ1)+1

=
1

2Ek′

∑
s=±

fs (q0)Ns
F (Ek′)

fs (q0) =
Ek′ (Ek′ + sq0) + k · (k′ + q′)

(Ek′ + sq0)
2 − E2

k′+q′

(S17)

Ns
F (Ek′) =

1

eβ(Ek′−sµ1) + 1
+

1

eβ(Ek′+sµ2) + 1
(S18)



14

where we considered the following change of variable: k′ → −k′− q′. If we take into account the finite density effect,
the Fermi energy could lie either in the valence band (µ1, µ2 < 0) or in the conduction band (µ1, µ2 > 0).

Πmatter(ν,q, T ) = 2

∫
d3k′

(2π)3

1

2Ek′

∑
s=±

fs(q0)Ns
F (Ek′)

=
1

8π3

∞∫
0

dk′
2π∫
0

dφ

π∫
0

dθ
∑
s=±

k2 sin θ
s(ν + µ1 − µ2 + iδ) + 2k′ + q′ cos θ

(ν + µ1 − µ2 + iδ + s|k′|)2 − (k′2 + q′2 + 2k′q′ cos θ)
Ns
F (|k′|)

We can obtain the real part of Πmatter(ν,q, T )

Re[Πmatter(ν,q, T )] =
1

8π3

∫ ∞
0

dk′
∑
s=±

Js(ν,k′,q′, T ) (S19)

Js(ν,k′,q′, T ) = −2πk′Ns
F (|k′|)− π (2sk′ + ν′)2 − q′2

2q′
Ns
F (|k′|) ln

∣∣∣∣ (q′ − sν′)(2k′ + sν + q′)

(sν′ + q′)(q′ − 2k′ − sν′)

∣∣∣∣ (S20)

At nonzero temperatures, the momentum space integral cannot be evaluated analytically. Therefore, we initially com-
pute the polarization function at zero temperature in which an analytic treatment is adequate. The zero temperature
scenario, despite being simple, still exhibits the Kohn anomaly observed in experiment.

3. Zero temperature results

At zero temperature, Ns
F (Ek′) can be replaced by the Heaviside step functions as the following

lim
β→∞

Ns
F (Ek′) = Θ(sµ1 − Ek′) + Θ(−sµ2 − Ek′) (S21)

Hereafter, we consider only the absolute values of the chemical potentials |µ1| and |µ2| and we only present results
for µ1, µ2 > 0. Thus, at zero temperature, we obtain

Re[Πmatter(ν,q, T = 0)] = − 1

6π2
(µ2

1 + µ2
2)− 1

24π2
ν′(µ1 − µ2)

+
q′2

32π2

∑
s=±1

g3

(
2µ1 + ν′

sq′

)
ln

∣∣∣∣2µ1 + ν′ − sq′

ν′ − sq′

∣∣∣∣
+

q′2

32π2

∑
s=±1

g3

(
2µ2 − ν′

sq′

)
ln

∣∣∣∣2µ2 − ν′ − sq′

ν′ + sq′

∣∣∣∣
where

g3(x) = x

(
x2

3
− 1

)
+

2

3
ν′ = ν − µ1 + µ2

Adding the vacuum and the matter parts together, we obtain the real part of the polarization function at zero
temperature

Re[Π(ν,q, T = 0)] =
q′2

32π2

∑
s=±1

g3

(
2µ1 + ν′

sq′

)
ln

∣∣∣∣2µ1 + ν′ − sq′

ν′ − sq′

∣∣∣∣+
q′2

32π2

∑
s=±1

g3

(
2µ2 − ν′

sq′

)
ln

∣∣∣∣2µ2 − ν′ − sq′

ν′ + sq′

∣∣∣∣
− 1

6π2
(µ2

1 + µ2
2)− 1

24π2
(ν′µ1 − ν′µ2)− q′2

24π2

(
ln

∣∣∣∣ 4Λ2

q′2 − ν′2

∣∣∣∣− 1

3
+

3(q′2 − ν′2)

10Λ2

)
(S22)

Now, we calculate the imaginary part of the polarization function for the matter term using Θ = k′·(k′+q′)
|k′||k′+q′| to obtain

Im[Πmatter(ν,q, T )] =

∫
d3k′

(2π)3

(ν + µ1 − µ2 + iδ) + |k′|+ |k′ + q′| cos Θ

(ν + µ1 − µ2 + iδ + |k′|)2 − |k′ + q′|2
N+
F (|k′|)

−
∫

d3k′

(2π)3

(ν + µ1 − µ2 + iδ)− |k′| − |k′ + q′| cos Θ

(ν + µ1 − µ2 + iδ − |k′|)2 − |k′ + q′|2
N−F (|k′|)

= Im[Π+
matter(ν,q, T )] + Im[Π−matter(ν,q, T )]
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with the following terms

Im[Π+
matter(ν,q, T )] = − Θ(q′ − ν′)

16π
Θ(q′ + ν′)

∞∫
q′−ν′

2

dk′N+
F (k′)

(2k′ + ν′)2 − q′2

q′

− Θ(−q′ − ν′)
16π

Θ(q′ − ν′)
∫ ∞

0

dk′N+
F (k′)

(2k′ + ν′)2 − q′2

q′

[
Θ

(
q′ − ν′

2
− k′

)
−Θ

(
−ν′ − q′

2
− k′

)]

Im[Π−matter(ν,q, T )] = +
Θ(q′ + ν′)

16π
Θ(q′ − ν′)

∞∫
q′+ν′

2

dk′N−F (k′)
(−2k′ + ν′)2 − q′2

q′

− Θ(q′ + ν′)

16π
Θ(ν′ − q′)

∫ ∞
0

dk′N−F (k′)
(−2k′ + ν′)2 − q′2

q′

[
Θ

(
q′ + ν′

2
− k′

)
−Θ

(
ν′ − q′

2
− k′

)]
Combining the vacuum and matter parts, we obtain the imaginary part of Π(ν,q, T = 0) at zero temperature as
follows

Im[Π(ν,q, T = 0)] = − q′2

24π
Θ(ν′ − q′)

− q′2

32π
Θ(q′ − ν′)Θ(q′ + ν′)Θ

(
2µ1 + ν′

q′
− 1

)
g3

(
2µ1 + ν′

q′

)
− q′2

32π
Θ(−q′ − ν′)Θ(q′ − ν′)Θ

(
1− 2µ1 + ν′

q′

)
g3

(
2µ1 + ν′

q′

)
+

q′2

32π
Θ(−q′ − ν′)Θ(q′ − ν′)Θ

(
−1− 2µ1 + ν′

q′

)
g3

(
2µ1 + ν′

q′

)
+

q′2

24π
Θ(−q′ − ν′)Θ(q′ − ν′)Θ

(
2µ1 + ν′

q′
+ 1

)
+

q′2

32π
Θ(q′ + ν′)Θ(q′ − ν′)Θ

(
2µ2 − ν′

q′
− 1

)
g3

(
2µ2 − ν′

q′

)
− q′2

32π
Θ(ν′ − q′)Θ(q′ + ν′)Θ

(
1− 2µ2 − ν′

q′

)
g3

(
2µ2 − ν′

q′

)
+

q′2

32π
Θ(ν′ − q′)Θ(q′ + ν′)Θ

(
−1− 2µ2 − ν′

q′

)
g3

(
2µ2 − ν′

q′

)
+

q′2

24π
Θ(ν′ − q′)Θ(q′ + ν′)Θ

(
2µ2 − ν′

q′
+ 1

)

(S23)

4. Kohn anomaly from singularities of the polarization function Π(ν,q)

The Kohn anomaly is an anomaly in the dispersion relation and describes a sudden dip in frequency for a particular
wavevector. The phonon dispersion relation is given by

ω2
q =

Ω2
q

ε(ν,q)
ε(ν,q) = 1− V0(q)Re[Π(ν,q)] (S24)

where ωq and Ωq are the renormalized phonon frequency due to electronic RPA screening and the bare phonon
frequency, respectively. The subscript r means the designates part. Thus, in order to find the Kohn anomaly, we
must study the singularities of Π(ν,q).
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One might naively think that Re[Π(ν,q)] has poles at q′ = |ν′|, q′ = |2µ1 + ν′| and q′ = |2µ2 − ν′|. However, upon
closer inspection, this guess turns out to be only partly correct. In the case q′ = |2µ1 + ν′| , observe from Eq.(S22)
that the apparently divergent term is of the form

x→ 0 : g3(1 + x) ln |x| ∼ x2 ln |x| = 0 x ≡ |2µ1 + ν′|
q′

− 1 (S25)

and therefore vanishes. This is consistent with the fact that Im[Π(ν,q)] is continuous and well defined at q′ = |2µ1+ν′|.
Similarly, the alleged pole at q′ = |2µ2 − ν′| disappears upon closer scrutiny.

For the case q′ → |ν′|, by taking the most divergent terms, we see from Eq.(S22) that

Re[Π(ν,q)] ' q′2

32π2

(
g3

(
1 +

2µ1

ν′

)
ln

∣∣∣∣ 2µ1

q′ − |ν′|

∣∣∣∣+ g3

(
1− 2µ2

ν′

)
ln

∣∣∣∣ 2µ2

q′ − |ν′|

∣∣∣∣)− q′2

24π2
ln

∣∣∣∣ 4Λ2

q′2 − ν′2

∣∣∣∣→∞ (S26)

This divergence of Re[Π(ν,q)] goes hand in hand with the discontinuity of Im[Π(ν,q)] at q′ = |ν′|.

∂

∂q′
Re[Π(ν,q)] ' q′

16π2

(
g3

(
1 +

2µ1

ν′

)
ln

∣∣∣∣ 2µ1

q′ − |ν′|

∣∣∣∣+ g3

(
1− 2µ2

ν′

)
ln

∣∣∣∣ 2µ2

q′ − |ν′|

∣∣∣∣)− q′

12π2
ln

∣∣∣∣ 4Λ2

q′2 − ν′2
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− q′2

32π2

(
g3

(
1 +

2µ1

ν′

)
1

q′ − |ν′|
+ g3

(
1− 2µ2

ν′

)
1

q′ − |ν′|

)
+

1

12π2

q′3

q′2 − ν′2

(S27)

The derivative of the real part of the dielectric function is

∂ε

∂q
= −2V0(q)Re[Π(ν,q)]

(
1

q′
− 1

q

)
− V0(q)

∂

∂q′
Re[Π(ν,q)] (S28)

The first term is logarithmically divergent from Eq. (S26) and the second term includes both the logarithmic and
power-law divergence. By only including the power-law divergence, which diverges faster than the logarithmic diver-
gence, we find in the limit q′ → |ν′|

∂ε

∂q
∝ −V0(q)

(
q′2

32π2

(
g3

(
1 +

2µ1

ν′

)
1

q′ − |ν′|
+ g3

(
1− 2µ2

ν′

)
1

q′ − |ν′|

)
+

1

12π2

q′3

q′2 − ν′2

)
(S29)

Therefore, we observe a Kohn anomaly at q′ = |ν′| = |ν − µ1 + µ2|, where the polarization function blows up. Notice
that the location of the pole only depends on the difference between the chemical potentials of the two nodes.

5. Finite temperature results

In the following section, we take into account the finite temperature-dependence of the polarization. The real part of
the polarization function at T > 0 is

Re[Π(ν,q, T )] =− q′2

24π2

(
ln

∣∣∣∣ 4Λ2

q′2 − ν′2

∣∣∣∣+
3(q′2 − ν′2)− 1

3

10Λ2

)
+

Γ(2)

4π2

∑
s=±

1

β2

[
Li2
(
−esβµ1

)
+ Li2

(
−e−sβµ2

)]
− 1

32π2

(
ν′

q′
F+(ν, q, T ) +

ν′

q′
F−(ν, q, T )

) (S30)

with

F±(ν, q, T ) =

∞∫
±1

du

 (ν′u)2 − (q′)2

exp
(

(ν′u∓ν′)±2µ2

2kBT

)
+ 1

+
(ν′u)2 − (q′)2

exp
(

(ν′u∓ν′)∓2µ1

2kBT

)
+ 1

 ln

∣∣∣∣ (±ν′ − q′)(ν′u+ q′)

(±ν′ + q′)(ν′u− q′)

∣∣∣∣ (S31)
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The imaginary part of the polarization function at finite temperatures T > 0 can be expressed as

Im[Π(ν,q, T )] = − q′2

32π
Θ(q′ + ν′) (Θ(q′ − ν′) (G+(ν,q, T ) +G−(ν,q, T ))−Θ(ν′ − q′)H(ν,q, T ))

− q′2

24π
Θ(ν′ − q′)− q′2

32π2
Θ(−q′ − ν′)Θ(q′ − ν′)M(ν, q, T )

(S32)

G±(ν,q, T ) =

∞∫
1

du

 u2 − 1

exp
(

(q′u∓ν′)±2µ2

2kBT

)
+ 1

+
u2 − 1

exp
(

(q′u∓ν′)∓2µ1

2kBT

)
+ 1

 (S33)

H(ν,q, T ) =

1∫
−1

du

 u2 − 1

exp
(

(q′u+ν′)−2µ2

2kBT

)
+ 1

+
u2 − 1

exp
(

(q′u+ν′)+2µ1

2kBT

)
+ 1

 (S34)

M(ν, q, T ) =

1∫
−1

du

 u2 − 1

exp
(

(q′u−ν′)+2µ2

2kBT

)
+ 1

+
u2 − 1

exp
(

(q′u−ν′)−2µ1

2kBT

)
+ 1

 (S35)

While for finite temperatures, exact analytic expressions cannot easily be obtained, it is possible to obtain numerical
results from our semi-analytical results.

Appendix B: Sample preparation of TaP for IXS

Due to the high X-ray absorption of tantalum and the large c-axis dimension of the crystals grown in laboratory,
the thickness of the samples were required to be reduced to a suitable value for performing inelastic x-ray scattering
(IXS) experiments. We determined that the optimal sample thickness for our experiment configuration corresponding
to an X-ray wavelength of 0.5725Å was ∼20µm, allowing for a photon transmission of 0.333. A portion of the crystal
had its orientation determined using a back-scattering Laue diffractometer and afterwards, it was thinned down to
∼20µm by polishing followed by being glued onto a brass sample holder with a GE-vanish (as the other end of the
sample holder was connected to the cryostat). Figure S1 shows top and side views of the orientated thinned-down
sample used for our IXS experiments.

Appendix C: Phonon nesting conditions between Weyl nodes in TaP

In Table S1, we list the possible phonon nesting conditions for a phonon q = kWj1−kWj2 between two Weyl electronic
states at kWj1 and kWj2 . Furthermore, we present the momentum-mismatch between phonon q and the Weyl node
location in momentum-space kWj′ (which is reduced by the dynamical effect described in the main text) as well as
the chirality of the two Weyl electronic states to highlight their conservation within the context of the topological
Kohn anomaly in this material. The momentum-space coordinates of the 8 W1 (kz = 0) and 16 W2 (kz 6= 0) Weyl
nodes of TaP along with their respective chiralities are known from [44].

[42] J. I. Kapusta and C. Gale, Finite-temperature field the-
ory: principles and applications, 2nd ed. (Cambridge
University Press, 2006).

[43] J. D. Bjorken, S. D. Drell, and P. B. Kahn, American
Journal of Physics 34, 367 (1966).

[44] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Phys. Rev. X 5, 011029 (2015).

http://dx.doi.org/10.1119/1.1972989
http://dx.doi.org/10.1119/1.1972989
http://dx.doi.org/ 10.1103/PhysRevX.5.011029
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Table S1. Possible phonon nesting conditions between different Weyl electronic states within TaP. Along with the momentum-
space coordinates of the Weyl node in the Brillouin zone, the type and chirality of the electronic state is shown. Momentum
conservation (presented in the form of a mismatch between nesting phonon q = k1 − k2 and the Weyl node location kWj′ , i.e.
|q − kWj |/|kWj | or |q| in the case of Γ) and the chirality conservation are featured in the table. Only one representative set
for each case between Weyl nodes is shown with the number of instances indicated.

Phonon Momentum Chirality
k1 Type Chirality k2 Type Chirality q conservation conservation Multiplicity

(+0.271, −0.024, +0.578) W2 + (+0.518, +0.014, +0.000) W1 + W2 4.35% X 16
(+0.271, +0.024, +0.578) W2 - (+0.518, +0.014, +0.000) W1 + W2 4.35% × 16
(−0.271, +0.024, +0.578) W2 + (+0.518, +0.014, +0.000) W1 + W2 4.49% X 16
(−0.271, −0.024, +0.578) W2 - (+0.518, +0.014, +0.000) W1 + W2 4.49% × 16
(+0.024, +0.271, +0.578) W2 + (+0.518, +0.014, +0.000) W1 + W2 34.98% X 16
(+0.024, −0.271, +0.578) W2 - (+0.518, +0.014, +0.000) W1 + W2 34.98% × 16
(−0.024, −0.271, −0.578) W2 + (+0.518, +0.014, +0.000) W1 + W2 42.48% X 16
(−0.024, +0.271, +0.578) W2 - (+0.518, +0.014, +0.000) W1 + W2 42.48% × 16
(+0.271, +0.024, +0.578) W2 - (−0.271, +0.024, +0.578) W2 + W1 5.36% × 16
(+0.271, +0.024, +0.578) W2 - (+0.271, −0.024, +0.578) W2 + W1 7.10% × 16
(+0.271, +0.024, +0.578) W2 - (−0.271, −0.024, +0.578) W2 - W1 8.03% X 16
(+0.271, +0.024, +0.578) W2 - (+0.271, +0.024, −0.578) W2 - W1 30.35% X 16
(+0.271, +0.024, +0.578) W2 - (−0.271, +0.024, −0.578) W2 + W1 30.58% × 16
(+0.271, +0.024, +0.578) W2 - (+0.271, −0.024, −0.578) W2 + W1 30.93% × 16
(+0.271, +0.024, +0.578) W2 - (−0.271, −0.024, −0.578) W2 - W1 31.16% X 16
(+0.271, +0.024, +0.578) W2 - (−0.024, −0.271, +0.578) W2 + W1 60.86% × 16
(+0.271, +0.024, +0.578) W2 - (−0.024, +0.271, +0.578) W2 - W1 62.24% X 16
(+0.271, +0.024, +0.578) W2 - (+0.024, −0.271, +0.578) W2 - W1 62.24% X 16
(+0.271, +0.024, +0.578) W2 - (+0.024, +0.271, +0.578) W2 + W1 63.59% × 16
(+0.271, +0.024, +0.578) W2 - (−0.024, −0.271, −0.578) W2 + W1 67.90% × 16
(+0.271, +0.024, +0.578) W2 - (−0.024, +0.271, −0.578) W2 - W1 69.14% X 16
(+0.271, +0.024, +0.578) W2 - (+0.024, −0.271, −0.578) W2 - W1 69.14% X 16
(+0.271, +0.024, +0.578) W2 - (+0.024, +0.271, −0.578) W2 + W1 70.36% × 16
(+0.518, +0.014, +0.000) W1 + (+0.518, −0.014, +0.000) W1 - Γ 2.80% × 8
(+0.518, +0.014, +0.000) W1 + (−0.518, +0.014, +0.000) W1 - Γ 49.30% × 8
(+0.518, +0.014, +0.000) W1 + (−0.518, −0.014, +0.000) W1 + Γ 49.38% X 8
(+0.518, +0.014, +0.000) W1 + (+0.014, +0.518, +0.000) W1 - Γ 71.28% × 8
(+0.518, +0.014, +0.000) W1 + (−0.014, +0.518, +0.000) W1 + Γ 73.28% X 8
(+0.518, +0.014, +0.000) W1 + (+0.014, −0.518, +0.000) W1 + Γ 73.28% X 8
(+0.518, +0.014, +0.000) W1 + (−0.014, −0.518, +0.000) W1 - Γ 75.24% × 8
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Figure S1. Density plot of the a, real, and the b, imaginary part of the polarization function −Π(q′, ν′) at 99K and with finite
doping where q′ = q− kW1 + kW2 and ν′ = ν − µ1 + µ2. c. Line profile of negative Re[Π(q′, ν′0 = µ)] and Im[Π(q′, ν′0 = µ)] at
a constant frequency ν′0/µ = 1. d. Line profile of negative Re[Π(q′0 = kF , ν

′)] and Im[Π(q′0 = kF , ν
′)] at a constant wavevector

q′0/kF = 1, where divergence at vF q
′ = ν′ is maintained. e-h. Analogous to subfigures a-d, calculated at a temperature of

300K.
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Figure S2. a. Density plot of −Re[Π(qx − kWPx , qy − kWPy )] integrated over 0 ≤ ν ≤ ν′ where the divergence is suppressed
by additional terms in the denominator representative of other general scattering mechanics. Line cuts at different values of
qy − kWPy = n(ν′/µ)kF where n = 0, 0.25, 0.5, 0.75 and 1 are shown in b. c-d. Analogous to subfigures a-b, calculated at a
temperature of 300K. The temperature dependence can be seen to be negligible from 1K up to 300K.
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Figure S3. a, Top view and b, side view of the orientated and thinned-down tantalum phosphide (TaP) sample used for the
IXS experiments.
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Figure S4. From top to bottom of each subfigure, intensity spectra obtained from IXS measurements performed along high-
symmetry loop Γ-Σ-Σ1-Z-Γ at a, 18K, b, 60K, c, 100K and d, 300K. Lines serve as a guide to the eye.
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Figure S5. IXS data with statistical error taken at room temperature along high-symmetry line a, Z−Σ1 and along b, Σ−Σ1.
The solid orange line denotes a least-squares fit to the intensity spectra from a damped harmonic oscillator function convoluted
with the instrumental resolution function. The dashed purple line represents the resolution-deconvoluted phonon modes that
contribute to the dispersion relation.
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Figure S6. Experimental phonon dispersion of TaP encompassing the three acoustic phonon modes and the three lowest-energy
optical modes along high symmetry loop Γ-Σ-Σ1-Z-Γ at a, 18K, b, 60K and c, 100K. The points represent extracted phonon
modes from intensity spectra at that q-value in momentum space. The grey lines are ab initio calculations of the phonon
dispersion. The color map shows the intensities of the phonon modes extracted from the intensity spectra following removal
of the elastic peak. The first two and the last q-values along the high-symmetry loop of the 100K phonon dispersion were not
measured.
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Figure S7. Representative intensity spectra obtained from inelastic neutron scattering (INS) performed with an energy range
of 5-25 meV a, at the Γ point, b, at a point along high symmetry direction Γ-Σ, (0.217, 0, 0) and c, at a point along high
symmetry direction Γ-Z, (0, 0, 0.667). These spectra are in good agreement of phonon measurements performed with inelastic
x-ray scattering. The solid lines are a guide for the eye.
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Figure S8. Momentum dependence of the intensity spectra with statistical error near the W2 Weyl node at (0.271, 0.024, 0.578)
(denoted as kW2′ in main text). a-d display the IXS intensity spectra for q-values along H in (H, 0.024, 0) for increasing kx
direction from bottom to top at 18K, 60K, 100K and 300K, respectively. e-h display similar measurements at the same temper-
atures for q-values along K in (0.271,K, 0) for increasing ky direction from bottom to top. There are only four measurements
due to instrumental limitations for larger q-values, except for 300K. Lines serve as a guide to the eye. The central thicker line
in each of the subfigures represents the IXS measurement performed directly at the W2 node.
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Figure S9. Momentum dependence of the intensity spectra with error bars near the W1 Weyl node at (0.518, 0.014, 0). a-
d display the IXS intensity spectra for q-values along H in (H, 0.014, 0) for increasing kx direction from bottom to top at
18K, 60K, 100K and 300K, respectively. e-h display similar measurements at the same temperatures for q-values along K in
(0.518,K, 0) for increasing ky direction from bottom to top. There are only four measurements due to instrumental limitations
for larger q-values. Lines serve as a guide to the eye. The central thicker line in each of the subfigures represents the IXS
measurement performed directly at the W1 node.
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