

BNL-216004-2020-JAAM

The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides

M. Bianchini, J. Bai

To be published in "NATURE MATERIALS"

May 2020

Photon Sciences
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

14
15 **The interplay between thermodynamics and kinetics in the solid-state synthesis of layered**
16 **oxides**
17
18

19 Matteo Bianchini^{§ a,b,c}, Jingyang Wang^{§ a,b}, Raphaële Clément^{b,d}, Bin Ouyang^{a,b}, Penghao
20 Xiao^{a,b}, Daniil Kitchaev^d, Tan Shi^{a,b}, Yaqian Zhang^{a,b}, Yan Wang^e, Haegyeom Kim^{a,b}, Mingjian
21 Zhang^f, Jianming Bai^f, Feng Wang^f, Wenhao Sun^{a,g,*} and Gerbrand Ceder^{a,b,*}

22
23 *§equal contribution*
24

25 **corresponding authors:*

26 *Prof. Wenhao Sun (Email: whsun@umich.edu)*

27 *Prof. Gerbrand Ceder (Email: gceder@berkeley.edu)*

28
29 ^a Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
30 USA

31 ^b Department of Materials Science and Engineering, University of California, Berkeley, CA
32 94720 USA

33 ^c Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of
34 Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,
35 Germany

36 ^d Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA

37 ^e Samsung Research America, Cambridge, Massachusetts 02138, United States

38 ^f Brookhaven National Laboratory, Upton, NY 11973, USA.

39 ^g Department of Materials Science and Engineering, University of Michigan, Ann Arbor,
40 Michigan, 48109, United States

41
42
43
44
45
46

47 **Abstract**

48

49 In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts
50 instead of the thermodynamic equilibrium phase. Understanding the competition between
51 thermodynamics and kinetics is fundamental towards the rational synthesis of target materials.
52 Here, we use *in situ* synchrotron X-ray diffraction to investigate the multistage crystallization
53 pathways of the important two-layer (P2) sodium oxides $\text{Na}_{0.67}\text{MO}_2$ (M = Co, Mn). We observe a
54 series of fast non-equilibrium phase transformations through metastable three-layer O3, O3' and
55 P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical
56 framework to rationalize the observed phase progression, demonstrating that even though P2 is
57 the equilibrium phase, compositionally-unconstrained reactions between powder precursors
58 favor the formation of non-equilibrium three-layered intermediates. These insights can guide the
59 choice of precursors and parameters employed in the solid-state synthesis of ceramic materials,
60 and constitutes a step forward in unraveling the complex interplay between thermodynamics and
61 kinetics during materials synthesis.

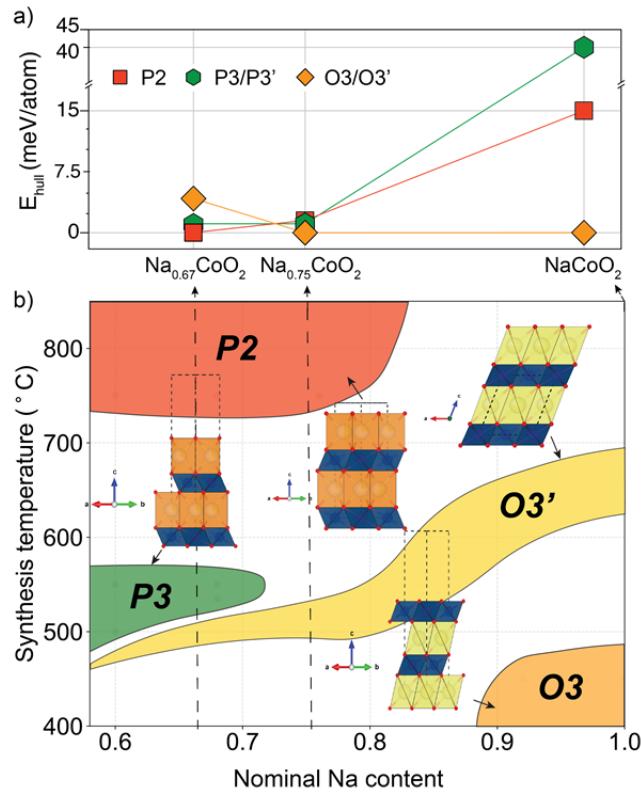
62

63

64

65 Designing and synthesizing new materials with tailored properties are cumbersome tasks. When
66 approaching materials synthesis, the thermodynamic phase diagram is often a general starting
67 point. Guided by it, one should prepare precursors at a composition where a desired equilibrium
68 phase is stable, and obtain it by holding the system under appropriate thermodynamic conditions
69 (temperature and pressure) for a sufficiently long time. Both experimental and *ab-initio* predicted
70 phase diagrams are guiding tools for synthesis ^{1, 2, 3}, yet they often become unreliable when
71 reaction kinetics plays a major role. Notably, compounds predicted as thermodynamically stable
72 often cannot be synthesized experimentally ⁴, whereas metastable materials (i.e. higher in energy
73 than the ground state phases) are often observed during materials formation ^{5, 6, 7, 8}.

74


75 Several *in situ* studies of synthesis reactions ^{9, 10, 11, 12, 13, 14, 15, 16, 17, 18} have shown that the path
76 towards the target phase often proceeds through multiple non-equilibrium intermediates. This
77 pathway is important as long-lived metastable intermediates can persist as impurity phases in the
78 final product, or they can structurally template ensuing phase transformations ^{13, 14, 15}. Although
79 kinetic factors can be exploited to guide the outcome of specific reactions ^{14, 15}, currently no
80 general guiding principles exist to predict or rationalize these pathways, which can be entirely
81 thermodynamic, kinetic, or result from the intricate interplay of the two. Being able to account
82 for and anticipate these metastable intermediates would represent a milestone in building a
83 predictive theory of synthesis. This is especially important given the emergence of computational
84 materials-by-design methods, which have dramatically increased the number of compelling
85 materials to be experimentally investigated ^{19, 20, 21}.

86

87 In this paper, we systematically explore the non-equilibrium formation pathways of layered Na
88 metal oxides by means of *in situ* synchrotron X-ray diffraction and *ab-initio* computations. We
89 chose these Na-based compounds due to their technological relevance as battery electrodes ²²,
90 thermoelectrics ²³ and superconducting materials ²⁴; as well as for their structural complexity
91 with many competing phases ^{25, 26, 27, 28}. The layered Na_xMO_2 structures form in two major
92 polytypes, which can be distinguished by their oxygen stacking sequence and Na environments
93 (Figure 1b): P2, with a two-layer stacking; and O3 and P3, with a three-layer stacking. Symmetry
94 breaking by secondary phenomena (e.g. Na ordering, Jahn-Teller distortions) are indicated by
95 primes (e.g. O3'/P3'). Properties such as Na^+ mobility and electronic and thermal conductivity
96 are highly dependent on the stoichiometry and structure of the Na_xMO_2 phase under
97 consideration. For example, P2 phases are attractive Na-ion cathode materials exhibiting
98 excellent Na^+ conductivity ^{29, 30}.

99
100 Understanding practical synthesis routes to these specific Na_xMO_2 structures is essential. The
101 thermodynamic stability of different Na_xMO_2 polytypes varies with the Na content, x , as
102 calculated in Figure 1a, where the unprimed labels (O3/P3/P2) are used to designate the stacking
103 regardless of whether the symmetry is further broken. In the Na_xCoO_2 system, the O3-type
104 stacking exhibits octahedrally-coordinated alkali and transition metals, and is the lowest-energy
105 phase at high sodiation; while at $x = 0.67$, a two-layer structure with prismatically coordinated
106 Na ions (P2) is the ground state phase. Thus, though the DFT energy differences are small,
107 thermodynamic considerations imply that P2 should be the equilibrium phase for $\text{Na}_{0.67}\text{CoO}_2$ at
108 low temperatures. However, the experimentally observed behavior is different. Figure 1b
109 summarizes the *ex situ* experimental synthesis results for the different Na_xCoO_2 polytypes ³¹. At

110 low Na content ($0.6 < x < 0.75$), P2 is only synthesized above 1000 K, while P3 and O3' are
 111 obtained at lower temperatures. Thus, the metastable phase three-layer polytypes are the actually
 112 observed low-temperature phases, while the two-layer P2 phase can only be synthesized at high
 113 temperature, in apparent contradiction with the DFT stability predictions.

114
 115 **Figure 1: Predicted thermodynamic stability and experimentally observed synthetic accessibility of Na_xCoO_2**
 116 **polytypes. a,** Energy above the convex hull (E_{hull}) of the various polytypes of Na_xCoO_2 in their lowest energy
 117 $\text{Na/vacancy configuration at } x = 0.67, 0.75 \text{ and } 1$, calculated with the DFT-SCAN metaGGA functional³². **b,** Sodium
 118 layered oxides Na_xCoO_2 experimentally stabilized as a function of their sodium content x and of the temperature at
 119 which they are commonly synthesized in air. Colored areas denoted by P2, P3, O3' and O3 are single phase regions
 120 suggested by Lei *et al.*³¹, representing the literature prior to this work. The crystal structure of each polymorph is
 121 shown and labeled using the notation introduced by Delmas²⁵: the letter stands for the type of Na environment (P:
 122 prismatic, O: octahedral), while the number describes the oxygen stacking (e.g. in P2 Na ions occupy prismatic sites
 123 in between ABBA oxygen stacking). Blue units represent CoO_6 octahedral environments, yellow/orange units NaO_6
 124 octahedral/prismatic environments. A prime symbol (e.g. P3') indicates a monoclinic or orthorhombic distortion of

125 the unprimed structure, typically due to Na ordering (or Jahn-Teller distortions for the Mn system). For example, a
126 $P3 - P3'$ reversible transition occurs at 350-370 K³³. Note that in the computational results we use the unprimed
127 notation for all structures (e.g. $O3'$ is $O3$) because the distinction is not very meaningful in the computations. For x
128 < 1, Na-vacancy ordering in the DFT already breaks the symmetry of the $O3$ lattice and only a structure where the
129 Na and vacancies are disordered (thereby reestablishing the equivalence of all Na sites) can have $O3$ symmetry.

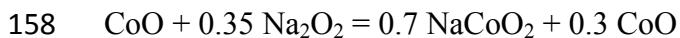
130

131 Motivated by the need to understand what drives solid-state reactions in polytypic Na_xMO_2
132 systems, we undertake an in-depth study of the synthesis of Na_xCoO_2 and Na_xMnO_2 . Using *in*
133 *situ* synchrotron X-Ray diffraction and differential scanning calorimetry (DSC), we observe a
134 sequence of non-equilibrium three-layer phases during the solid-state ceramic synthesis of P2
135 layered sodium metal oxides. We rationalize our findings using an *ab-initio* thermodynamic
136 framework based on a powder precursor interfacial reaction model, and suggest a unifying
137 principle that governs the initial phase formation in solid-state synthesis. Our work elucidates the
138 subtle competition between thermodynamics and kinetics, providing fundamental insights
139 towards a more rational understanding of solid-state ceramic materials synthesis.

140

141

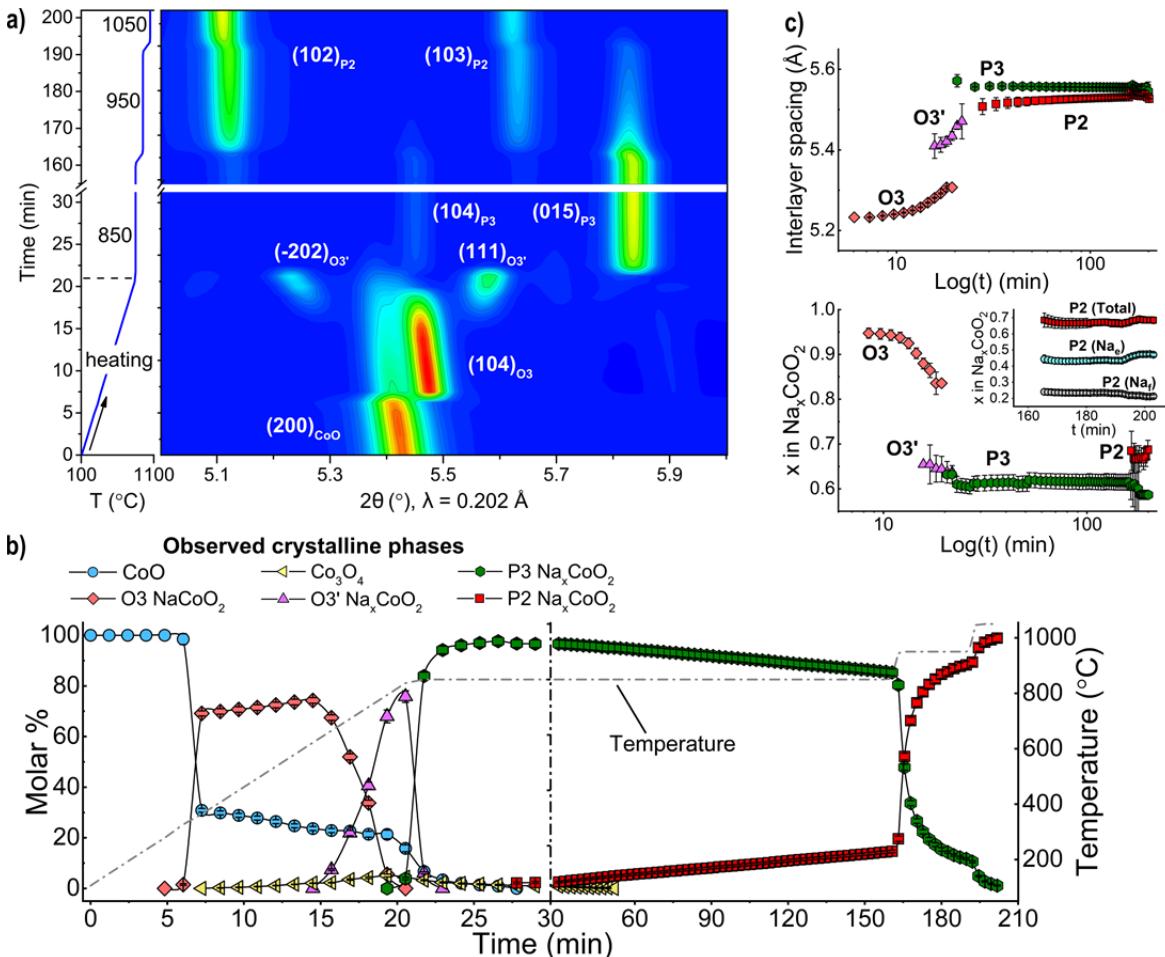
142 ***In situ* experimental study of P2 Na_xCoO_2 synthesis**


143

144 High-energy synchrotron X-ray diffraction (XRD) is a powerful tool to monitor the structural
145 changes and phase evolution during inorganic materials synthesis^{13, 14, 15, 16, 17}. To understand the
146 formation of P2- Na_xCoO_2 , we use *in situ* synchrotron XRD, observing the evolution of different
147 phases from the mixture of precursors to the final compound, varying precursors, heating rate
148 and annealing temperature, as described in the Methods and Supplementary Information (SI).

149

150 Figure 2 shows the result of a typical synthesis experiment: the formation of $\text{Na}_{0.7}\text{CoO}_2$ from a
151 ball-milled mixture of $\text{CoO} + 0.35 \text{ Na}_2\text{O}_2$, with a fast heating rate (36 °C/min) up to 850 °C in
152 air. Only CoO is observed in the initial XRD scan, as Na_2O_2 amorphizes during ball-milling.
153 The O_3 phase with composition NaCoO_2 forms rapidly at 637 K (364 °C), about 7 minutes after
154 the beginning of the synthesis (which starts at ≈ 100 °C). Figure 2b shows that, despite having a
155 precursor ratio designed to target a $\text{Na}_{0.7}\text{CoO}_2$ stoichiometry, nearly all of the Na reacts with Co
156 in a 1:1 ratio, represented by the reaction:


157

159

160

161

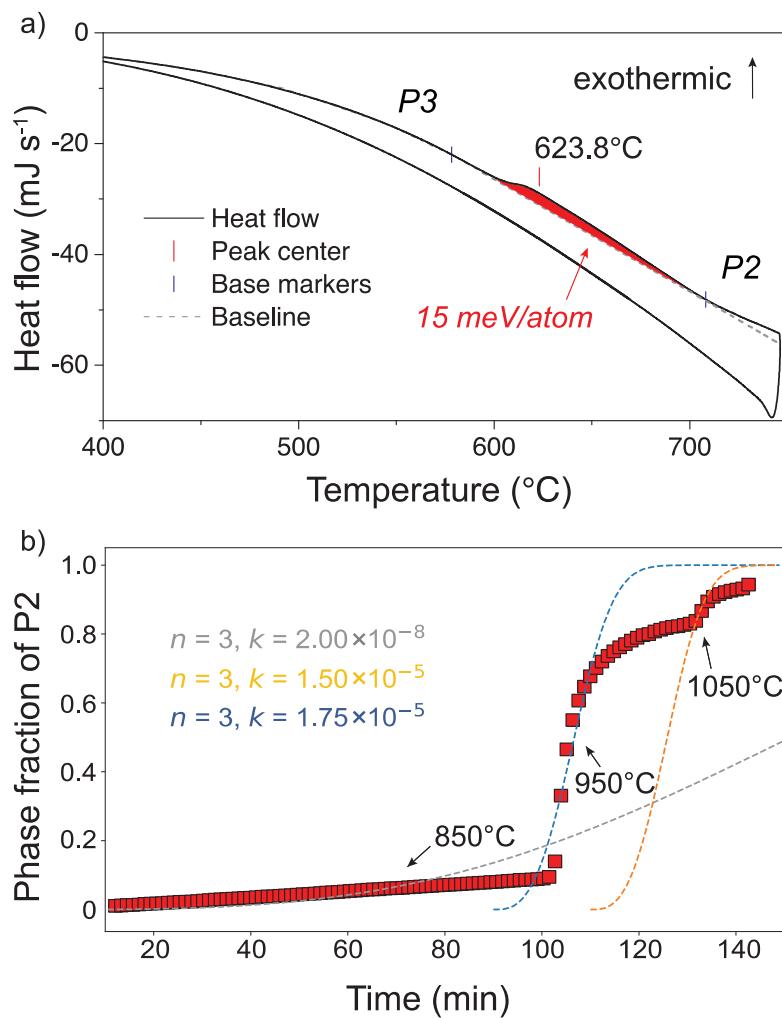
162

163 *Figure 2: Solid-state synthesis of $P2 Na_{0.7}CoO_2$ monitored by in situ synchrotron XRD. a, Contour plot*
 164 *highlighting the evolution of the Bragg peaks. A sequence of layered compounds is observed ($O3 \rightarrow O3' \rightarrow P3 \rightarrow$*
 165 *$P2$). b) and c) Parameters obtained from Rietveld refinement of the XRD patterns. b, Evolution of the molar % of the*
 166 *observed crystalline phases and c) interlayer spacing and Na content of each Na_xCoO_2 polytype.*

167 The reaction is extremely fast – it is complete in 1 scan (≈ 75 s) – and yields a crystalline $O3$ -
 168 $NaCoO_2$ at nearly full sodiation ($x = 0.95(1)$). The rapid phase formation suggests fast oxygen
 169 uptake and diffusion of Na cations into the rock salt-type CoO framework, supported by rapid
 170 reorganization of the Co cations into layers³⁴. Over the next fifteen minutes ($T = 665$ °C, ≈ 940
 171 K), the evolution of the interlayer spacing and Na occupancy shows that the Na fraction in $O3$ -
 172 Na_xCoO_2 decreases from 0.95 to approximately 0.8 (Figure 2c), after which a new monoclinic

173 O_{3'} phase with Na_{0.65(3)}CoO₂ composition appears. This change in Na_xCoO₂ stoichiometry
174 results from a reaction between the residual CoO precursor with O₃-NaCoO₂ as the system
175 evolves towards the target composition. The O₃ → O_{3'} transition takes ≈6 minutes, after which
176 O_{3'} undergoes a rapid transition (< 75 s) to a P3 phase with large interlayer spacing (5.55 Å) and
177 low Na content (0.61(2)). We speculate that the low Na content in the P3 phase indicates that
178 some sodium may segregate from the layered oxide during the O_{3'} → P3 phase transformation,
179 likely as Na₂O. As P3 forms, the amount of CoO decreases rapidly. Interestingly, this O₃-O_{3'}-P3
180 phase transformation sequence observed upon heating is similar to the phase evolution when an
181 O₃ oxide is desodiated electrochemically.³⁵

182


183 Finally, when the temperature is maintained constant at 850 °C (≈1123 K), P3 transforms into
184 P2- Na_{0.67(2)}CoO₂. Even though this is the highest temperature, the transition is the slowest: only
185 14.5(5)% of P2 has formed after 160 minutes. For this reason, we increased T to 950 °C and then
186 1050 °C, and finally obtained a single-phase P2 compound. As evidenced also by its smaller
187 interlayer spacing, P2 accommodates a larger sodium content than P3, confirming that the
188 formerly segregated Na is still available in the mixture.

189

190 In the SI, we discuss hydroxide precursors (Figure S1) and we report complementary *in situ*
191 experiments from CoO, showing that annealing at 550 °C results in a similar series of
192 transformations, but without the formation of P2 (Figure S2). Moreover, the heating rate or
193 choice of Co₃O₄ as precursor does not significantly influence the results of the experiment
194 (Figure S2 to S5), proving that, in the Na_xCoO₂ system, this pathway is robust to synthesis
195 variations. We show later that this is not the case when a Na₂CO₃ precursor is used.

196

197

198

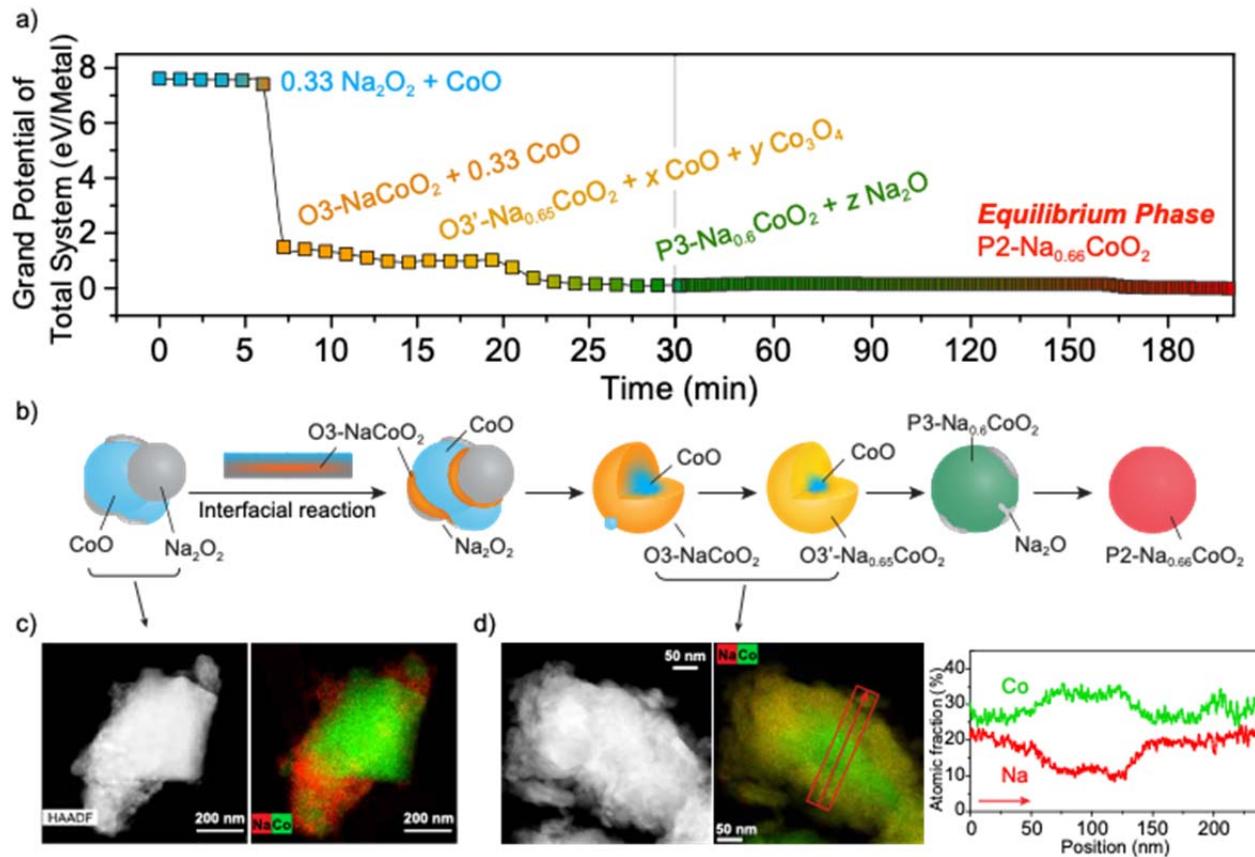
199 **Figure 3: P_3 to P_2 phase transition.** **a**, DSC curve of pure P_3 - $\text{Na}_{0.67}\text{CoO}_2$ powder (12.67 mg). An exothermic peak
 200 is observed at $\approx 624^{\circ}\text{C}$. The amount of heat released in this phase transition is calculated by integrating the shaded
 201 area. **b**, Phase fraction vs. time during the P_3 to P_2 transition obtained from Rietveld refinement and the
 202 corresponding fitting by the Avrami equation for 3 temperature ranges (850°C , 950°C and 1050°C) independently.
 203 Note that P_3 ($\text{Na}_{0.61}\text{CoO}_2$) to P_2 ($\text{Na}_{0.67}\text{CoO}_2$) is not a constant-composition phase transition: it is limited not only
 204 by reaction kinetics but also by Na diffusion, which can explain the deviation from perfect Avrami fitting near the
 205 end of the transition.

206

207 According to the DFT stability calculations on Na_xCoO_2 in Figure 1a, P2- $\text{Na}_{0.67}\text{CoO}_2$ is the
208 equilibrium phase at low temperature. To confirm that the observed P3 to P2 transition is indeed
209 an irreversible transformation from a metastable to a stable phase, as opposed to a reversible
210 temperature-driven first-order phase transition, we performed differential scanning calorimetry
211 on a sample of P3'- $\text{Na}_{0.67}\text{CoO}_2$. Figure 3a shows that upon heating, an exothermic peak is
212 observed at ≈ 624 °C and no transition is present upon cooling. After the measurement, we
213 verified by XRD that the P3' sample had become P2, indicating that P2 is indeed lower in energy
214 than P3' and confirming the DFT stability calculations. Furthermore, we confirm that P2
215 obtained from P3' via annealing at 750 °C never reverts back to the initial P3' structure upon
216 annealing for long times at lower temperatures (Figure S6). Finally, the phase fraction evolution
217 during the P3-P2 transition follows a characteristic S-shaped profile for which the transformation
218 rate is slow at both the beginning and the end, but rapid in the middle of the reaction. This profile
219 can be explained and fitted by a nucleation-growth-saturation model, which is qualitatively
220 expressed by an Avrami equation (Figure 3b)³⁶. The Avrami-like behavior, together with our
221 DSC results, confirms that $\text{P3} \rightarrow \text{P2}$ is an exothermic, irreversible phase transformation driven
222 by crystallization kinetics.

223

224


225 **Rationalizing the phase evolution of Na_xCoO_2**

226

227 The observed multistage phase evolution in Figure 2 can be classified into two major reaction
228 sequences. First, there are a series of fast transformations that occur within 30 minutes, which

229 proceed through the non-equilibrium three-layer phases O3-O3'-P3 with decreasing Na
 230 concentration from O3-Na_{0.95}CoO₂ to P3-Na_{0.61}CoO₂. Second, we observe a slow polymorphic
 231 transformation from the metastable P3 phase to the target equilibrium P2 polytype, which
 232 proceeds over the next 150 minutes.

233

234

235 **Figure 4: Energy cascade and physical model for the solid-state reaction of CoO and Na₂O₂ to form P2**
 236 **Na_{2/3}CoO₂.** **a**, Evolution of the grand potential open to an external oxygen reservoir, for the total system in the
 237 reaction vessel, normalized by the number of metal cations (Na, Co). Two different scales are used in the time axis
 238 to highlight the multiple phase transitions in the first 30 minutes (same as figure 2b). **b**, Cartoon suggesting a
 239 physical model of the reaction pathway via interfacial reactions. **c,d**, High-angle annular dark-field scanning
 240 transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray (EDX) images showing the pristine
 241 CoO+0.35Na₂O₂ powders mixture (c), and the same mixture recovered after a brief annealing at 400 °C for 90

242 minutes (d). The STEM-HAADF and EDX images show an imperfect core-shell reaction, with sodiation proceeding
243 inwards from the cobalt oxide particles surface.

244

245 To understand the thermodynamic evolution of the system, we plot the grand canonical free
246 energy of the entire reaction vessel as a function of time, shown in Figure 4a, accounting for
247 open boundary conditions with respect to oxygen as controlled by its chemical potential
248 μ_{O_2} (Methods). The energy cascade shows that nearly all of the reaction free energy is consumed
249 within the first 30 minutes of the solid-state reaction. Notably, $\approx 85\%$ of the available reaction
250 energy is consumed 6 minutes into the reaction to form $O_3\text{-NaCoO}_2$. The transformations from
251 O_3 to O_3' and then P_3 consume much of the remaining reaction energy, leaving $< 2\%$ of the
252 total reaction energy for the polymorphic transformation from P_3 to P_2 .

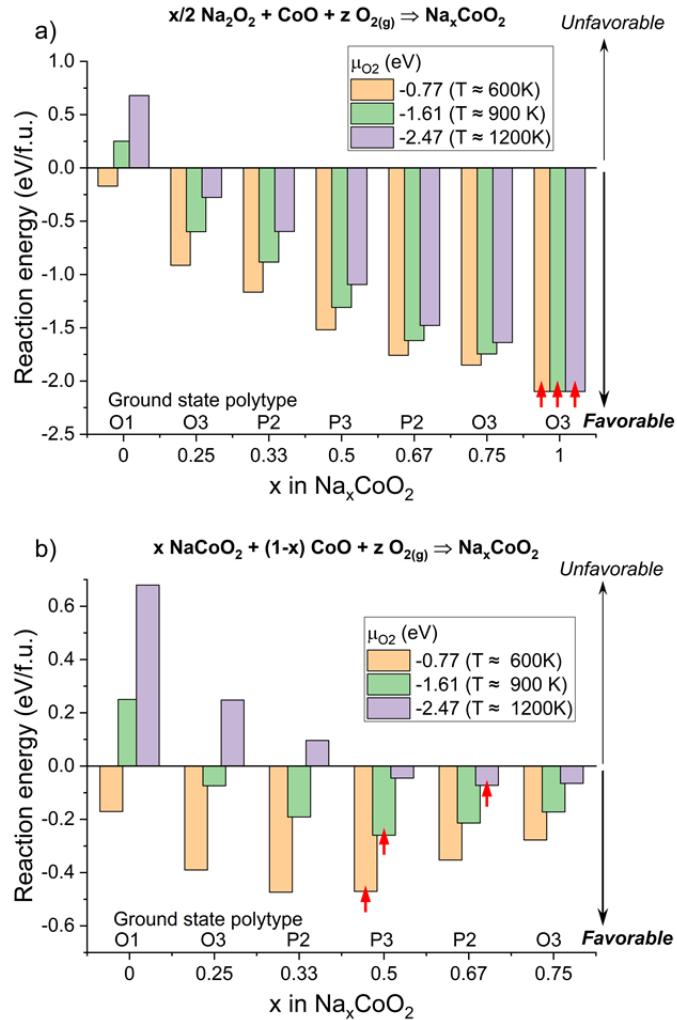
253

254 Our energy cascade rationalizes the observed reaction sequence. The fast transformations that
255 occur in the first 30 minutes are *thermodynamically* driven by large reaction driving forces. We
256 show below that the highest energy reaction is in the formation of $O_3\text{-NaCoO}_2$, which then
257 transforms to the non-equilibrium O_3' and P_3 phases. It is well-known that displacive
258 transformations are facile between the three-layer polytypes; O_3' is a monoclinic distortion of
259 $O_3\text{-NaCoO}_2$ associated with Na removal, and P_3 can be formed from O_3 by sliding the oxygen
260 layer across the Na layer by $(1/3, 1/3, 0)$ ^{22,31,37}. On the other hand, deriving the P_2 phase from
261 $O_3\text{/}P_3$ requires sliding of the oxygen layer across the Co layer, which has too large an energy
262 barrier to occur by a diffusionless transformation (Figure S7 and S8), likely proceeding by P_2 -
263 nucleation instead. However, after 30 minutes, there is so little thermodynamic driving force
264 remaining that higher temperatures are needed to accelerate the Avrami (JMAK) kinetics of the
265 $P_3 \rightarrow P_2$ polymorphic transformation.

266

267 Despite preparing a Na:Co precursor ratio to target the $\text{Na}_{0.7}\text{CoO}_2$ composition, the first phase to
268 form is $\text{O}_3\text{-NaCoO}_2$, which seems to determine the reaction path by setting the system up for the
269 kinetically-facile topotactic transformations through the metastable O_3' and $\text{P}3$ three-layer
270 phases. Thus, rationalizing the initial formation of the O_3 phase is crucial towards understanding
271 the phase evolution in this system.

272


273 What is the mechanism driving this initial $\text{O}_3\text{-NaCoO}_2$ phase selection? We can achieve some
274 insight towards this question by considering that reactions between precursors initiate at the
275 interfaces between powder precursors (Figure 4). While $\text{Na}_{0.7}\text{CoO}_2$ is the composition of the
276 entire reaction vessel, locally, powder precursors of Na_2O_2 and CoO have no knowledge of the
277 total stoichiometric composition of the system. Under these local interfacial boundary
278 conditions, the first nucleus to form has, in principle, a compositionally-unconstrained reservoir
279 of Na and Co to form from, for a given applied μ_{O_2} . We demonstrate here that the first phase to
280 form at this interface is the phase with the maximum reaction energy from the precursors. The
281 stoichiometry of this reaction product is compositionally-unconstrained; in other words, this
282 maximum reaction energy compound could have any Na/Co ratio—regardless of the prepared
283 precursor ratio. When oxygen transport is fast, the oxygen stoichiometry of the product will be
284 set by the μ_{O_2} of the reaction atmosphere—reducing at high temperatures and low p_{O_2} ; and
285 oxidizing at low temperatures and high p_{O_2} .

286

287 The reaction energies for various Na_xCoO_2 phases to form at the $\text{CoO} \mid \text{Na}_2\text{O}_2$ interface in air is
288 shown in Figure 5, calculated from a thermodynamic grand potential open to an external oxygen

289 reservoir ^{1, 38}, using a methodology as described in Richards et al. ³⁹. The temperature-
290 dependence of the free-energy is dominated by the entropy of gaseous O₂, and is approximated
291 without consideration of the entropy in the solids (Methods), meaning the temperature scale in
292 Figure 5 and related figures provides a measure of the oxidation potential in the reaction
293 atmosphere. Figure 5a shows that, at all temperatures, the NaCoO₂ composition has the most
294 negative reaction energy of all layered Na_xCoO₂ compositions at the Na₂O₂|CoO interface, and is
295 therefore the composition with the strongest driving force to form. The crucial observation is that
296 *structure-selection* of the first-phase to form is largely governed by *composition-selection* of the
297 maximum compositionally-unconstrained reaction energy. Specifically, the O₃ polytype is the
298 ground-state structure for the NaCoO₂ composition (Table S1, Figure 1 and S9), which itself has
299 the highest negative reaction energy under open-system boundary conditions.

300

301

302

303 **Figure 5: Reaction energies for the formation of the lowest-energy Na_xCoO_2 polytype as a function of x .** a,
 304 Reaction energy of reaction (1) $x/2 \text{Na}_2\text{O}_2 + \text{CoO} + z \text{O}_{2(g)} \rightarrow \text{Na}_x\text{CoO}_2$. b, Reaction energy of reaction (2) x
 305 $\text{NaCoO}_2 + (1-x) \text{CoO} + z \text{O}_{2(g)} \rightarrow \text{Na}_x\text{CoO}_2$. NaCoO_2 and $\text{Na}_{0.75}\text{CoO}_2$ are O3-type structures, while $\text{Na}_{0.67}\text{CoO}_2$ is
 306 P2. The temperatures indicated in the legend correspond to $p_{\text{O}_2} = 1 \text{ atm}$, and are approximate (Methods). Red
 307 arrows indicate the most negative reaction energy bars, for each given μ_{O_2} .

308

309

310 Since the precursors were prepared at a $\text{Na}_{0.67}\text{CoO}_2$ composition, the initial formation of O3-
 311 NaCoO_2 at $\approx 600 \text{ K}$ leaves remaining CoO precursor in the reaction vessel (Figure 2b). The

312 nucleation of P2-Na_{0.67}CoO₂ around 30 minutes can further be rationalized by computing the
313 compositionally-unconstrained μ_{O_2} -dependent reaction energy between CoO and O3-NaCoO₂.
314 As shown in Figure 5b, the reducing conditions at high temperature make it increasingly difficult
315 to stabilize layered oxides of low Na content, whereas at lower T they become favorable. Indeed,
316 we find that O3' and P3 are already observed below 550 °C (Figure S2 and Figure S3). At the
317 CoO|O3-NaCoO₂ interface above 900 K (Figure 5b), the most favorable composition to form is
318 Na_{0.67}CoO₂. However, while the lowest energy structure at Na_{0.67}CoO₂ composition is P2 (Table
319 S1), the computed P2/P3 energy difference is small (1 meV/atom) so that the reaction sequence
320 O3→O3'→P3 and O3→O3'→P2 are both thermodynamically competitive. The fact that the P3
321 intermediate is observed experimentally is due to kinetically-facile layer-shifting from O3'→P3,
322 versus O3'→P2. Our results show that when thermodynamic driving forces are small,
323 kinetically-viable structural transformations guide structure-selection along the phase
324 transformation pathway ⁸. The nucleation of the P2 polytype likely also occurs at low T (near 27
325 minutes, Figure 2), providing the germ nuclei for the Avrami reaction in the slow polymorphic
326 transformation regime, but such nuclei can only grow at a measurable rate at high temperature.

327

328 It should be noted that the “imperfect core-shell” reactions that we observed in sequence (Figure
329 4) may occur in parallel in certain situations—when spatial parameters (particle size and
330 geometry) limit mass transport one is likely to experimentally observe different reaction
331 progression in different parts of a sample. Studying synthesis pathways should therefore be
332 performed with small-sized and well-mixed precursors to provide results that can be most easily
333 interpreted, as long as the initial reaction can be captured by the time resolution of the
334 experiment.

335

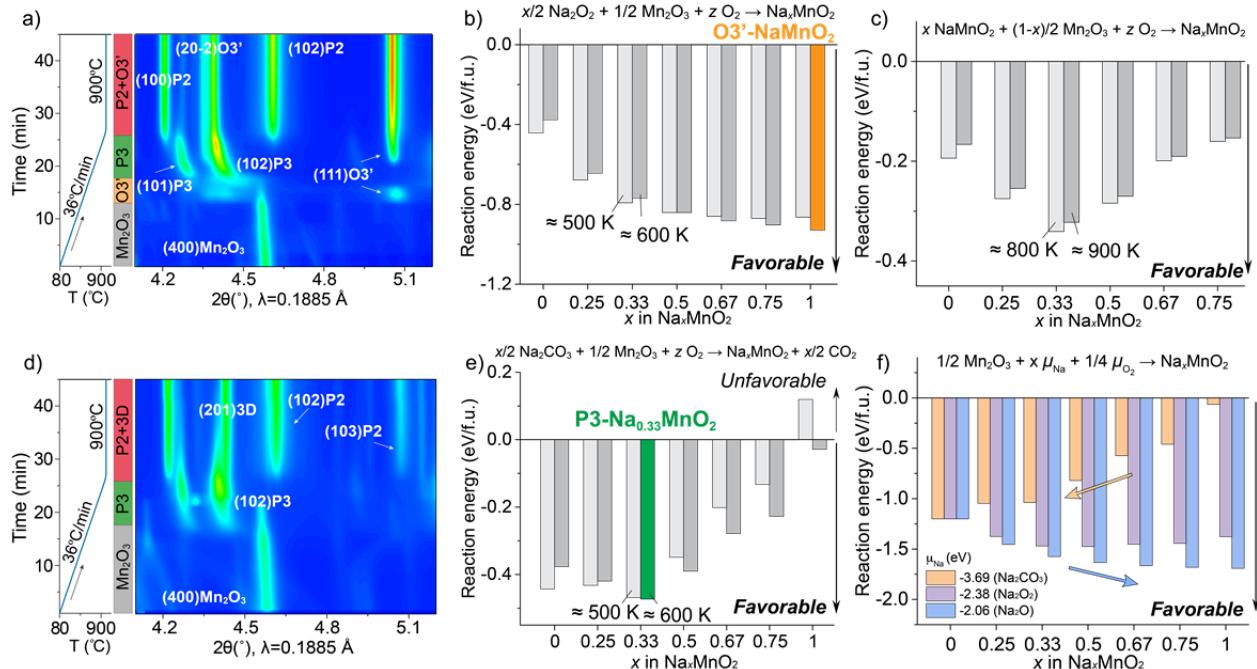
336 Conducting similar experiments and reaction analyses using a Co_3O_4 precursor (Figure S4, S5)
337 leads to similar conclusions (Figure S10). Like in the CoO case, our calculations illustrate that
338 the initial formation of O_3 is driven by the fact that it has the most negative compositionally-
339 unconstrained reaction energy (Figure S10a). Then, at the $\text{Co}_3\text{O}_4|\text{O}_3\text{-NaCoO}_2$ interface (Figure
340 S10b), the $\text{Na}_{0.67}\text{CoO}_2$ composition can be reached at sufficiently oxidizing conditions, such as
341 low temperatures close to 600 K.

342

343

344 **Validation in the Na_xMnO_2 system and effect of precursors**

345


346 To validate our hypothesis that the first phase to form at powder precursor interfaces is the
347 compound with the maximum compositionally-unconstrained reaction energy, we conduct
348 analogous *in situ* experiments in the Na_xMnO_2 system, using both Na_2O_2 and Na_2CO_3 as
349 precursors. This has particular relevance considering that different synthesis outcomes are
350 obtained when using Na_2CO_3 *vs.* Na_2O_2 in several other Na-layered oxides including $\alpha\text{-NaFeO}_2$
351⁴⁰ and $\text{NaNi}_x\text{Mn}_{1-x}\text{O}_2$ ⁴¹. Figure 6 shows the observed phase evolution and reaction energetics for
352 Na_xMnO_2 using Mn_2O_3 and either Na_2O_2 (Figure 6a - c) or Na_2CO_3 (Figure 6d - e). When Na_2O_2
353 is used, the fully sodiated phase $\text{O}_3'\text{-NaMnO}_2$ is observed first (Figure 6a), before it quickly
354 transforms into a Na-deficient P3 phase, similar to the phase evolution in the Na_xCoO_2 system.
355 Figure 6b shows that the initial $\text{O}_3'\text{-NaMnO}_2$ phase has the maximum reaction energy in the
356 $\text{Na}_2\text{O}_2|\text{Mn}_2\text{O}_3$ compositionally-unconstrained reaction, consistent with the principle we derived
357 for the Co system.

358

359 The subsequent formation of P3- $\text{Na}_{0.42(1)}\text{MnO}_2$, ultimately transforming into P2, is consistent
 360 with the predicted Na content at which the unconstrained reaction energy between NaMnO_2 and
 361 excess Mn_2O_3 is maximal, as shown in Figure 6c. Interestingly, after the formation of P3, O_3'
 362 forms again and coexists with P2 (Figure S12). This behavior is the result of the influence of μ_{O_2}
 363 on the O_3' -P3 equilibrium and can be well explained by our reaction energy calculations (Figure
 364 S13). In short, initially μ_{O_2} is high (low T) and P3 is the favorable product. When T increases
 365 sufficiently (low μ_{O_2}) the situation is reversed and O_3' may form again. This can only occur if a
 366 sufficient amount of Na is available, which is the case for Na_xMnO_2 because the formed P3
 367 phase is found to have a lower Na content ($x = 0.42$) than P3 in the Co phase (Figure S14).

368

369

370

371 *Figure 6: Generalization to the Na_xMnO_2 system of in situ XRD during solid-state synthesis and reaction energy*
 372 *calculations. a, In situ XRD pattern of the reaction between $1/2 \text{Mn}_2\text{O}_3 + 1/3 \text{Na}_2\text{O}_2$. Note that NaMnO_2 is labelled*

373 as O_3' because the Jahn-Teller active Mn^{3+} induces a monoclinic distortion. The final P2 is a pure hexagonal phase
374 at 1050 °C, while after cooling it yields a mixture of hexagonal P2 (with Mn vacancies) and distorted orthorhombic
375 P2' (Figure S11), in agreement with the literature^{42, 43}. **b**, Reaction energies between Mn_2O_3 and Na_2O_2 , according
376 to the reaction $x/2 Na_2O_2 + 1/2 Mn_2O_3 + z O_{2(g)} \rightarrow Na_xMnO_2$. O_3' - $NaMnO_2$ has the most negative formation energy
377 at the beginning of the synthesis (≈ 600 K, orange bar). **c**, Reaction energies between Mn_2O_3 and O_3' - $NaMnO_2$,
378 according to the reaction $x NaMnO_2 + (1-x)/2 Mn_2O_3 + z O_{2(g)} \rightarrow Na_xMnO_2$. **d**, In situ XRD pattern of the reaction
379 between $1/2 Mn_2O_3 + 1/3 Na_2CO_3$; **e**, Reaction energies between Mn_2O_3 and Na_2CO_3 , according to the reaction $x/2$
380 $Na_2CO_3 + 1/2 Mn_2O_3 + z O_{2(g)} \rightarrow Na_xMnO_2 + x/2 CO_{2(g)}$. $P3$ - $Na_{0.33}MnO_2$ has the most negative formation energy at
381 the beginning of the synthesis (≈ 600 K, green bar). **f**, Reaction energies between Mn_2O_3 and various sodium
382 precursors at fixed μ_{O_2} (0 eV) according to $\frac{1}{2}Mn_2O_3 + x \mu_{Na} + \frac{1}{4}\mu_{O_2} \rightarrow Na_xMnO_2$. The temperatures in b), c) and e)
383 are approximate (Methods).

384

385 Figure 6d shows that Mn_2O_3 reacts differently with Na_2CO_3 than it does with Na_2O_2 . Instead of
386 initially forming O_3' - $NaMnO_2$, the sodium deficient P3 phase ($P3$ - $Na_{\approx 0.4}MnO_2$) appears first. As
387 the temperature increases, P3 transforms into a mixture of P2 and a phase with a 3D tunnel
388 structure ($3D$ - $Na_{\approx 0.4}MnO_2$)⁴⁴. Figure 6e shows the reaction energies between Mn_2O_3 and
389 Na_2CO_3 . Unlike the case when Na_2O_2 is the precursor, the sodium deficient phase $P3$ -
390 $Na_{0.33}MnO_2$ now has the most negative formation energy at intermediate temperatures (for
391 example $T = 600$ K), hence consistent with the idea that it will first form in the compositionally-
392 unconstrained interfacial reaction between the precursors.

393

394 Because Na_2CO_3 and Na_2O_2 induce a different reaction path for the Mn system, we also
395 evaluated *in situ* the synthesis of $Na_{0.67}CoO_2$ starting from CoO and Na_2CO_3 (Figure S15). We
396 find that Na_2CO_3 is poorly reactive at low temperature, thus CoO first oxidizes fully to Co_3O_4 ,

397 which then sodiates at higher temperature. Interestingly, the first phase to form is not O3-
398 NaCoO₂; a P3 polymorph forms first, followed by P2. We calculate new reaction energies for the
399 Na₂CO₃ | Co₃O₄ interface (Figure S16), which yields a prediction of the P3 polymorph as the
400 compositionally-unconstrained maximum reaction energy product, consistent with our
401 experimental observation.

402

403 In conclusion, despite the short *in situ* reaction times (< 1 hour), we are able to capture the first
404 phase to form, and we validate the theory that the compound with the most negative
405 compositionally-unconstrained reaction energy governs the composition and structure of the first
406 phase to form. Additionally, our theory can rationalize how changing precursors influences this
407 first phase. Different Na precursors (Na₂O₂ vs. Na₂CO₃) exhibit different sodium chemical
408 potentials, which in turn create a different dependence of the reaction free energy as a function of
409 x in Na_xMO₂. In Figure 6f, we show that the higher the Na chemical potential in the precursor,
410 the more the reaction free energies will tilt favorably towards compounds with high Na content.
411 For the precursors with ‘loosely-bound’ sodium with high μ_{Na} (Na₂O: -2.06 eV, Na₂O₂: -2.379
412 eV), a fully sodiated O3 phase has the most negative formation energy, whereas when Na is
413 ‘locked up’ in the stable Na₂CO₃ phase (μ_{Na} = -3.69 eV) the trend is reversed, resulting in the
414 preferable formation of sodium deficient phases.

415

416

417 Conclusion

418 Understanding the role of thermodynamics versus kinetics during materials formation is a
419 foundational question in materials processing and synthesis science. Although qualitative

420 heuristics for navigating these concepts are commonplace, it has been difficult to establish a
421 quantitatively rigorous understanding of the competition between thermodynamics and kinetics
422 for real synthesis reactions. This has been due to two reasons: 1) reactions occur in a ‘black box’,
423 meaning that the initial phase evolution often remains unknown. 2) the energies of these
424 reactions are difficult to measure as a function of reaction progress.

425

426 In this work, we leveraged *in situ* synchrotron X-ray diffraction to characterize the early stages
427 of phase evolution for Na_xCoO_2 and Na_xMnO_2 during solid-state ceramic synthesis. In contrast to
428 the traditional belief that solid-state reactions are slow, we observed a number of fast reactions
429 that take place within minutes of initiating synthesis. By combining the observed reaction
430 pathways with *ab-initio* thermodynamics, we were able to show that the first phase to form can
431 consume a majority of the total reaction free energy and topotactically template the structural
432 evolution through a series of non-equilibrium phases. To rationalize the structure-selection
433 mechanism of the first phase to form, we proposed a model where the first phase to nucleate at
434 the interface between solid-state powder precursors is the compound, or set of compounds, with
435 the maximum compositionally-unconstrained reaction energy. This first phase to form has the
436 *composition* with the most negative reaction free-energy, and its *structure* is governed by the
437 ground-state crystal structure at such composition. We note that this mechanism is particularly
438 relevant in reactions where thermodynamic driving forces are large, such as these solid-state
439 chemical reactions. In synthesis methods at lower temperatures and with smaller driving forces
440 (on the order of $k_{\text{B}}T$), such as hydrothermal synthesis, structure-selection may instead be driven
441 by size-dependent thermodynamics and competitive nucleation kinetics^{16, 45, 46, 47, 48}.

442

443 The compositionally-unconstrained powder reaction model has two major consequences: 1) the
444 first phase to form does not necessarily have the composition corresponding to the overall
445 precursor composition in the reaction vessel, and 2) the first phase to form can be targeted by
446 careful precursors selection, as demonstrated by switching from Na_2O_2 to Na_2CO_3 in both Co
447 and Mn systems. This rationalization of the first phase to form creates a valuable design handle
448 by which reaction paths can be tailored to go through, or circumvent, specific non-equilibrium
449 intermediates.

450

451 While we often separate thermodynamics and kinetics conceptually, our analysis here shows that
452 they are intimately coupled during the early stages of materials formation. Fast reaction kinetics
453 during multistage crystallization are a consequence of large thermodynamic driving forces,
454 whereas small driving forces lead to slow kinetics, requiring high reaction temperatures for
455 reactions to complete, as demonstrated by the formation conditions of the P2 phase in this work.
456 While we argue that the high initial reaction energy of the precursors leads to a thermodynamic
457 composition selection, the ensuing transformations can often be kinetically-selected by simple
458 composition variations, or by topotactically-facile layer shifting, as is the case in the layered
459 compounds that we studied. By better understanding the intricate relationship between
460 thermodynamics and kinetics during materials formation, this work facilitates the design of more
461 sophisticated strategies towards the targeted synthesis of inorganic materials.

462

463

464 **Bibliography**

465

466

468 1. Ong SP, Wang L, Kang B, Ceder G. Li-Fe-P-O-2 phase diagram from first principles
469 calculations. *Chemistry of Materials* 2008, **20**(5): 1798-1807.

470

471 2. Andersson JO, Helander T, Hoglund LH, Shi PF, Sundman B. THERMO-CALC & DICTRA,
472 computational tools for materials science. *Calphad-Computer Coupling of Phase
473 Diagrams and Thermochemistry* 2002, **26**(2): 273-312.

474

475 3. Bianchini M, Wang J, Clément R, Ceder G. A First-Principles and Experimental
476 Investigation of Nickel Solubility into the P2 Na_xCoO_2 Sodium-Ion Cathode. *Advanced
477 Energy Materials* 2018, **8**(26): 1801446.

478

479 4. Narayan A, Bhutani A, Rubeck S, Eckstein JN, Shoemaker DP, Wagner LK. Computational
480 and experimental investigation for new transition metal selenides and sulfides: The
481 importance of experimental verification for stability. *Physical Review B* 2016, **94**(4):
482 045105.

483

484 5. Sun WH, Dacek ST, Ong SP, Hautier G, Jain A, Richards WD, *et al.* The thermodynamic
485 scale of inorganic crystalline metastability. *Sci Adv* 2016, **2**(11).

486

487 6. Aykol M, Dwaraknath SS, Sun W, Persson KA. Thermodynamic limit for synthesis of
488 metastable inorganic materials. *Sci Adv* 2018, **4**(4): eaq0148.

489

490 7. Gopalakrishnan J. Chimie Douce Approaches to the Synthesis of Metastable Oxide
491 Materials. *Chemistry of Materials* 1995, **7**(7): 1265-1275.

492

493 8. Stein A, Keller SW, Mallouk TE. Turning down the Heat - Design and Mechanism in Solid-
494 State Synthesis. *Science* 1993, **259**(5101): 1558-1564.

495

496 9. Chen Y, Rangasamy E, dela Cruz CR, Liang C, An K. A study of suppressed formation of
497 low-conductivity phases in doped $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$ garnets by in situ neutron diffraction.
498 *Journal of Materials Chemistry A* 2015, **3**(45): 22868-22876.

499

500 10. Wang L, Bai J, Gao P, Wang X, Looney JP, Wang F. Structure Tracking Aided Design and
501 Synthesis of $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ Nanocrystals as High-Power Cathodes for Lithium Ion
502 Batteries. *Chemistry of Materials* 2015, **27**(16): 5712-5718.

503

504 11. Eriksson R, Sobkowiak A, Ångström J, Sahlberg M, Gustafsson T, Edström K, *et al.*
505 Formation of favorite-type LiFeSO_4F followed by in situ X-ray diffraction. *Journal of
506 Power Sources* 2015, **298**: 363-368.

507

508 12. Jensen KMØ, Tyrsted C, Bremholm M, Iversen BB. In Situ Studies of Solvothermal
509 Synthesis of Energy Materials. *ChemSusChem* 2014, **7**(6): 1594-1611.

510

511 13. Shoemaker DP, Hu Y-J, Chung DY, Halder GJ, Chupas PJ, Soderholm L, *et al.* In situ
512 studies of a platform for metastable inorganic crystal growth and materials discovery.
513 *Proceedings of the National Academy of Sciences* 2014, **111**(30): 10922-10927.

514

515 14. Jiang Z, Ramanathan A, Shoemaker DP. In situ identification of kinetic factors that
516 expedite inorganic crystal formation and discovery. *Journal of Materials Chemistry C*
517 2017, **5**(23): 5709-5717.

518

519 15. Martinolich AJ, Neilson JR. Toward reaction-by-design: achieving kinetic control of solid
520 state chemistry with metathesis. *Chemistry of Materials* 2017, **29**(2): 479-489.

521

522 16. Chen B-R, Sun W, Kitchaev DA, Mangum JS, Thampy V, Garten LM, *et al.* Understanding
523 crystallization pathways leading to manganese oxide polymorph formation. *Nature
524 communications* 2018, **9**(1): 2553.

525

526 17. He H, Yee C-H, McNally DE, Simonson JW, Zellman S, Klemm M, *et al.* Combined
527 computational and experimental investigation of the $\text{La}_2\text{CuO}_4\text{-xSx}$ ($0 \leq x \leq 4$) quaternary
528 system. *Proceedings of the National Academy of Sciences* 2018, **115**(31): 7890-7895.

529

530 18. Kohlmann H. Looking into the Black Box of Solid-State Synthesis. *European Journal of
531 Inorganic Chemistry* 2019, **2019**(39-40): 4174-4180.

532

533 19. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. The high-throughput
534 highway to computational materials design. *Nature Materials* 2013, **12**: 191.

535

536 20. Zunger A. Inverse design in search of materials with target functionalities. *Nature
537 Reviews Chemistry* 2018, **2**(4).

538

539 21. Jain A, Shin Y, Persson KA. Computational predictions of energy materials using density
540 functional theory. *Nat Rev Mater* 2016, **1**(1).

541

542 22. Braconnier JJ, Delmas C, Fouassier C, Hagenmuller P. Electrochemical behavior of the
543 phases Na_xCoO_2 . *Materials Research Bulletin* 1980, **15**(12): 1797-1804.

544

545 23. Lee M, Viciu L, Li L, Wang YY, Foo ML, Watauchi S, *et al.* Large enhancement of the
546 thermopower in Na_xCoO_2 at high Na doping. *Nature Materials* 2006, **5**(7): 537-540.

547

548 24. Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian RA, Sasaki T.
549 Superconductivity in two-dimensional CoO_2 layers. *Nature* 2003, **422**(6927): 53-55.

550

551 25. Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the
552 layered oxides. *Physica B+C* 1980, **99**(1): 81-85.

553

554 26. Delmas C, Fouassier C, Hagenmuller P. Relative Stability of Octahedral and Trigonal
555 Prismatic Coordination in Layered Alkaline Oxides $AxMo_2$ (X Less Than or Equal to 1).
556 *Materials Research Bulletin* 1976, **11**(12): 1483-1488.

557

558 27. Parant JP, Olazcuag R, Devalett M, Fouassie.C, Hagenmul.P. New Phases of Formula
559 $Na(X)MnO_2$ (X Less Than or Equal to 1). *Journal of Solid State Chemistry* 1971, **3**(1): 1-+.

560

561 28. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research Development on Sodium-Ion
562 Batteries. *Chemical Reviews* 2014, **114**(23): 11636-11682.

563

564 29. Mo Y, Ong SP, Ceder G. Insights into Diffusion Mechanisms in P2 Layered Oxide
565 Materials by First-Principles Calculations. *Chemistry of Materials* 2014, **26**(18): 5208-
566 5214.

567

568 30. Guo S, Sun Y, Yi J, Zhu K, Liu P, Zhu Y, *et al.* Understanding sodium-ion diffusion in
569 layered P2 and P3 oxides via experiments and first-principles calculations: a bridge
570 between crystal structure and electrochemical performance. *Npg Asia Mater* 2016, **8**(4):
571 e266.

572

573 31. Lei YC, Li X, Liu L, Ceder G. Synthesis and Stoichiometry of Different Layered Sodium
574 Cobalt Oxides. *Chemistry of Materials* 2014, **26**(18): 5288-5296.

575

576 32. Sun J, Ruzsinszky A, Perdew JP. Strongly Constrained and Appropriately Normed
577 Semilocal Density Functional. *Physical Review Letters* 2015, **115**(3): 036402.

578

579 33. Blangero M, Carlier D, Pollet M, Darriet J, Delmas C, Doumerc JP. High-temperature
580 phase transition in the three-layered sodium cobaltite $P'3-NaxCoO_2$ (x similar to 0.62).
581 *Physical Review B* 2008, **77**(18).

582

583 34. Bianchini M, Fauth F, Hartmann P, Brezesinky T, Janek J. An in situ structural study on
584 the synthesis and decomposition of $LiNiO_2$. *Journal of materials Chemistry A* 2020:
585 10.1039/c1039ta12073d.

586

587 35. Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P. Electrochemical intercalation of
588 sodium in $NaxCoO_2$ bronzes. *Solid State Ionics* 1981, **3**: 165-169.

589

590 36. Avrami M. Kinetics of Phase Change. I General Theory. *The Journal of Chemical Physics*
591 1939, **7**(12): 1103-1112.

592

593 37. Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P. Electrochemical Intercalation of
594 Sodium in $NaxCoO_2$ Bronzes. *Solid State Ionics* 1981, **3-4**(Aug): 165-169.

595

596 38. Wang L, Maxisch T, Ceder G. A first-principles approach to studying the thermal stability
597 of oxide cathode materials. *Chemistry of materials* 2007, **19**(3): 543-552.

598

599 39. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface Stability in Solid-State
600 Batteries. *Chem Mater* 2016, **28**(1): 266-273.

601

602 40. Takeda Y, Akagi J, Edagawa A, Inagaki M, Naka S. A Preparation and Polymorphic
603 Relations of Sodium Iron-Oxide (Na_{FeO₂}). *Materials Research Bulletin* 1980, **15**(8): 1167-
604 1172.

605

606 41. Fielden R, Obrovac MN. Investigation of the Na_{Ni_xMn(1-x)O₂} (0 <= x <= 1) System for
607 Na-Ion Battery Cathode Materials. *Journal of the Electrochemical Society* 2015, **162**(3):
608 A453-A459.

609

610 42. Stoyanova R, Carlier D, Sendova-Vassileva M, Yoncheva M, Zhecheva E, Nihtanova D, *et al.* Stabilization of over-stoichiometric Mn⁴⁺ in layered Na₂/3MnO₂. *Journal of Solid
611 State Chemistry* 2010, **183**(6): 1372-1379.

612

613

614 43. Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S. Sodium and Manganese
615 Stoichiometry of P2-Type Na₂/3MnO₂. *Angew Chem Int Edit* 2016, **55**(41): 12760-12763.

616

617 44. Akimoto J, Hayakawa H, Kijima N, Awaka J, Funabiki F. Single-Crystal Synthesis and
618 Structure Refinement of Na_{0.44}MnO₂. *Solid State Phenomena* 2011, **170**: 198-202.

619

620 45. Sun W, Jayaraman S, Chen W, Persson KA, Ceder G. Nucleation of metastable aragonite
621 CaCO₃ in seawater. *Proceedings of the National Academy of Sciences* 2015,
622 **112**(11): 3199-3204.

623

624 46. Sun W, Kitchaev DA, Kramer D, Ceder G. Non-equilibrium crystallization pathways of
625 manganese oxides in aqueous solution. *Nature Communications* 2019, **10**(1): 573.

626

627 47. Navrotsky A. Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide
628 Systems. *ChemPhysChem* 2011, **12**(12): 2207-2215.

629

630 48. Ma X, Nolan AM, Zhang S, Bai J, Xu W, Wu L, *et al.* Guiding Synthesis of Polymorphs of
631 Materials Using Nanometric Phase Diagrams. *Journal of the American Chemical Society*
632 2018, **140**(49): 17290-17296.

633

634

635

636 **Methods**

637

638 **Synthesis and experimental characterization**

639

640 O₃ NaCoO₂ was synthesized using a conventional solid-state method. Stoichiometric amounts of
641 Co₃O₄ (Aldrich, 99.5%, nanopowder) and Na₂O₂ (Aldrich, 97%) were mixed thoroughly by a
642 Spex Mixer/Mill 8000M for 90min. The precursors were then pressed into pellets before
643 annealing at 450°C for 16h under flowing oxygen. P3' Na_{0.67}CoO₂ was prepared by chemically
644 desodiating O₃ NaCoO₂. Stoichiometric amounts of O₃ NaCoO₂ and NO₂BF₄ (Aldrich, ≥ 95%)
645 were added to acetonitrile (Aldrich, 99.8%, anhydrous) in an Argon-filled glove box. NO₂BF₄
646 dissolves while Na_xCoO₂ remains as a solid phase. The solution was then stirred for 2 days
647 before the resulting black powder was filtered and washed three times with acetonitrile. The
648 sample was then dried at 70 °C in vacuum overnight and stored in the Argon-filled glovebox.

649

650 The differential scanning calorimetry (DSC) measurement were performed using a SDT Q600
651 system (TA Instruments). 12.67 mg of P3' Na_{0.67}CoO₂ powder was heated from room
652 temperature to 750 °C at a heating rate of 5 °C/min under flowing Argon, then cooled at the
653 same rate. The powder after DSC was recovered and used for XRD analysis using a Rigaku
654 diffractometer, in Bragg–Brentano geometry with Cu K α radiation.

655

656 For the *in situ* synthesis, we target the formation of Na_{0.7}CoO₂ by using different oxide
657 precursors (CoO (Alfa, 99.995%) and Co₃O₄) with Na₂O₂ as sodium source. Two sets of
658 precursors were mixed (Spex Mixer/Mill 8000M for 90min), pelletized and then annealed at 550
659 and 850 °C in air, respectively. Two heating rates were used, one fast (36 °C/min) and one slow
660 (0.5 °C/min). A synthesis experiment was also done using a mixture of CoO and Na₂CO₃. For
661 the *in situ* synthesis of Na-Mn-O system, two sets of precursors, 0.67Na₂O₂+Mn₂O₃ and

662 0.6Na₂CO₃+Mn₂O₃ were mixed (Spex Mixer/Mill 8000M for 90min), pelletized and then
663 annealed at 900 °C in air, respectively, with a heating rate of (36 °C/min). *In situ* synchrotron X-
664 ray diffraction was performed at F2 (CHESS) and 28-ID-2 (NSLS-II, BNL) for the experiment in
665 the main text. 28-ID-2 (NSLS-II, BNL), F2 (CHESS) and 17-BM-B (APS, ANL) were used for
666 experiments in the Supp. Info. Each scan takes \approx 12 seconds and the interval between the end of a
667 scan and the beginning of the next one is one or three (varying from experiment to experiment)
668 minutes (for data processing). The *in situ* synthesis experiment using Na₂CO₃ and CoO was
669 performed in a Bruker D8 diffractometer using Bragg-Brentano geometry (starting from 200 °C,
670 a 1 hour-long XRD scan is taken every 50 °C).

671

672 For TEM, the powder samples were diluted in hexane and sonicated to obtain good particle
673 dispersion. The TEM samples were prepared by drop casting the solution onto a standard 400
674 copper mesh TEM grid with lacey carbon support. The samples were loaded into a Gatan 648
675 vacuum-transfer holder to transfer the sample from the glovebox to the microscope in an inert Ar
676 atmosphere. The HAADF-STEM and EDX maps were performed on a FEI TitanX 60-300
677 microscope equipped with the Bruker windowless EDX detector at an acceleration voltage of
678 200 kV. The particles size for the Co and Mn oxides used in our experiments is found to be of a
679 few hundred nanometers (100-400 nm) after ball-milling of the precursors mixture. Na
680 precursors retain instead little crystallinity and have smaller particles size.

681

682 Rietveld refinement was carried out using Fullprof¹. Multiple phases were included in each
683 refinement. A point-by-point background was manually selected. Zero-shift value was refined in
684 the first scan and then kept constant for all subsequent scans. Peak shapes were modeled with a

685 Thompson-Cox-Hastings pseudo-Voigt function (Npr=7). U, V, W, X, Y values were kept
686 constant as possible between scans, although the subsequent nucleation of different phases
687 induced peak width variation and thus made it necessary to refine them (mostly X). Unit cell
688 parameters were always refined for all phases. Fractional atomic coordinates, site occupancy
689 factors and Debye-Waller factors, as a rule of thumb, were refined whenever the relative phase is
690 more than ≈ 10 wt% to avoid divergence. Debye-Waller factors were refined as a common value
691 for all atoms (B_{overall}) in a given phase. Refinements were deemed acceptable only when R_{bragg} of
692 the main phases were consistently < 10 .

693

694 **First principles calculations**

695

696 Spin-polarized density functional theory (DFT) calculations ² were carried out using the Vienna
697 Ab Initio Simulation Package (VASP) ³ and the projector-augmented wave (PAW) method ⁴.
698 Each calculation used a reciprocal space discretization of 25 \AA^{-1} and consisted of two sequential
699 structural optimization steps, where both lattice parameters and atomic positions were relaxed in
700 the absence of symmetry constraints. The threshold energy difference for self-consistent field
701 (SCF) convergence in the total free energy was set to 1×10^{-3} eV, and a Gaussian-type smearing
702 of the Fermi level was applied. We note that the relative stability of various $\text{P}2\text{-Na}_x\text{CoO}_2$
703 configurations obtained using total energy convergence criteria of 1×10^{-3} and 1×10^{-5} eV
704 yielded very similar results, so that the less stringent convergence criterion was deemed
705 sufficient here. A plane wave energy cutoff of 520 eV was used throughout. The choice of the
706 SCAN meta-GGA exchange-correlation functional was motivated by its accurate prediction of

707 the energy and structure of materials with diverse bonding and its comparable efficiency to that
708 of standard LDA and GGA functionals^{5, 6, 7}.

709

710 **Construction of finite-temperature phase diagrams**

711

712 To determine the energy above the convex hull of Na_xCoO_2 structures and construct a ternary
713 Na-Co-O phase diagram (Figure S9), calculations were performed on O_2 , CoO , Co_3O_4 , Na_2O_2
714 and Na_xCoO_2 structures ($0 \leq x \leq 1$) using analogous parameters as those described above. The
715 ground state Na/vacancy configurations of the various O_3 , $\text{P}2$ and $\text{P}3$ Na_xCoO_2 ($0 < x < 1$)
716 phases considered in this work were determined in two steps. First, the energy of several hundred
717 possible Na/vacancy orderings at different Na content was computed using the fast GGA+U
718 functional. For all structures with energy below 50 meV/atom from the convex hull (between 60
719 and 300 Na/vacancy configurations, depending on the Na content) the ground state configuration
720 was recalculated using the more accurate SCAN meta-GGA functional. For the lowest enthalpy
721 O_3 , $\text{P}2$, and $\text{P}3$ structures, we calculated vibrational phonon contributions to the free-energy⁸,
722 finding that they do not affect the qualitative polymorphic energy orderings from Table 1, details
723 are discussed in the SI (Figure S17). Finite temperature phase stability and compositionally-
724 unconstrained reaction energies were evaluated by including the entropy of O_2 gas, while
725 assuming the ΔS between solid phases to be negligible, as is common for equilibria against
726 oxygen⁹. The free energy of $\text{O}_2(\text{g})$ is obtained as:

727

728
$$E_{\text{O}_2} = H_{\text{O}_2} - S_{\text{O}_2} \times T, \quad (1)$$

729

730 where H_{O_2} is the 0 K formation enthalpy obtained for an isolated O₂ dimer using SCAN, and S_{O_2}
731 is the experimental entropy at the temperature (T) of interest obtained from the JANAF
732 thermochemical tables¹⁰. Likewise, the free energy of CO_{2(g)} was calculated as:

733
$$E_{CO_2} = H_{CO_2} - S_{CO_2} \times T. \quad (2)$$

734

735

736 **Grand canonical reaction energy calculations**

737

738 Reaction energies to form the ground state Na_xCoO₂ polytypes at various x contents were
739 obtained from a grand-canonical ensemble description at different oxygen chemical potentials,
740 μ_{O_2} . As described by Ong et al.⁹, μ_{O_2} takes the form:

741

742
$$\mu_{O_2}(T, p_{O_2}) = h_{O_2}(T, p_0) - T \left(s_{O_2}(T, p_0) - k \times \ln \left(\frac{p_{O_2}}{p_0} \right) \right) \quad (3),$$

743

744 where p_0 is the reference pressure, p_{O_2} is the O₂ partial pressure and k is the Boltzmann constant.
745 Lower case h_{O_2} and s_{O_2} denote the enthalpy and entropy of oxygen gas per O₂ molecule. In this
746 work, μ_{O_2} values are referenced such that $\mu_{O_2} = 0$ eV / O₂ under standard conditions of
747 temperature and pressure (T = 298.15 K, and $p_{O_2} = p_0 = 1$ atm). So while the trends we observe
748 are meaningful, as proven in similar recent work¹¹, the exact temperature values may be offset
749 with respect with experimental ones. Reaction energies are calculated according to the specific
750 reaction equations provided in each figure caption, without further normalization.

751

752

753 The relative chemical potential of Na in a particular Na precursor (for example Na_2O_2) in Figure
754 6f is defined as the difference between the precursor's formation energy and the chemical
755 potential of all other elements in the precursor (*in* Na_2O_2 : $\mu_{\text{Na}} = \frac{1}{2}(\mu_{\text{Na}_2\text{O}_2} - \mu_{\text{O}_2})$). For sodium
756 binary oxides, the free energy of $\text{O}_{2(\text{g})}$ at ambient temperature is taken as the reference μ_{O_2} . For
757 Na_2CO_3 , the chemical potential of the $\text{CO}_{2(\text{g})}$ at ambient temperature is taken as reference.

758

759 **Constructing the Energy Cascade**

760

761 The energy cascade is constructed by multiplying the *in situ* XRD observed phase fraction of
762 each phase at a given time by its grand canonical free energy, $\Phi = G - n_{\text{O}}\mu_{\text{O}}$, using the μ_{O} value
763 discussed above. The number of Na and Co ions are conserved throughout the entire reaction,
764 while oxygen is in exchange with the open air reservoir, so the grand canonical free energy is
765 normalized to the overall metal concentrations throughout the reaction; Na = 0.67, Co = 1. The
766 Na_2O_2 phase is amorphous (XRD not well suited to its quantification), so we infer its phase
767 fraction in the early stages of synthesis from the concentrations of CoO and NaCoO_2 , where we
768 assume that all the Na_2O_2 is consumed in this initial reaction. In the $\text{O}_3' \rightarrow \text{P}_3$ transformation, the
769 Na concentration in the layered phase decreases from approximately 0.67 to 0.6. We assume the
770 Na is ejected from the layer phase in an oxide form, whose grand free energy can be
771 approximated by the energy of solid Na_2O . For the energy cascade, $\Phi = 0$ eV/metal is set to the
772 grand free-energy of $\text{P}_2\text{-Na}_{0.67}\text{CoO}_2$, which is the equilibrium phase at all temperatures
773 throughout the reaction. Formation energies for intermediate x in $\text{O}_3\text{-Na}_x\text{CoO}_2$ from $0.8 < x <$
774 1.0 are derived from the ordered structures in Kaufman and Van der ven¹².

775

776 **Data availability**

777 All relevant data within the article are available from the corresponding author on request.

778 Source data for Figures are provided with the paper.

779

780

781

782 **Bibliography**

783

784

785 1. Rodriguez-Carvajal J. Recent advances in magnetic-structure determination by neutron
786 powder diffraction. *Physica B* 1993, **192**(1-2): 55-69.

787

788 2. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. *Physical Review* 1964, **136**(3B):
789 B864-B871.

790

791 3. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and
792 semiconductors using a plane-wave basis set. *Computational Materials Science* 1996,
793 **6**(1): 15-50.

794

795 4. Blöchl PE. Projector augmented-wave method. *Phys Rev B* 1994, **50**(24): 17953-17979.

796

797 5. Sun J, Ruzsinszky A, Perdew JP. Strongly Constrained and Appropriately Normed
798 Semilocal Density Functional. *Physical Review Letters* 2015, **115**(3): 036402.

799

800 6. Kitchaev DA, Peng H, Liu Y, Sun J, Perdew JP, Ceder G. Energetics of
801 MnO_2 polymorphs in density functional theory. *Physical Review B*
802 2016, **93**(4): 045132.

803

804 7. Yang JH, Kitchaev DA, Ceder G. Rationalizing accurate structure prediction in the meta-
805 GGA SCAN functional. *Physical Review B* 2019, **100**(3): 035132.

806

807 8. Togo A, Tanaka I. First principles phonon calculations in materials science. *Scripta Mater*
808 2015, **108**: 1-5.

809

810 9. Ong SP, Wang L, Kang B, Ceder G. Li-Fe-P-O-2 phase diagram from first principles
811 calculations. *Chemistry of Materials* 2008, **20**(5): 1798-1807.

812

813 10. Linstrom PJ, Mallard WG. NIST Chemistry WebBook. *NIST Standard Reference Database*
814 *Number 69*.

815

816 11. Bianchini M, Wang J, Clément R, Ceder G. A First-Principles and Experimental
817 Investigation of Nickel Solubility into the P2 $NaxCoO_2$ Sodium-Ion Cathode. *Advanced*
818 *Energy Materials* 2018, **8**(26): 1801446.

819

820 12. Kaufman JL, Van der Ven A. $NaxCoO_2$ phase stability and hierarchical orderings in the
821 O_3/P_3 structure family. *Physical Review Materials* 2019, **3**(1): 015402.

822

823

824

825 **Acknowledgements**

826

827 Funding for this study was provided by the US Department of Energy, Office of Science, Basic
828 Energy Sciences, under contract no. UGA-0-41029-16/ER392000 as a part of the Department of
829 Energy Frontier Research Center for Next Generation of Materials Design: Incorporating
830 Metastability. This work used 28-ID-2 (XPD) beamline of the National Synchrotron Light
831 Source II (NSLS-II), a US Department of Energy (DOE) Office of Science User Facility
832 operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No.
833 DE-SC0012704. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) is
834 supported by the National Science Foundation under award DMR-1332208. Work at the
835 Advanced Photon Source (APS) at Argonne National Laboratory was supported by the U.S.
836 Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No.
837 DE-AC02-06CH11357. The TEM characterizations were performed at the Molecular Foundry,
838 Lawrence Berkeley National Laboratory (LBNL), supported by the Office of Science, Office of
839 Basic Energy Sciences, of the U.S. Department of Energy under contract No. DE-AC02-
840 05CH11231. The authors acknowledge Dr. Wenqian Xu for the assistance at APS and Dr.
841 Alexandra Toumar for discussion and support with SCAN calculations.

842

843 **Author information**

844 These authors contributed equally: Matteo Bianchini, Jingyang Wang.

845

846 **Contributions**

847 W.S. and G.C. initiated and supervised the project; M.B. and J.W. designed the experiments; J.W.
848 conducted synchrotron-based measurement with the help of T.S., M.Z., J.B., F.W. and H.K.;
849 M.B. and J.W. performed XRD data analysis and Rietveld refinement; R.J.C. and B.O.
850 conducted DFT and reaction energy calculations and analyzed the results with the help of D.K.;
851 R.J.C. constructed the finite-temperature phase diagram; P.X. carried out the SSNEB calculation;
852 Y.Z. acquired the TEM and EDS data; Y.W. performed phonon frequency calculations; W.S.
853 conceived and calculated the energy cascade with the help of J.W.; M.B., J.W., W.S. and G.C.
854 wrote the manuscript.

855

856 **Corresponding authors**

857 Correspondence to Wenhao Sun, Gerbrand Ceder.

858

859 **Competing interests**

860 The authors declare no competing interests.

861

862