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SUMMARY

Polyketides produced by modular polyketide synthases (PKSs) are important small molecules widely
used as drugs, pesticides, and biological probes. Tagging these polyketides with a clickable function-
ality enables the visualization, diversification, and mode of action study through bio-orthogonal chem-
istry. We report the de novo biosynthesis of alkyne-tagged polyketides by modular type | PKSs
through starter unit engineering. Specifically, we use JamABC, a terminal alkyne biosynthetic machin-
ery from the jamaicamide B biosynthetic pathway, in combination with representative modular PKSs.
We demonstrate that JamABC works as a trans loading system for engineered type | PKSs to produce
alkyne-tagged polyketides. In addition, the production efficiency can be improved by enhancing the
interactions between the carrier protein (JamC) and PKSs using docking domains and site-directed
mutagenesis of JamC. This work thus provides engineering guidelines and strategies that are
applicable to additional modular type | PKSs to produce targeted alkyne-tagged metabolites for
chemical and biological applications.

INTRODUCTION

Natural products produced by modular polyketide synthases (PKSs) have demonstrated their use as
therapeutics, industrial products, pesticides, and biological probes following intense study over the past
decades (Hertweck, 2009; Klaus and Grininger, 2018). Some well-known examples of these polyketides
include the antibiotic erythromycin and the immunosuppressant rapamycin, both of which were initially
isolated from bacterial sources and have been approved for clinical use for decades (Cottens et al,,
2019; Hertweck, 2009; Jelic and Antolovic, 2016). The process for discovery, diversification, and mode of
action elucidation of polyketides remains challenging and time consuming, although it has been improved
in recent years due to many technical advancements. One such technology is to tag polyketides with a click-
able functionality, which has been demonstrated to facilitate the study of polyketide biosynthesis, biology,
and pharmacology through bio-orthogonal chemistry (DeGuire et al., 2015; Harvey et al., 2012; Hughes
et al., 2014; Kalkreuter et al., 2019a, 2019b; Koryakina et al., 2017; Musiol-Kroll et al., 2017; Riva et al.,
2014; Seidel et al., 2019; Zhu and Zhang, 2015). In particular, polyketides can be tagged through semi-syn-
thesis (DeGuire et al., 2015; Seidel et al., 2019), total synthesis (Staub and Sieber, 2008), precursor-directed
biosynthesis (Harvey et al., 2012; Koryakina et al., 2017; Musiol-Kroll et al., 2017; Seidel et al., 2017; Yan
et al.,, 2013), or de novo biosynthesis (Zhu et al., 2015a; Zhu and Zhang, 2015). In this work we aim to further
develop the strategy of de novo biosynthesis, which offers the unique advantage of not feeding the
biorthogonal moiety itself, which could lead to increased background due to the diffusible non-specific
nature of feeding starter or extender units. Instead the taggable group is incorporated by enzymatically
synthesizing both the complex polyketide scaffolds and the unique clickable functionality allowing
in situ bio-orthogonal chemical transformations.

Modular PKSs, often referred to as type | PKSs, have modules with multiple catalytic domains that perform
separate enzymatic activities and act as an assembly line to select and incorporate building monomers into
polyketide scaffolds (Jenke-Kodama and Dittmann, 2009; Keatinge-Clay, 2012; Khosla et al., 2014; Ladner
and Williams, 2016) (Figure 1). The monomers used for extension, typically malonyl- or methylmalonyl-CoA,
are recognized by acyltransferase (AT) domains, and the carbon-carbon bond is formed through decarbox-
ylative Claisen condensations catalyzed by the ketosynthase (KS) domains. The megasynthases themselves
have been investigated and have undergone extensive engineering efforts due to their modular structures
that have captured scientists’ imagination with the possibility of producing on-demand, designer mole-
cules (Awakawa et al., 2018; Barajas et al., 2017; Chemler et al., 2015; Harvey et al., 2012; Kalkreuter and
Williams, 2018; Klaus and Grininger, 2018; Koryakina et al., 2017; Moss et al., 2013; Ranganathan et al.,
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Figure 1. Overview of the JamABC Cassette and Type | PKSs in This Work

(A) JamABC works together to produce 5-hexynoyl-JamC as a starter unit for the downstream PKS/nonribosomal peptide synthetase assembly line in

jamaicamide B biosynthesis.
(B) Native LipPKS1 and DEBSM6 domain organization and associated polyketide products.
(C) Engineered LipPKS1* and DEBSM6* used as representative modular PKSs in the current study.

et al., 2017). Many of these engineering strategies have included efforts geared toward the inclusion of
functional chemical handles for subsequent drug discovery or chemical biology studies, albeit often em-
ploying fed precursors containing the functionality of interest (Kalkreuter et al., 2019a; Koryakina et al.,
2017; Mohammadi-Ostad-Kalayeh et al., 2018).

The terminal alkyne is a canonical bio-orthogonal functional group as it is small, stable, and can be selec-
tively reacted via copper-catalyzed azide-alkyne cycloaddition, where an azide containing a fluorophore,
mass tag, or other chemical moiety is attached (Prescher and Bertozzi, 2005; Zhu and Zhang, 2015). The
bio-orthogonality of alkynes is due to its chemical stability in biological environments and its rarity in
biology where only a small number of terminal alkyne-bearing secondary metabolites have been discov-
ered and even fewer biosynthetic pathways have been elucidated (Edwards et al., 2004; Fritsche et al.,
2014; Haritos et al., 2012; Lee et al., 1998; Marchand et al., 2019; McPhail et al., 2007; Minto and Blacklock,
2008; Moss et al., 2019; Ross et al., 2014). We recently identified and characterized an acyl carrier protein
(ACP)-dependent, three-protein pathway to generate the terminal alkyne functionality in E. coli (Zhu et al.,
2015a, 2015b, 2016). For example, in the biosynthesis of the cyanobacterial jamaicamide B, JamA, an acyl-
ACP synthetase, activates and loads 5-hexanoic acid onto JamC, a dedicated ACP. The resulting 5-hexa-
noyl-JamC is modified by JamB, a membrane-bound desaturase/acetylenase, to yield 5-hexynoyl-JamC as
a starter unit for the downstream PKS/nonribosomal peptide synthetase assembly line (Figure 1A) (Edwards
etal., 2004; Zhu et al., 2015a). JamABC thus represents a portable tri-gene cassette that may be useful for in
situ generation and incorporation of terminal alkynes into various molecular scaffolds on demand. Toward
this end, we demonstrated that PKS starter unit engineering is a feasible strategy to install the fatty alkynyl
starter unit generated by JamABC onto polyketide scaffolds, such as those generated by promiscuous type
[l PKSs, which recognize both the acyl group and the acyl carrier (JamC) (Zhu et al., 2015a, 2015b). However,
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to generalize this strategy to other polyketide scaffolds, in particular those synthesized by modular type |
PKSs, additional model systems and protein engineering methods need to be explored.

Here we employ two well-studied type | PKSs, LipPKS1 and DEBSMé, to explore engineering strategies to
make alkyne-tagged polyketides. LipPKS1 is the first module in lipomycin biosynthesis that natively utilizes
an isobutyl starter unit presented by a loading ACP (Figure 1B) (BihImaier et al., 2006). DEBSMé is the last
PKS module from the erythromycin biosynthetic pathway (Figure 1B) (Rawlings, 2001). In addition, engi-
neered LipPKS1 and DEBSMé have been obtained to utilize malonyl-CoA instead of methylmalonyl-CoA
as the extender unit with the promiscuous DEBS thioesterase to promote the acid product release as
demonstrated from both in vitro biochemical studies and in E. coli (Yuzawa et al., 2017). These two engi-
neered modules are thus simple and convenient systems for in-depth assessment of the interaction be-
tween representative module PKSs and JamABC for alkyne-tagged polyketide biosynthesis. Considering
the known critical role of the cognate ACP (JamC) in the alkyne biosynthetic machinery (Su et al., 2018;
Zhu et al., 2015a), the recognition of JamC by PKSs is expected to play a key role in alkyne-tagged polyke-
tide synthesis and therefore is the focus of the present study.

RESULTS AND DISCUSSION
Alkyne-Tagged Polyketide Synthesis In Vitro

To probe the possible recognition of the 5-hexynoyl-JamC by PKSs, in vitro assays were initially performed
using the engineered LipPKS1 and DEBSMé modules. The reported engineered LipPKS1 was further modi-
fied by removing the AT and ACP loading domains to create a truncated version to facilitate the alternative
starter unit incorporation. We hypothesized that these engineered PKSs (termed LipPKS1* and DEBSMé*,
Figure 1C) without the loading domains would result in JamC to act in trans to selectively load and extend
JamC-linked acyl chains. For in vitro assessment we purified JamA, holo-JamC, and LipPKS1*/DEBSMé6*
from E. coli after overexpression (Figure S1), or an E. coli BAP1 strain that contains a chromosomal copy
of the phosphopantetheinyl transferase Sfp that was used to ensure the post-translational modification
of carrier proteins to the pantetheinylated forms (Pfeifer et al., 2001). Purified enzymes were incubated
with 5-hexynoic acid, ATP, malonyl-CoA, and NADPH for alkyne-tagged polyketide biosynthesis in vitro
(Figure 2A). JamB activity for alkyne biosynthesis was not assessed in vitro due to the difficulty of obtaining
active and purified membrane proteins and was assessed later in vivo. The expected product, 3-hydroxy-7-
octynoic acid (1), was successfully produced by both engineered PKSs as confirmed by comparing with the
synthetic chemical standard (Figures 2B, 2C, and 52-S4, Scheme S1). Interestingly, replacement of 5-hex-
ynoyl-JamC by 5-hexynoyl-CoA, which was generated in situ using a promiscuous acyl-CoA ligase Orf35
(Zhang et al., 2010), dropped the formation of 1 to trace amounts, demonstrating a preference of these
two PKSs toward JamC over CoA as the acyl carrier (Figures 2B, 2C, and S2).

Evaluation of Docking Domain Strategy to Improve JamC-PKS Interactions

As protein-protein interactions are known to dominate the turnover of chimeric PKS assembly lines (Klaus
etal., 2016), we proposed that improved communication between the upstream JamC and the downstream
KS could lead to a more efficient alkyne-tagged polyketide biosynthesis. Docking domains, often found on
the C terminus of ACPs (dd*“") and the N terminus of KSs (dd*®), have been shown to be important for pro-
tein-protein interactions in PKSs (Gokhale et al., 1999; Tsuji et al., 2001; Zeng et al., 2016). We then set out to
evaluate the strategy of fusing known docking domains to the C terminus of JamC and the N terminus of
the LipPKS1*/DEBSMé6* KS domains to improve protein recognition. In particular, we chose to utilize the
class 2 docking domains from the cyanobacterial curacin pathway as the pair cdd““™® (dd*“") and
nddCHdd®) was shown to be modular and portable (Whicher et al., 2013). We also chose the related
docking domain pair cdd’@™€ (dd Py and ndd'2™Hdd<®) from the jamaicamide pathway as moving dock-
ing domains within pathways was shown to be more successful than inter-pathway swapping (Klaus and Gri-
ninger, 2018; Klaus et al., 2016; Whicher et al., 2013). The fusion of these docking domains to JamC and
PKSs did not significantly impact the expression and folding of these proteins (Figures S1 and S5).
In vitro product formation assays using purified proteins demonstrated the success of this strategy in
generating product 1 (Figures 2 and Sé). The adoption of the pair of cdd’®™* and ydd’*™ had minimal
effect on the production of 1, whereas the pair of cdd“"™ and ydd“""™" led to significantly more amount
of 1 in both PKS systems (~3-fold for LipPKS1* and ~40-fold for DEBSMé*) (Figures 2B and 2C). Control
experiments using only one of the docking domains produced less products than using the pair for cdd"
and ndd®U". In addition, the poor production of 1 with the docking domain fused to JamC excluded the
possibility of improved recognition of modified JamC by JamA (Figures 2B and 2C), indicating that the
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Figure 2. In Vitro Assessment of Alkyne-Tagged Polyketide Biosynthesis Using LipPKS1* and DEBSMé6*

(A) Overview scheme of in vitro reactions between JamA/JamC and engineered PKSs to produce 3-hydroxy-7-octynoic
acid (1).

(B) Formation of 1 by LipPKS1* under various reaction conditions and engineering strategies.

(C) Formation of 1 by DEBSM6* under various reaction conditions and engineering strategies. Engineered PKS cartoon is
truncated for clarity. All graphs are shown as relative product formed compared with the JamC/PKS with no modifications
calculated from integration of the extracted ion chromatogram (EIC) for compound 1 (set as 1). Error bars indicate SEM for
n > 2 independent experiments.

improved communication between the engineered JamC and KS due to the docking domains is the main
contributor for higher production of 1 in vitro.

Evaluation of Site-Directed Mutagenesis of JamC to Improve JamC-PKS Interactions

In addition to docking domains, we also wanted to identify a less-intensive engineering strategy to improve
JamC-PKS communication. Mutating JamC without perturbation to the large megasynthase would make
this strategy more easily adaptable to different systems. From the well-studied DEBS system, it has
been shown that direct ACP-KS protein-protein interactions during translocation are selective, and key res-
idues within helix | of ACP have been identified that contribute to chain translocation specificity (Kapur
etal.,, 2012; Klaus et al., 2016). Inspired by the previous successful studies, we identified the corresponding
residue in JamC (E32) that may play an important role in ACP-KS interactions through sequence alignments
and structural modeling (Figure S7). To mimic the native upstream ACP, we chose the mutations E32T for
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LipPKS1* and E32H for DEBSMé* based on alignments to the respective ACPs found upstream in the native
systems (Figure S7). These two JamC mutants were cloned, overexpressed, and purified from BAP1 with a
similar yield to the wild-type protein (Figure S1). In vitro product formation assays showed that the forma-
tion of 1 increased approximately 7-fold with LipPKS1* (Figure 2B) and 2-fold with DEBSMé* (Figure 2C).
These fold increases demonstrated the effectiveness of this strategy in improving the production of
alkyne-tagged polyketides in vitro, most likely due to an improved JamC communication with modular
PKSs.

Perturbation of JamB Activity by JamC Engineering

In vitro biochemical assays demonstrated the success of protein engineering in improving the recognition
of JamC by PKSs to promote the translocation of the alkynyl starter unit. However, the potential impact of
JamC modification on the activity of JamB, the desaturase/acetylenase that functions on a JamC-tethered
substrate to form a terminal alkyne, is unclear. As it is difficult to reconstitute and quantify the activity of the
membrane-bound JamB in vitro, we then tried to implement the biosynthetic machinery of alkyne-tagged
polyketides in E. coli to assess the possible impact. In addition, the titers of relevant products were also
quantified in E. coli to probe the effectiveness of two engineering strategies to improve JamC-PKS inter-
actions in vivo. Combinations of JamA, B, C, PKSs, and their variants were expressed in an E. coli BAP1
strain under a T7 promoter to obtain various engineered strains. A single mutation in JamB (M5T) identified
in previous work, presumably with an improved interaction with the electron donor, was used in all strains to
increase the alkyne titer in E. coli (Zhu et al., 2016). All strains were grown with 5-hexenoic acid feeding,
followed by extraction and quantification of 3-hydroxy-7-octenoic acid (2) and 3-hydroxy-7-octynoic acid
production (1), by fitting to a standard curve of synthesized standards generated through liquid chroma-
tography-high-resolution mass spectrometric analysis (Scheme S1, Figures S3, S4, S8, and S9). The product
2 was expected to be a side product due to the activities of JamA, C, and PKS without the action of JamB
(Figure 3A). Other possible products were also analyzed, as it is conceivable that the PKSs accept different
fatty acyl starter units in vivo via JamC or other acyl carriers (Figure S10).

An initial investigation of the titer of compound 1 produced by the co-expression of JamA, B, C, and
LipPKS1*/DEBSMé* demonstrated that DEBSMé* produced compound 1 (0.014 mg/L) significantly less
than LipPKS1* (0.071 mg/L). Much higher amounts of products other than 1 and 2 with a longer acyl chain
were generated by DEBSMé* in vivo (Figure S10), consistent with the native acyl chain length accepted by
LipPKS1*/DEBSMé6* (C4 versus C13). We concluded that DEBSMé6* would not be an effective in vivo model
system to probe the activity of JamB due to complicated product profiles and thus limited the in vivo study
to LipPKS1*.

The products 1 and 2 were produced by LipPKS1* in an approximately 1:5 ratio, and this efficiency was set
to be a relative JamB activity of 100% (Figure 3B). This product ratio was dropped ~4-fold when either
docking pair was used, suggesting that the fusion of a docking domain to JamC affected its recognition
by JamB (Figure 3B). In contrast, the E32T point mutation of JamC had minimal effect on the product ratio
while increasing the titer of 1 ~6-fold to 0.42 mg/L, consistent with previous observations that the helix | of
ACP did not play an important role in interacting with JamB (Su et al., 2018; Zhu et al., 2016). We next
probed the combined product titer of alkyne 1 and alkene 2 to assess the effectiveness of the two engineer-
ing strategies in their ability to improve JamC-LipPKS1* interactions in vivo (Figure 3C). Consistent with the
trends observed in vitro, the combined titer improved more than 10- and 20-fold using docking domains
cdd®Uk/ ddCt and cdd’amK/dd¥amt, respectively, and ~10-fold using JamC (E32T), demonstrating
the success of either strategy in improving JamC-PKS interactions in vivo (Figure 3C).

Finally, we probed the possible synergistic effects of the two engineering strategies in improving the
alkyne-tagged polyketide biosynthesis in vivo. We observed additive effects when using docking domains
and the JamC point mutation in improving JamC- LipPKS1* interactions. The combined titer of 1 and 2
roughly equaled the sum of that when either engineering strategy was used. The maximum amount of
product obtained was ~16 mg/L from JamC(E32T)-cdd’™ /dd’* ™ -LipPKS1*, an approximately 39-fold
increase from unmodified JamC/LipPKS1* (Figure 3C). However, due to the expected disruption of
JamB activity when the docking domain is fused to JamC, the absolute titer of the alkyne product 1 was
not increased when using both engineering strategies compared with the JamC mutagenesis alone (Fig-
ure 3B). These results further highlight the importance of JamB efficiency in de novo alkyne synthesis, which
remains to be a limiting step in the production of alkyne-tagged polyketides.
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Figure 3. In Vivo Assessment of Alkyne-Tagged Polyketide Biosynthesis Using LipPKS1*

Alkene 2 and alkyne 1 total titer (mg/L)
S

(A) Overview scheme of in vivo reactions between JamABC and LipPKS1* to produce 3-hydroxy-7-octynoic acid (1) and
3-hydroxy-7-octenoic acid (2).

(B) Quantification of alkyne product titers resulting from the engineered JamC and LipPKS1*. Alkyne 1 product titers are
shown in blue (left y axis), and the relative JamB activities are shown in green (right y axis).

(C) Quantification of total product titers resulting from the engineered JamC and LipPKS1*. LipPKS1* cartoon is truncated
for clarity. All titers shown have subtracted background from a control strain lacking JamC to better reflect the interaction
between JamC and LipPKS1*. All error bars represent SEM for n > 3 biological replicates.

Limitations of the Study

Although the current results demonstrate a great potential of de novo biosynthesizing alkyne-tagged polyketi-
des by engineering both the alkyne biosynthetic machinery and modular type | PKSs, the strategy is limited to
incorporate an alkynyl starter unit, which needs to be tolerated by PKSs. It is expected to work well with PKSs with
a native starter unit resembling the alkyne-containing acyl group presented by the alkyne biosynthetic machin-
ery, such as in the case of LipPKS1, but may not work with PKSs recognizing very different starter units, such as in
the case of DEBSMé. This is particularly exemplified by the in vivo results of DEBSMé, in which a complex meta-
bolic background significantly decreased the efficiency of alkyne-tagged polyketide biosynthesis by these PKSs.
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Conclusion

We have successfully demonstrated that carrier protein-dependent alkyne biosynthetic machinery can
work as a trans loading system for truncated Type | PKSs to produce alkyne-tagged polyketides both
in vitro and in vivo. Two protein engineering strategies were explored to improve the interaction between
the carrier protein within the alkyne biosynthetic machinery (JamC) and modular PKSs. This included the
employment of PKS docking domains and site-directed mutagenesis of JamC to increase acyl chain trans-
location specificity. Both strategies were shown to be successful, leading to enhanced recognition of JamC
by modular PKSs and thus improved alkyne-tagged polyketide production. In addition, the effects of both
engineering strategies to improve protein-protein interactions were additive, leading to an ~39-fold in-
crease in the polyketide production by an engineered LipPKS1 in E. coli. It is also notable that the instal-
lation of a docking domain on JamC, but not the site-directed mutagenesis, disrupted its recognition by
JamB in alkyne-tagged polyketide production. Furthermore, the native acyl group specificity of modular
PKSs was suggested to be important for alkyne-tagged polyketide production, in particular in vivo where
competing acyl groups were present. In summary, this work has shown the first examples of de novo biosyn-
thesis of alkyne-tagged polyketides by modular type | PKSs through starter unit engineering and further
provided engineering guidelines and strategies that are expected to be applicable to other modular
PKSs to produce targeted alkyne-tagged metabolites for drug discovery and chemical biology studies.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/}.isci.2020.100938.
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Supplementary Figures
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3 pWP11 JamC-cddiamk 7.3 20.5
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Figure S1. Engineered proteins expressed and purified in this study, related to Figure 2. A. SDS PAGE gel
depicting affinity chromatography purified proteins. B. Table giving yields and expected size of proteins shown
in the above gel.
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Figure S2. JamA and JamC produced the expected product with LipPKS1* and DEBSM6%*, related to Figure 2.
A. Overview scheme of in vitro reactions between JamA/JamC and model PKSs. B. Terminal alkyne product was
observed with both PKSs when JamA, JamC, and the PKS are present, but no detectable amounts are observed
with the omission of JamC and only trace amounts observed with the inclusion Orf35 in place of JamC. C.
Comparison of DEBSM6*/LipPKS1* products to a synthetic standard of alkyne product 1. All solutions in panel
C were injected at 15 pl/run with the standard injected at 0.5 ng/mL The experiments in panel A and B were run
using an Agilent 6510 Accurate Mass QTOF while experiments in panel C were run on an Agilent 6545 accurate
Mass QTOF with a slightly modified gradient (see methods section).
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Figure S3. 'H NMR spectra of compound 1 in CDCls, related to Figure 2 and Figure 3.
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Figure S4. 3C NMR spectra of compound 1 in CDCls, related to Figure 2 and Figure 3.
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Bottom alignment depicts predicted secondary structure of JamC and two helices swapped for longer portions of
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related to Figure 2. Reactions were run at RT for 3h, followed by quenching with cold MeOH. EIC for alkyne
product (1),155.0714 m/z is shown.
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Figure S7. JamC mutagenesis, related to Figure 2 and Figure 3. A. Alignments of JamC compared to DEBSM2-
ACP, DEBSM4-ACP, DEBSM5-ACP, and LipPKS1-ACPL. B. Model of JamC residue E32, compared to
DEBSM2-ACP residue E23 (PDB: 2JU1). The site directed mutagenesis was inspired by work performed on other
modules from the DEBS pathway (Kapur et al., 2012; Klaus et al., 2016). The residue identified was from
DEBSM2 and a mutation was made to mimic a residue on the native upstream ACP of DEBSM4. To identify the
corresponding residue in JamC alignments of the ACP were performed with the DEBSM2 and DEBSM4 ACPs
and JamC. The glutamate at residue 32 of JamC was identified as corresponding to DEBSM2 glutamate at ACP
residue 23 through alignments and modelling. Mutating this JamC residue to mimic the native upstream ACP in
the LipPKS1 and DEBSM6 required alignments of DEBSM2-ACP to the loading ACP of LipPKS1 and the
DEBSMS5-ACP, respectively. For the LipPKS1 system the residue was mutated to threonine (E32T), and for
DEBSMB6 to histidine (E32H).
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Figure S8. '"H NMR spectra of compound 2 in CDCls, related to Figure 2 and Figure 3.
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Figure S9: 3C NMR spectra of compound 2 in CDCl;s related to Figure 2 and Figure 3.
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Transparent methods

General molecular biology methods:

Q5 High-Fidelity DNA polymerase or Phusion High-Fidelity PCR Master Mix (NEB) were used for PCR
reactions. Restriction enzymes were purchased from Thermo Scientific. Plasmid construction was performed
using the alICator LIC cloning and expression system (ThermoFisher Scientific), NEB Builder HiFi DNA
assembly kit (NEB), or the rapid DNA ligation kit (ThemoFisher Scientific). Constructs for LipPKS1(pSY091)
and DEBSM6 (pSY122) were a generous gift from the Keasling lab and the Joint Bioenergy Institute (Yuzawa et
al., 2017). Oligonucleotides were ordered from Integrated DNA Technologies and all constructs were confirmed
by sequencing through the UC Berkeley DNA sequencing facility. PCRs and digests were run on 0.8%-1%
agarose gels and visualized using SYBR safe gel stain (ThermoFisher Scientific). Chemicals and media were
obtained from Alfa Aesar, ThermoFisher Scientific, Sigma-Aldrich or other commercial vendors.

Protein expression and purification.

All proteins that were purified contained C- or N-terminal Hiss tags. For protein expression all plasmids were
transformed into E. coli BL21 (DE3) Star or BAPI (for any ACP containing protein). For all proteins except
JamA (see below for JamA procedure) the cells were grown at 37 °C in 1 L of LB medium with appropriate
concentrations of antibiotics to an ODgoo of 0.4—0.6. The cells were induced with 0.1-0.25 mM isopropyl-B-D-
thiogalactopyranoside (IPTG) for 16 h at 16 °C. The cells were harvested by centrifugation (5,000 x g, 15 min, 4
°C), resuspended in 30 ml of lysis buffer (50 mM HEPES, pH 8.0, 300 mM NaCl, 10 mM imidazole) and lysed
by homogenization or sonication (Branson Sonifier 250, power 8, 15 min 30 % duty) on brined ice water. The
resultant lysed cells were centrifuged (15,000 x g, 30 min, 4 °C) to remove cell debris. Ni-NTA agarose resin
(Qiagen) was added to the supernatant (1-1.5 ml per 1 L of culture), and the solution was nutated at 4 °C for 1 h.
The protein resin mixture was loaded onto a gravity flow column, and proteins were eluted with increasing
concentrations of imidazole in 50 mM HEPES, pH 8.0, 300 mM NaCl. Purified proteins were concentrated using
Amicon Ultra filters, and the buffer was exchanged to remove imidazole with 50 mM HEPES, pH 8.0, 100 mM
NaCl. The final proteins were flash-frozen in liquid nitrogen and stored at —80 °C. Protein concentrations were
determined by NanoDrop with extinction coefficients calculated using the EXPASy ProtParam tool. Proteins were
assessed for correct size and purity by running on mini-PROTEAN precast gels (4-20%, Bio-Rad) at 170 V for
27 min, followed by staining with Bio-Safe Coomassie stain (Bio-Rad). The approximate protein yields are
displayed above.

Altered protocol for JamA expression and purification. JamA was transformed into E. coli BL21 (DE3) star cells
and grown in autoinduction media (Studier, 2014) for 2 h at 37 °C followed by 16 °C for 12 h. Purification
followed the above steps, however 10 % glycerol was included in the buffers during Ni-NTA binding and
subsequent purification and buffer exchange steps.

In vitro enzyme assays:

All assays were performed in 100 mM HEPES (pH 8.0) buffer containing 2 mM MgClz, 20 mM sodium malonate,
2.5 mM TCEP, 1 mM NADPH, 5 mM ATP, 5 mM fatty acid, 2 mM CoA. Malonyl-CoA was generated in vitro
with the addition of 10 uM MatB. The following enzymes, when present, were at the following final
concentrations: 50 uM ACP, 20 uM PKS, 15 uM JamA, 5 uM Orf35. Reactions were performed at RT for the
time indicated (30 min - 3 h). Reactions were quenched with 2 x volume of cold MeOH, followed by centrifugation
at 21.1 x g for 3 min. Analysis was performed with LC/HRMS (15 pl injection) with an Agilent Eclipse Plus C18
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column (4.6 x 100 mm) and Agilent Technologies 6510 in negative mode. Eluting with a linear gradient of 2—
95% MeCN (v/v) over 13 min in H>O supplemented with =~~~ 0.1%  (v/v) ' formic acid at a flow rate
of 0.5 ml/min. In the experiments shown in Fig. S2C all parameters are the same as the previous sentence besides
the reaction run on an Agilent 6545 Accurate Mass QTOF with a linear gradient of 2-98% MeCN (v/v) over 13
min.

In vivo production of 3-hydroxy-7-hexenoic acid and 3-hydroxy-7-hexynoic acid.

BAPI1 cells with plasmid pWP34 (pCDFDuet containing JamA and JamB) along with a pETDUET plasmid
containing the ACP and PKS were grown in 100 ml of LB medium with 100 pg/ml carbenicillin and 100 pg/ml
spectinomycin at 37 °C to an ODgoo of 0.4—0.6. Subsequently, the cells were centrifuged and resuspended in 25
mL F1 media (60 mM phosphate buffer, pH 7, 30 mM ammonium sulfate, with the following added fresh to a
final concentration of 1.25 mM MgSQOs4, 0.5 % (w/v) glucose, 100 uM Fe(NH4)2(SO4)2) supplemented with 1.25
mL trace metal solution, 10 mL 100 x vitamin solution, 100 pg/ml carbenicillin, 100 pg/ml spectinomycin, 0.5
mM IPTG and 1 mM 5-hexenoic acid. After 72 h of growth at 16 °C, 1 mL of cell culture was added to a 2 mL
Eppendorf tube followed by acidification to ~ pH 1 with formic acid (35 pL formic acid). The cell culture was
extracted with EtOAc (500 pL x 3). The organic fractions were combined and concentrated using a nitrogen
evaporator (Techne). The extract was redissolved in 60 pL MeOH, transferred to mass spec vials and analyzed
by HPLC and LC/HRMS (3 pl injection) with an Agilent Eclipse Plus C18 column (4.6 x 100 mm). Eluting with
a linear gradient of 2-98% MeCN (v/v) over 13 min in H>O supplemented with 0.1% (v/v) formic acid at a flow
rate of 0.5 ml/min. LC/HRMS analysis was performed on an Agilent Technologies 6545 Accurate Mass QTOF
LC/MS in negative mode. Product titers were quantified by calibration to synthetic standards. Integration of
product ions from MS/MS fragmentation (Fragmentor set to 100 V and collision energy at 5 V) was performed
using the following transitions: 3-hydroxy-7-octenoic acid 157.086 = 59.01 m/z, 3-hydroxy-7-octynoic acid
155.071 = 59.01 m/z. Standard curves were generated for 3-hydroxy-7-octenoic acid (from 50 pg/mL - 0.5
ng/mL, if titer was greater than 50 pg/mL the extract was diluted ten-fold to fit the calibration range) and
3hydroxy-7-octynoic acid (20 pg/mL - 0.5 ng/mL). Data were analyzed and visualized using Agilent
MassHunter Q-TOF quantification software and Microsoft Excel. Other compounds besides 1 and 2 with putative
structures shown in Figure S10 were confirmed to have the same carboxylic acid MS2 fragment (59.01). The
formulas and masses included in other compounds are: CgHi503-—159.1027, C10H1503-—183.1027, CioH1703—
185.1183,

C1oH1903 —187.1340, C12H1903 —211.1340, Ci2H2105 —213.1496, C1oH2303 —215.1653. At least three

independent replicates were performed, and error bars represent SEM.

Engineered LipPKS1* and DEBSM6*
Previous engineering of the LipPKS1 and DEBSM6 modules swapped the native AT domain for a malonyl-CoA
accepting derivative (in our work we used the AT domain derived from the indanomycin module 9 for LipPKS1*
and the AT from epothilone module 4 for DEBSM6%) in addition to the thioesterase domain of DEBSM6 fused
to the C-terminal end of LipPKS1*, all of these constructs were first reported by Yuzawa et al. (Yuzawa et al.,
2017) and obtained from the Keasling lab and the Joint Bioenergy Institute.

DEBSM6* was used without further modification in our studies however, LipPKS1 was further modified
through removing of the loading domains to create LipPKS1*. The truncation site was chosen based on alignments
to other PKSs and the reported site of docking domain fusions (Fig. S5C). Residues 1-646 of LipPKS1 were
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removed so that the truncated LipPKS1* begins with the EPIAIV motif. Alignments were performed using Clustal
Omega with default settings on the MPI Bioinformatics =~ Toolkit server ' (Zimmermann et al.,
2018).

Docking domain alignments and fusions
Docking domains from the Curacin and Jamaicamide biosynthetic pathways identified by Whicher et al. (Whicher
etal., 2013). Incorporation of these docking domains necessitated identifying proper fusion sites at the C-terminus
of JamC and the N-terminus of the PKSs. To identify the proper sites, we used alignments of the ACPs and PKSs
along with structural modeling (Fig. S5A). Two orientations of JamC-docking domain fusions were identified and
tested. One with the full JamC ACP with the docking domain appended to the C-terminus and the second with
the last 19 residues of JamC were swapped with either CurK or JamK to replace small helices on JamC with those
of CurK or JamK in addition to the docking domain (Fig. S5-S6). These cdd“"K"amK constructs were tested with
the corresponding ndd“*L7amL_ipPK S1* synthase (Fig. S2, S6). The fusion site for the LipPKS1* and DEBSM6*
with docking domains were more readily identifiable through alignments thus only one orientation was tested
with fusing the docking domain in front of the “D/EPIAI motif” (Fig. S5C).

JamC was modelled using CurA ACP; (PDB: 2LIU) as the parent structure, with the Robetta online server
(Song et al., 2013). All alignments were done using Clustal Omega with default settings on the MPI
Bioinformatics Toolkit server (Zimmermann et al., 2018).

Site directed mutagenesis identification

The site directed mutagenesis was inspired by work performed on other modules from the DEBS pathway
(Kapur et al., 2012; Klaus et al., 2016). The residue identified was from DEBSM2 and a mutation was made to
mimic a residue on the native upstream ACP of DEBSM4. To identify the corresponding residue in JamC
alignments of the ACP were performed with the DEBSM2 and DEBSM4 ACPs and JamC. The glutamate at
residue 32 of JamC was identified as corresponding to DEBSM?2 glutamate at ACP residue 23 through alignments
and modelling (Fig. S7). Mutating this JamC residue to mimic the native upstream ACP in the LipPKS1 and
DEBSM6 required alignments of DEBSM2-ACP to the loading ACP of LipPKS1 and the DEBSMS5-ACP,
respectively (Fig. S7A). For the LipPKS1 system the residue was mutated to threonine (E32T), and for DEBSM6
to histidine (E32H).

Alignments were performed using Clustal Omega with default settings on the MPI Bioinformatics Toolkit
server (Zimmermann et al., 2018). JamC was modelled using CurA ACP; (PDB: 2LIU) as the parent structure,
with the Robetta online server (Song et al., 2013).

General synthetic methods:

All reagents were purchased from commercial suppliers and used without further purification. (R)-3-Acetyl-
4benzyl-2-oxazolidinone (S3) was synthesized according to Nickerson et al. (Nickerson et al., 2016) and the
spectra matched reported literature values (Ager et al., 1996). Reaction progress was monitored by thin-layer
chromatography on silica gel 60 plates (aluminum back, EMD Millipore) and visualized by UV light or stained
with KMnQO4. Compounds were purified by flash column chromatography using Fisher Scientific 230-400 mesh,
60 A, silica gel. NMR spectra were acquired with a Bruker Biospin spectrometer with a cryoprobe. All spectra
were acquired at 298 K. 'H spectra were acquired at 400 MHz, 13C spectra were acquired at 100 MHz. Coupling
constants (J) are provided in Hz and chemical shifts reported in ppm relative to residual non-deuterated NMR
solvent. High resolution mass spectra were collected using an Agilent Technologies 6520 or 6545 Accurate-Mass
Q-TOF LC-MS instrument.
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Scheme S1: Synthetic route to alkene product 2 (A), and alkyne * product 1 (B), related to
Figure 2 and Figure 3.
A
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5-hexen-1-al (S2):

5-hexen-1-ol (S1, 0.72 mL, 6.0 mmol) was added to DCM (60 mL) in a flame-dried round-bottom flask. The
solution was cooled to 0 °C and stirred under N». Dess-Martin periodinane (3.557 g, 8.386 mmol) was then added
to the reaction mixture and stirred for 4.5 h while it warmed to RT. Upon consumption of starting material the
reaction was diluted with DCM and washed with saturated sodium bicarbonate (2 x 100 mL). The aqueous layer
was extracted with DCM and the organic layers were combined, dried over MgSOQs, filtered, and concentrated in
vacuo. The crude material was purified via flash chromatography (eluting with 9:1 to 7:3 hexanes:ethyl acetate)
to provide S2 as a colorless liquid (0.25 g, 43%). The NMR spectra were consistent with previous reports
(Hyugano et al., 2008).

3-hydroxydec-9-enoic acid_(2):

(R)-3-Acetyl-4-benzyl-2-oxazolidinone (S3, 0.501 g, 2.29 mmol) was added to a flame-dried round-bottom flask,
dissolved in DCM (22 mL), and cooled to 0 °C under N>. A 1.0 M solution dibutylboron triflate in DCM (2.51
mL, 2.51 mmol) and DIPEA (0.48 mL, 2.7 mmol) were then added to the reaction flask and the mixture was
stirred for 30 min at 0 °C followed by cooling to -78 °C. Aldehyde S2 dissolved in 2 mL DCM was then slowly
added to the reaction mixture and stirred for 30 min at -78 °C before warming to RT and stirring an additional 1.5
h. The reaction was monitored by TLC (7:3 hexanes:ethyl acetate) and upon consumption of starting material the
reaction was cooled to 0 °C and quenched with 2.5 mL methanol, 1 mL 50 mM phosphate buffer (pH 7.4), and 2
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mL of 10% H>O; followed by additional stirring for 1 h. The reaction mixture was diluted with deionized water
(20 mL) and extracted with DCM (3 x 20 mL). The organic =~ layers  were ' combined, dried over
MgSOs, filtered, and concentrated in vacuo. A short silica column was run (eluting with 9:1 to 7:3 hexanes:ethyl
acetate) and the relevant fractions were combined and concentrated. The concentrated material was dissolved in
4:1 THF:H>0 (2.2 mL), cooled to 0 °C and 30% H>0 (2.7 mL) was added, followed by slow addition of 1.5 mL
sat. LiOH (aq.). The reaction mixture was stirred at 0 °C for 2 h and then quenched with 3 mL sat. Na,SO; and
the mixture was extracted with DCM (2 x 10 mL). The organic layer was back-extracted with 10 mL water. The
aqueous layers were combined, and the pH was lowered to 1 with 3 M HCL. The aqueous layer was then extracted
with ethyl acetate (5 x 20 mL). The organic layers were combined, dried over MgSOs, filtered, and concentrated
in vacuo to yield an opaque residue. The residue was purified by column chromatography (eluting with 9:1 to 3:2
hexanes:ethyl acetate) to yield 2 as a colorless oil (0.071g, 18%). 'H NMR (400 MHz, CDCls) d 5.84 (ddt, J =
16.9 Hz, 10.2 Hz, 6.7 Hz, 1H), 5.03 (m, 2H), 4.09 (m, 1H), 2.61 (dd, /= 16.6 Hz, 3.2 Hz, 1H), 2.52 (dd, /= 16.6
Hz, 8.9 Hz, 1H), 2.13 (app q, /= 7.1 Hz, 6.5 Hz, 2H) 1.67-1.42 (m, 4H). *C NMR (100 MHz, CDCl3) d 177.8,
138.4,114.9,67.9,41.1, 35.8, 33.5,24.7. HRMS (ES") m/z: [M —H]— caled CsH1303 157.0870, found 157.0875.

S-hexyn-1-al (S6):

5-hexyn-1-ol (S5, 0.67 mL, 6.1 mmol) was added to DCM (60 mL) in a flame-dried round-bottom flask. The
solution was cooled to 0 °C and stirred under N». Dess-Martin periodinane (3.630 g, 2.453 mmol) was then added
to the reaction mixture and stirred for 4.5 h while it warmed to RT. Upon consumption of starting material the
reaction was diluted with DCM and washed with saturated sodium bicarbonate (2 x 100 mL). The aqueous layer
was extracted with DCM and the organic layers were combined, dried over MgSOu, filtered, and concentrated in
vacuo. The crude material was purified via flash chromatography (eluting with 9:1 to 7:3 hexanes:ethyl acetate)
to provide S6 as a colorless liquid (0.35 g, 60%). The NMR spectra were consistent with previous reports
(Majmudar et al., 2016).

3-hydroxydec-9-ynoic acid_(1):

(R)-3-Acetyl-4-benzyl-2-oxazolidinone (S3, 0.933 g, 4.26 mmol) was added to a flame-dried round-bottom flask,
dissolved in DCM (42 mL), and cooled to 0 °C under N>. A 1.0 M solution dibutylboron triflate in DCM (4.68
mL, 4.68 mmol) and DIPEA (0.89 mL, 5.1 mmol) were then added to the reaction flask and the mixture was
stirred for 30 min at 0 °C followed by cooling to -78 °C. Aldehyde S6 dissolved in 2 mL DCM was then slowly
added to the reaction mixture and stirred for 30 min at -78 °C before warming to RT and stirring an additional 1.5
h. The reaction was monitored by TLC (7:3 hexanes:ethyl acetate) and upon consumption of starting material the
reaction was cooled to 0 °C and quenched with 5 mL methanol, 2 mL 50 mM phosphate buffer (pH 7.4), and 4
mL of 10% H20: followed by additional stirring for 1 h. The reaction mixture was diluted with deionized water
(40 mL) and extracted with DCM (3 x 40 mL). The organic layers were combined, dried over MgSOys, filtered,
and concentrated in vacuo. A short silica column was run (eluting with 9:1 to 7:3 hexanes:ethyl acetate) and the
relevant fractions were combined and concentrated. The concentrated material was dissolved in 4:1 THF:H>O
(4.0 mL), cooled to 0 °C and 30% H>0> (4.9 mL) was added, followed by slow addition of 2.7 mL sat. LiOH
(aq.). The reaction mixture was stirred at 0 °C for 2 h and then quenched with 5 mL sat. Na;SO3 and the mixture
was extracted with DCM (2 x 20 mL). The organic layer was back-extracted with 20 mL water. The aqueous
layers were combined, and the pH was lowered to 1 with 3 M HCI. The aqueous layer was then extracted with
ethyl acetate (5 x 30 mL). The organic layers were combined, dried over MgSOs, filtered, and concentrated in
vacuo to yield an opaque residue. The residue was purified by column chromatography (eluting with a gradient
of 5% to 10% methanol in DCM) to yield 1 as a colorless oil (0.0081g, 1.1%). 'H NMR (400 MHz, CDCl;) d
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4.11 (m, 1H), 2.63 (dd, J = 16.7 Hz, 3.3 Hz, 1H), 2.55 (dd, J= 16.7 Hz, 8.9 Hz, 1H) 2.29 (m, 2H), 2.01 (t, J=2.6
Hz, 1H) 1.811.60 (m, 4H). 3C NMR (100 MHz, CDCL)d ~ 177.4, 84.0, ' 68.8, 67.5, 41.1, 353,
24.4,18.2. HRMS (ES) m/z: [M — H]~ caled CsH1103 155.0714, found 155.0719.
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Table S1: Plasmids used in this publication, related to Figure 2 and Figure 3.

Name description vector Use

pWPO08 | N-term-His WELQ-JamC pLATE5S2 |JamC overexpression and purification

pWPO09 | N-term-His WELQ-JamC(full)-CurK(short) pLATE5S2 |JamC overexpression and purification

pWP10 |N-term-His WELQ-JamC(short)-CurK(long) pLATE5S2 |JamC overexpression and purification

pWP11 |N-term-His WELQ-JamC(full)-JamK(short) pLATE5S2 |JamC overexpression and purification

pWP12 |N-term-His WELQ-JamC(short)-JamK(long) pLATE5S2 |JamC overexpression and purification

pWP15 |N-term-His WELQ-LipPKS-AT91 pLATES2 |LipPKS1 overexpression and purification

pWP17 | N-term-His WELQ-CurL-LipPKS-AT91 pLATES2 |LipPKS1 overexpression and purification

pWP19 |N-term-His WELQ-JamL-LipPKS-AT91 pLATES2 |LipPKS1 overexpression and purification

pWP20 |pETDUET-JamC(WT) pETDUET |Overexpression for in vivo production of terminal alkynes
pWP23 |pETDUET-JamC(wt)_LipPKS pETDUET |Overexpression for in vivo production of terminal alkynes
pWP27 |pETDUET-JamC-CurKdd_CurlLdd-LipPKS pETDUET |Overexpression for in vivo production of terminal alkynes
pWP29 |pETDUET-JamC-JamKdd_JamLdd-LipPKS pETDUET |Overexpression for in vivo production of terminal alkynes
pWP30 |pETDUET-NL-LipPKS pETDUET |Overexpression for in vivo production of terminal alkynes
pWP34 |pCDFDuet-JamB(M5T)-JamA pCDFDUET |Overexpression for in vivo production of terminal alkynes
pWP39 |pET_CurLdd-DEBSM6 pET DEBS6 overexpression and purification

pWP40 |pET_JamLdd-DEBSM6 pET DEBS6 overexpression and purification

pWP41 |pETDUET-JamC(WT)_DEBS6TE pETDUET |Overexpression for in vivo production of terminal alkynes
pWP48 |pETDUET-DEBS6-TE pETDUET |Overexpression for in vivo production of terminal alkynes
pWP50 |pLATE52-N-His-WELQ-JamC(E32T) pLATE5S2 |JamC overexpression and purification

pWP51 | pLATE52-N-His-WELQ-JamC(E32H) pLATE5S2 |JamC overexpression and purification

pWP58 |pETDUET-JamC(E32T)_LipPKS1 pETDUET |Overexpression for in vivo production of terminal alkynes
pWP59 |pETDUET-JamC(E32T)-CurKdd_CurL-LipPKS1 |pETDUET |Overexpression for in vivo production of terminal alkynes
pWP65 |pETDUET-JamC(E32T)-JamKdd_JamL-LipPKS1 |pETDUET |Overexpression for in vivo production of terminal alkynes
pWP73 |pCDFDuet-JamB(M5T) pCDFDUET |Overexpression for in vivo production of terminal alkynes
PSY122 |DEBS6-TE pET Overexpression and purification of DEBSM6

PXZ23 |JamA pET Overexpression and purification of JamA
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Table S2: Primers used to generate plasmids, related to Figure 2 and Figure 3.

Primer

sequence (5-->3")

Used for

PWP24-His-WELQ-JamC-pLATE-fwd

GGTTGGGAATTGCAAATGGAAAACTTAACCGTAGAAACC

JamC cloning into pLATES52 for overexpression

PWP25-JamC-wt-pLATE-Rev

ggagatgggaagtcattaTGCACCAAAGTGCTCTG

JamC docking domain cloning

PWP26-JamC-fu-CurK-sh-Fwd

GCTATGGCAGAGCACTTTGCAAATGATGTGATGCCGAT

JamC docking domain cloning

PWP27-CurK-sh-JamC-fu-Rev

ATCGGCATCACATCATTTGCAAAGTGCTCTGCCATAGC

JamC docking domain cloning

PWP28-CurK-pLATES2-rev

ggagatgggaagtCATTAGATTAACTTCTCCAAAGCTTCGAT

JamC docking domain cloning into pLATE52 for overexpression

PWP29-JamC-sh-CurK-long-Fwd

tggggattggatctcaaaagaaataTCCTCTACCTTATTATTCGACTATCC

JamC docking domain cloning

PWP30-CurK-long-JamC-sh-Rev

GGATAGTCGAATAATAAGGTAGAGGAtatttcttttgagatccaatcccca

JamC docking domain cloning

PWP31-JamC-fu-JamK-sh-Fwd

GCTATGGCAGAGCACTTTCTGAAGGAAGTTATGGGCTG

JamC docking domain cloning

PWP32-JamK-sh-JamC-fu-Rev

CAGCCCATAACTTCCTTCAGAAAGTGCTCTGCCATAGC

JamC docking domain cloning into pLATE52 for overexpression

PWP33-JamK-pLATE52-Rev

ggagatgggaagtCATTACAACATCGACTTGATTTTCTCAA

JamC docking domain cloning into pLATES52 for overexpression

PWP34-JamC-sh-JamK-long-Fwd

tggggattggatctcaaaagaaataCCTGGCACCGTCG

JamC docking domain cloning

PWP35-JamK-long-JamC-sh-Rev

CGACGGTGCCAGGtatttcttttgagatccaatcccca

JamC docking domain cloning

PWP38-pLATES2-LipPKS-KS-fwd

ggttgggaattgCAAgaaccaattgcgatcgtgg

LipPKS1 cloning into pLATES52 for overexpression

PWP39-TE-LipPKS-pLATE52-Rev

ggagatgggaagtCATTAGCTGTTGCCGCCA

LipPKS1 cloning into pLATES52 for overexpression

PWP40-pLATES2-Curl-Fwd

ggttgggaattgCAAATGAACCTTAAGCAAGAGCAG

LipPKS1 docking domain cloning into pLATES2 for overexpression

PWP41-LipPKS-KS-CurL-Rev

ccacgatcgcaattggttcTTTTGATTGAGTCTCATACTTCTCTAACTT

LipPKS1 docking domain cloning

PWP41-CurL-LipPKS-KS-Fwd

AAGTTAGAGAAGTATGAGACTCAATCAAAAgaaccaattgcgatcgtgg

LipPKS1 docking domain cloning

PWP42-pLATE52-JamL-Fwd

ggttgggaattgCAAATGGAACCTACCACGAATAAGG

LipPKS1 docking domain cloning into pLATES2 for overexpression

PWP43-LipPKS-KS-JamL-Rev

ccacgatcgcaattggttcGGATTTAGCCAACTCCATCATC

LipPKS1 docking domain cloning

PWP44-JamL-LipPKS-KS-Fwd

GATGATGGAGTTGGCTAAATCCgaaccaattgcgatcgtgg

LipPKS1 docking domain cloning

PWP48-JamC-all-Fwd

catCCATGGAAAACTTAACCGTAGAAA

JamC cloning into pETDUET

PWP49-JamC-Rev

catAAGCTTCTAtgcaccaaagtgctct

JamC cloning into pETDUET

PWP50-JamC-CurKdd-Rev

catAAGCTTCTAGATTAACTTCTCCAACGCTTCGATTTCTTG

JamC cloning into pETDUET

PWP51-JamC-JamKdd-Rev

catAAGCTTCTACAACATCGACTTGATTTTCT

JamC cloning into pETDUET

PWP52-LipPKS-wt-Fwd

tacCATATGGAACCAATTGCGATCG

LipPKS1 cloning into pETDUET

PWP53-CurlLdd-LipPKS-Fwd

tacCATATGAACCTTAAGCAAGAGCA

LipPKS1 cloning into pETDUET

PWP54-JamLdd-LipPKS-Fwd

tacCATATGGAACCTACCACGAATA

LipPKS1 cloning into pETDUET

PWP55-LipPKS-all-REV

catCTCGAGtcaGCTGTTGCCGCC

LipPKS1 cloning into pETDUET

PWP56-pETDUET-LipPKS-Fwd

ttaagtataagaaggagatatacatATGGAACCAATTGCGATCGTGG

LipPKS1 cloning into pETDUET

PWP57-pETDUET-CurLdd-Fwd

ttaagtataagaaggagatatacatATGAACCTTAAGCAAGAGCAGGAAAAAG

CurL cloning into pPETDUET

PWP58-pETDUET-JamLdd-Fwd

ttaagtataagaaggagatatacatATGGAACCTACCACGAATAAGGACC

JamLcloning into pETDUET

PWP59-LipPKS-pETDUET(end)-Rev

cagcggtttctttaccagactcgagTCAGCTGTTGCCGCCACC

LipPKS1 cloning into pETDUET

PWP60-pETDUET(2nd MCS)-Fwd

CTCGAGTCTGGTAAAGAAAC

pETDUET MCS2 cloning

PWP61-pETDUET(2nd MCS)-Rev

ATGTATATCTCCTTCTTATACTTAACTAATATACTAAGATGGG

pETDUET MCS2 cloning

PWP74-pCDF-JamB-M5T-Fwd

ctttaataaggagatataccATGTCAATGCCAACCGATGTGAGCAA

JamB(M5T) mutation cloning into pCDFDuet

PWP75-JamB-PCDF-rev

gcaagcttgtcgacctgcagTTAAGCTAACTTCTTAGCTTCG

JamB(M5T) mutation cloning into pCDFDuet

PWP89-pET_Gibson-Rev

ATGTATATCTCCTTCTTAAAGTTAAAC

pET Gibson cloning for overexpression

PWP90-pETGibson-Fwd

GATCCGGCTGCTAACAAAGCC

pET Gibson cloning for overexpression

PWP91-pET-CurLdd-Fwd

ttaactttaagaaggagatatacatATGAACCTTAAGCAAGAG

pET CurL cloning for overexpression

PWP92-CurLdd-DEBS6-Rev

tcgcaatcggatcTTTTGATTGAGTCTCATACTTC

DEBS6 docking domain cloning

PWP93-CurLdd-DEBS6-Fwd

gactcaatcaaaaGATCCGATTGCGATTGTGG

DEBS6 docking domain cloning

PWP94-DEBS6-pET-Rev

ttcgggctttgttagcagccggatc TCAGTGGTGGTGGTGGTG

DEBSS6 into pET for overexpression cloning
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PWP95-pET-JamLdd-Fwd ttaactttaagaaggagatatacatATGGAACCTACCACGAATAAG pET JamL cloning for overexpression

TCGCAATCGGATCGGATTTAGCCAACTCCATC

PWP96-JamLdd-DEBS6-Rev DEBS6 docking domain cloning

PWP97-JamLdd-DEBS6-Fwd gttggctaaatccGATCCGATTGCGATTGTGG DEBS6 docking domain cloning

PWP110_pETDUET-DEBS6_fwd ttaagtataagaaggagatatacatATGTCTGGTGATAACGGCATG DEBS®6 cloning into pETDUET

PWP111_DEBS6-pETDUET _rev cagcggtttctttaccagactcgagtcacgaattcccgecac DEBS®6 cloning into pETDUET

PWP144_JamC_E32T_fwd

agatgaggttcagACCtggttgatttcttatc

JamC mutagenesis cloning

PWP145_JamC_E32T_rev

gataagaaatcaaccaGGTctgaacctcatct

JamC mutagenesis cloning

PWP146_JamC_E32H_fwd

AGATGAGGTTCAGCATTGGTTGATTTCTTATC

JamC mutagenesis cloning

PWP147_JamC_E32H_rev

JamC mutagenesis cloning

gataagaaatcaaccaATGctgaacctcatct

PWP158_pETDUET_MCS1_fwd AAGCTTGCGGCCGCATAAT pETDUET MCS1 cloning
PWP159_pETDUET_MCS1_rev GGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGG pETDUET MCS1 cloning
PWP160_pETDUET_JamC-Fwd ctttaagaaggagatataccATGGAAAACTTAACCGTAGAAAC pETDUET JamC cloning
PWP161_pETDUET_JamC-Rev cattatgcggccgcaagctt CTATGCACCAAAGTGCTC pETDUET JamC cloning

PWP162_pETDUET_CurKdd-Rev cattatgcggccgcaagctt CTAGATTAACTTCTCCAACG pETDUET JamC cloning

PWP163_pETDUET_JamKdd-Rev cattatgcggccgcaagctt CTACAACATCGACTTGATTTTC pETDUET JamC cloning

PWP166_QC_JamC_E32T_fwd cagtagatgaggttcagacctggttgatttcttatctatcacaa JamC mutagenesis cloning (quick change)
PWP167_QC_JamC_E32T_rev ttgtgatagataagaaatcaaccaggtctgaacctcatctactg JamC mutagenesis cloning (quick change)
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