

# **Hanford Site-wide Natural Recharge Boundary Condition for Groundwater Models**

Prepared for the U.S. Department of Energy  
Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy  
under Contract DE-AC06-08RL14788

**CH2MHILL**  
Plateau Remediation Company  
**P.O. Box 1600**  
**Richland, Washington 99352**

# Hanford Site-wide Natural Recharge Boundary Condition for Groundwater Models

Document Type: ECF

Program/Project: EPSP

J. B. Fullerton  
INTERA, Inc.

Date Published  
June 2020

Prepared for the U.S. Department of Energy  
Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy  
under Contract DE-AC06-08RL14788

**CH2MHILL**  
Plateau Remediation Company  
P.O. Box 1600  
Richland, Washington 99352

**APPROVED**

*By Lynn M. Ayers at 10:02 am, Jun 08, 2020*

---

Release Approval

Date

**TRADEMARK DISCLAIMER**

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

---

This report has been reproduced from the best available copy.

Printed in the United States of America

## ENVIRONMENTAL CALCULATION COVER PAGE

### SECTION 1 - Completed by the Responsible Manager

**Project:**  
Hanford Site Composite Analysis Update

#### RELEASE / ISSUE

**Date:** 12/19/2019

**Calculation Title and Description:**  
Hanford Site-wide Natural Recharge Boundary Condition for  
Groundwater Models

**DATE:**

**Jun 08, 2020**



### Qualifications Summary

#### Preparer(s):

**Name:** Jacob Fullerton

**Degree, Major, Institution, Year:** MS, Civil Engineering, Brigham Young University, 2017  
BS, Civil and Environmental Engineering, Brigham Young University, 2016

**Professional Licenses:** Engineer in Training

**Brief Narrative of Experience:** Jacob Fullerton's experience encompasses civil and environmental engineering, and is focused on the development and application of groundwater models using codes and platforms such as GMS, ArcMap, and GSSHA. He also brings expertise with coding web applications in multiple programming languages, including Javascript, HTML, JQuery, and Python. He has incorporated an analytic element groundwater model called TimML into a web app capable of performing general groundwater modeling tasks. Additionally, he has created an educational groundwater dewatering web app that simulates aquifer dewatering using wells and slurry trenches.

#### Checker(s):

**Name:** Jose Lopez

**Degree, Major, Institution, Year:** BA, Geography with GIS, Mapping, and Society Focus, University of Washington, 2017

**Professional Licenses:**

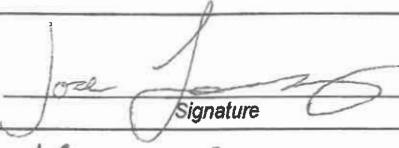
**Brief Narrative of Experience:** Jose Lopez's experience focuses on collecting, analyzing, manipulating, and developing spatial data pertaining to Geographic Information Systems (GIS). He specializes in analyzing GIS data and using it to identify trends, build geodatabases, and create interactive maps to visualize data changes. He will be applying his skills to support and assist INTERA GIS Specialists with map design, GIS analysis and modeling. Jose is also proficient with ESRI ArcGIS Software, Python, Java, and Microsoft Office Applications.

**ENVIRONMENTAL CALCULATION COVER PAGE (Continued)****Senior Reviewer(s):****Name:** Trevor Budge

**Degree, Major, Institution, Year:** PhD, Geological Sciences, The University of Texas at Austin, 2008  
 MS, Civil and Environmental Engineering, Brigham Young University, 2000  
 BS, Civil and Environmental Engineering, Brigham Young University, 1999

**Professional Licenses:**

**Brief Narrative of Experience:** Trevor Budge's experience encompasses characterizing and modeling hydrologic and hydrogeologic systems in support of a wide range of water resources, environmental, and waste isolation projects. His work has included analyzing and optimizing remediation well configuration and operation, investigating long-term remediation costs, characterizing complex geological settings with the use of geophysical and remote sensing data, designing slurry walls and hydraulic barrier walls near sensitive water bodies, emergency planning-based modeling of catastrophic dam failures and large storm events, and developing geographic information system tools to efficiently process data and modeling results. These tasks have been completed using a wide range of numerical, analytical, and geostatistical tools. His knowledge of computer hardware and software, including GIS and programming languages, allows him to solve problems that arise specific to each project that cannot be resolved using standard out-of-the-box software and hardware. Trevor has completed projects for organizations ranging from small municipalities and local water authorities to state and federal government agencies, and he has authored and developed software applications used by the US Environmental Protection Agency and the US Department of Defense.


**SECTION 2 - Completed by Preparer****Calculation Number:** ECF-HANFORD-15-0019**Revision Number:** 1**Revision History**

| Revision No. | Description                                          | Date       | Affected Pages |
|--------------|------------------------------------------------------|------------|----------------|
| 0            | Initial issue                                        | 8/1/2016   | All            |
| 1            | New features and input data added to the calculation | 12/19/2019 | All            |

**SECTION 3 - Completed by the Responsible Manager****Document Control:**Is the document intended to be controlled within the Document Management Control System (DMCS)?  Yes  NoDoes document contain scientific and technical information intended for public use?  Yes  NoDoes document contain controlled-use information?  Yes  No**SECTION 4 - Document Review and Approval****Preparer(s):**Jacob Fullerton  
Print First and Last NameGroundwater Modeler  
Position12/19/2019  
Date

## ENVIRONMENTAL CALCULATION COVER PAGE (Continued)

## Checker(s):

Jose Lopez GIS Analyst  
 Print First and Last Name Position  12/19/2019  
 Date

## Senior Reviewer(s):

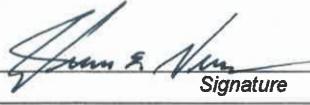
Trevor Budge Senior Hydrogeologist  
 Print First and Last Name Position  12/19/2019  
 Date

## Responsible Manager(s):

Alaa Aly Risk/Model Integr. Mngr  
 Print First and Last Name Position  12/19/19  
 Date

**SECTION 5 - Applicable if Calculation is a Risk Assessment or Uses an Environmental Model**

## Prior to Initiating Modeling:


Required training for modelers completed:

## Integration Lead:

William Nichols  19 DEC 2019  
 Print First and Last Name Signature Date

## Safety Software Approved:

## Integration Lead:

William Nichols  19 DEC 2019  
 Print First and Last Name Signature Date

## Calculation Approved:

## Risk/Modeling Integration Manager:

Alaa Aly  12/19/19  
 Print First and Last Name Signature Date

## Contents

|          |                                                                                        |           |
|----------|----------------------------------------------------------------------------------------|-----------|
| <b>1</b> | <b>Purpose.....</b>                                                                    | <b>1</b>  |
| <b>2</b> | <b>Background.....</b>                                                                 | <b>1</b>  |
| <b>3</b> | <b>Methodology .....</b>                                                               | <b>2</b>  |
| 3.1      | Extend the Datasets for Soils and Vegetation .....                                     | 2         |
| 3.2      | Enhance Data on Surface Condition.....                                                 | 3         |
| 3.3      | Rank Data Sources .....                                                                | 4         |
| 3.4      | Automate the Calculation of Recharge Sitewide.....                                     | 4         |
| <b>4</b> | <b>Assumptions and Inputs .....</b>                                                    | <b>5</b>  |
| 4.1      | Spatial Data Sources.....                                                              | 5         |
| 4.1.1    | Data Management .....                                                                  | 6         |
| 4.1.2    | USGS Black and White Aerial Photography.....                                           | 6         |
| 4.1.3    | Soils.....                                                                             | 6         |
| 4.1.4    | Vegetation Classification .....                                                        | 11        |
| 4.1.5    | Waste Sites ( <i>ehsit</i> ) and Facilities ( <i>bggenxs</i> , <i>bggensit</i> ) ..... | 11        |
| 4.1.6    | Modifications to Spatial Data Sources .....                                            | 12        |
| 4.1.7    | Barrier Footprints .....                                                               | 18        |
| 4.1.8    | Interim Barrier Footprints .....                                                       | 25        |
| 4.1.9    | Central Plateau Focus Area .....                                                       | 28        |
| 4.1.10   | Site-Specific Models .....                                                             | 29        |
| 4.2      | Nonspatial Data Sources .....                                                          | 32        |
| 4.2.1    | Hanford Site Disposition Baseline .....                                                | 32        |
| 4.2.2    | Recharge Rates .....                                                                   | 33        |
| 4.2.3    | Vegetation Changes Due to Revegetation.....                                            | 36        |
| 4.2.4    | Infiltration Rate of Barriers .....                                                    | 36        |
| 4.3      | Data Interpretation: Surface Condition to Disposition.....                             | 36        |
| 4.4      | Recharge Lookup Table .....                                                            | 40        |
| <b>5</b> | <b>Software Applications.....</b>                                                      | <b>47</b> |
| 5.1      | Exempt Software .....                                                                  | 47        |
| 5.2      | Approved Software.....                                                                 | 47        |
| 5.2.1    | Description .....                                                                      | 47        |
| 5.2.2    | Software Installation and Checkout .....                                               | 48        |
| <b>6</b> | <b>Calculation.....</b>                                                                | <b>48</b> |
| 6.1      | Extend the ‘Sitewide’ Datasets for Soils and Vegetation.....                           | 48        |
| 6.2      | Rank Data Sources .....                                                                | 50        |
| 6.3      | Automate the Calculation of Recharge Sitewide.....                                     | 50        |

|          |                                             |           |
|----------|---------------------------------------------|-----------|
| <b>7</b> | <b>Results/Conclusions.....</b>             | <b>55</b> |
| 7.1      | Results .....                               | 55        |
| 7.2      | Notable Areas of the RET Calculation .....  | 68        |
| 7.2.1    | BRMP Layer (Near T Plant) .....             | 68        |
| 7.2.2    | End States and Revegetation Cycles .....    | 70        |
| 7.2.3    | Start Years .....                           | 71        |
| 7.3      | Future Considerations.....                  | 72        |
| 7.3.1    | Aerial Imagery.....                         | 72        |
| 7.3.2    | HSDB .....                                  | 73        |
| 7.3.3    | Surface Condition.....                      | 73        |
| 7.3.4    | Refine the Current Automation Process ..... | 73        |
| <b>8</b> | <b>References .....</b>                     | <b>74</b> |

## Appendices

|          |                                                                 |            |
|----------|-----------------------------------------------------------------|------------|
| <b>A</b> | <b>Cover Page for EMDT-RE-0019 .....</b>                        | <b>A-i</b> |
| <b>B</b> | <b>Cover Page for EMDT-GR-0035 .....</b>                        | <b>B-i</b> |
| <b>C</b> | <b>Cover Page for EMDT-BC-0033 .....</b>                        | <b>C-i</b> |
| <b>D</b> | <b>Summary of HSDB Changes for Application in the RET .....</b> | <b>D-i</b> |
| <b>E</b> | <b>RET Software Installation and Checkout Form .....</b>        | <b>E-i</b> |
| <b>F</b> | <b>Sites Recommended for Further Evaluation .....</b>           | <b>F-i</b> |

## Figures

|            |                                                                                                            |    |
|------------|------------------------------------------------------------------------------------------------------------|----|
| Figure 1.  | Extent of Suprabasalt Aquifer at the Hanford Site .....                                                    | 2  |
| Figure 2.  | SSURGO Soils Data .....                                                                                    | 7  |
| Figure 3.  | Addition of SSURGO Soils Data to Hanford Soils Dataset .....                                               | 8  |
| Figure 4.  | Example of the Original BRMP Alignment and Modifications Implemented in RET Calculation (see circled)..... | 13 |
| Figure 5.  | Example of 25 m Buffer Applied as BRMP Layer Outside of the Central Plateau Region .....                   | 14 |
| Figure 6.  | Waste Site Layer Before and After Filters are Applied .....                                                | 16 |
| Figure 7.  | Original Feature (a) and After Removing Overlaps (b).....                                                  | 16 |
| Figure 8.  | Plan View of PHB .....                                                                                     | 19 |
| Figure 9.  | Profile of PHB .....                                                                                       | 19 |
| Figure 10. | Plan View of Conceptual Design for IDF Cap .....                                                           | 20 |
| Figure 11. | Profile View of Conceptual Design for IDF Cap.....                                                         | 20 |
| Figure 12. | Cap Profile Detail for IDF Cap Conceptual Design .....                                                     | 21 |
| Figure 13. | Inventory Sites in the 200 East Area .....                                                                 | 22 |

|            |                                                                           |    |
|------------|---------------------------------------------------------------------------|----|
| Figure 14. | Inventory Sites in the 200 West Area .....                                | 22 |
| Figure 15. | Inventory Sites with “Barrier” as Final Disposition (200 East Area) ..... | 23 |
| Figure 16. | Inventory Sites with “Barrier” as Final Disposition (200 West Area) ..... | 23 |
| Figure 17. | Example Barrier Footprint .....                                           | 25 |
| Figure 18. | Interim Surface Barriers (200 West) .....                                 | 26 |
| Figure 19. | Interim Surface Barriers (200 East) .....                                 | 27 |
| Figure 20. | Focus Area for Data Input Preparation .....                               | 28 |
| Figure 21. | Changes to ERDF PA Recharge Rates per IAMIT Decision .....                | 30 |
| Figure 22. | Changes to IDF PA Recharge Rates per IAMIT Decision .....                 | 30 |
| Figure 23. | Changes to WMA C PA Recharge Rates per IAMIT Decision .....               | 31 |
| Figure 24. | Modifications to WMA C Recharge Map .....                                 | 32 |
| Figure 25. | Estimated Recharge Rates .....                                            | 34 |
| Figure 26. | Estimated Recharge Rates .....                                            | 35 |
| Figure 27. | Gaps in the Vegetation and Soils Data .....                               | 48 |
| Figure 28. | Missing Soil Type (in Red) .....                                          | 49 |
| Figure 29. | Extensions to Default Vegetative Cover .....                              | 49 |
| Figure 30. | RET Workflow Summary .....                                                | 53 |
| Figure 31. | Prioritization Example .....                                              | 55 |
| Figure 32. | B Complex 1943 .....                                                      | 56 |
| Figure 33. | B Complex 1944 .....                                                      | 57 |
| Figure 34. | B Complex 1986 .....                                                      | 58 |
| Figure 35. | B Complex 1994 (PHB Completion) .....                                     | 59 |
| Figure 36. | B Complex 2050 .....                                                      | 60 |
| Figure 37. | B Complex (PHB Breakdown in 2494) .....                                   | 61 |
| Figure 38. | B Complex 2570 .....                                                      | 62 |
| Figure 39. | Hanford RET 1943 .....                                                    | 63 |
| Figure 40. | Hanford RET 1968 .....                                                    | 64 |
| Figure 41. | Hanford RET 2010 .....                                                    | 65 |
| Figure 42. | Hanford RET 2070 .....                                                    | 66 |
| Figure 43. | Hanford RET 2100 .....                                                    | 67 |
| Figure 44. | Hanford RET 2570 .....                                                    | 68 |
| Figure 45. | Close-Up of Gap in BRMP Layer (RET Output Year: 2019) .....               | 69 |
| Figure 46. | RET Output with Fix Applied (RET Output Year: 2019) .....                 | 70 |

## Tables

|          |                                                                                                                                                          |    |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1. | Index of Data Sources .....                                                                                                                              | 5  |
| Table 2. | Reference Index of Soil Types to Corresponding Recharge Type (Based on Literature Published for Hanford Site Soils) as Applied in this Calculation ..... | 9  |
| Table 3. | Exactly Coincident Waste Sites Summary .....                                                                                                             | 17 |

|           |                                                                                                                                              |    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 4.  | Coincident Facilities Summary.....                                                                                                           | 17 |
| Table 5.  | Reference Data Sources Considered Most Current for Groundwater Recharge by<br>Soil Type.....                                                 | 33 |
| Table 6.  | Dispositions from the Hanford Disposition Baseline with the Corresponding<br>Cover and Surface Conditions for Calculations of Recharge ..... | 36 |
| Table 7.  | Recharge Rates .....                                                                                                                         | 41 |
| Table 8.  | Spatial Data Prioritization.....                                                                                                             | 50 |
| Table 9.  | Sites Whose End State/Revegetation Cycle(s) Were Revisited.....                                                                              | 71 |
| Table 10. | Sites Whose Start Years Were Modified .....                                                                                                  | 71 |

## Terms

|                     |                                                             |
|---------------------|-------------------------------------------------------------|
| ArcGIS™             | Esri ArcGIS for Desktop (Basic and Advanced)                |
| BRMP                | Biological Resources Management Plan                        |
| CA                  | Composite Analysis                                          |
| CHPRC               | CH2M HILL Plateau Remediation Company                       |
| DOE                 | U.S. Department of Energy                                   |
| dpi                 | dots per inch                                               |
| ECF                 | Environmental Calculation File                              |
| ERDF                | Environmental Restoration Disposal Facility                 |
| ETC                 | Evapotranspiration Capillary Barrier                        |
| Esri                | Environmental Systems Research Institute                    |
| GIS                 | Geographic Information System                               |
| HGIS                | Hanford Geographic Information System                       |
| HISI                | Hanford Information System Inventory                        |
| HSDB                | Hanford Site Disposition Baseline                           |
| HSGW                | Hanford Sitewide Groundwater                                |
| IAMIT               | Interagency Management Integration Team                     |
| IDF                 | Integrated Disposal Facility                                |
| NRBC                | natural recharge boundary condition                         |
| NRCS                | Natural Resources Conservation Service                      |
| PA                  | Performance Assessment                                      |
| PHB                 | Prototype Hanford Barrier                                   |
| RET                 | Recharge Evolution Tool                                     |
| SSURGO              | Soil Survey Geographic Database                             |
| Tri-Party Agreement | <i>Hanford Federal Facility Agreement and Consent Order</i> |
| USGS                | U.S. Geological Survey                                      |
| WIDS                | Waste Information Data System                               |
| WMA                 | Waste Management Area                                       |

This page intentionally left blank.

## 1 Purpose

The purpose of this environmental calculation file (ECF) is to document the development of a tool that generates temporally and spatially variable representations of natural recharge for the Hanford Site. A key feature of the recharge evolution tool (RET) is that it applies sanctioned natural recharge rates varying as a function of the condition/cover of the ground surface and soil type at different points in time. No hydrologic calculations are performed by the RET, this script works as a lookup database between spatial and temporal datasets to assign research-based recharge rates to corresponding regions throughout the Hanford Site. This work will support vadose zone and groundwater models for the Hanford Site.

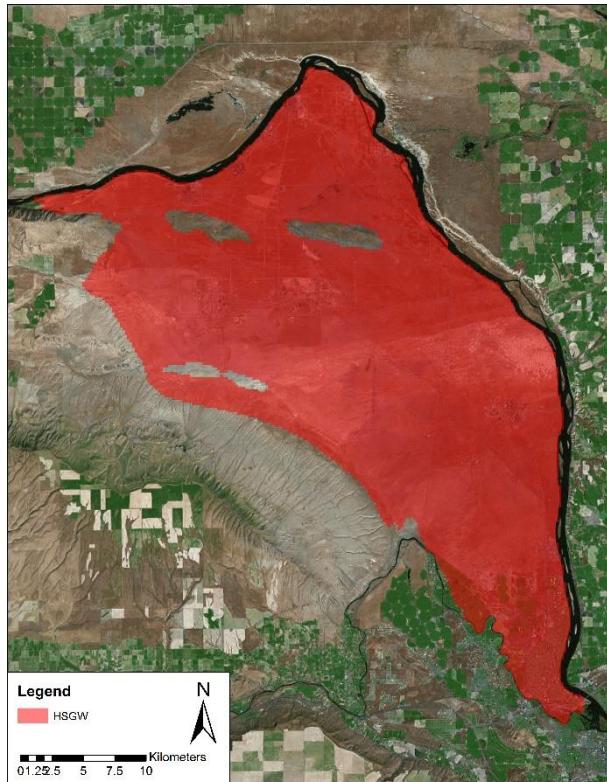
Although efforts will focus on generating recharge estimates for the entirety of the Hanford Site, the focus scope of this work will be the Central Plateau Area to support the Composite Analysis Vadose Zone facet. In other words, the reliability of this calculation will be greatest within the Central Plateau Area and decrease with departures from that geographic region.

The following three main tasks were accomplished and are defined herein:

1. Extend the spatial coverage of the soils and vegetation data to provide full coverage of baseline information within the entire area of interest.
2. Compile the available spatial data and combine the information with present-day knowledge about past events.
3. Establish a method to rank spatial data sources that systematically prioritizes the use of available information to conglomerate a sitewide estimate for recharge for the desired model year(s).

The primary goal was to develop a modular, scalable data structure capable of incorporating new/refined datasets as they become available. Such flexibility allows the utilities discussed in this ECF to be useful beyond the life of the current datasets as newer and better data collection methods supersede those currently available.

In tandem with the goal of building a persistent, scalable data structure is the ability to assimilate multiple data sources to produce sanctioned recharge estimates for the Hanford Site. The completed utility generates data-driven spatiotemporal recharge estimates as opposed to lumped regional average estimates. The finer spatiotemporal discretization provides the ability to show recharge variation at scalable levels of refinement depending on administrative/scientific needs. Although the RET will incorporate available data, it is expected that site-specific models may use the RET as a starting point and refine according to the needs of the model. These refinements may then be incorporated back into the RET as appropriate in future revisions.


## 2 Background

The spatiotemporal variability of the ground surface based on vegetative cover and soil conditions can alter estimated recharge by as much as 130 mm/yr. Disturbances can result in higher flux rates from the vadose zone while revegetation can subsequently reduce recharge (PNNL-14702, *Vadose Zone Hydrology Data Package for Hanford Assessments*). Modeling in the past has aimed to simulate recharge with temporally varied recharge but values largely lacked spatial variation in favor of a regional average. The goal of this work is to facilitate the estimation of recharge values at the smallest available scale over the Hanford Site as well as to provide an information infrastructure for continuous improvement of recharge estimations.

The information infrastructure proposed herein formalizes the ranking of data describing land use or surface condition in conjunction with the underlying soil to estimate recharge through time. The recharge

estimates are saved as self-contained packages representing a snapshot of the conditions at the corresponding time being estimated.

New data collected were captured within the area defined by the Hanford Sitewide Groundwater (HSGW) extent (Figure 1), which generally confines the area of interest based on the boundaries of natural features in the landscape. The current process automation is not limited to this boundary, but instead will assign recharge rates to all areas that have values for the cover type, surface condition, soil type, and a corresponding recharge estimate based on the combination of the three variables mentioned.



**Figure 1. Extent of Suprabasalt Aquifer at the Hanford Site**

### 3 Methodology

Key aspects for building the RET to assign recharge estimates include the following:

- Extending datasets for soils and vegetation to cover the area of interest
- Obtaining spatial data representing Hanford at different times
- Ranking datasets in order of data quality, extent, and temporal relevance
- Automating assigning recharge values

#### 3.1 Extend the Datasets for Soils and Vegetation

Gaps in the soils and vegetation cover datasets were evaluated in the context of the HSGW. Extensions made to the soils coverage came from the Natural Resources Conservation Service (NRCS) website using the Soil Survey Geographic Database (SSURGO). Features depicted in the SSURGO database were copied into the existing soil coverage to fill the gaps within the area of interest. The vegetative cover feature class was “extended” by creating a default background value where there was no information. The

default vegetative value was deliberately designed to represent pre-Hanford Site conditions (or prior to anthropogenic activity) with a mature vegetative cover without consideration for natural wildfires.

### 3.2 Enhance Data on Surface Condition

Surface condition or land-use definitions were produced as polygons based on survey and aerial/satellite imagery and vector data. The methodology used in generating the vector representation implemented in the recharge calculation is listed as follows:

1. Identify time periods (years) most likely to improve overall recharge estimate because of unique surface conditions. Evaluate potential time periods according to:
  - a. Relative importance to recharge estimations (as either a time period representing change, or as a time period containing valuable complementary information)
  - b. Extent of available data
  - c. Usability of the data source, including spatial resolution and whether it is adequately available in digital, georeferenced, and orthorectified form
2. Note the reasons for choosing a given data source, including the reference data to which it will be compared if new features will be derived from it. This information will aid in decision-making during data capture in problem areas where interpretation is unclear and will also be included in the metadata of the resulting dataset.
3. For imagery that will be interpreted into new polygon features, identify a process to ensure a systematic and full-coverage review of the image, which may include use of a land grid to order the review. Other processing standards should include scheduling the review of each source by a single user for a consecutive number of days to minimize variability in data interpretation.
4. Prepare the chosen data source using the same projection as related Geographic Information System (GIS) content, and create a map document in ArcMap<sup>TM</sup> containing related data sources as needed. Create attribute domains for cover type and surface condition with the valid coded values for this dataset.
5. For features to be digitized from imagery, create a new feature class using the proper projection.
6. For features already in vector form, add new fields for “Cover\_Type” and “SurfCond” to match those in the existing schema, applying the attribute domains as above. It is important that the polygon feature schemas match before the data source can be used in the automated creation of recharge in the subsequent calculations. It is ideal to name the new or derived feature classes in a way that references the data source from which it is derived.
7. Interpret the image source, using reference layers and/or comparable data sources whenever possible to maximize the similar use of new features across years and data sources. Capture (digitize) new features to represent the full local extent of a class (such as disturbed ground) detected in the image instead of digitizing only the part of the feature that has not been previously captured.
8. Assign attributes for “Cover\_Type” and “SurfCond,” either as each feature is captured, or in an edit session after polygons have been digitized. Unless an additional effort is made to classify vegetation species assemblages on the ground (because comparable field control samples have been taken),

---

<sup>TM</sup> ArcMap is a trademark of Environmental Systems Research Institute in the United States. and other countries.

“Cover\_Type” should only be entered to help distinguish those types in bold in the interpretation. Use a combination of attribute queries to double-check that all new feature attributes are consistent and as expected.

9. Update the metadata for the feature class, paying special attention to note important process steps, interpretations, and the intended use.
10. Validate the data collected by having someone other than the digitizer review the output feature class relative to the methodology and capture notes.

### 3.3 Rank Data Sources

The amount of available data for the recharge calculation necessitates a formal ranking system in the likely event of two or more valid datasets coinciding in at least one location for a given time. Choosing the appropriate source in the event of overlaps should be resolved by the ranking, which will be established using the following criteria:

1. Evaluate the extent and resolution of the dataset.
  - a. Coarse data should be ranked lower (given less priority) than datasets with higher resolution.
2. Accuracy of the information should also be qualitatively examined with the aim to ensure that the highest quality datasets are preserved.
3. Identify the time period(s) for which each data source is valid. In some cases, the data will have strict constraints on applicability while in other cases the valid time period may be longer or shorter based on the presence or absence of other data.
  - a. Where datasets overlap in time and space, document the assumptions or observations that determine which dataset to preserve over another.

### 3.4 Automate the Calculation of Recharge Sitewide

The complexity and extent of the recharge estimates demands a scripted approach to consistently match recharge values to each combination of cover type, surface condition, and soil type. Creating the automation script followed the general pattern described as follows:

1. Review available data sources and identify the appropriate geoprocessing steps/handlers required to define the recharge rates for a given model year using the best-available sources of information.
2. Implement the automation with a Python script using Environmental Systems Research Institute’s (Esri™) ArcPy™ and GeoPandas libraries to perform the geoprocessing identified in Step 1.
  - a. Other geoprocessing libraries/software may be used, the current implementation of this calculation used ArcPy and GeoPandas
3. Confirm the accuracy of the outputs.
4. Polish the code to include error handling and warning messages for exception cases and remarks documenting the purpose of key functions and variables.

---

<sup>TM</sup>Esri and ArcPy are trademarks of Environmental Systems Research Institute in the United States and other countries.

## 4 Assumptions and Inputs

This chapter covers the underlying assumptions made while collecting or creating the source information for recharge. Included in this discussion are subsections for spatial sources, historical data, and interpretation of inputs for estimating the surface condition and associated recharge.

### 4.1 Spatial Data Sources

Most data used as inputs for these calculations originated from the Hanford GIS (HGIS) production data store. Each dataset evaluated for the RET is listed in Table 1 along with the data custodian and special notes about the dataset.

**Table 1. Index of Data Sources**

| Alias                       | Custodian            | Notes                                                                                                                                                                             |
|-----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Past buildings              | Hanford GIS team     | This shapefile maintained by the GIS team at Hanford focuses primarily on buildings/facilities that were known to have existed even if they may not be present today.             |
| Facilities                  | Hanford GIS team     | Contains a collection of two-dimensional building footprints. Documented in EMDT-GR-0035.                                                                                         |
| Soils - 1966 soil survey    | Hanford GIS team     |                                                                                                                                                                                   |
| Barrier footprints          | INTERA               | Rotated minimum bounding rectangles over each site known to either receive or currently have a surface barrier in place based on the associated waste site footprint.             |
| Waste site footprints       | Hanford GIS team     | Provided by M. Aye at JACOBS to J. Lopez at INTERA, Inc. on 07/26/2018 by email. EMDT-GR-0035.                                                                                    |
| HSDB                        | INTERA               | Table is a summarized version of the “MasterList” sheet in the spreadsheet provided with CP-60254. Where applicable, disposition timeline information was superseded by CP-63386. |
| Soils - SSURGO              | USDA                 | Incorporated only where the Hanford soils shapefile was lacking (Figure 3).                                                                                                       |
| Vegetation - current (BRMP) | PNNL (Ecology Group) | Description provided with the feature class indicates that multiple years were included in its development, up through 2011.                                                      |
| Recharge lookup tables      | INTERA               | Derived/developed with input from the HSDB, PNL-10285 UC-2010, PNNL-14072, DOE/RL-2011-50, and AR-02612.                                                                          |
| Model boundary              | INTERA               | Depicts the extents of the RET boundary, maintained by INTERA.                                                                                                                    |

Note: Complete reference citations are provided in Chapter 8.

|         |   |                                        |        |   |                                       |
|---------|---|----------------------------------------|--------|---|---------------------------------------|
| BRMP    | = | biological resources management plan   | PNNL   | = | Pacific Northwest National Laboratory |
| Ecology | = | Washington State Department of Ecology | RET    | = | Recharge Evolution Tool               |
| GIS     | = | geographic information system          | SSURGO | = | Soil Survey Geographic Database       |
| HSDB    | = | Hanford Site Disposition Baseline      | USDA   | = | U.S. Department of Agriculture        |

#### 4.1.1 Data Management

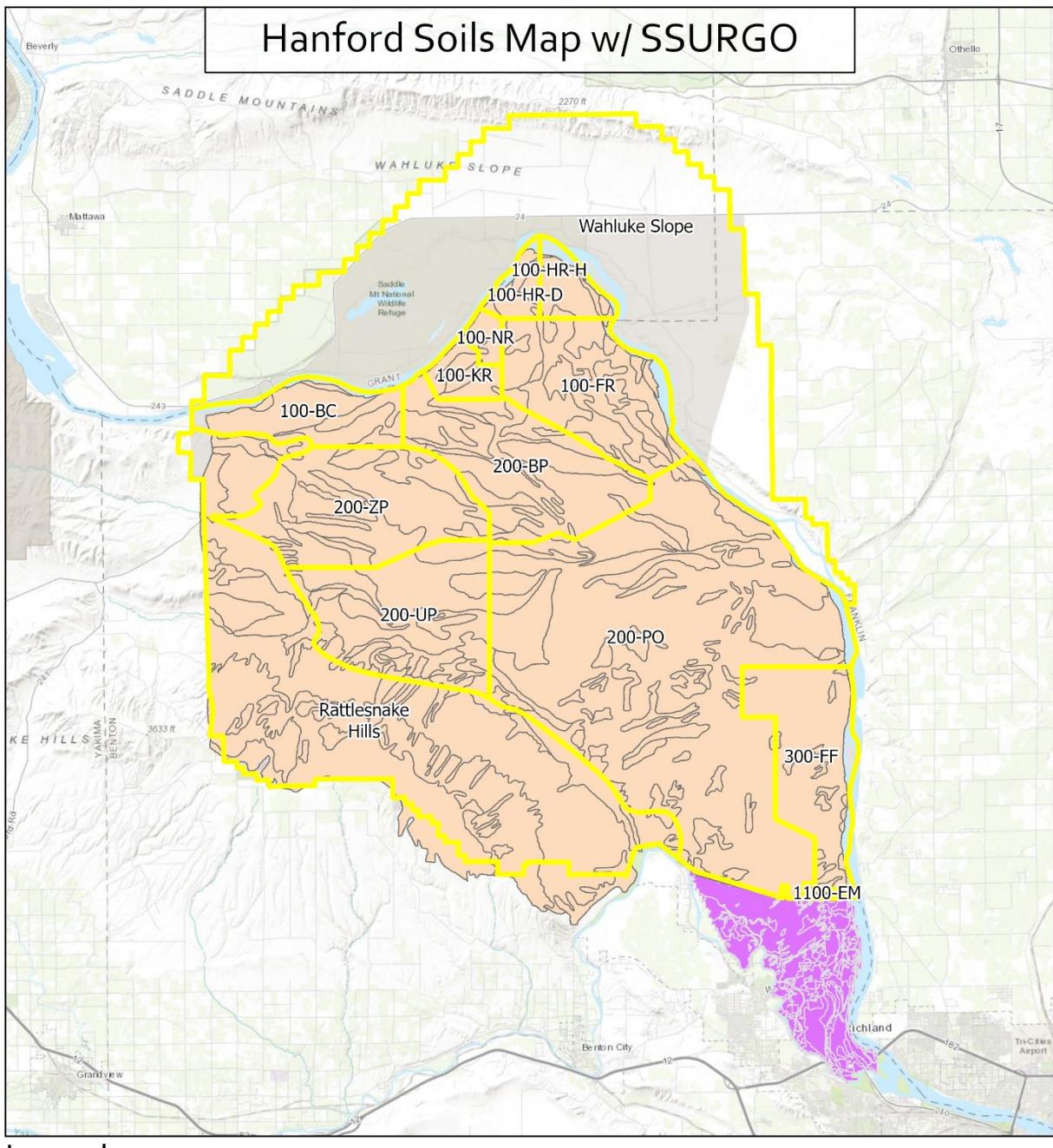
A file geodatabase was created to define certain default formats expected of the calculation files and to provide a single location for storing all the geospatial content related to the calculations. All data have been loaded using a common projection that has the following spatial reference:

NAD\_1983\_StatePlane\_Washington\_South\_FIPS\_4602  
 WKID: 32149 Authority: EPSG  
 Projection: Lambert\_Conformal\_Conic  
 False\_Easting: 500000.0  
 False\_Northing: 0.0  
 Central\_Meridian: -120.5  
 Standard\_Parallel\_1: 45.8333333333334  
 Standard\_Parallel\_2: 47.3333333333334  
 Latitude\_Of-Origin: 45.3333333333334  
 Linear Unit: Meter (1.0)

Geographic Coordinate System: GCS\_North\_American\_1983  
 Angular Unit: Degree (0.0174532925199433)  
 Prime Meridian: Greenwich (0.0)  
 Datum: D\_North\_American\_1983  
 Spheroid: GRS\_1980  
 Semimajor Axis: 6378137.0  
 Semiminor Axis: 6356752.314140356  
 Inverse Flattening: 298.257222101

#### 4.1.2 USGS Black and White Aerial Photography

The HGIS contains digital image files of aerial photography collected by the U.S. Geological Survey (USGS) in 1943. The original images had been scanned previously at either 600 or 1,200 dpi and merged into a mosaic to cover most of the Hanford Site. The mosaic consists mostly of higher-resolution scans (1,200 dpi), at least in the irrigated areas, while other parts of the mosaic were captured at 600 dpi. Though the 600-dpi data are too coarse to define vegetation cover per se, the images are considered legible enough to distinguish important features (vegetated versus disturbed land cover).


#### 4.1.3 Soils

Most of the soils used in this calculation originate from the HGIS (Soils.shp), which contains soil types for which recharge rates have been published previously. However, there are some areas of the model domain not covered by the current soils classification for Hanford, so in these areas the data gaps will be filled by the U.S. Department of Agriculture NRCS SSURGO data available from <http://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=WA>. When navigating through the data portal, select the data for the “Benton County Area” (Figure 2), which will take you to a map where the user can interactively select data for download. A figure representing how the SSURGO data was added to complement the HGIS soil dataset is shown in Figure 3.

www.nrcs.usda.gov/wps/portal/nrcs/surveylis

| Soil survey name (Click links for online surveys.)                                                   | Date    | Archived PDF online | Web Soil Survey (generated from official soil data) |
|------------------------------------------------------------------------------------------------------|---------|---------------------|-----------------------------------------------------|
| Benton County Area                                                                                   | 1971    | Yes                 | No                                                  |
| Benton County Area  | current | No                  | Yes                                                 |
| Benton County                                                                                        | 1919    | Yes                 | No                                                  |

Figure 2. SSURGO Soils Data



Date Saved: 4/16/2020 4:10 PM

ECF-HANFORD-15-0019 (Recharge Evolution Tool)

**Figure 3. Addition of SSURGO Soils Data to Hanford Soils Dataset**

The SSURGO database contains information about soil as collected by the National Cooperative Soil Survey over the course of a century. The mapping is intended for natural resource planning and management by landowners, townships, and counties. The maps are linked in the database to information about the component soils and their properties for each map unit. Each map unit may contain one to three major components and some minor components. The map units are typically named for the major components. SSURGO soil types were associated to the existing Hanford Site soils classification (see “Recharge Type” in Table 2) to apply the recharge rates previously established for the Hanford soils.

**Table 2. Reference Index of Soil Types to Corresponding Recharge Type (Based on Literature Published for Hanford Site Soils) as Applied in this Calculation**

| Abbreviation | Recharge Type | Description                                                                                                                                                                          | Source |
|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| BbA          | Ba            | Burbank loamy fine sand, 0% to 2% slopes                                                                                                                                             | SSURGO |
| BbC          | Ba            | Burbank loamy fine sand, 0% to 15% slopes                                                                                                                                            | SSURGO |
| BbD          | Ba            | Burbank loamy fine sand, 2% to 15% slopes                                                                                                                                            | SSURGO |
| BIA          | Ba            | Burbank loamy fine sand, gravelly substratum, 0% to 2% slopes                                                                                                                        | SSURGO |
| BID          | Ba            | Burbank loamy fine sand, gravelly substratum, 2% to 15% slopes                                                                                                                       | SSURGO |
| Ba           | Ba            | Burbank loamy sand: Coarse soil underlain by gravel. Gravel content: 20 to 80 vol%. Surface layer thickness: 40 cm.                                                                  | HGIS   |
| D            | D             | Dune sand: Represents miscellaneous materials of sand sized particles transported by wind. Can be both shifting and/or stabilized. No soil horizons have developed.                  | HGIS   |
| Eb           | Eb            | Ephrata stony loam: Medium textured soil underlain by gravel. Occurs on glacial hummocky ridges. Areas between hummocks contain 1 m size boulders.                                   | HGIS   |
| FeA          | El            | Finley fine sandy loam, 0% to 2% slopes                                                                                                                                              | SSURGO |
| FeB          | El            | Finley fine sandy loam, 2% to 5% slopes                                                                                                                                              | SSURGO |
| FeD          | El            | Finley fine sandy loam, 5% to 15% slopes                                                                                                                                             | SSURGO |
| FfE          | El            | Finley stony fine sandy loam, 0% to 30% slopes                                                                                                                                       | SSURGO |
| FnA          | El            | Finley fine sandy loam, moderately deep, 0% to 2% slopes                                                                                                                             | SSURGO |
| FnB          | El            | Finley fine sandy loam, moderately deep, 2% to 5% slopes                                                                                                                             | SSURGO |
| UmB          | El            | Umapine silt loam, 0% to 5% slopes                                                                                                                                                   | SSURGO |
| El           | El            | Ephrata sandy loam: Medium textured soil underlain by gravelly material. The topography is generally level.                                                                          | HGIS   |
| HeA          | He            | Hezel loamy fine sand, 0% to 2% slopes                                                                                                                                               | SSURGO |
| He           | He            | Hezel sand: Laminated and strongly calcareous, usually encountered within 60 cm of the surface. The surface soil was formed in eolian sands that covered lacustrine sediments.       | HGIS   |
| Kf           | Kf            | Koehler sand: Developed in an eolian mantle. Differs from the other sands in that it overlies a lime-silica cemented layer. The subsoil is calcareous and is at approximately 40 cm. | HGIS   |
| Ki           | Ki            | Kiona silt loam: Occupies steep slopes and ridges. The soil contains basalt fragments both in the surface and subsoil. Basalt rock outcrops are present.                             | HGIS   |

**Table 2. Reference Index of Soil Types to Corresponding Recharge Type (Based on Literature Published for Hanford Site Soils) as Applied in this Calculation**

| Abbreviation | Recharge Type | Description                                                                                                                                                                                                                                | Source |
|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Ls           | Ls            | Lickskillet silt loam: Occupies ridge tops. Contains basalt fragments 30 cm in diameter and larger. Numerous basalt fragments are present throughout the profile. Many areas of stony silt loam and shallow lithosols may be mapped.       | HGIS   |
| PaA          | P             | Pasco fine sandy loam, 0% to 2% slopes                                                                                                                                                                                                     | SSURGO |
| PcA          | P             | Pasco silt loam, 0% to 2% slopes                                                                                                                                                                                                           | SSURGO |
| P            | P             | Pasco silt loam: Very poorly drained soil formed in recent alluvial material. The subsoil is variable consisting of stratified layers. Limited in areal extent and located in low areas near the Columbia River.                           | HGIS   |
| EsA          | Qu            | Esquatzel fine sandy loam, 0% to 2% slopes.                                                                                                                                                                                                | SSURGO |
| Qu           | Qu            | Esquatzel silt loam: Formed in recent alluvium derived from loess and lake sediments. The color and texture are stratified. Associated with the Ritzville and Warden soils.                                                                | HGIS   |
| QuA          | Qy            | Quincy loamy sand, 0% to 2% slopes                                                                                                                                                                                                         | SSURGO |
| QuD          | Qy            | Quincy loamy sand, 2% to 15% slopes                                                                                                                                                                                                        | SSURGO |
| QuE          | Qy            | Quincy loamy sand, 0 to 30 percent                                                                                                                                                                                                         | SSURGO |
| Qy           | Qy            | Quincy sand: Very extensive. Developed under grass, sagebrush, and hopsage in coarse sandy alluvium mantled by eolian sands. Relief includes hummocky terraces and dune like ridges. Active dunes are present.                             | HGIS   |
| PITS         | Qy            | Pits                                                                                                                                                                                                                                       | SSURGO |
| W            | Qy            | Water                                                                                                                                                                                                                                      | SSURGO |
| XX           | Qy            | Not coded (use Rupert Sand)                                                                                                                                                                                                                | HGIS   |
| Rp           | Rp            | Quincy sand (was Rupert Sand, Rp)                                                                                                                                                                                                          | HGIS   |
| Ri           | Ri            | Ritzville silt loam: Developed on Rattlesnake Hills under bunch grass from eolian sands mixed with minor amounts of volcanic ash. Depth range: 50 cm - 1 m.                                                                                | HGIS   |
| Rh           | Rv            | Riverwash                                                                                                                                                                                                                                  | SSURGO |
| Rv           | Rv            | Riverwash: Occur in wet, periodically flooded areas of sand gravel and boulders which make up islands in and adjacent to the Columbia River.                                                                                               | HGIS   |
| ScA          | Sc            | Scooteney silt loam, 0% to 2% slopes                                                                                                                                                                                                       | SSURGO |
| SdA          | Sc            | Scooteney silt loam, gravelly subsoil, 0% to 2% slopes                                                                                                                                                                                     | SSURGO |
| Sc           | Sc            | Scooteney stony silt loam: Developed along the north slope of Rattlesnake Hills, confined to areas where draws and fan shaped areas open onto the plain. The soils are often severely eroded with exposed basalt boulders and other rocks. | HGIS   |
| WdAB         | Wa            | Warden silt loam, 0% to 5% slopes                                                                                                                                                                                                          | SSURGO |
| WdB          | Wa            | Warden silt loam, 2% to 5% slopes                                                                                                                                                                                                          | SSURGO |

**Table 2. Reference Index of Soil Types to Corresponding Recharge Type (Based on Literature Published for Hanford Site Soils) as Applied in this Calculation**

| Abbreviation | Recharge Type | Description                                                                                                                                                                                                             | Source |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Wa           | Wa            | Warden silt loam: Characteristic of dry climate where evapotranspiration exceeds precipitation. The subsoil becomes strongly calcareous at 60 cm and calcium carbonate layers are common. Granitic boulders are common. | HGIS   |

HGIS = Hanford Geographic Information System

SSURGO = Soil Survey Geographic Database

#### 4.1.4 Vegetation Classification

The surface condition for most of the Hanford Site will be the natural vegetative cover, which is defined in a GIS polygon feature class referenced by the Biological Resources Management Plan, or BRMP, documented in DOE/RL-96-32, *Hanford Site Biological Resources Management Plan*. This dataset includes areas throughout the site that have evidence of fire scarring and anthropogenic activity.

In the absence of data on the natural vegetation cover prior to 2011, data from the BRMP are phased in over time. Prior to any known disturbance within a feature of the BRMP feature class (“disturbance” meaning any known change to the vegetation cover), a default coverage assuming pre-Hanford Site conditions is used. When a known disturbance or event intersects with a BRMP feature, the vegetative cover from the BRMP is applied. Vegetative cover during and after 2011 is taken directly from the BRMP (where available) with no other substitutions to the dataset.

The vegetative classes in the BRMP were applied only within the Central Plateau Area, coincident with the modeling areas discussed in Section 4.1.9. Pre-Hanford Site conditions were applied outside of the Central Plateau Area.

#### 4.1.5 Waste Sites (ehsit) and Facilities (bggenxs, bggensit)

The ehsit, bggenxs, bggensit data sources represent all of the known point, line, and polygon features that make up mapped waste sites, facilities, and buildings at the U.S. Department of Energy’s (DOE) Hanford Site. These features can include both known and suspected features, which means that there may be features in these datasets that do not correspond to features in the Disposition Baseline (described below). The mapped locations provide a starting point for remediation planning and field activities and are also used during excavation and drilling activities to identify potential conditions at the work site.

As more information is acquired through the declassification of documents and photos, newly identified drawings, and field work associated with remediation planning, the mapped location is modified to account for the updated information. The automation script provided by this calculation is designed to incorporate new information as it becomes available.

When present (in time), waste sites and structures are given a default cover and surface condition of “bare” and “disturbed sand,” respectively, which corresponds to a rate of 63 mm/yr. The exceptions to this rule are tank farms and lined landfills (e.g., the Integrated Disposal Facility (IDF) described in EMDT-RE-0019, “Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility,”<sup>1</sup> which is provided in Appendix A of this ECF). Tank farms receive a cover and surface condition of “bare” and “disturbed gravel,” respectively, corresponding with a rate of 100 mm/yr. Lined landfills are assigned a cover and surface condition of “Lined Landfill” and “Barrier/MinRchrg,” respectively, corresponding with a rate of 0 mm/yr.

#### **4.1.6 Modifications to Spatial Data Sources**

Spatial data sources including the BRMP, waste sites, facilities, and barriers were edited to improve the accuracy of the recharge estimates and facilitate data incorporation into numerical models. All modifications made to the spatial datasets will be described in turn.

##### **4.1.6.1 BRMP Edits**

The BRMP dataset utilized a coarsely defined set of polygons that did not align with observations from 2011 aerial imagery (Figure 4). Within the Central Plateau region where anthropogenic activities are likely to have altered surface condition, edits were made to the BRMP shapefile to bring it into conformity with the aerial imagery. Outside of the Central Plateau Area the BRMP was modified to match a 25 m buffer of known sites outside of the Central Plateau Area (Figure 5). A 25 m buffer was used to capture disturbances associated with waste sites and buildings and activities associated with maintenance of those facilities outside of the Central Plateau Area.

---

<sup>1</sup> Electronic Model Data Transmittals are data-tracking numbers for imported and verified data used in modeling.

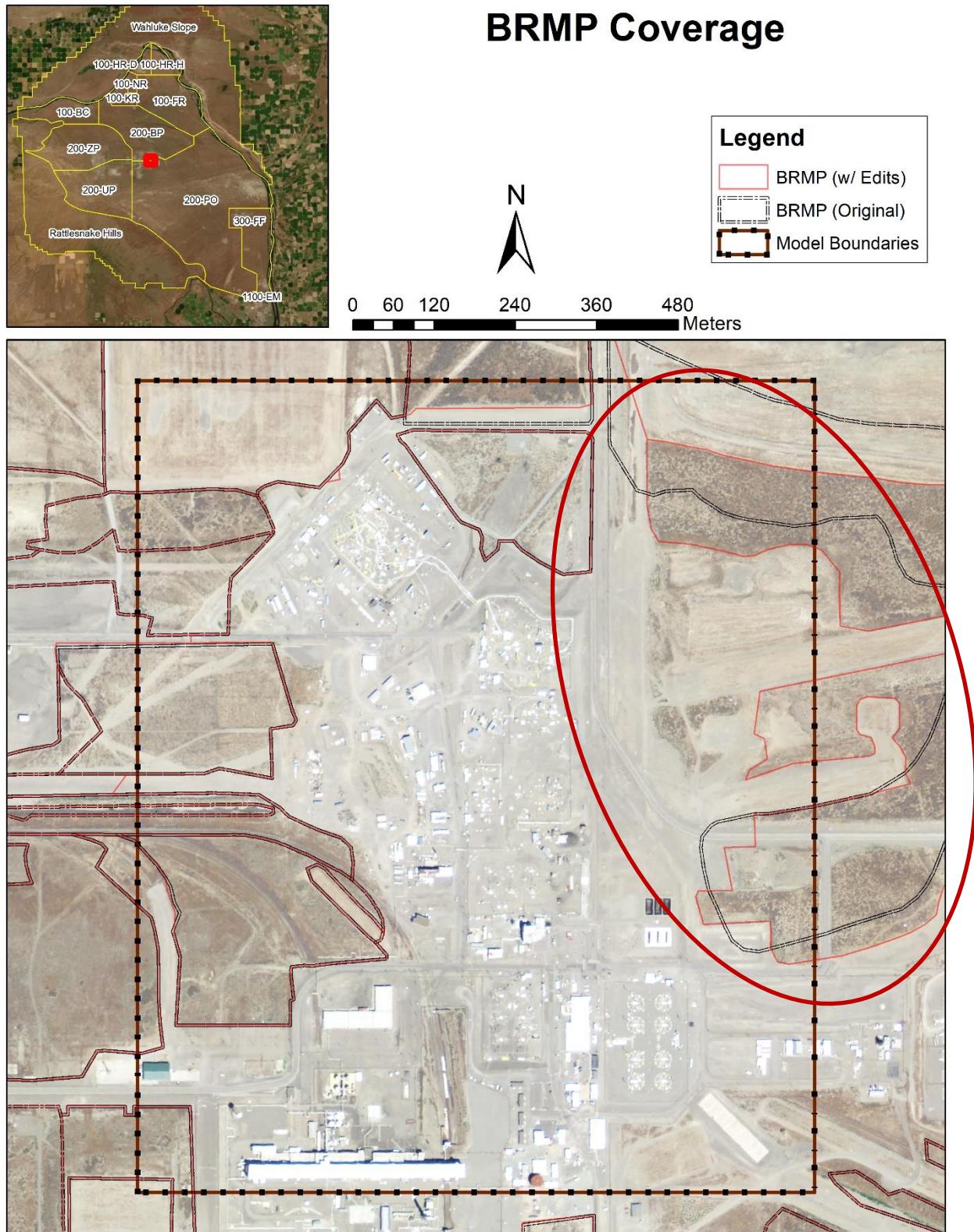



Figure 4. Example of the Original BRMP Alignment and Modifications Implemented in RET Calculation (see circled)

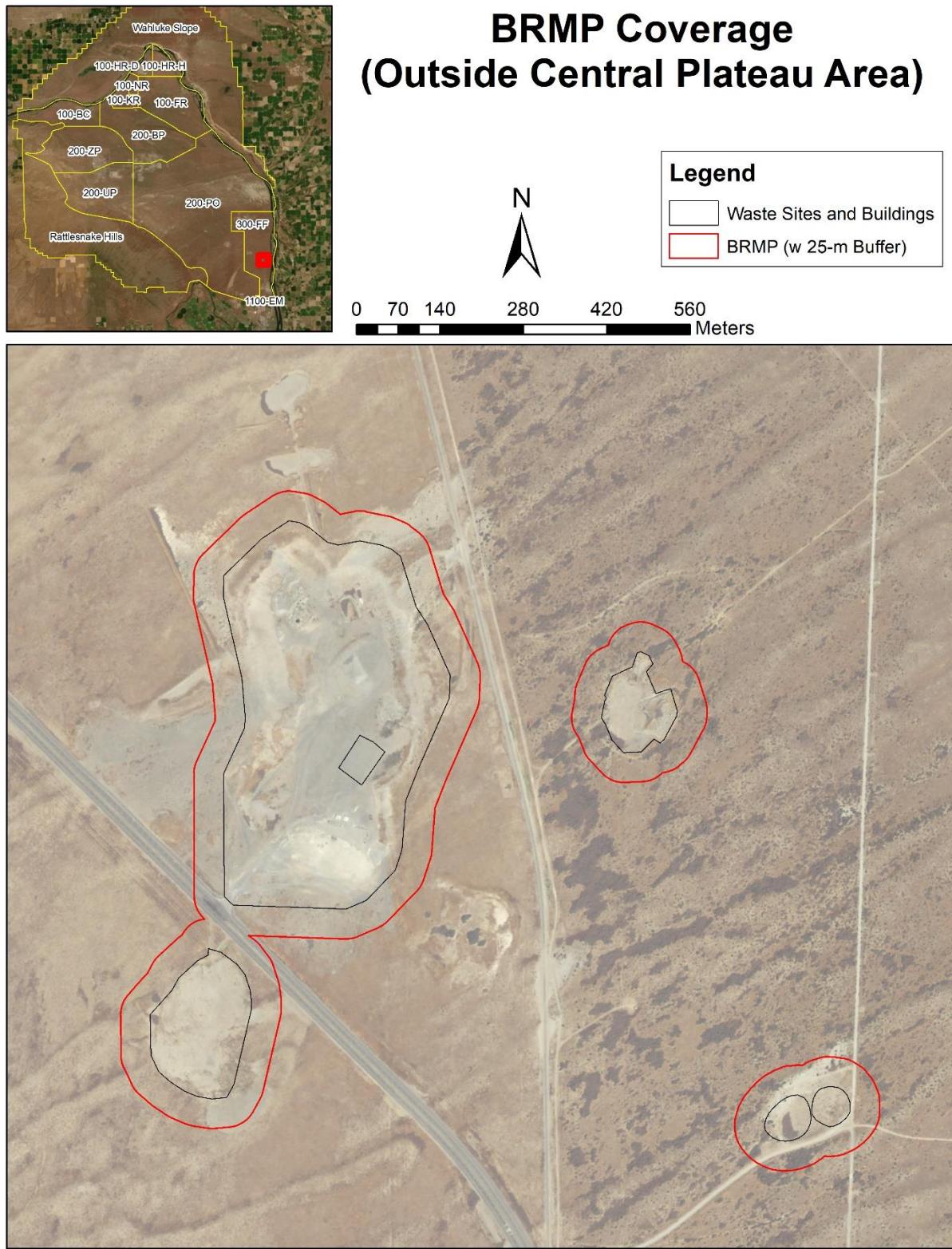



Figure 5. Example of 25 m Buffer Applied as BRMP Layer Outside of the Central Plateau Region

#### 4.1.6.2 Waste Sites (ehsit)

Waste site geospatial information used in this application of the RET is documented in EMDT-GR-0035, “Waste Site and Structure Footprint Shapefiles for Inclusion in Updated Composite Analysis,”<sup>1</sup> which is provided in Appendix B of this ECF. The original waste sites shapefile contained information that detracted from the purposes of the RET. For example, pipelines, and electrical conduit do not significantly affect recharge on anything but a fine, local scale. Including thin, linear features in the RET would suggest greater confidence in its ability to assign recharge than should be implied. Additionally, tanks like those in the B Farms area are subsurface entities and discretizing by tanks inside of the disturbed excavation pit was deemed to be both redundant and unnecessary. For the purposes of the RET, the waste sites shapefile was queried to remove unnecessary features using the following criteria (see effects of the filtering in Figure 6):

- Dividing the shape’s perimeter by the shape’s total area provided a metric for evaluating the linearity of a given shape. Those features whose ratio was  $0.9 \text{ m}^{-1}$  or greater were removed from the dataset.
- Sites matching the pattern ‘%River Line%’ in the “Site\_Name” attribute were removed.
  - The percent sign character (%) is a wildcard in ArcMap representing any valid character combination of any length.
- Other sites removed included those matching the pattern ‘%Shell Tank’ in the “ERS\_TYPE\_D” attribute field.

With the removal of the tank footprints from the waste sites shapefile, to represent tank farms the excavation boundaries were kept in the shapefile. In the case of the tank farm near PUREX and Waste Management Area (WMA) A/AX, the excavation footprints were not listed in the ehsit shapefile. To make certain that these areas were treated correctly (as waste sites) the building footprints were taken from the bgenexs feature class (discussed in a following subsection). The “SITE\_NUM” attribute values of the copied footprints were 241AN and 241AP.

Overlaps in the waste sites shapefile also presented a problem and required modification. Although the RET can handle overlapping features, recharge estimations should be uniquely defined for each location at a given time. Where overlaps exist within a given dataset, the RET algorithm will generate as many recharge estimates as there are overlaps for the same location. Thus, the overlaps were removed by creating multiple features within the dataset. Where there were overlaps, the larger waste site was cut such that the smaller feature would exactly fit inside of the newly cut hole (Figure 7). Exactly coincident features were identified in this process and the extra features were deleted from the shapefile while copying their unique data into the retained feature (Table 3).

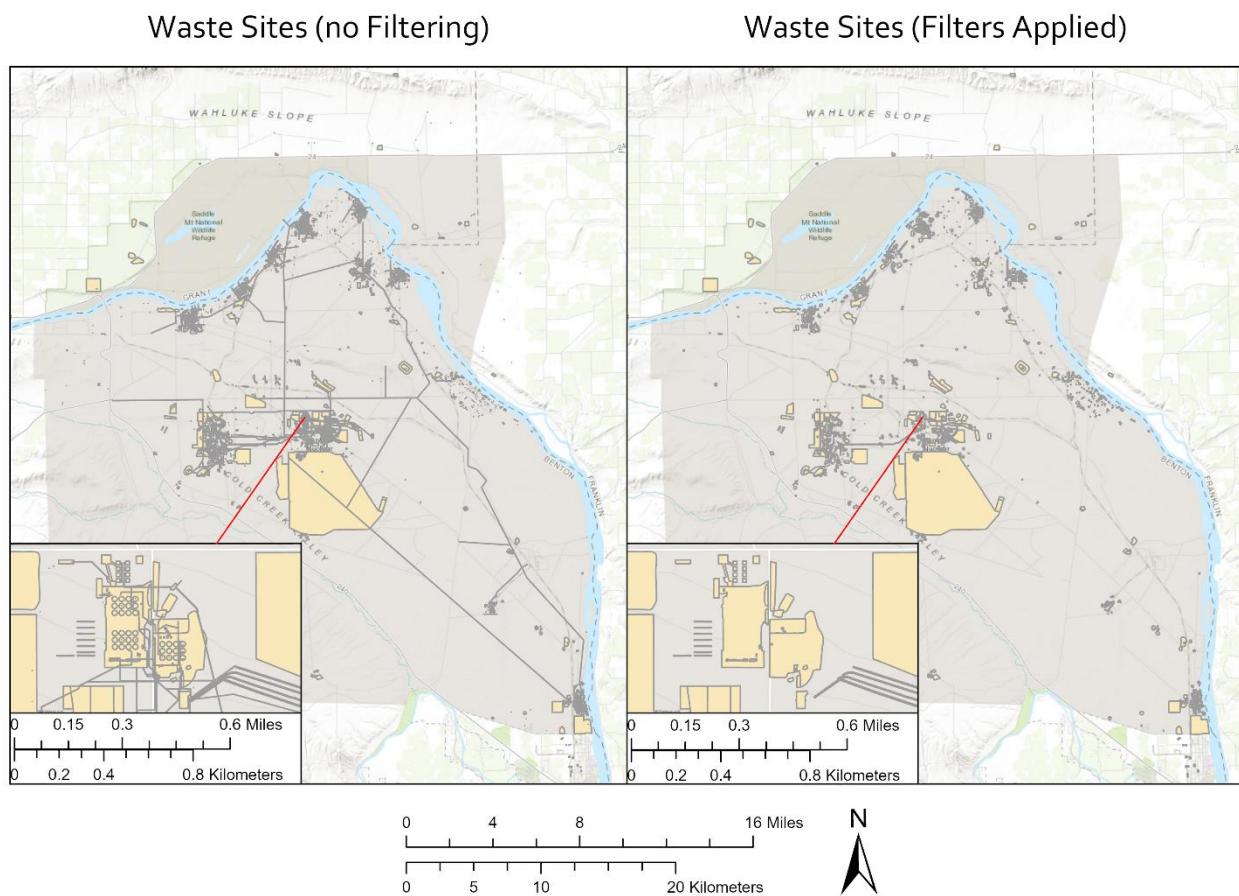



Figure 6. Waste Site Layer Before and After Filters are Applied

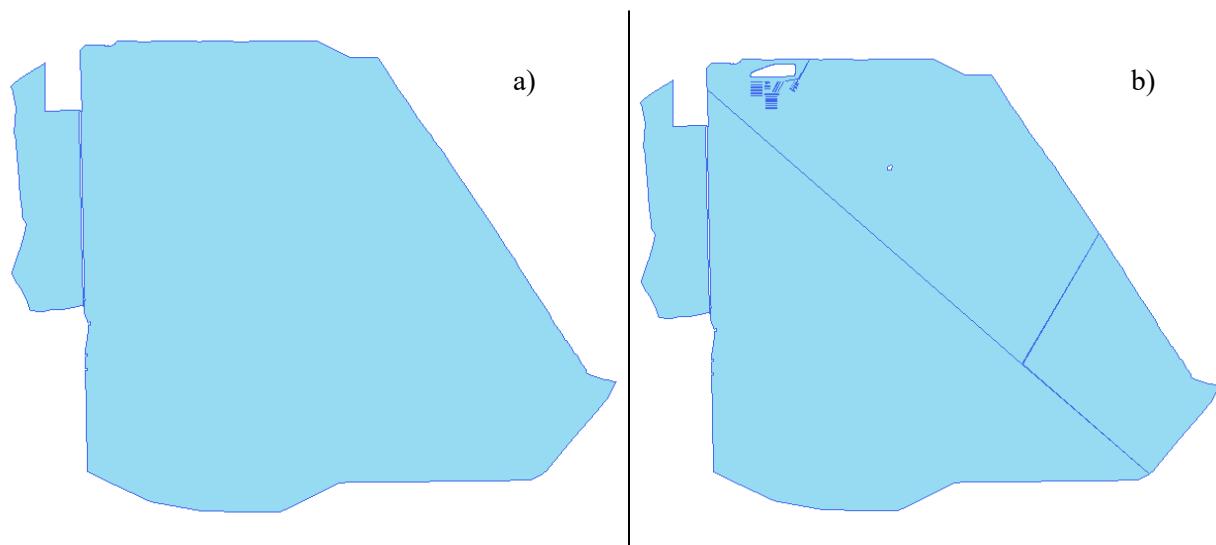



Figure 7. Original Feature (a) and After Removing Overlaps (b)

**Table 3. Exactly Coincident Waste Sites Summary**

| Waste Site Retained | Waste Site(s) Removed                                      |
|---------------------|------------------------------------------------------------|
| 116-H-6             | 100-H-33                                                   |
| 300-249             | 304 CF                                                     |
| 200-W-46            | 200-W-144                                                  |
| UPR-300-37          | UPR-300-32, UPR-300-33, UPR-300-34, UPR-300-35, UPR-300-36 |
| 300-36              | 300-122                                                    |
| UPR-100-N-10        | UPR-100-N-3, UPR-100-N-12                                  |
| 200-E-317           | 217-B NU                                                   |

#### **4.1.6.3 Facility Footprints (*bggenexs* and *bggensit*)**

Modifications made to the shapefiles representing structures on the Hanford Site were primarily to remove overlapping features. The same process described in Section 4.1.6.2 for removing overlaps was applied. In the case of the *bggenexs* shapefile no exactly coincident features were identified. For the *bggensit* shapefile a summary of the exactly coincident features removed is found in Table 4.

**Table 4. Coincident Facilities Summary**

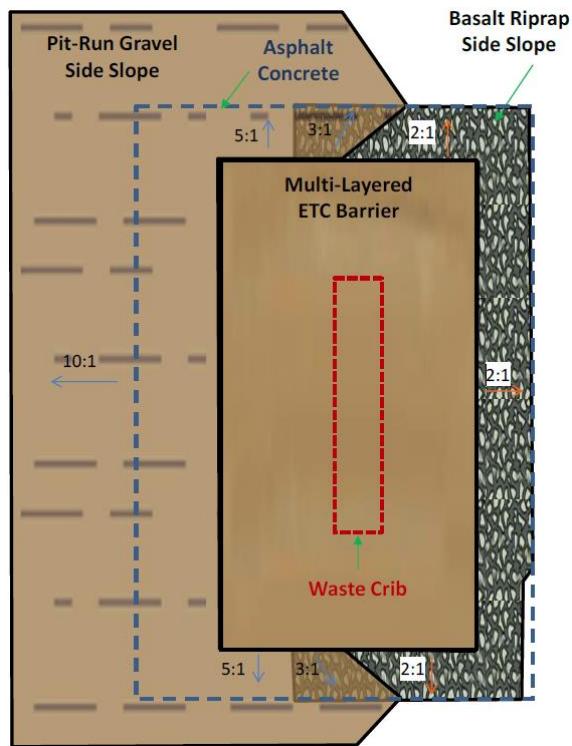
| Facility Name | Object ID Preserved | Object ID Removed | Notes                                                                                |
|---------------|---------------------|-------------------|--------------------------------------------------------------------------------------|
| 101           | 1                   | 2                 | Partial duplicate of the original feature                                            |
| 101           | 1                   | 3                 | Partial duplicate of the original feature                                            |
| 145           | 375                 | 374               | Partial duplicate of the original feature                                            |
| 145           | 375                 | 376               | Partial duplicate of the original feature                                            |
| 145           | 375                 | 377               | Partial duplicate of the original feature                                            |
| 145           | 375                 | 378               | Partial duplicate of the original feature                                            |
| 145           | 375                 | 379               | Partial duplicate of the original feature                                            |
| 145           | 375                 | 380               | Partial duplicate of the original feature                                            |
| 183B          | 763                 | 427               | Exact duplicate of the original feature                                              |
| 153F2         | 457                 | 445               | Exact duplicate of the original feature                                              |
| 153F4         | 459                 | 447               | Exact duplicate of the original feature                                              |
| 183B          | 774                 | 450               | Exact duplicate of the original feature                                              |
| 183B          | 771                 | 756               | Exact duplicate of the original feature                                              |
| 183B          | 768                 | 757               | Exact duplicate of the original feature                                              |
| 183B          | 766                 | 758               | Exact duplicate of the original feature                                              |
| 183B          | 767                 | 759               | Exact duplicate of the original feature                                              |
| 183B          | 775                 | 773               | Exact duplicate of original feature, different MAP_ID value (inconsequential to RET) |
| 183B          | 762                 | 776               | Exact duplicate of the original feature                                              |
| 183B          | 761                 | 777               | Exact duplicate of the original feature                                              |

**Table 4. Coincident Facilities Summary**

| Facility Name | Object ID Preserved | Object ID Removed | Notes                                                                                         |
|---------------|---------------------|-------------------|-----------------------------------------------------------------------------------------------|
| 183B          | 760                 | 778               | Exact duplicate of the original feature                                                       |
| 183B          | 772                 | 779               | Exact duplicate of the original feature                                                       |
| 183B          | 764                 | 780               | Exact duplicate of the original feature                                                       |
| 183B          | 765                 | 781               | Exact duplicate of the original feature                                                       |
| MO859         | 2642                | 875               | Exact duplicate of the original feature, different metadata provided (inconsequential to RET) |
| 1904F         | 1209                | 1208              | Partial duplicate of the original feature                                                     |
| CC0594        | 1987                | 1335              | Exact duplicate of the original feature, different metadata provided (inconsequential to RET) |
| CC1047        | 1990                | 1501              | Exact duplicate of the original feature                                                       |
| CC1046        | 1988                | 1502              | Exact duplicate of the original feature                                                       |
| MO684         | 2516                | 2490              | Exact duplicate of the original feature, different metadata provided (inconsequential to RET) |

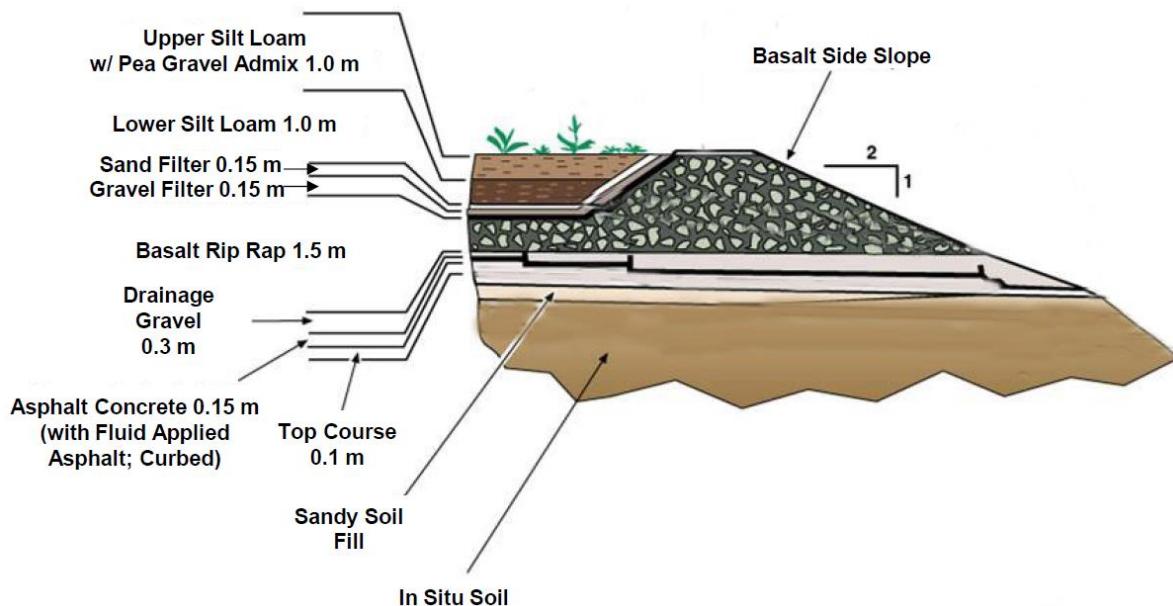
RET = Recharge Evolution Tool

#### 4.1.7 Barrier Footprints


There were two sources included for primary consideration in determining how to represent barrier footprints to be used for the RET: DOE/RL-2016-37, *Prototype Hanford Barrier 1994 to 2016*, and EMDT-RE-0019 for the Prototype Hanford Barrier and IDF studies, respectively. Each source contains information relevant to the size and structure of the barriers implemented/to be implemented over their respective areas and will contribute to the decisions described in this report. The following sections present a summary of the research, reasoning, and methodology behind the barrier footprints incorporated in the RET.

Prior to investigating appropriate assumptions for the shape and size of a given barrier over a known waste site footprint, the barrier footprints originally implemented in DOE/EIS-0391, *Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site (TC & WM EIS)* were considered. However, after evaluating the waste site footprints with known radionuclide inventory and proposed remedies (focusing on surface barriers) it was seen that the barriers used in the Environmental Impact Statement (EIS) models were not all inclusive of the areas known to require a barrier based on the most current waste inventory knowledge and proposed remedies. As such, the barriers were deemed inadequate for the purposes of the RET and were discarded.

##### 4.1.7.1 Prototype Hanford Barrier

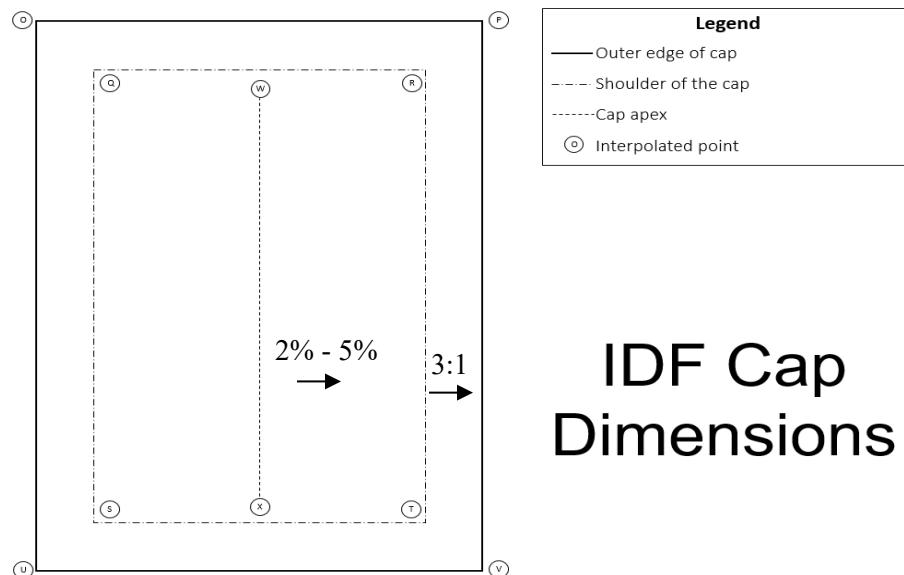

The design of the Prototype Hanford Barrier (PHB) is represented in Figure 8 and Figure 9 as plan and profile views, respectively. The nominal height of the PHB using the callouts shown in Figure 9 comes to 4.35 m (14.27 ft). Side slopes vary surrounding the barrier, the steepest slope at 2:1 and the most gradual a 10:1 slope. The label in Figure 8 mentioning the “ETC Barrier” (i.e., evapotranspiration capillary barrier) is the barrier portion designed to inhibit the progress of water to subgrade soil layers. Side slopes are installed to protect the ETC Barrier from damage due to erosion or intrusion. Reading in the “General Notes” section of the Civil Drawings provided in DOE/RL-94-76, *Constructability Report for the 200-BP-1 Prototype Surface Barrier*, the PHB (called “Prototype Surface Barrier” in the plan sheets) was

built “to cover the infiltrative surface of the crib plus the near surface plume extension at the south end of the crib.” This is contrary to the description provided in DOE/RL-2016-37, which states that the barrier is centered over the crib.



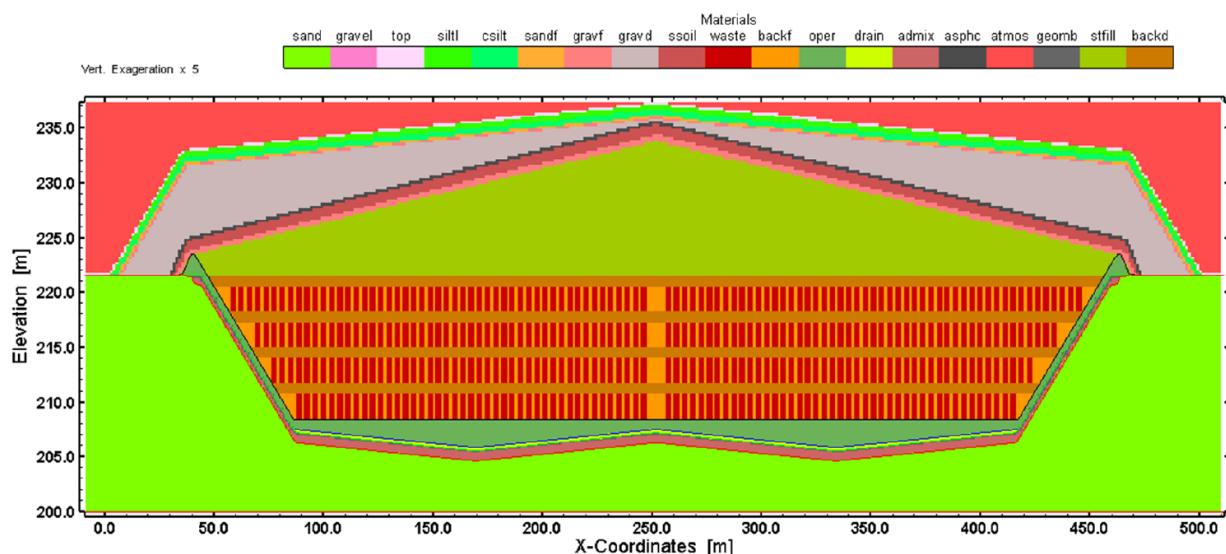
Source: DOE/RL-2016-37, *Prototype Hanford Barrier 1994 to 2016*.

**Figure 8. Plan View of PHB**



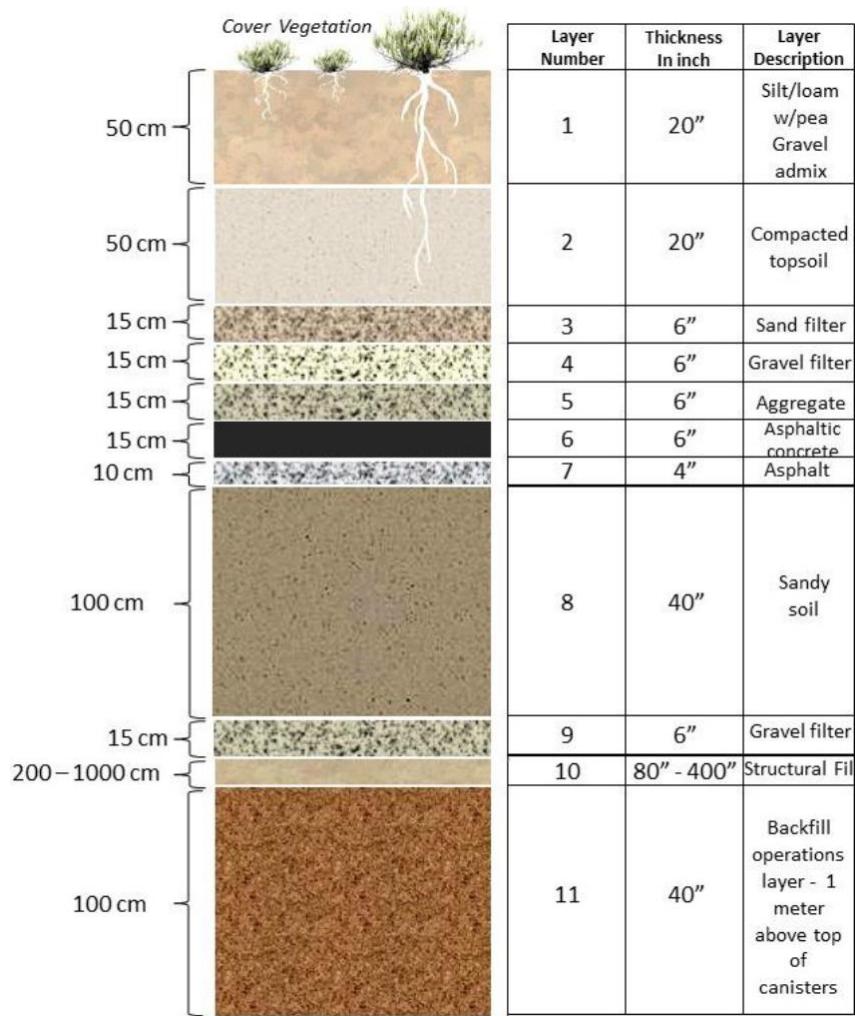

Source: DOE/RL-2016-37, *Prototype Hanford Barrier 1994 to 2016*.

**Figure 9. Profile of PHB**


#### 4.1.7.2 Integrated Disposal Facility

No aspect of the cap has been finalized in either construction or design. The initial conceptual design for the cap intended to cover the IDF is represented in Figure 10 and Figure 11 for plan and profile views, respectively. The slopes shown in Figure 10 are taken from RPP-RPT-59958, *Performance Assessment for the Integrated Disposal Facility, Hanford Site, Washington*. The barrier overhang is specified in RPP-RPT-59958 as “the projection of the functional barrier surface beyond the perimeter of the waste zone.” This overhang extends six meters past the edge of the IDF trench as defined by the “edge of liner section on plan.” Additional conceptual design details of the cap are illustrated in Figure 12.




Source: EMDT-RE-0019, “Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility” (provided in Appendix A of this ECF).

**Figure 10. Plan View of Conceptual Design for IDF Cap**



Source: EMDT-RE-0019, “Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility” (provided in Appendix A of this ECF).

**Figure 11. Profile View of Conceptual Design for IDF Cap**



Source: EMDT-RE-0019, "Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility" (provided in Appendix A of this ECF).

**Figure 12. Cap Profile Detail for IDF Cap Conceptual Design**

#### 4.1.7.3 Barrier Footprint Considerations

The considerations for infiltration barriers in the RET include the expected rate of recharge and the appropriate area to assign with the barrier recharge rate. From guidance provided in DOE/RL-2011-50, *Regulatory Basis and Implementation of a Graded Approach to Evaluation of Groundwater Protection* the guidance for infiltration or capillary barriers is to have a fixed average rate of recharge not to exceed 0.5 mm/yr. Barrier recharge rates for the RET will adopt the guidance given by DOE/RL-2011-50 by assuming the highest limit for barrier recharge to be 0.5 mm/yr and the remaining variable is the number and extent of barrier footprints to be applied.

Sites with waste inventory (anticipated or historical) are shown in Figure 13 and Figure 14. Of the sites with known or future inventory many are identified as having a recharge barrier put in place over the waste site, shown in Figure 15 and Figure 16. The following sections propose methods for placing barriers over these sites.

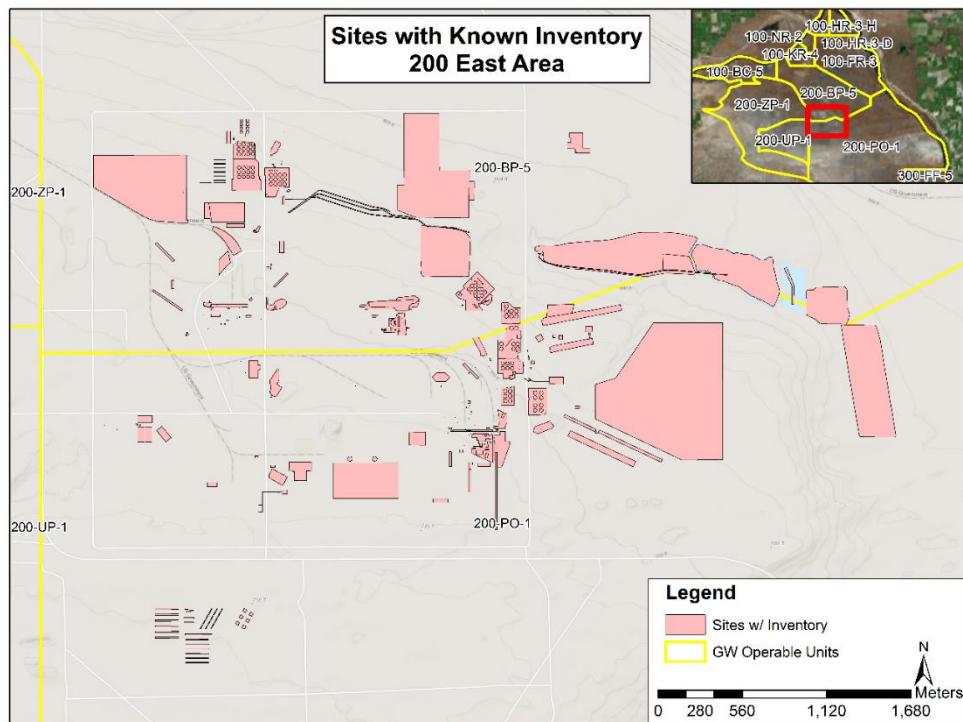



Figure 13. Inventory Sites in the 200 East Area

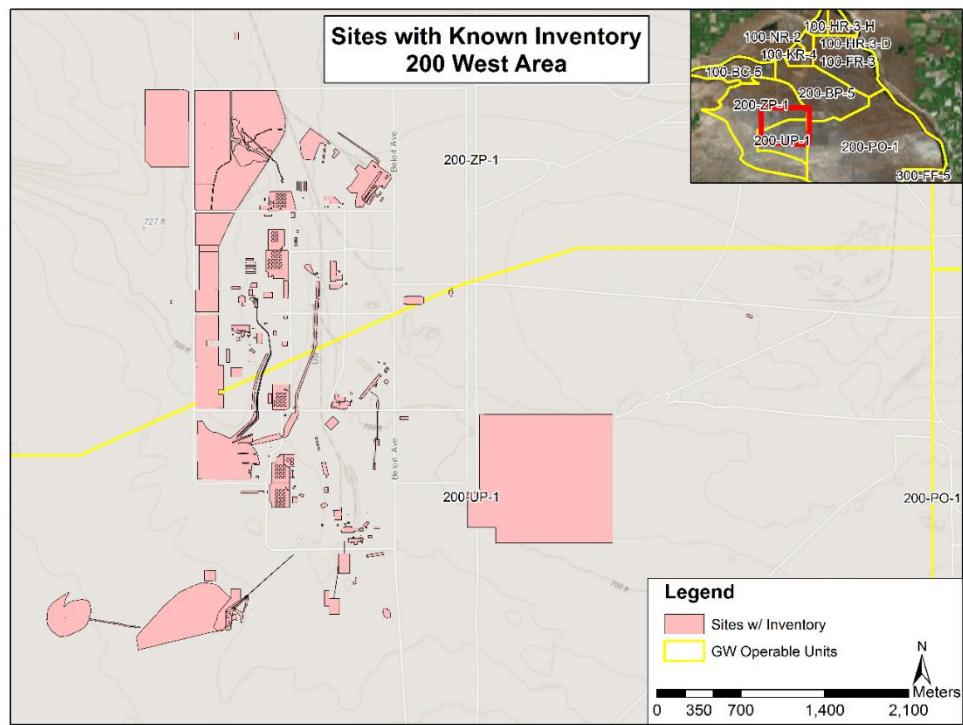



Figure 14. Inventory Sites in the 200 West Area

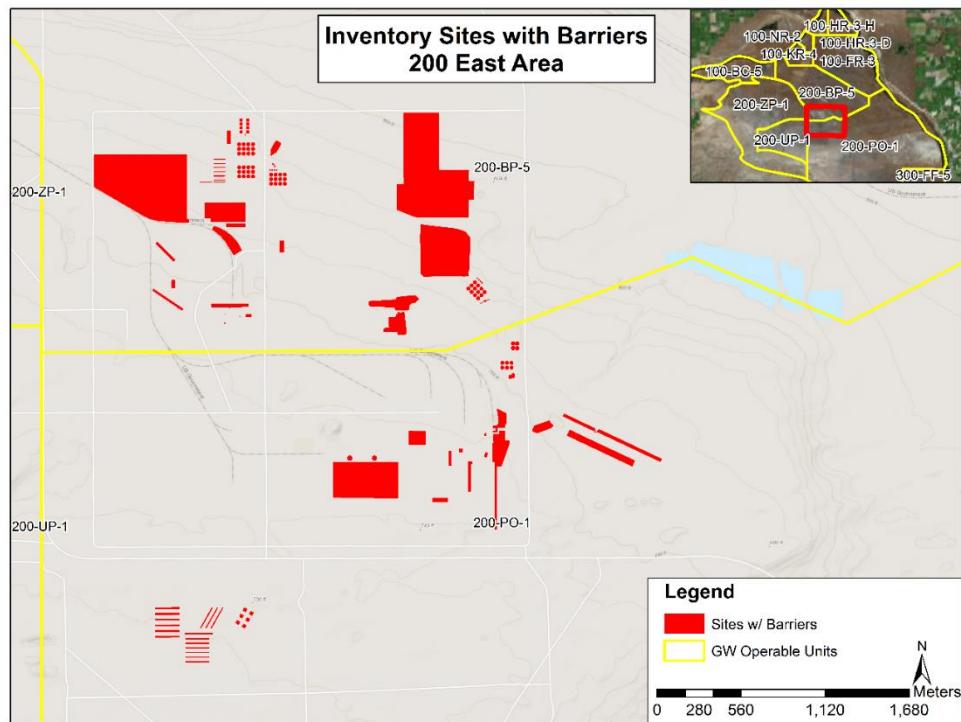



Figure 15. Inventory Sites with “Barrier” as Final Disposition (200 East Area)

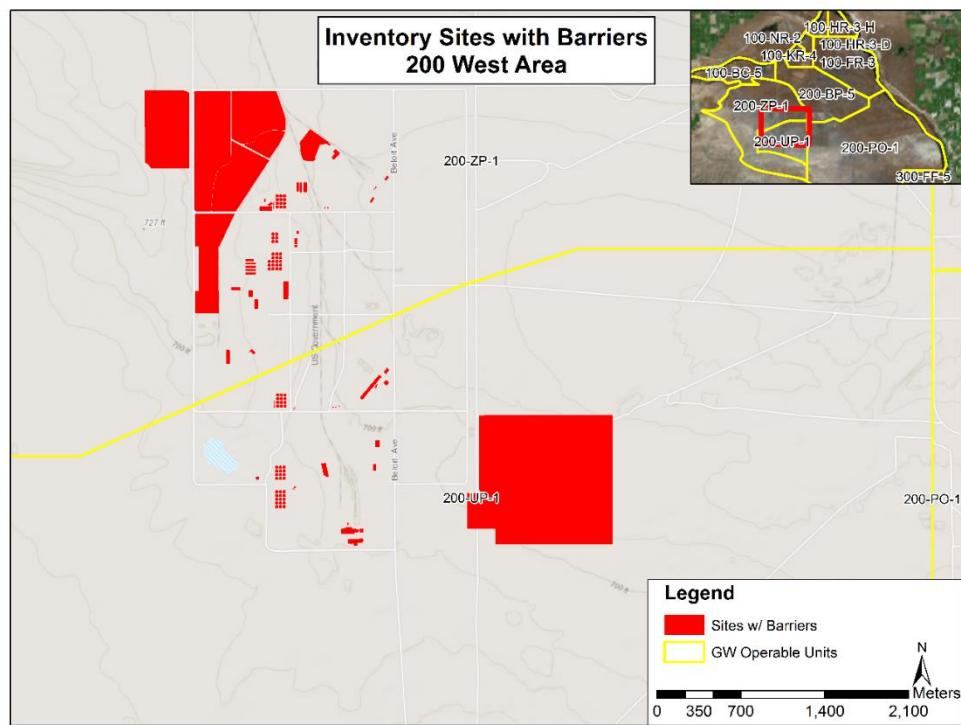
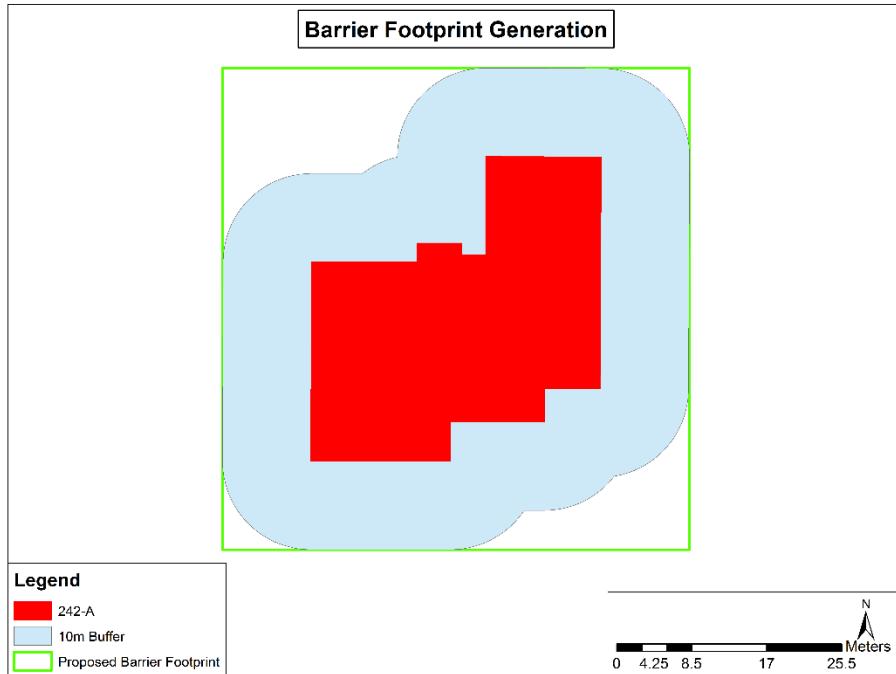



Figure 16. Inventory Sites with “Barrier” as Final Disposition (200 West Area)

#### 4.1.7.4 Barrier Footprint Geometry

The areal extent of barriers not yet finalized or designed will be generated based on the design used for the PHB over 216-B-57, the only existing surface barrier in operation. Some points of consideration for determining the buffer length and geometry are presented herein. The first item to discuss is the extent of coverage for which the barrier is anticipated to stop recharge. The ETC Barrier is designed to intercept water and divert it back to the atmosphere. The side slopes have a limited capacity for holding water before draining off the barrier site. For the intents and purposes of the RET, water-shedding covers are considered to not reduce net recharge and are effectively ignored. DOE/RL-2016-37 Sections 3.1 and 3.2) shows that the drainage through the side slopes was observed to only occur when precipitation exceeded 140 mm/yr. The same section of the report suggests an average year of precipitation to be 172 mm/yr, which results in an estimated recharge of 14.7 mm/yr through the side slopes (over the total area). To be conservative, side slopes are considered to operate as water-shedding surface barriers with no reduction to net recharge. Conservative in this case is to reduce the size of the barrier, increasing the amount of effective recharge to groundwater.


Excluding the areal extents of the side slopes, the remaining portion of the PHB overlaying 216-B-57 is the ETC Barrier. The PHB was designed to prevent moisture infiltration through the crib footprint and the characterized vadose zone plume to the south of the crib. Because future plume footprints are not possible to characterize, barrier placement for the RET will only consider footprints of the waste sites in question. The ETC Barrier portion of the PHB will be analyzed strictly in the context of the waste site footprint for 216-B-57.

The crib and ETC Barrier were divided into quadrants, the common origin being the centroid of the crib footprint. The northeastern quadrant was taken for consideration in the buffer lengths applied to the crib. From the origin, the crib extends 2.5 m to the east and 30.48 m to the north while the ETC Barrier extends 20 m to the east and 32 m to the north. Comparing these lengths by ratio shows an anisotropic relationship in the areal extent of the ETC Barrier and the waste site footprint. The east-west barrier length has a ratio of 1:8 (crib:barrier) and the north-south barrier length is a ratio of 1:1.05.

The anisotropic buffer lengths are not explained in the documents mentioned. Considering that this surface barrier was designed to cover the vadose zone plume characterized near the time of construction in 1994, it is expected that the barrier width was increased to accommodate the theorized plume extent and projected northward. Additionally, site factors such as elevation, equipment placement, anticipated testing plans, etc., may have been additional factors in the geometry of the barrier. In light of these additional considerations taken into account for the PHB, it is assumed that the minimum extent should be at least 2 m from the waste site edge of the surveyed footprint.

For the purposes of RET, the final buffer length based on analysis of the PHB is to use the arithmetic mean of the buffer lengths in the north-south and east-west directions. This results in a uniform buffer length of 9.75 m (Equation 1), which will be rounded up to 10 m. To create a barrier with this 10 m offset, a spherical buffer from the outer rim of the waste site polygons will be generated using a radius of 10 m. The geometry of the buffer will be coerced into a minimum bounding rectangle which entirely encapsulates this buffer outline, an example case is shown in Figure 17. Where applicable, the minimum bounding rectangle will be rotated to fit the buffer.

$$\frac{(ETC_{north} - Crib_{north}) + (ETC_{East} - Crib_{East})}{2} = \frac{\Delta_{north} + \Delta_{East}}{2} = \frac{2m + 17.5m}{2} = 9.75m \approx 10m \quad (\text{Eq. 1})$$



**Figure 17. Example Barrier Footprint**

#### 4.1.8 Interim Barrier Footprints

Several surface barriers to infiltration have been installed at tank farm facilities at the Hanford Site. Ecology et al., 1989, *Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) milestones include plans to install additional interim barriers until all tank farms have an interim barrier. Locations of these barriers are shown in Figure 18 (200 West) and Figure 19 (200 East). It is assumed that these liners are entirely impermeable given the regular maintenance of these liners to ensure that all breaches are sealed against leaks. The locations of these barriers are used in the RET calculation to override to the original output from unvegetated and disturbed to no infiltration over the footprint of the barrier. Where barriers exist, the footprint was determined from the latest satellite imagery. In locations where barriers have not been installed, the footprint was assumed to coincide with the footprint of the tanks within the given tank farm. It is anticipated that the interim barriers will be superseded in all cases by a permanent surface barrier as described in the previous section.

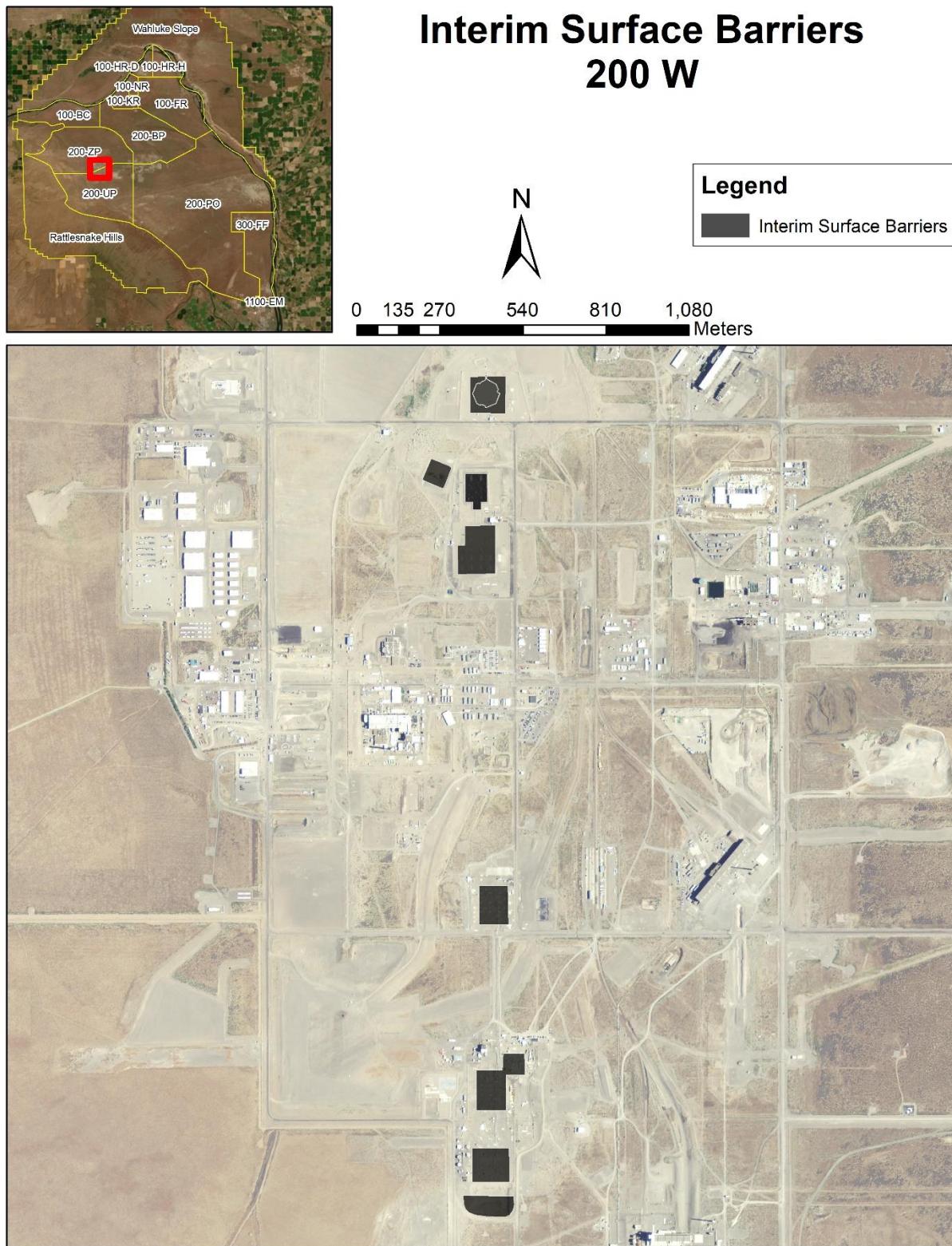



Figure 18. Interim Surface Barriers (200 West)

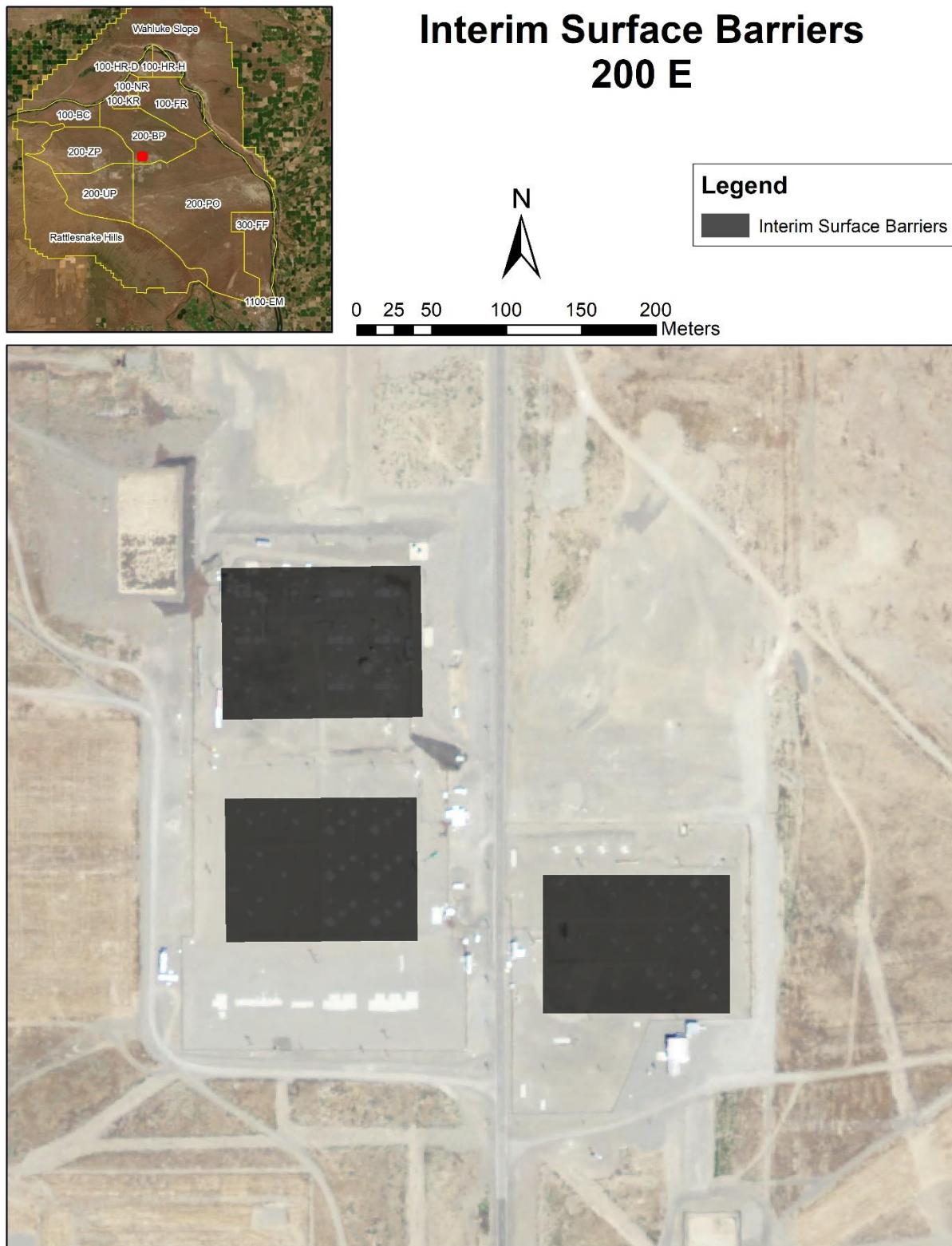
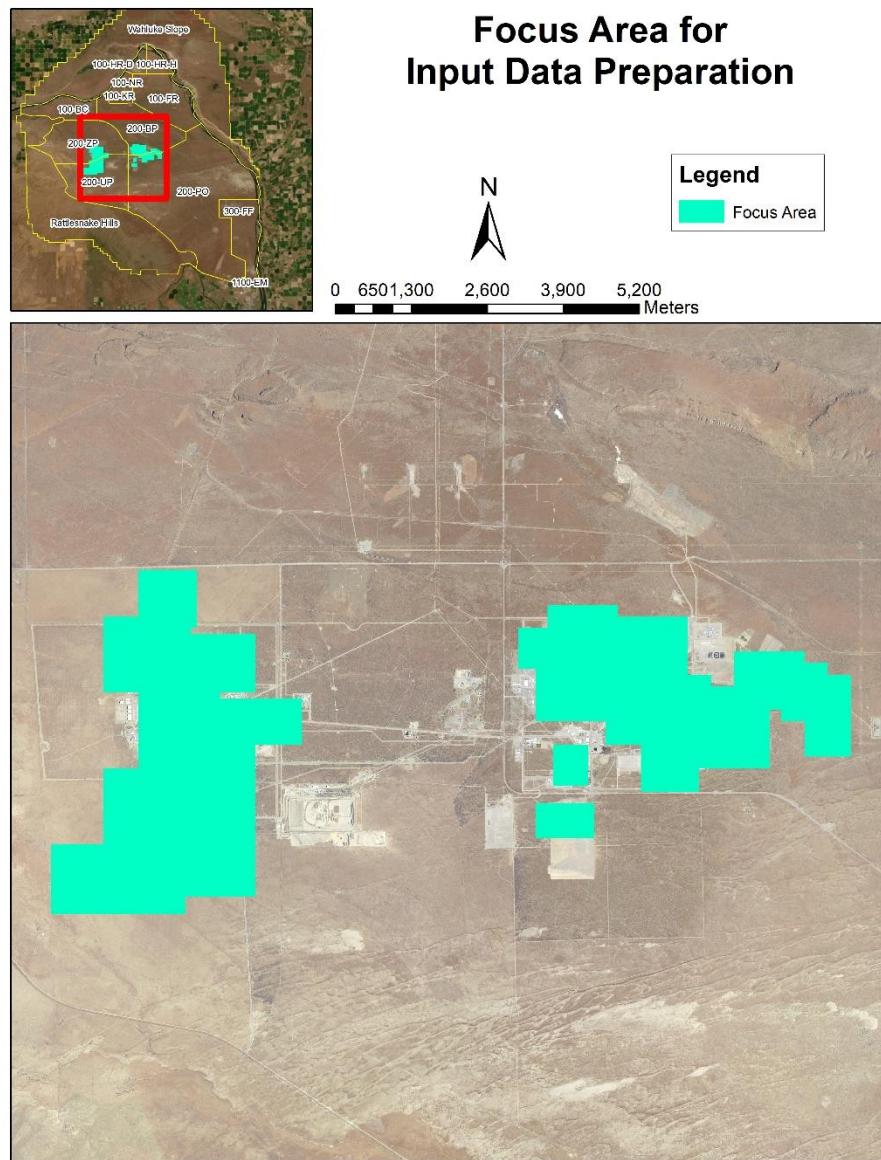




Figure 19. Interim Surface Barriers (200 East)

#### 4.1.9 Central Plateau Focus Area

As mentioned in the introduction, data input preparation for the RET focused on the modeling area pertinent to the vadose zone facet of the Composite Analysis (CA). The focus area for data input preparation is shown Figure 20. The areas within the area extents designate the area of increased scrutiny for the RET modeling effort because the small scale effect of input datasets, including detailed input from the Waste Information Data System (WIDS), must be captured at the refined scale used for vadose zone models. Outside of the focus area the analysis datasets are less refined because the Hanford Site operational activities were less densely spaced laterally.



**Figure 20. Focus Area for Data Input Preparation**

#### 4.1.10 Site-Specific Models

The RET calculation is intended to be a sitewide scale analysis. Site-specific models are expected to provide analyses that will evaluate infiltration at a more refined scale than the RET. Several performance assessment (PA) models were available that were incorporated into the RET. These include the following:

- The Environmental Restoration Disposal Facility (ERDF), documented in WCH-520, *Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington*
- WMA C, documented in RPP-ENV-58782, *Performance Assessment of Waste Management Area C, Hanford Site, Washington*
- The IDF documented in RPP-CALC-61032, *Vadose Zone and Saturated Zone Flow and Transport Calculations for the Integrated Disposal Facility Performance Assessment*

The recharge rates of these PA models are adopted as presented in the cited reports and overwrite those determined through the normal RET process. All PA model information used in this application of the RET are described in EMDT-BC-0033, “Data Sources for Accounting for Recharge Spatial and Temporal Variability at the Hanford Site (Inputs to the Recharge Evolution Tool),”<sup>1</sup> which is provided in Appendix C of this ECF).

Exceptions to adopting site-specific model recharge rates and geometry occurs where a more recent decision has been made regarding recharge rates that was not available during the creation of the PA model. One exception that has been applied for this revision of the RET is a recent agreement made by the Interagency Management Integration Team (IAMIT) regarding the recharge rate after revegetation of waste sites. In AR-02612, *Determination: Tri-Party Program Managers agree to maintain the 4.0 mm/year long-term recharge rate for the 200-EA-1 Operable Unit (OU) RFI/RI groundwater protection evaluations, and to perform a sensitivity analysis during the 200-EA-1 OU CMS/FS remedial alternatives evaluations*, as described in this determination, revegetated waste sites were determined to have a recharge rate of 4 mm/yr. The PA models in question predate this decision, necessitating an update to the recharge fields prior to their incorporation into the RET recharge maps. Side-by-side comparisons are shown in Figure 21 through Figure 23.

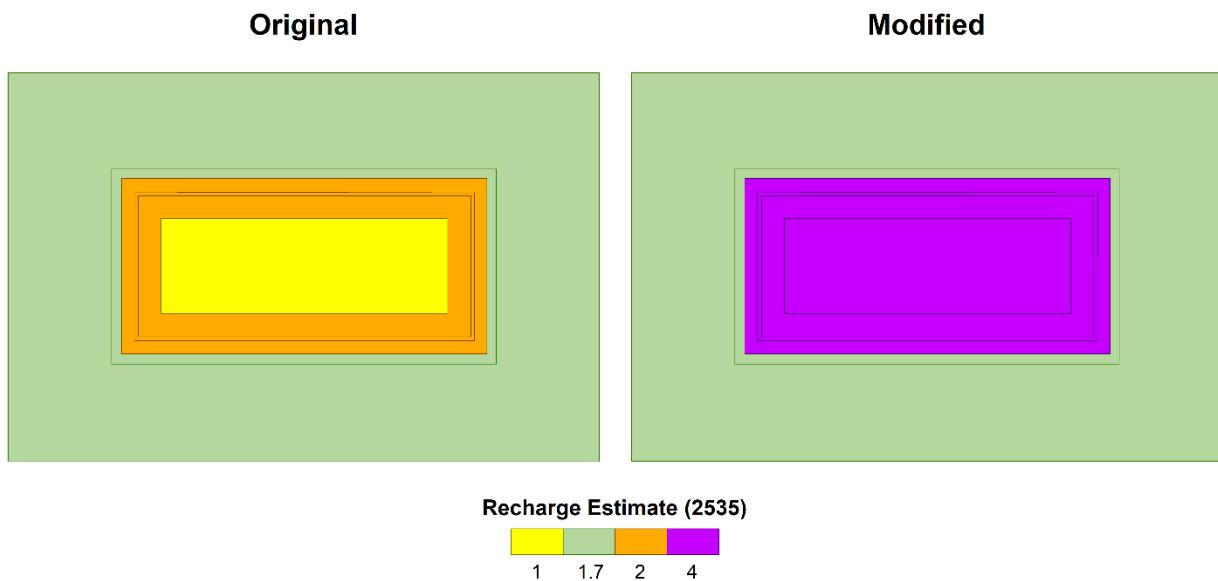



Figure 21. Changes to ERDF PA Recharge Rates per IAMIT Decision

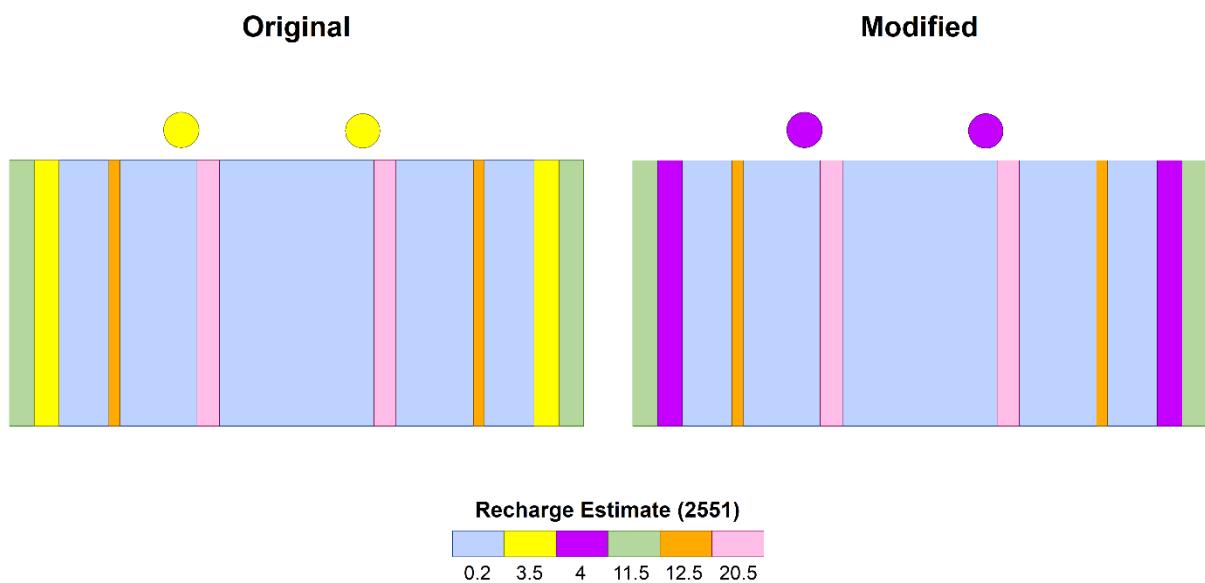
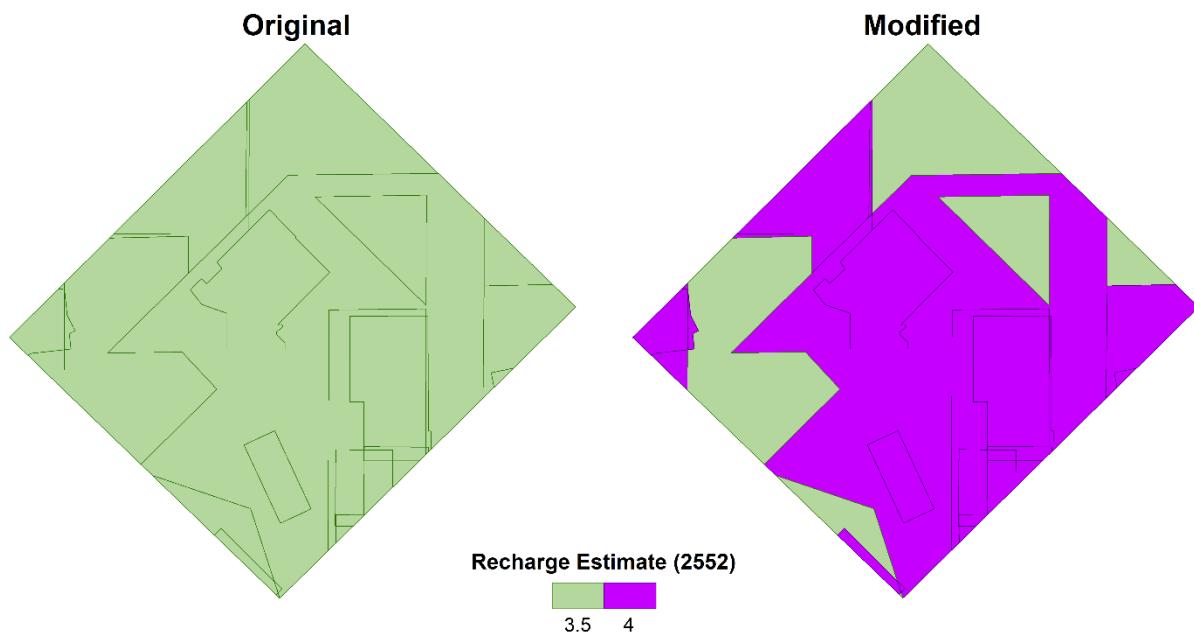
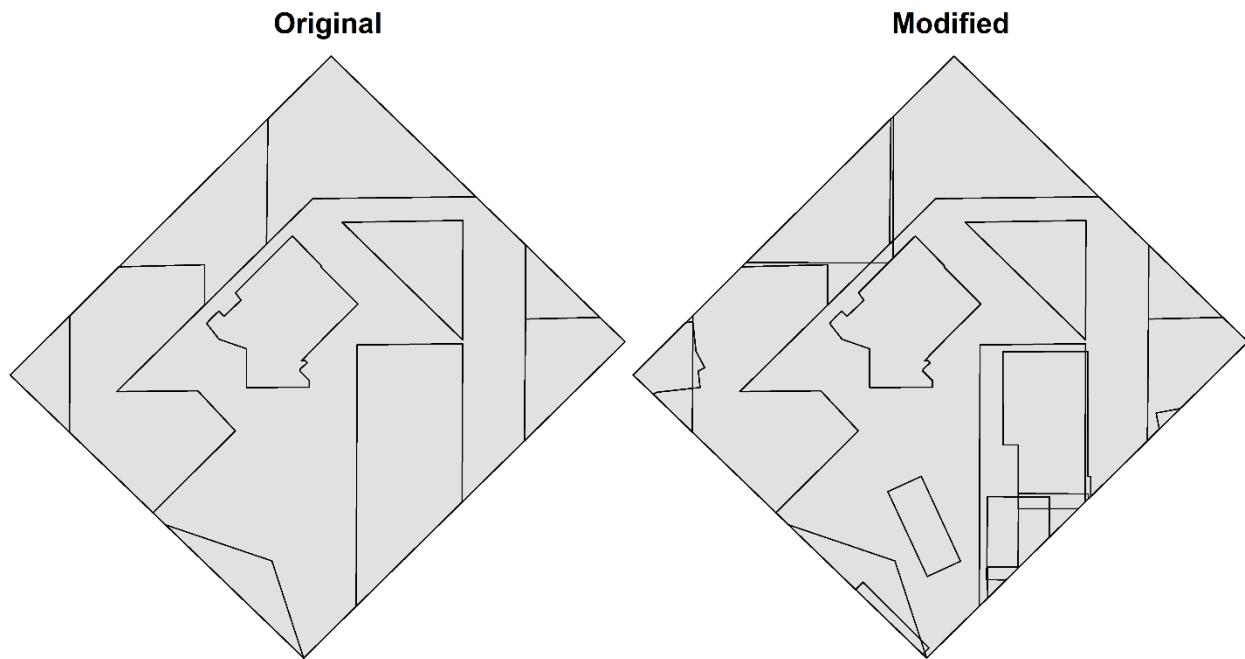





Figure 22. Changes to IDF PA Recharge Rates per IAMIT Decision



**Figure 23. Changes to WMA C PA Recharge Rates per IAMIT Decision**

Additionally, recharge-affecting decisions/anticipated actions from the Tri-Party Agreement were updated in the recharge maps for WMA C. The decisions/anticipated actions impacting recharge included the addition of surface barriers intersecting with/contained in the WMA C PA model. Example side-by-side comparisons illustrating the Tri-Party Agreement decisions within the boundaries of the WMA C PA are shown in Figure 24.



**Figure 24. Modifications to WMA C Recharge Map**

## 4.2 Nonspatial Data Sources

Nonspatial data sources include the temporal and recharge datasets. The Hanford Site Disposition Baseline (HSDB) provides the timeline for changes in the vegetative cover and condition of the soil based on known Hanford Site-related activities. Recharge rates were compiled into one table from Hanford Site-specific lysimeter studies, observations, and regulatory guidance.

### 4.2.1 Hanford Site Disposition Baseline

The HSDB, documented in CP-60254, *Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline* and CP-63386, *Hanford Site Disposition Baseline for Composite Analysis*), is the primary source regarding changes through time in the surface condition for waste sites and facilities within the Hanford Site boundaries from the date of initial disturbance to the expected final condition, or “disposition” of the site. The details regarding how the information was compiled into a single table (including modifications and corrections) for the RET to use can be found in Appendix D of this ECF. Dispositions focus on surface conditions of the sites resulting from changes in operations; specifically, the years in which a site began accepting waste(s), no longer accepted waste(s), was remediated/plans for remediation, and the type of remediation. This disposition does not include changes in the surface conditions of roads, gravel pits, and other types of infrastructure that are not listed in WIDS, the Mission Support Alliance Structures List, or the DOE Dashboards.

Sites in the HSDB have dispositions and related disposition dates, upon which recharge assignments are based. For example, a site that was capped in 2005 will generate a different recharge than one that continues to be active or that has a cap put in place at a later time. Unless dictated otherwise by the HSDB, the surface condition will maintain pre-Hanford Site conditions until the vegetative cover survey values are applied in 2011.

The current calculation is designed to incorporate new information from the HSDB as it becomes available by re-running the script using the updated HSDB. This modularity allows the user to provide new sources/rationale to enhance/update the HSDB (or other sources) and subsequently update the associated recharge rates.

#### 4.2.2 Recharge Rates

There are four primary references used to establish the recharge rate for the unique combinations of surface condition and soil type typical for the Hanford Site. The primary source for the majority of the Hanford Site will be defined using the values in Table 4.1 of PNL-10285 (UC-2010) (Figure 25). Operational areas, containing the majority of human disturbance, are defined using the values in Table 4.15 of PNNL-14072 (Figure 26); and these values supplant any that were previously defined. Guidance for barrier implementation and revegetation cycles are taken from DOE/RL-2011-50. Finally, the recharge rate selected for revegetated waste sites (4.0 mm/yr) is taken from AR-02612.

Table 5 indicates for each soil type which reference is considered the most recent, primary source for defining the recharge rate for the Hanford Site. The “Reference Source” listed here will be the source used in the RET if different rates are defined in more than one report.

**Table 5. Reference Data Sources Considered Most Current for Groundwater Recharge by Soil Type**

| GRID_CODE | TEXT_SYM | SOIL_NAME                         | Reference Source    |
|-----------|----------|-----------------------------------|---------------------|
| 8         | Eb       | Ephrata Stoney Loam               | PNNL-14072          |
| 5         | Ba       | Burbank Loamy Sand                |                     |
| 6         | El       | Ephrata Sandy Loam                |                     |
| 14        | Rv       | Riverwash                         | PNL-10285 (UC-2010) |
| 2         | Qy       | Quincy Sand (was Rupert Sand, Rp) |                     |
| 12        | P        | Pasco Silt Loam                   |                     |
| 9         | Ki       | Kiona Silt Loam                   |                     |
| 10        | Wa       | Warden Silt Loam                  |                     |
| 1         | Ri       | Ritzville Silt Loam               |                     |
| 13        | Qu       | Esquatzel Silt Loam               |                     |
| 3         | He       | Hezel Sand                        |                     |
| 15        | D        | Dunesand                          |                     |
| 4         | Kf       | Koehler Sand                      |                     |
| 11        | Sc       | Scooteney Stoney Silt Loam        |                     |
| 7         | Ls       | Lickskillet Silt Loam             |                     |
| 0         | XX       | Not Coded                         | --                  |

References: PNL-10285 (UC-2010), *Estimated Recharge Rates at the Hanford Site*, Pacific Northwest National Laboratory.

PNNL-14702, *Vadose Zone Hydrology Data Package for Hanford Assessments*.

**Table 4.1.** Estimated Recharge Rates at the Hanford Site for Each Combination of Soil Type and Vegetation/Land Use. The recharge estimate for each combination is based on either measurements, modeling, or inferences from other combinations, as explained in Section 3.0.

| Vegetation/Land Use |                                          | Recharge Rates (mm/yr) |      |      |      |      |      |       |      |
|---------------------|------------------------------------------|------------------------|------|------|------|------|------|-------|------|
| Index               | Description                              | Soil Types             |      |      |      |      |      |       |      |
|                     |                                          | Ri                     | Rp   | He   | Kf   | Ba   | E1   | Ls    | Eb   |
| 1                   | Shrub-steppe on slopes                   | 3.4                    | 8.6  | 2.6  | 2.6  | 2.6  | 2.6  | 3.4   | 2.6  |
| 2                   | Shrub-steppe on plain/uplands            | 3.4                    | 8.6  | 2.6  | 2.6  | 2.6  | 2.6  | 3.4   | 2.6  |
| 3                   | Recovering shrub-steppe on plain/uplands | 3.4                    | 11.3 | 2.6  | 2.6  | 2.6  | 2.6  | 3.4   | 2.6  |
| 4                   | Bunchgrass on slopes                     | 3.4                    | 11.3 | 2.6  | 2.6  | 2.6  | 2.6  | 3.4   | 2.6  |
| 5                   | Hopsage/greasewood                       | 3.4                    | 8.6  | 2.6  | 2.6  | 2.6  | 2.6  | 3.4   | 2.6  |
| 6                   | Cheatgrass                               | 4.8                    | 25.4 | 3.4  | 3.4  | 2.6  | 4.9  | 4.8   | 4.9  |
| 7                   | Abandoned fields                         | 4.8                    | 25.4 | 3.4  | 3.4  | 2.6  | 4.9  | 4.8   | 4.9  |
| 8                   | Riparian                                 | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  |
| 9                   | Agricultural areas                       | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  |
| 10                  | Sand dunes                               | 55.4                   | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4  | 55.4 |
| 11                  | Disturbed/Facilities                     | 6.8                    | 55.4 | 6.4  | 6.4  | 4.4  | 17.3 | 6.8   | 17.3 |
| 12                  | Water                                    | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  |
| 13                  | Basalt outcrops                          | 86.7                   | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 127.1 | 86.7 |

| Vegetation/Land Use |                                          | Recharge Rates (mm/yr) |      |      |      |      |      |      |
|---------------------|------------------------------------------|------------------------|------|------|------|------|------|------|
| Index               | Description                              | Soil Types             |      |      |      |      |      |      |
|                     |                                          | Ki                     | Wa   | Sc   | P    | Qu   | Rv   | D    |
| 1                   | Shrub-steppe on slopes                   | 3.4                    | 3.4  | 3.4  | 3.4  | 3.4  | 8.6  | 8.6  |
| 2                   | Shrub-steppe on plain/uplands            | 3.4                    | 3.4  | 3.4  | 3.4  | 3.4  | 8.6  | 8.6  |
| 3                   | Recovering shrub-steppe on plain/uplands | 3.4                    | 3.4  | 3.4  | 3.4  | 3.4  | 11.3 | 11.3 |
| 4                   | Bunchgrass on slopes                     | 3.4                    | 3.4  | 3.4  | 3.4  | 3.4  | 11.3 | 11.3 |
| 5                   | Hopsage/greasewood                       | 3.4                    | 3.4  | 3.4  | 3.4  | 3.4  | 8.6  | 8.6  |
| 6                   | Cheatgrass                               | 4.8                    | 4.8  | 4.8  | 4.8  | 4.8  | 25.4 | 25.4 |
| 7                   | Abandoned fields                         | 4.8                    | 4.8  | 4.8  | 4.8  | 4.8  | 25.4 | 25.4 |
| 8                   | Riparian                                 | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 9                   | Agricultural areas                       | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 10                  | Sand dunes                               | 55.4                   | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 |
| 11                  | Disturbed/Facilities                     | 6.8                    | 6.8  | 6.8  | 6.8  | 6.8  | 55.4 | 55.4 |
| 12                  | Water                                    | 0.0                    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 13                  | Basalt outcrops                          | 86.7                   | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 |

Source: Table 4.1 in PNL-10285 (UC-2010), *Estimated Recharge Rates at the Hanford Site*, Pacific Northwest National Laboratory.

**Figure 25. Estimated Recharge Rates**

| Area Label | Brief Description                                                           | Major (Secondary) <sup>(a)</sup> Soil Type(s) and Sediments | Estimated Recharge Rate (mm/yr) <sup>(b)</sup> |                 |                    |                    |
|------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|-----------------|--------------------|--------------------|
|            |                                                                             |                                                             | No Vegetation                                  | Cheatgrass      | Young Shrub-Steppe | Shrub-Steppe       |
| C          | Reactor along river                                                         | $E_b (B_a)$                                                 | 17 (52)                                        | 8.5 (26.5)      | 3.0 (6.0)          | 1.5 (3.0)          |
| K          | Reactor along river                                                         | $E_b (E_l)$                                                 | 17 (17)                                        | 8.5 (8.5)       | 3.0 (3.0)          | 1.5 (1.5)          |
| N          | Reactor along river                                                         | $E_b$                                                       | 17                                             | 8.5             | 3.0                | 1.5                |
| D          | Reactor along river                                                         | $E_l$                                                       | 17                                             | 8.5             | 3.0                | 1.5                |
| H          | Reactor along river                                                         | $B_a$                                                       | 52                                             | 26              | 6.0                | 3.0                |
| F          | Reactor along river                                                         | $R_p (E_l)$                                                 | 44 (17)                                        | 22 (8.5)        | 8.0 (3.0)          | 4.0 (1.5)          |
| R          | 300 Area                                                                    | $R_p (E_l)$                                                 | 44 (17)                                        | 22 (8.5)        | 8.0 (3.0)          | 4.0 (1.5)          |
| Q          | 400 Area                                                                    | $R_p (B_a)$                                                 | 44 (52)                                        | 22 (26)         | 8.0 (3.0)          | 4.0 (3.0)          |
| P          | 618-10 Area                                                                 | $R_p (B_a)$                                                 | 44 (52)                                        | 22 (26)         | 8.0 (3.0)          | 4.0 (3.0)          |
| M          | 618-11 Area                                                                 | $R_p (B_a)$                                                 | 44 (52)                                        | 22 (26)         | 8.0 (3.0)          | 4.0 (3.0)          |
| G          | Gable Mtn. Pond Area                                                        | $E_l (B_a)$                                                 | 17 (52)                                        | 8.5 (26)        | 3.0 (6.0)          | 1.5 (3.0)          |
| I          | 200N Area                                                                   | $E_l (B_a)$                                                 | 17 (52)                                        | 8.5 (26)        | 3.0 (6.0)          | 1.5 (3.0)          |
| T          | Northern 200W Area                                                          | $R_p (B_a)$                                                 | 44 (52)                                        | 22 (26)         | 8.0 (3.0)          | 4.0 (3.0)          |
| S          | Southern 200W Area and ERDF                                                 | $R_p$                                                       | 44                                             | 22              | 8.0                | 4.0                |
| A          | Southern 200E Area                                                          | $R_p (B_a, R_{pi}, R_{pu})$                                 | 44 (52, 44, 30)                                | 22 (26, 22, na) | 8.0 (6.0, 1.8, na) | 4.0 (3.0, 0.9, na) |
| B          | Northwestern 200E Area                                                      | $E_l$                                                       | 17                                             | 8.5             | 3.0                | 1.5                |
| E          | Eastern 200E Area                                                           | $B_a (R_p)$                                                 | 52 (44)                                        | 26 (22)         | 6.0 (1.8)          | 3.0 (0.9)          |
| --         | All Areas with soils disturbed by excavations                               | Hanford sand                                                | 63                                             | 31.5            | 8.0                | 4.0                |
| --         | All Areas with an Evapotranspiration (ET) surface barrier after design life | Warden silt loam (Wa)                                       | na                                             | na              | 0.08               | 0.04               |
| --         | All Areas with gravel surface and no plants                                 | gravel                                                      | 92                                             | 46              | na                 | na                 |

$B_a$  = Burbank loamy sand

$E_b$  = Ephrata stony loam

$E_l$  = Ephrata sandy loam

$R_p$  = Rupert sand

$R_{pi}$  = Rupert sand in the IDF in the 200 East Area.

$R_{pu}$  = Rupert sand at the US Ecology Site, southwest of the 200 East Area.

na = not applicable

(a) Only the major soil types were used to represent each aggregate area.

(b) Alternate/reference case values shown in Table 4.14 are not provided here.

(c) Value to be used in reference case analyses (DOE, October 21, 2005. *Technical Guidance Document for Composite Analysis of Low-Level Waste Disposal at the Hanford Site*. DOE/RL-2005-66, U.S. Department of Energy, Richland, Washington [unsigned]).

Source: PNNL-14702, *Vadose Zone Hydrology Data Package for Hanford Assessments*.

**Figure 26. Estimated Recharge Rates**

#### 4.2.3 Vegetation Changes Due to Revegetation

To account for recharge rate changes due to revegetation the following approach will be applied to each location that undergoes revegetation. Per DOE/RL-2011-50, revegetation efforts will result in a mature cover after 30 years. It is assumed that the revegetation process will continue undisturbed over the 30-year timeframe. For all waste sites, revegetation begins at the time cleanup action dates are specified. According to AR-02612, the recharge rates reduce in stepwise fashion from a disturbed value to 8 mm/yr for 30 years and are assigned 4 mm/yr at the end of the revegetation cycle. For all other locations revegetation is simulated using recharge rates that reduce linearly from the what is assigned at the start of revegetation until reaching the pre-Hanford Site recharge rate over a 30-year period.

#### 4.2.4 Infiltration Rate of Barriers

The PHB has a different recharge rate from simple grout barriers or caps. Surface barriers without a capillary barrier or ponding mechanism are assumed to still allow meteoric recharge to take place in the absence of storm drainage or other collection mechanisms shifts the location of infiltration. However, for all waste sites declared with an infiltration barrier (a barrier capturing and preventing water from infiltrating into the soil), DOE/RL-2011-50 provides a design life of 500 years for such barriers at a recharge rate of 0.5 mm/yr. These barriers are assigned a rate of 4.0 mm/yr (AR-02612) at the end of their design life. Grout covers, concrete structures, and other similar caps are not considered to reduce net recharge to the soil and are assigned bare and disturbed vegetative and soil conditions, respectively. The exceptions to this assumption are the interim barriers given their increased maintenance and storm drainage management. Interim barriers at tank farms are actively monitored and maintained to prevent water infiltration within its footprint.

### 4.3 Data Interpretation: Surface Condition to Disposition

The HSDB provides a single definition of the current or planned disposition for the waste sites and facilities that contain some element of contamination. In support of the recharge calculations, a cover type and surface condition were defined for each disposition type that is currently in the HSDB. The covers and surface conditions used in the RET calculation are included in Table 6.

**Table 6. Dispositions from the Hanford Disposition Baseline with the Corresponding Cover and Surface Conditions for Calculations of Recharge**

| Disposition <sup>a</sup>               | Cover_Type                           | SurfCond         |
|----------------------------------------|--------------------------------------|------------------|
| <Blanks>                               | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| ABAR                                   | Barrier                              | Barrier/MinRchrg |
| ABAR, mod RCRA C low permeability      | Barrier                              | Barrier/MinRchrg |
| Addressed by remedy from adjacent site | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Administratively closed out            | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Barrier                                | Barrier                              | Barrier/MinRchrg |
| Barrier plus RTD                       | Barrier                              | Barrier/MinRchrg |
| Cobble, not vegetated                  | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Cocoon                                 | Disturbed sand                       | Bare             |
| CS/MESC/MNA/IC                         | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |

**Table 6. Dispositions from the Hanford Disposition Baseline with the Corresponding Cover and Surface Conditions for Calculations of Recharge**

| Disposition <sup>a</sup>                 | Cover_Type                           | SurfCond         |
|------------------------------------------|--------------------------------------|------------------|
| CSNA                                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| csna                                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| D&D                                      | Disturbed sand                       | Bare             |
| D4                                       | Disturbed sand                       | Bare             |
| D4 (demolish in place, backfill)         | Disturbed sand                       | Bare             |
| D4 (removed aboveground tanks)           | Disturbed sand                       | Bare             |
| D4 + burial in place                     | Disturbed sand                       | Bare             |
| D4 abovegrade structure                  | Disturbed sand                       | Bare             |
| D4 to 3 ft bgs                           | Disturbed sand                       | Bare             |
| D4 to grade                              | Disturbed sand                       | Bare             |
| D4 to slab-on-grade                      | Disturbed sand                       | Bare             |
| D4, grout, barrier                       | Barrier                              | Barrier/MinRchrg |
| D4, ISS                                  | Disturbed sand                       | Bare             |
| D4S                                      | Disturbed sand                       | Bare             |
| Deactivation                             | Bldg                                 | Barrier/MinRchrg |
| Decommission (septic tank left in place) | Bldg                                 | Barrier/MinRchrg |
| Decontamination                          | Bldg                                 | Barrier/MinRchrg |
| Decontamination, CSNA                    | Bldg                                 | Barrier/MinRchrg |
| Demolish                                 | Disturbed sand                       | Bare             |
| Demolish plus barrier                    | Barrier                              | Barrier/MinRchrg |
| Demolish plus void fill                  | Disturbed sand                       | Bare             |
| Demolished                               | Disturbed sand                       | Bare             |
| Demolition to slab-on-grade              | Disturbed sand                       | Bare             |
| Engineered surface barrier               | Barrier                              | Barrier/MinRchrg |
| Enhanced attenuation                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Ex situ bioremediation                   | Disturbed sand                       | Bare             |
| Excavation (gravel)                      | Disturbed gravel                     | Bare             |
| Excavation (sand)                        | Disturbed sand                       | Bare             |
| Fines with gravel, not vegetated         | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Fines with gravel, yes                   | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Fines, not vegetated                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Fines, yes                               | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Gravel and concrete pad, not vegetated   | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |

**Table 6. Dispositions from the Hanford Disposition Baseline with the Corresponding Cover and Surface Conditions for Calculations of Recharge**

| Disposition <sup>a</sup>                                                                                   | Cover_Type                           | SurfCond         |
|------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|
| Gravel with fines, not vegetated                                                                           | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Gravel with fines, yes                                                                                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Gravel, not vegetated                                                                                      | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Gravel, yes                                                                                                | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Grout                                                                                                      | Disturbed sand                       | Bare             |
| Grout fill; install surface barrier; revegetate                                                            | Barrier                              | Barrier/MinRchrg |
| Grout fill; revegetate                                                                                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Grout, barrier                                                                                             | ET Barrier                           | Barrier/MinRchrg |
| Hazard mitigation for public access                                                                        | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| IC                                                                                                         | Artificial regeneration              | Developing       |
| IC: Prohibit application of irrigation water except to establish vegetation                                | Artificial regeneration              | Developing       |
| ISS                                                                                                        | Bldg                                 | Barrier/MinRchrg |
| ISS, possibly display a portion                                                                            | Bldg                                 | Barrier/MinRchrg |
| Lined landfill                                                                                             | Lined landfill                       | Barrier/MinRchrg |
| Maintain/enhance soil cover. Maintain a 15 ft thickness of soil cover over these waste sites (ET Barrier). | Barrier                              | Barrier/MinRchrg |
| MESC                                                                                                       | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| MESC/MEESC/MNA                                                                                             | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| No action                                                                                                  | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| No action                                                                                                  | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| No action since these waste sites do not pose a risk to human health and the environment                   | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| No further action                                                                                          | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| No RL-40 action                                                                                            | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| No RL-40 action                                                                                            | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Operating                                                                                                  | Bldg                                 | Barrier/MinRchrg |
| Pipeline capping                                                                                           | Disturbed sand                       | Bare             |
| Remove                                                                                                     | Disturbed sand                       | Bare             |
| RTD                                                                                                        | Disturbed sand                       | Bare             |

**Table 6. Dispositions from the Hanford Disposition Baseline with the Corresponding Cover and Surface Conditions for Calculations of Recharge**

| Disposition <sup>a</sup>                                                                                                                                                                                                              | Cover_Type                           | SurfCond         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|
| RTD - Option A: Remove soil to 0.6 m (2 ft) below the bottom of the disposal structure to 6 m to 7 m (20 ft - 23 ft) bgs. Plutonium waste will be disposed of at WIPP or ERDF, as appropriate. SVE to treat VOCs. Use of ET Barriers. | Barrier                              | Barrier/MinRchrg |
| RTD - Option C: Remove soil up to a depth of 6.7 m to 10 m (22 ft - 33 ft) at each waste site. Plutonium waste will be disposed of at WIPP or ERDF, as appropriate. Use of ET Barriers.                                               | Barrier                              | Barrier/MinRchrg |
| RTD or void fill                                                                                                                                                                                                                      | Disturbed sand                       | Bare             |
| RTD plus void fill                                                                                                                                                                                                                    | Disturbed sand                       | Bare             |
| RTD to 3 ft bgs                                                                                                                                                                                                                       | Disturbed sand                       | Bare             |
| RTD to 3 ft bgs, partial barrier                                                                                                                                                                                                      | Barrier                              | Barrier/MinRchrg |
| RTD to 4.6 m. IC: Prohibit application of irrigation water except to establish vegetation                                                                                                                                             | Artificial regeneration              | Developing       |
| RTD to bottom of structure & engineered surface barrier                                                                                                                                                                               | Barrier                              | Barrier/MinRchrg |
| RTD top 15 ft; clean backfill; revegetate                                                                                                                                                                                             | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| RTD with disposal at ERDF or WIPP, as appropriate                                                                                                                                                                                     | Disturbed sand                       | Bare             |
| RTD, barrier                                                                                                                                                                                                                          | Barrier                              | Barrier/MinRchrg |
| RTD, ET Barrier, IC                                                                                                                                                                                                                   | Barrier                              | Barrier/MinRchrg |
| RTD, grout                                                                                                                                                                                                                            | Bldg                                 | Barrier/MinRchrg |
| RTD, grout                                                                                                                                                                                                                            | Bldg                                 | Barrier/MinRchrg |
| RTD, mod RCRA C LP                                                                                                                                                                                                                    | Barrier                              | Barrier/MinRchrg |
| RTD, on-site ex-situ bioremediation                                                                                                                                                                                                   | Disturbed sand                       | Bare             |
| RTD, or void fill plus barrier                                                                                                                                                                                                        | Barrier                              | Barrier/MinRchrg |
| RTD, vapor barrier                                                                                                                                                                                                                    | Barrier                              | Barrier/MinRchrg |
| Shallow soil removal                                                                                                                                                                                                                  | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Shutdown pending                                                                                                                                                                                                                      | Bldg                                 | Barrier/MinRchrg |
| Shutdown pending D&D                                                                                                                                                                                                                  | Bldg                                 | Barrier/MinRchrg |
| Shutdown pending disposal                                                                                                                                                                                                             | Bldg                                 | Barrier/MinRchrg |
| Sludge removal and tank stabilization                                                                                                                                                                                                 | Disturbed sand                       | Bare             |
| Soil cap, MNA, IC                                                                                                                                                                                                                     | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Soil cover                                                                                                                                                                                                                            | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |

**Table 6. Dispositions from the Hanford Disposition Baseline with the Corresponding Cover and Surface Conditions for Calculations of Recharge**

| Disposition <sup>a</sup> | Cover_Type                           | SurfCond         |
|--------------------------|--------------------------------------|------------------|
| TBD in 200-IS-1 process  | Gravel/industrial/nonvegetated/weeds | Cheatgrass       |
| Void fill                | Disturbed sand                       | Bare             |
| Void fill                | Disturbed sand                       | Bare             |
| Void fill                | Disturbed sand                       | Bare             |
| Void fill or RTD         | Disturbed sand                       | Bare             |
| Void fill plus barrier   | Barrier                              | Barrier/MinRchrg |

Sources: CP-60254, *Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline*.

CP-63386, *Hanford Site Disposition Baseline for Composite Analysis*.

|      |                                                                  |      |                                                         |
|------|------------------------------------------------------------------|------|---------------------------------------------------------|
| ABAR | = aggregated barrier                                             | LP   | = low permeability                                      |
| bgs  | = below ground surface                                           | MESC | = maintain existing soil cover                          |
| CS   | = confirmatory sampling                                          | MNA  | = monitored natural attenuation                         |
| CSNA | = confirmatory sampling, no action                               | RCRA | = <i>Resource Conservation and Recovery Act of 1976</i> |
| D&D  | = decontamination and decommissioning                            | RTD  | = remove, treat, dispose                                |
| D4   | = decontamination, deactivation, decommissioning, and demolition | SVE  | = soil vapor extraction                                 |
| ERDF | = Environmental Restoration Disposal Facility                    | TBD  | = to be determined                                      |
| ET   | = evapotranspiration                                             | VOC  | = volatile organic compound                             |
| IC   | = institutional control                                          | WIPP | = Waste Isolation Pilot Plant                           |
| ISS  | = interim safe storage                                           |      |                                                         |

#### 4.4 Recharge Lookup Table

Based on the available data on recharge, defined in Section 4.2.2 above, all vegetative cover types and disposition values were assigned for every combination of cover type, surface condition, and soil type. Table 7 represents the values used in the current calculation for each combination of cover type, surface condition, and soil type considered in this model.

For locations where a soil type remains undefined ('XX') in the GIS data source, the values for Rupert Sand are applied. Rupert Sand was selected to replace undefined soil code features as a conservative choice, assigning higher recharge rates than another soil type, and for the fact that the majority of the Central Plateau is a Rupert Sand soil type. Where possible, references are listed for the combinations of surface condition and cover types according to their corresponding soil types where references differentiate recharge rates by soil type.

Table 7. Recharge Rates

| Descriptive Name                | Cover_Type                                 | SurfCond         | Reference_Source                                                                                  | Qy   | Ri   | Rp   | He   | Kf   | Ba   | El   | Ls    | Eb   | Ki   | Wa   | Sc   | P    | Qu   | Rv   | D    | XX   |
|---------------------------------|--------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------|
| Actively Irrigated              | Agricultural/Orchard                       | Irrigated        | DOE/RL-96-17<br>ECF-HANFORD-11-0063<br>WDOH/320-015                                               | 72   | 72   | 72   | 72   | 72   | 72   | 72   | 72    | 72   | 72   | 72   | 72   | 72   | 72   | 72   | 72   | 72   |
| Bare - Basalt                   | Basalt                                     | Bare             | PNL-10285 (UC-2010)                                                                               | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 127.1 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 | 86.7 |
| Bare - Riparian                 | Riparian/Wetlands/Aquatic Habitats         | Mature           | PNNL-14702<br>PNL-10285 (UC-2010) (based off of vegetation type present, used "Mature-Vegetated") | 4    | 3.4  | 4    | 2.6  | 2.6  | 3    | 1.5  | 3.4   | 1.5  | 3.4  | 3.4  | 3.4  | 3.4  | 3.4  | 8.6  | 8.6  | 4    |
| Bare - Sand                     | Non-Vegetated Sand - Bluffs - Talus        | Bare             | PNL-10285 (UC-2010)                                                                               | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4  | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 | 55.4 |
| Barrier - Post Design Life      | ET Barrier - Post Design Life              | Mature           | AR-02612                                                                                          | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0   | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  | 4.0  |
| Barrier - Succession Developing | ET Barrier                                 | Developing       | DOE/RL-2011-50                                                                                    | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  |
| Barrier - Succession Mature     | ET Barrier                                 | Mature           |                                                                                                   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  |
| Barrier <sup>a</sup>            | ET Barrier                                 | Barrier/MinRchrg |                                                                                                   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  |
| Barrier <sup>b</sup>            | Barrier                                    | Barrier/MinRchrg |                                                                                                   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5  |
| Building                        | Bldg                                       | Barrier/MinRchrg | Applied "Disturbed Sand & Bare" Rates                                                             | 63   | 63   | 63   | 63   | 63   | 63   | 63   | 63    | 63   | 63   | 63   | 63   | 63   | 63   | 63   | 63   | 63   |
| Cheatgrass - Gravel             | Gravel/Industrial/Nonvegetated/Exotic Weed | Cheatgrass       | PNNL-14702                                                                                        | 46   | 46   | 46   | 46   | 46   | 46   | 46   | 46    | 46   | 46   | 46   | 46   | 46   | 46   | 46   | 46   | 46   |
| Cheatgrass - Gravel             | Gravel/industrial/non-vegetated/weeds      | Cheatgrass       |                                                                                                   | 46   | 46   | 46   | 46   | 46   | 46   | 46   | 46    | 46   | 46   | 46   | 46   | 46   | 46   | 46   | 46   | 46   |

Table 7. Recharge Rates

| Descriptive Name       | Cover_Type                                        | SurfCond   | Reference_Source                  | Qy | Ri  | Rp | He  | Kf  | Ba | El  | Ls  | Eb  | Ki  | Wa  | Sc  | P   | Qu  | Rv   | D    | XX |
|------------------------|---------------------------------------------------|------------|-----------------------------------|----|-----|----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|----|
| Cheatgrass - Vegetated | Bluebunch Wheatgrass - Sandberg's Bluegrass       | Cheatgrass | PNNL-14702<br>PNL-10285 (UC-2010) | 22 | 4.8 | 22 | 3.4 | 3.4 | 26 | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22 |
| Cheatgrass - Vegetated | Bunchgrass Mosaic                                 | Cheatgrass |                                   | 22 | 4.8 | 22 | 3.4 | 3.4 | 26 | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22 |
| Cheatgrass - Vegetated | Crested Wheatgrass - Bluegrass - Cheatgrass       | Cheatgrass |                                   | 22 | 4.8 | 22 | 3.4 | 3.4 | 26 | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22 |
| Cheatgrass - Vegetated | Sand Dropseed - Sandberg's Bluegrass - Cheatgrass | Cheatgrass |                                   | 22 | 4.8 | 22 | 3.4 | 3.4 | 26 | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22 |
| Cheatgrass - Vegetated | Sandberg's Bluegrass                              | Cheatgrass |                                   | 22 | 4.8 | 22 | 3.4 | 3.4 | 26 | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22 |
| Cheatgrass - Vegetated | Sandberg's Bluegrass - Cheatgrass                 | Cheatgrass |                                   | 22 | 4.8 | 22 | 3.4 | 3.4 | 26 | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22 |
| Developing - Gravel    | Gravel/Industrial/ Nonvegetated/ Exotic Weed      | Developing | PNNL-14702                        | 46 | 46  | 46 | 46  | 46  | 46 | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46   | 46   | 46 |
| Developing - Gravel    | Gravel/Industrial/ Nonvegetated/ Weeds            | Developing |                                   | 46 | 46  | 46 | 46  | 46  | 46 | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46   | 46   | 46 |
| Developing - Vegetated | Rabbitbrush/ Bunchgrass Mosaic                    | Developing | PNNL-14702<br>PNL-10285 (UC-2010) | 8  | 3.4 | 8  | 2.6 | 2.6 | 6  | 3   | 3.4 | 3   | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8  |
| Developing - Vegetated | Rabbitbrush/ Sandberg's Bluegrass - Cheatgrass    | Developing |                                   | 8  | 3.4 | 8  | 2.6 | 2.6 | 6  | 3   | 3.4 | 3   | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8  |

Table 7. Recharge Rates

| Descriptive Name                  | Cover_Type                                        | SurfCond   | Reference_Source                                                                 | Qy  | Ri  | Rp  | He  | Kf  | Ba  | El  | Ls  | Eb  | Ki  | Wa   | Sc  | P   | Qu  | Rv   | D    | XX  |
|-----------------------------------|---------------------------------------------------|------------|----------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|------|------|-----|
| Developing - Vegetated            | Snow Buckwheat/ Bunchgrass Mosaic                 | Developing | PNNL-14702<br>PNL-10285 (UC-2010)                                                | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Developing - Vegetated            | Snow Buckwheat/ Sandberg's Bluegrass - Cheatgrass | Developing |                                                                                  | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Developing - Vegetated            | Spiny Hopsage/ Sandberg's Bluegrass - Cheatgrass  | Developing |                                                                                  | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Developing - Vegetated            | Thymeleaf Buckwheat/ Sandberg's Bluegrass         | Developing |                                                                                  | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Developing - Vegetated            | Winterfat/ Bunchgrass Mosaic                      | Developing |                                                                                  | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Developing - Vegetated            | Artificial Regeneration                           | Developing | 2x the rates used for "Mature - Vegetated" cover with "Mature" surface condition | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Developing - Vegetated            | Artificial Regeneration                           | Developing |                                                                                  | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 0.08 | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Disturbed - Bare                  | Disturbed Gravel                                  | Bare       | PNNL-14702                                                                       | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100  | 100 | 100 | 100 | 100  | 100  | 100 |
| Disturbed - Succession Cheatgrass | Disturbed                                         | Cheatgrass | PNNL-14702<br>PNL-10285 (UC-2010)                                                | 22  | 4.8 | 22  | 3.4 | 3.4 | 26  | 8.5 | 4.8 | 8.5 | 4.8 | 4.8  | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22  |
| Disturbed - Succession Developing | Disturbed                                         | Developing |                                                                                  | 8   | 3.4 | 8   | 2.6 | 2.6 | 6   | 3   | 3.4 | 3   | 3.4 | 3.4  | 3.4 | 3.4 | 3.4 | 11.3 | 11.3 | 8   |
| Excavation (Sand)                 | Disturbed Sand                                    | Bare       | PNNL-14702                                                                       | 63  | 63  | 63  | 63  | 63  | 63  | 63  | 63  | 63  | 63  | 63   | 63  | 63  | 63  | 63   | 63   | 63  |

Table 7. Recharge Rates

| Descriptive Name   | Cover_Type                                                       | SurfCond         | Reference_Source                                                                       | Qy  | Ri  | Rp  | He  | Kf  | Ba  | El  | Ls  | Eb  | Ki  | Wa  | Sc  | P   | Qu  | Rv  | D   | XX  |
|--------------------|------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Hanford Average    | Average                                                          | Mature           | AR-02612                                                                               | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| Landfill (Lined)   | Lined Landfill                                                   | Barrier/MinRchrg | (Rate assumed zero during lifetime of leachate collection system for a lined landfill) | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Mature - Gravel    | Gravel/Industrial/Nonvegetated/Exotic Weed                       | Mature           | PNNL-14702                                                                             | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  |
| Mature - Gravel    | Gravel/Industrial/Nonvegetated/Weeds                             | Mature           |                                                                                        | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  | 46  |
| Mature - Vegetated | Big Sagebrush - Bitterbrush/ Bunchgrass Mosaic                   | Mature           | PNNL-14702<br>PNL-10285 (UC-2010)                                                      | 4   | 3.4 | 4   | 2.6 | 2.6 | 3   | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4   |
| Mature - Vegetated | Big Sagebrush - Bitterbrush/ Sandberg's Bluegrass                | Mature           |                                                                                        | 4   | 3.4 | 4   | 2.6 | 2.6 | 3   | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4   |
| Mature - Vegetated | Big Sagebrush - Rigid Sagebrush/ Bunchgrass Mosaic               | Mature           |                                                                                        | 4   | 3.4 | 4   | 2.6 | 2.6 | 3   | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4   |
| Mature - Vegetated | Big Sagebrush - Spiny Hopsage/ Bunchgrass Mosaic                 | Mature           |                                                                                        | 4   | 3.4 | 4   | 2.6 | 2.6 | 3   | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4   |
| Mature - Vegetated | Big Sagebrush - Spiny Hopsage/ Sandberg's Bluegrass - Cheatgrass | Mature           |                                                                                        | 4   | 3.4 | 4   | 2.6 | 2.6 | 3   | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4   |

Table 7. Recharge Rates

| Descriptive Name   | Cover_Type                                                 | SurfCond | Reference_Source                  | Qy | Ri  | Rp | He  | Kf  | Ba | El  | Ls  | Eb  | Ki  | Wa  | Sc  | P   | Qu  | Rv  | D   | XX |
|--------------------|------------------------------------------------------------|----------|-----------------------------------|----|-----|----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Mature - Vegetated | Big Sagebrush/ Bluebunch Wheatgrass - Sandberg's Bluegrass | Mature   | PNNL-14702<br>PNL-10285 (UC-2010) | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Big Sagebrush/ Bunchgrass Mosaic                           | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Big Sagebrush/ Sandberg's Bluegrass - Cheatgrass           | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Bitterbrush/ Bunchgrass Mosaic                             | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Bitterbrush/ Sandberg's Bluegrass - Cheatgrass             | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Black Greasewood/ Alkali Saltgrass                         | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Purple Sage/ Sandberg's Bluegrass - Cheatgrass             | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Rigid Sagebrush/ Sandberg's Bluegrass                      | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |
| Mature - Vegetated | Threetip Sagebrush/ Bunchgrass Mosaic                      | Mature   |                                   | 4  | 3.4 | 4  | 2.6 | 2.6 | 3  | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 8.6 | 8.6 | 4  |

**Table 7. Recharge Rates**

| Descriptive Name     | Cover_Type         | SurfCond          | Reference_Source                  | Qy  | Ri  | Rp  | He  | Kf  | Ba  | El  | Ls  | Eb  | Ki  | Wa  | Sc  | P   | Qu   | Rv   | D   | XX |
|----------------------|--------------------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|----|
| Mature - Vegetated   | Mature - Vegetated | Mature            | PNNL-14702<br>PNL-10285 (UC-2010) | 4   | 3.4 | 4   | 2.6 | 2.6 | 3   | 1.5 | 3.4 | 1.5 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4  | 8.6  | 8.6 | 4  |
| Previously Irrigated | Abandoned Fields   | Cheatgrass        |                                   | 22  | 4.8 | 22  | 3.4 | 3.4 | 26  | 8.5 | 4.8 | 8.5 | 4.8 | 4.8 | 4.8 | 4.8 | 25.4 | 25.4 | 22  |    |
| Water <sup>b</sup>   | Open Reservoir     | Barrier/ MinRchrg |                                   | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5  | 0.5  | 0.5 |    |

Notes: All values reported in mm/yr.

Complete reference citations are provided in Chapter 8.

All recharge rates are subject to change with new information as it becomes available. Any application of these recharge rates should be evaluated on a case-by-case (or model-by-model) basis before direct application.

a. PNNL-14702, Table 4.16 provides recharge rates for 5 types of barriers, 4 of which are assigned the same recharge rate (the exception is the geosynthetic cap at US Ecology). It is assumed the various types of barriers listed in this table all would be assigned the same recharge rates over time -- intact barrier, transitioning to post-design life young shrub-steppe and shrub-steppe.

b. Denotes dispositions that were added to accommodate specific, unanticipated disposition combinations. The recharge values associated with these dispositions should not be taken at face value and merit additional scrutiny before being applied in any calculation.

ET = evapotranspiration

## 5 Software Applications

ArcGIS™ Version 10.3.1 (both ArcGIS for Desktop Basic and ArcGIS for Desktop Advanced; including ArcMap, ArcCatalog™, ArcToolbox™, and ArcPy) was the primary software used for this calculation and data were ingested as shapefiles and output to feature classes within geodatabases. Digitization of new features from aerial imagery was done within the desktop application directly, while the automation of the data ranking and calculation of recharge output features was done with Python script.

Edits and supporting work in producing the RET calculation was performed using a commercial software license that is maintained by INTERA Inc., a preselected subcontractor to CH2M HILL Plateau Remediation Company (CHPRC). The data preparation, editing, and final product preparation were performed on a computer with ID INTERA-00909. The hardware is a ThinkPad® P50 Signature Edition with a 2.80-GHz Intel® Xeon® processor and 16.0 GB of RAM loaded with the Windows® 10 Professional 64-bit operating system.

### 5.1 Exempt Software

Microsoft® Excel® spreadsheets were used for data storage, of both waste site attributes and of calculation parameters such as valid values lists and were queried from within ArcGIS for attributes being joined to spatial features and for processing parameters within the geoprocessing tool.

### 5.2 Approved Software

The RET software is approved calculation software, whose use by CHPRC is managed under CHPRC-04002, *Recharge Evolution Tool (RET)*; registered in the Hanford Information System Inventory (HISI) under identification number 4493.

#### 5.2.1 Description

The following required information for the RET software package build used for this calculation is provided here:

- Software Title: RET
- Software Version: CHPRC Build 2
- HISI Identification Number: 4493
- Workstation type and property number (from which the software is run): This software was run on a desktop using a commercial software license that is maintained by INTERA Inc., a preselected subcontractor to CHPRC. The computer in question has the ID INTERA-00771. The hardware specifications are: manufactured by Dell® with a 3.50-GHz Intel Xeon processor and 40.0 GB of RAM loaded with the Windows 10 Professional 64-bit operating system.

---

<sup>TM</sup>ArcGIS, ArcCatalog, and ArcToolbox are trademarks of Environmental Systems Research Institute in the United States. and other countries.

<sup>®</sup> ThinkPad is a registered trademark of the Lenovo Corporation in the United States and other countries.

<sup>®</sup> Intel and Xeon are trademarks of Intel Corporation or its subsidiaries in the United States and/or other countries.

<sup>®</sup> Windows, Microsoft, and Excel are registered trademarks of the Microsoft Corporation in the United States and other countries.

<sup>®</sup> Dell is a registered trademark of the Dell Corporation, Round Rock, Texas.

## 5.2.2 Software Installation and Checkout

A copy of the Software Installation and Checkout Form (Site Form A-6005-149) for the RET installation used for this calculation is provided in Appendix E to this ECF.

# 6 Calculation

All the reference source data to be used in the calculations were loaded as shapefiles into a single geodatabase used as the source for all subsequent calculations. A default map document (MXD) was created containing the data sources and organized into logical groups based on their relevance to the calculations. This MXD served as the starting point for new map documents developed for interim processing steps.

Specific ArcGIS commands are referenced in the ECF text in a bold font with all capital letters (e.g., **CLIP**), while parameters specified within a command are indicated in bold font with initial capitals only (e.g., **Clip\_Features**). Attribute field names within a feature class are enclosed in double quotes (e.g., “Cover\_Type”), attribute values in single quotes (‘Developing’), and variables are indicated with less than and greater than brackets (e.g., <YYYY>).

## 6.1 Extend the ‘Sitewide’ Datasets for Soils and Vegetation

Gaps in the soils and vegetation data within the model area domain were identified in the far northwest and southernmost extents of the model domain, as highlighted in Figure 27.

1. The most current SSURGO dataset for Benton County was downloaded from the NRCS Web Soil Survey site.
2. The soil descriptions contained in a related Access® database were joined to the geographic features following instructions provided on the Web Soil Survey.
3. The resulting geographic shapefile (*SSURGO\_soil\_a\_wa605.shp*) was projected to match the current calculation requirements, and then clipped by the model domain boundary and the existing Hanford Site soils data extent.

The clipped shapefile was modified to add a new attribute for “TEXT\_SYM” and then updated according to the corresponding Hanford Site soil type specified in Table 2.

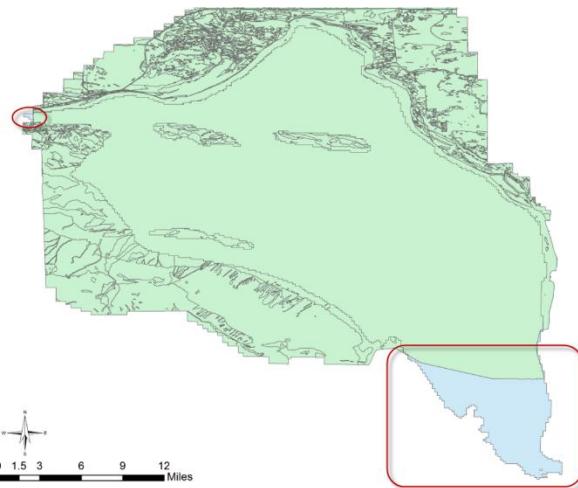
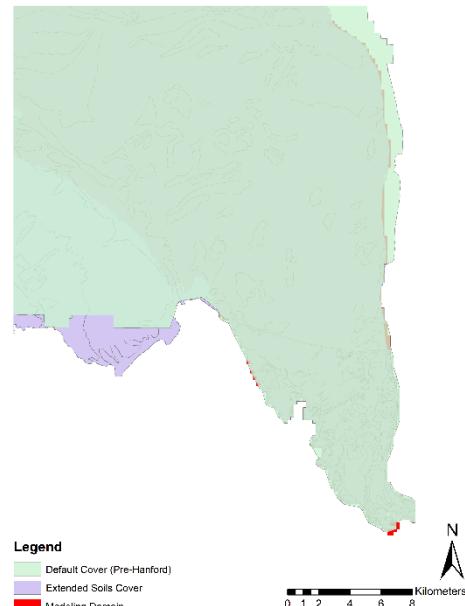



Figure 27. Gaps in the Vegetation and Soils Data

<sup>®</sup> Access is a registered trademark of the Microsoft Corporation in the United States and other countries.

4. The existing feature class, *SOILSP*, from HGIS was renamed to Soils and a new attribute “HAN\_SYM” was added and values from “TEXT\_SYM” were copied into “HAN\_SYM.”
5. The modified SSURGO shapefile was then loaded into the geodatabase as a temporary feature class, and then loaded into *NRBC\_Soils*, assigning “MUSY” to “HAN\_SYM” and “MUName” to “Comments”.
6. Basic metadata for the new feature class was created.


There are small, sliver-type areas along the model domain boundary that are missing a soil type (Figure 28). These should be resolved in a future calculation.



**Figure 28. Missing Soil Type (in Red)**

The default vegetative cover for pre-Hanford Site conditions was extended to cover the additional portion of the modeling domain as shown in Figure 29.

While creating the default vegetative, pre-Hanford Site cover, the extents of the shapefile were extended to cover the southern portion of the extended soils domain previously discussed (Figure 29). Extensions were focused on covering the extended soil coverage over the modeling domain. The red slivers shown in Figure 29 represent areas where the modeling domain is not covered. The purple coverage showing underneath the green is the extended soil cover. Attribute fields called “SurfCon” and “Cover” were added and filled with the default values of “Mature” and “Mature – Vegetated,” respectively.



**Figure 29. Extensions to Default Vegetative Cover**

## 6.2 Rank Data Sources

The preliminary step in ranking the data sources pertains to selecting features to include in the RET based on the scale, accuracy, and relative coverage of the Hanford Site. The ideal dataset has a highly refined level of detail, accurate representations of surface cover/condition for a given time and covers as large a portion of the Hanford Site as possible. Data layers selected for inclusion in the RET are identified in Table 1.

The importance of establishing a ranking or priority list of the features used in the RET pertains to overlaps. Inevitably, the selected data sources will overlap in space and time and a value must be chosen for supplying a recharge estimate. The desired ranking system will emphasize data with the greatest level of detail and accuracy in space and time. Using these criteria, each data source included in the RET were ranked such that the source with the lowest number would supersede those with higher numbers (Table 8).

**Table 8. Spatial Data Prioritization**

| Input         | Valid Time Zone                       | Priority <sup>a</sup> | Description                                                                                                                  |
|---------------|---------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| Site-Specific | Indefinite – Indefinite               | 0                     | Selected site-specific models (like performance assessment models) will supersede the RET calculation entirely where present |
| Barriers      | 1994 <sup>b</sup> – 2570 <sup>c</sup> | 1                     | Compilation of known (e.g. Hanford Prototype Barrier) and anticipated barrier footprints                                     |
| ehsit         | 1850 <sup>d</sup> – 2100 <sup>e</sup> | 2                     | Hazardous waste site footprints                                                                                              |
| bggensit      | 1850 <sup>d</sup> – 2100 <sup>e</sup> | 3                     | Historical building footprints                                                                                               |
| bggenexs      | 1850 <sup>d</sup> – 2100 <sup>e</sup> | 4                     | Existing building footprints                                                                                                 |
| AAC_1943      | 1880 – Indefinite                     | 5                     | Cover type digitized from 1943 Affected Area Coverage (AAC) aerial raster data                                               |
| BRMP          | 1850 <sup>d</sup> – 2100 <sup>d</sup> | 6                     | Natural vegetative cover (cover type) as described by the Biological Resources Management Plan (BRMP)                        |
| Default Cover | Indefinite – Indefinite               | 7                     | Represents a land use with no disturbance and with a “Mature Vegetated” cover                                                |

a. “Priority” in this context means that features whose number is closer to zero will supersede features whose priority number is greater when applicable in the timeline (e.g., ehsit will always supersede BRMP if/when both are present).

b. Start dates for barrier construction based on Hanford Site Disposition Baseline and projected barrier construction.

c. Following guidance given in DOE/RL-2011-50, *Regulatory Basis and Implementation of a Graded Approach to Evaluation of Groundwater Protection*, for barrier dissolution, barriers are assumed to fail at the end of a 500-year span after barrier installation. The date is dependent on the initial construction of the barrier, with the latest year for installation being 2070.

d. Start dates are dependent on the Hanford Site Disposition Baseline (CP-60254, *Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline*) when waste site areas become active/disturbed.

e. The end of the revegetation cycle back to mature shrub steppe.

## 6.3 Automate the Calculation of Recharge Sitewide

The recharge estimates produced by the script are not performing any hydrologic calculations. The script uses the sources provided to compile the most reasonable recharge rates for a specified time period over the domain previously described. The basis for the recharge rates produced are solely based on the guidance sourced in this document, using only Hanford Site-specific research and regulatory guidance.

The overall process for generating spatiotemporal recharge is described herein as follows (also illustrated in Figure 30):

1. Create a database to contain the interim data products and organize the contents for the **UPDATE** procedure to be applied. Name the geodatabase by the year being calculated.
2. Determine which layers are valid for the year being calculated.

The script verifies that the datasets used in the calculation are valid for the year being calculated. Years for which a dataset is valid are listed in Table 8.

- a. A critical exception to this rule is the BRMP layer. Because the BRMP layer is phased in as intersecting waste sites become active, BRMP is always calculated, but will assume the condition and cover type of the default cover until at least one its features become “active.” For years including and after 2011 all BRMP features are considered valid where they are available.
3. Assign the appropriate surface condition and cover type for each feature.
4. Apply approved rates based on each feature’s combination of soil type, cover type, and surface condition.
5. Merge the features from each valid input layer such that any valid features are retained in lieu of other, lower ranked features, until all valid features are merged together as a composite mosaic.
6. Update the output surface condition feature class with the soils feature class, preserving features by priority (Figure 30).
7. Remove unwanted interim data products and attributes from the output feature classes.
8. Update the metadata for each feature class with standard language that reflects the date therein.
9. Using site-specific models, incorporate recharge rates as polygonal features to replace/supersede the RET calculation with site specific data.

This page intentionally left blank.

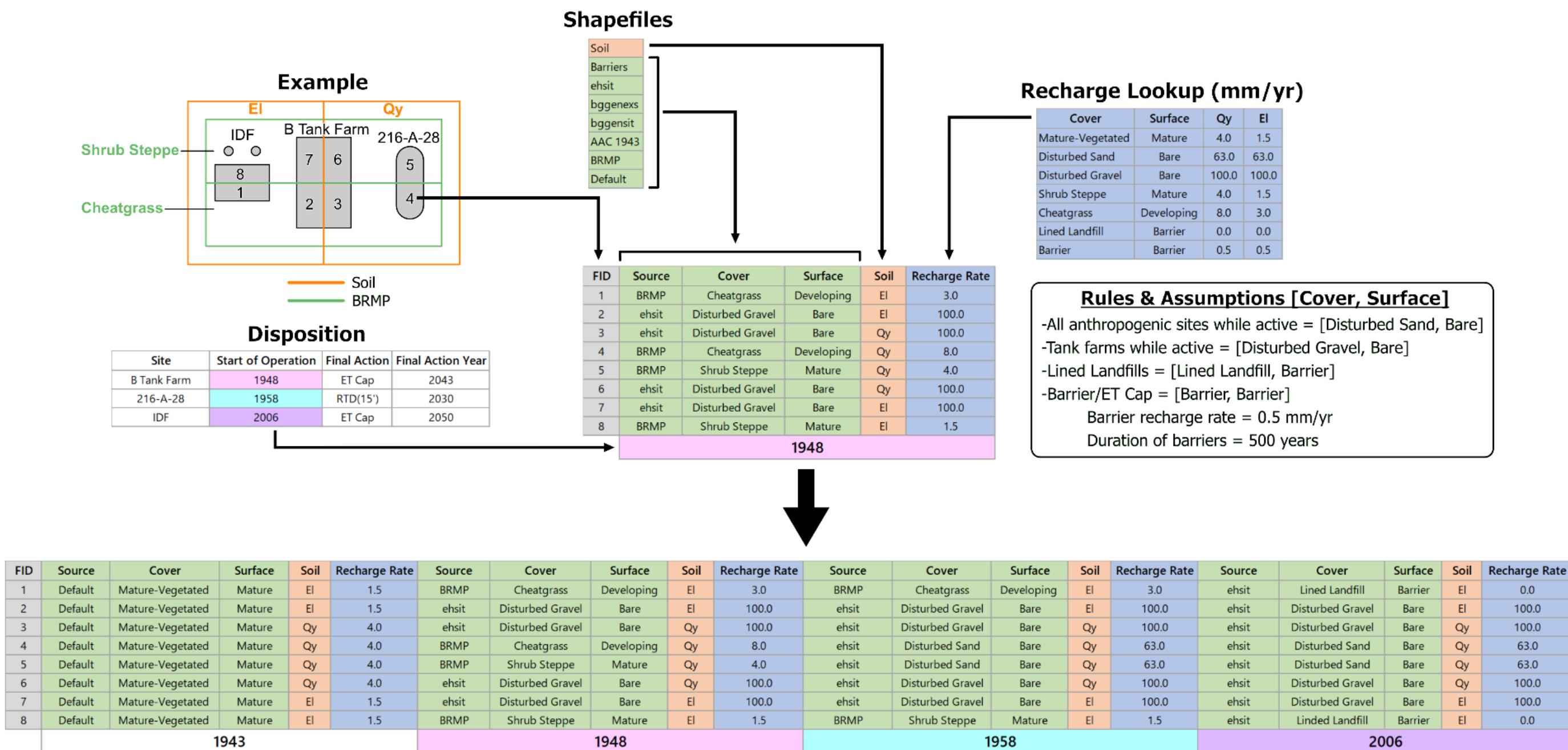



Figure 30. RET Workflow Summary

This page intentionally left blank.



**Figure 31. Prioritization Example**

## 7 Results/Conclusions

The resulting spatiotemporal recharge produced by the automation script is captured by a series of shapefiles, each individual shapefile comprised of polygons representing the sitewide recharge estimate for a given year.

### 7.1 Results

Visually observing the spatiotemporal recharge estimate is accomplished by showing two-dimensional estimates of recharge changing with time. For the purposes of those reading this report, several example images in series have been provided to illustrate the effect of the recharge estimates generated through time. For Figure 32 through Figure 38 a close-up on the B Farms area was chosen to illustrate the level of detail captured in the RET within the area of focused study.

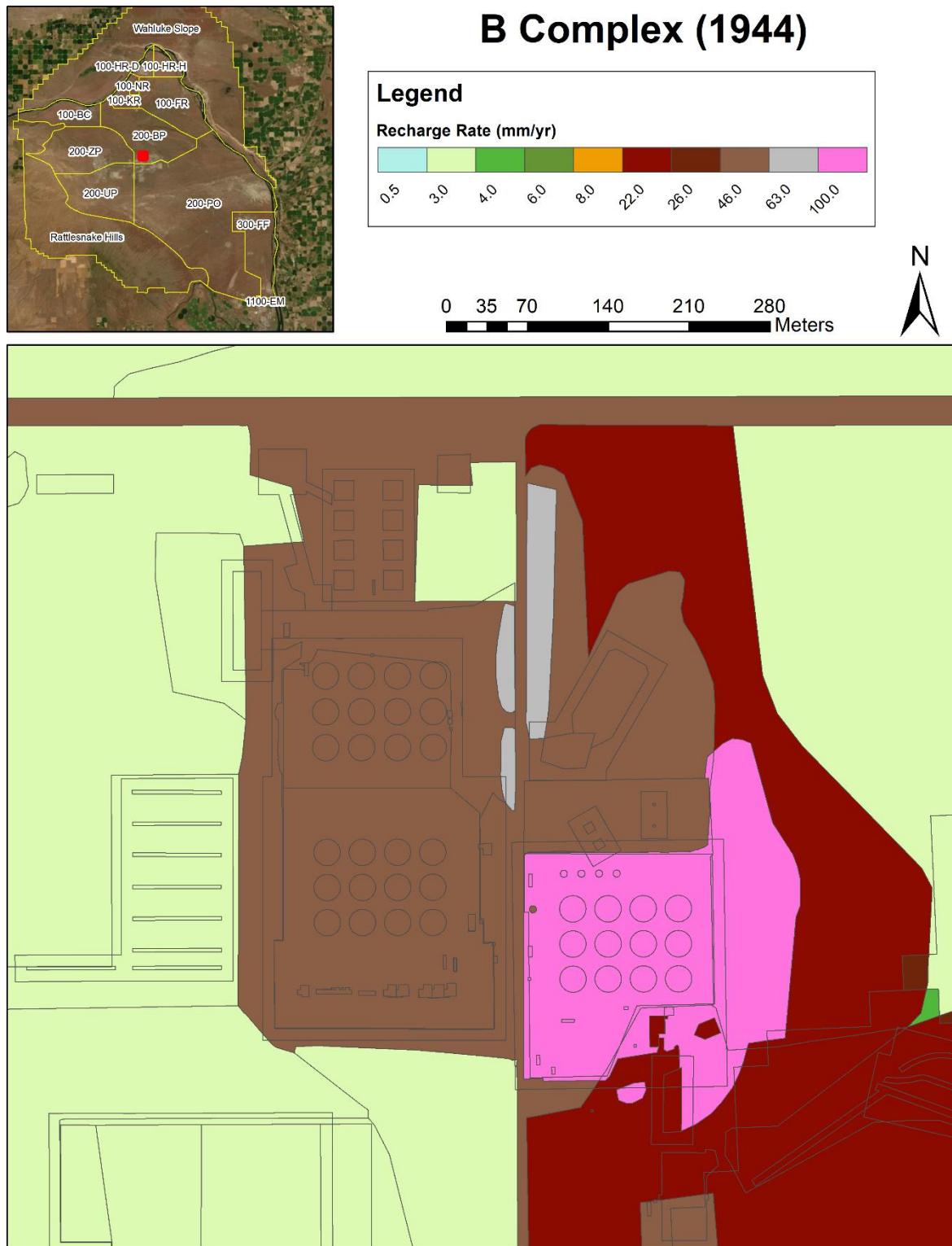




Figure 32. B Complex 1943



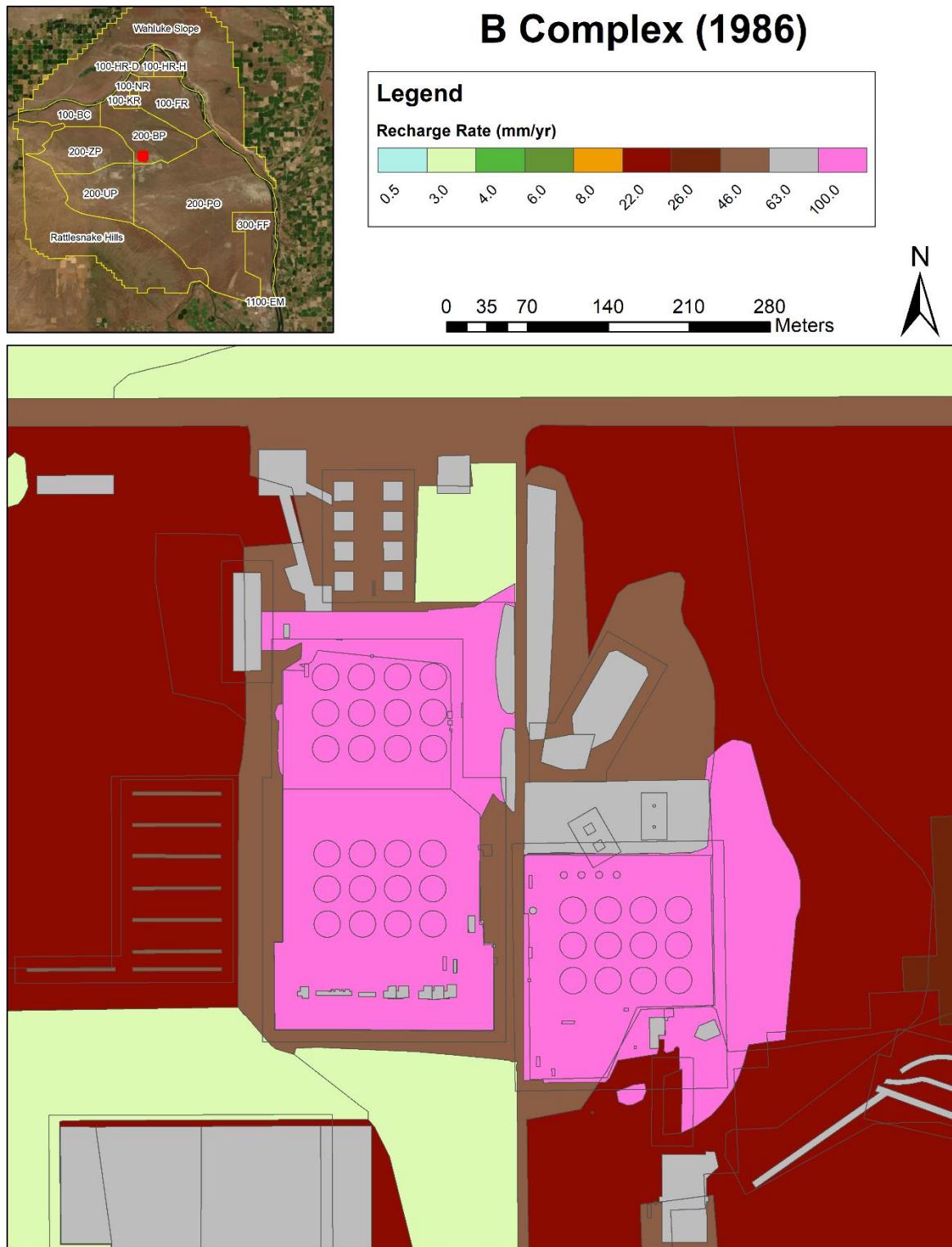



Figure 34. B Complex 1986

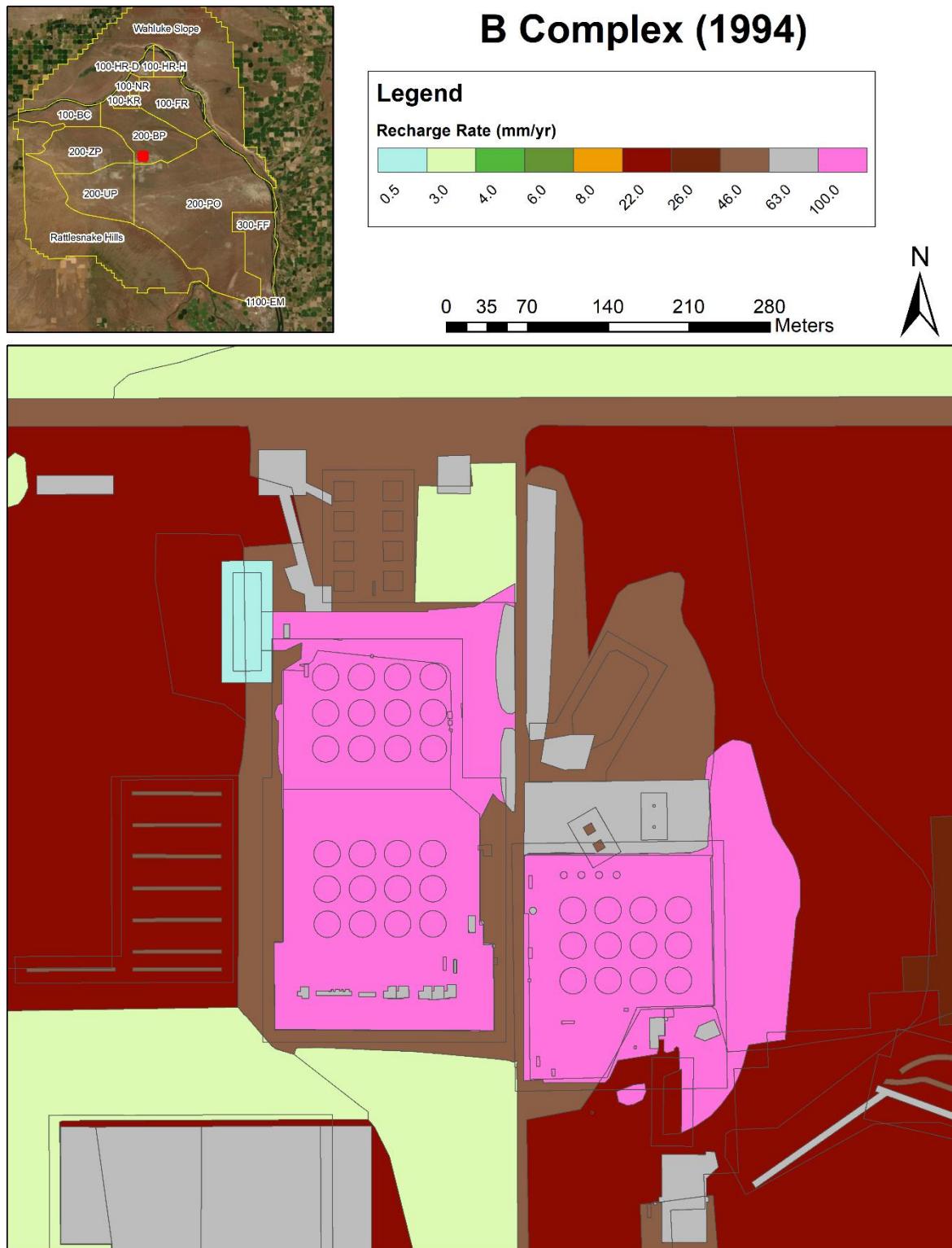



Figure 35. B Complex 1994 (PHB Completion)

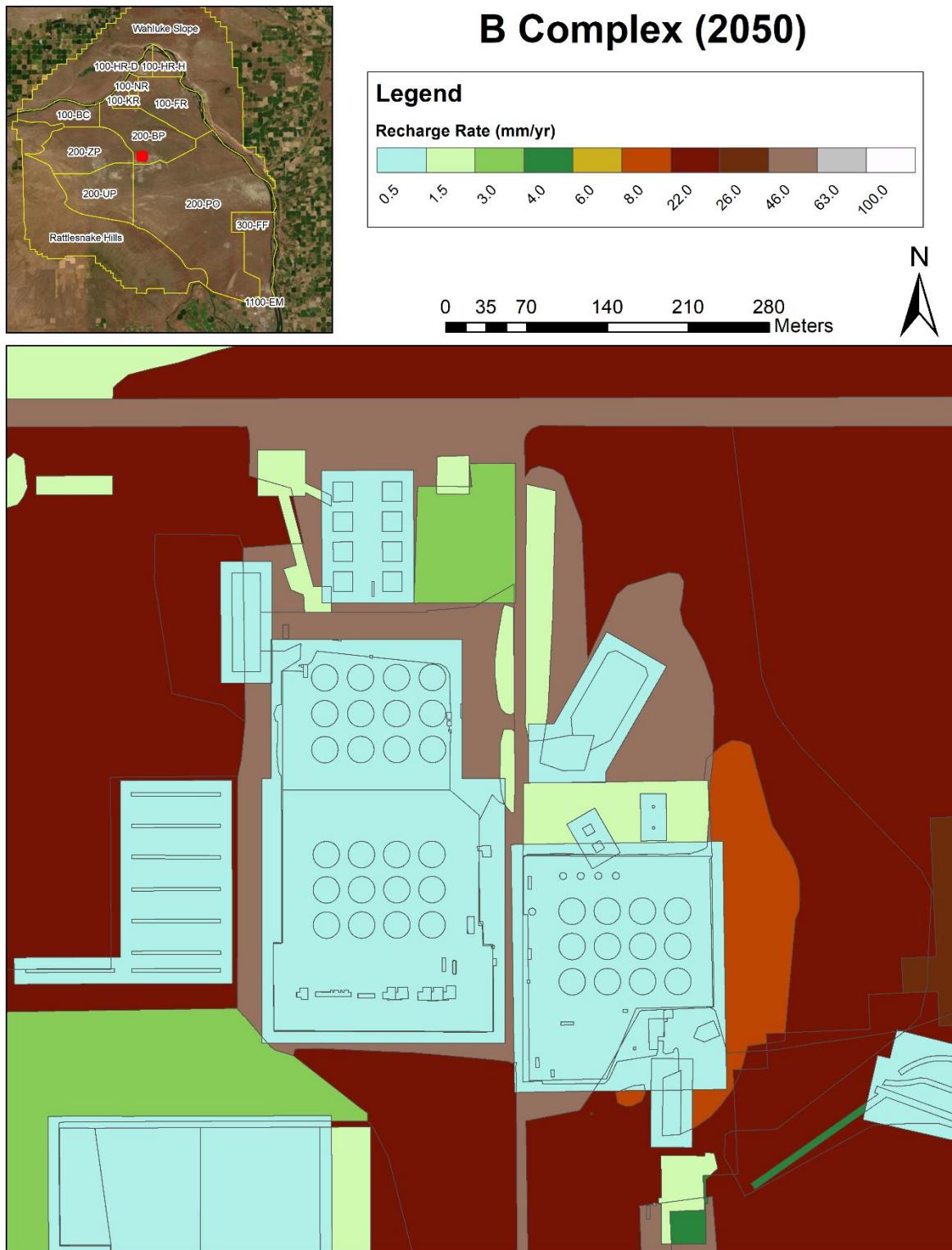



Figure 36. B Complex 2050

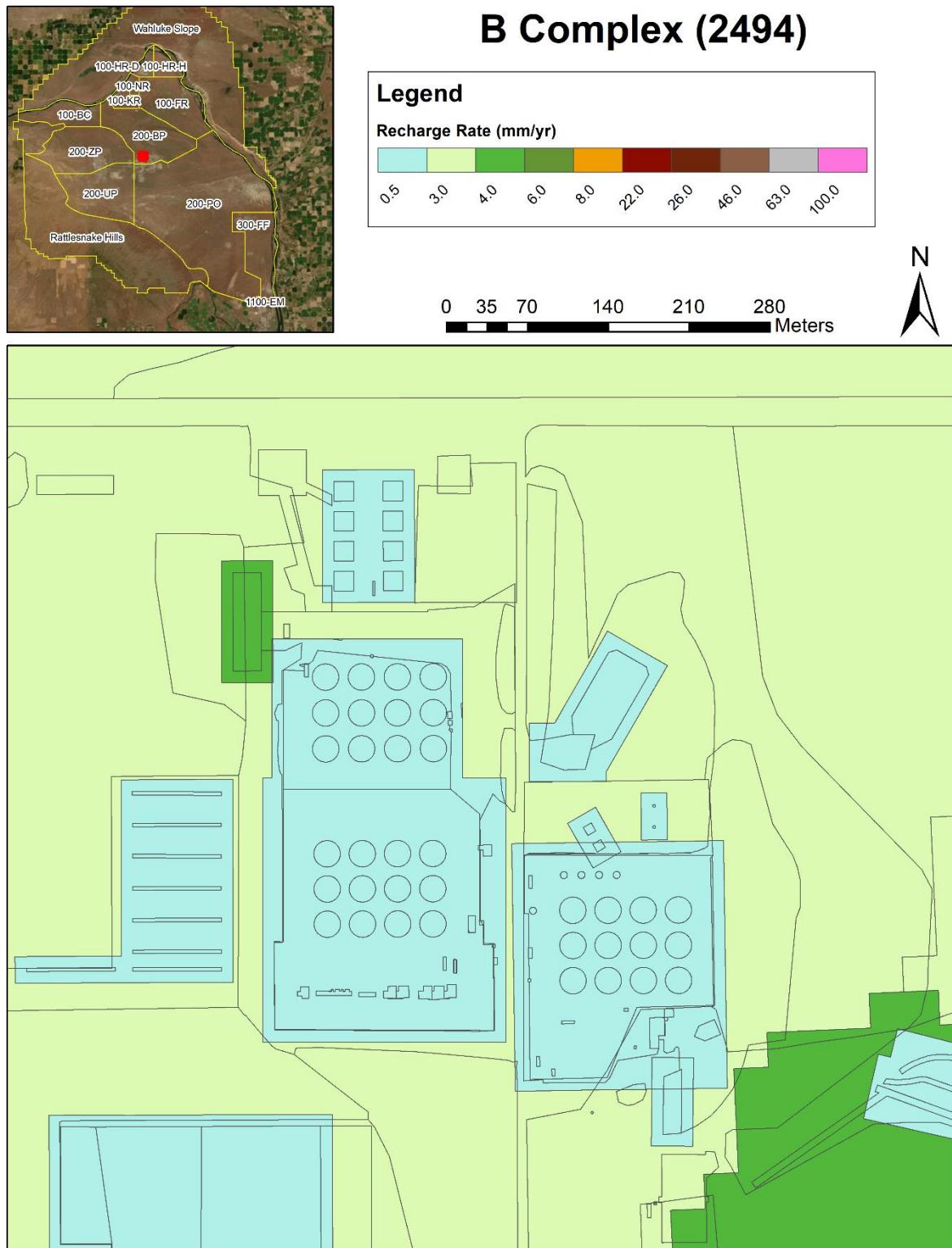
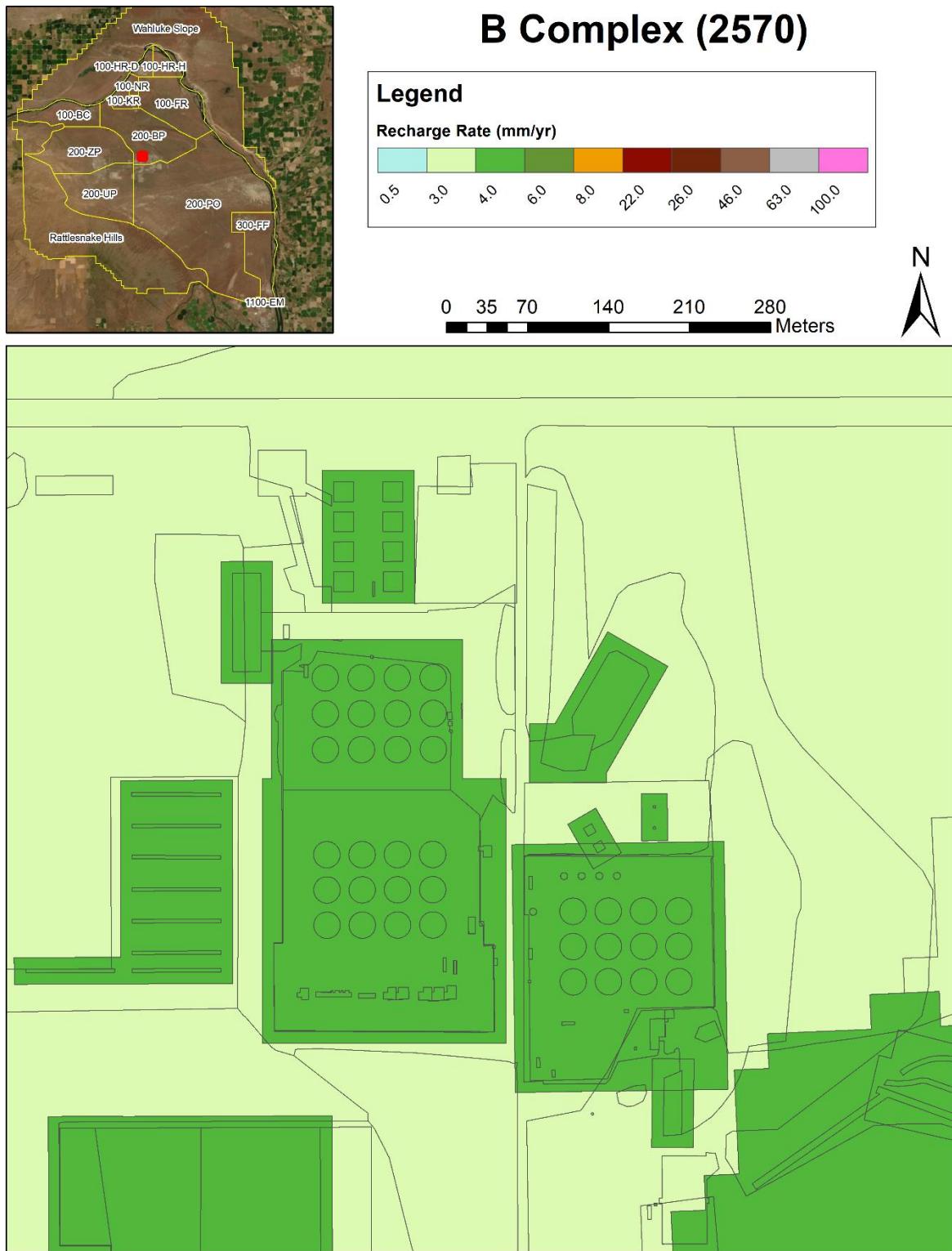




Figure 37. B Complex (PHB Breakdown in 2494)



The detail captured in the preceding figures of the B Farms area extends over the majority of the Hanford Site. Example figures depicting the comprehensive reach of the RET are shown in Figure 39 through Figure 44.

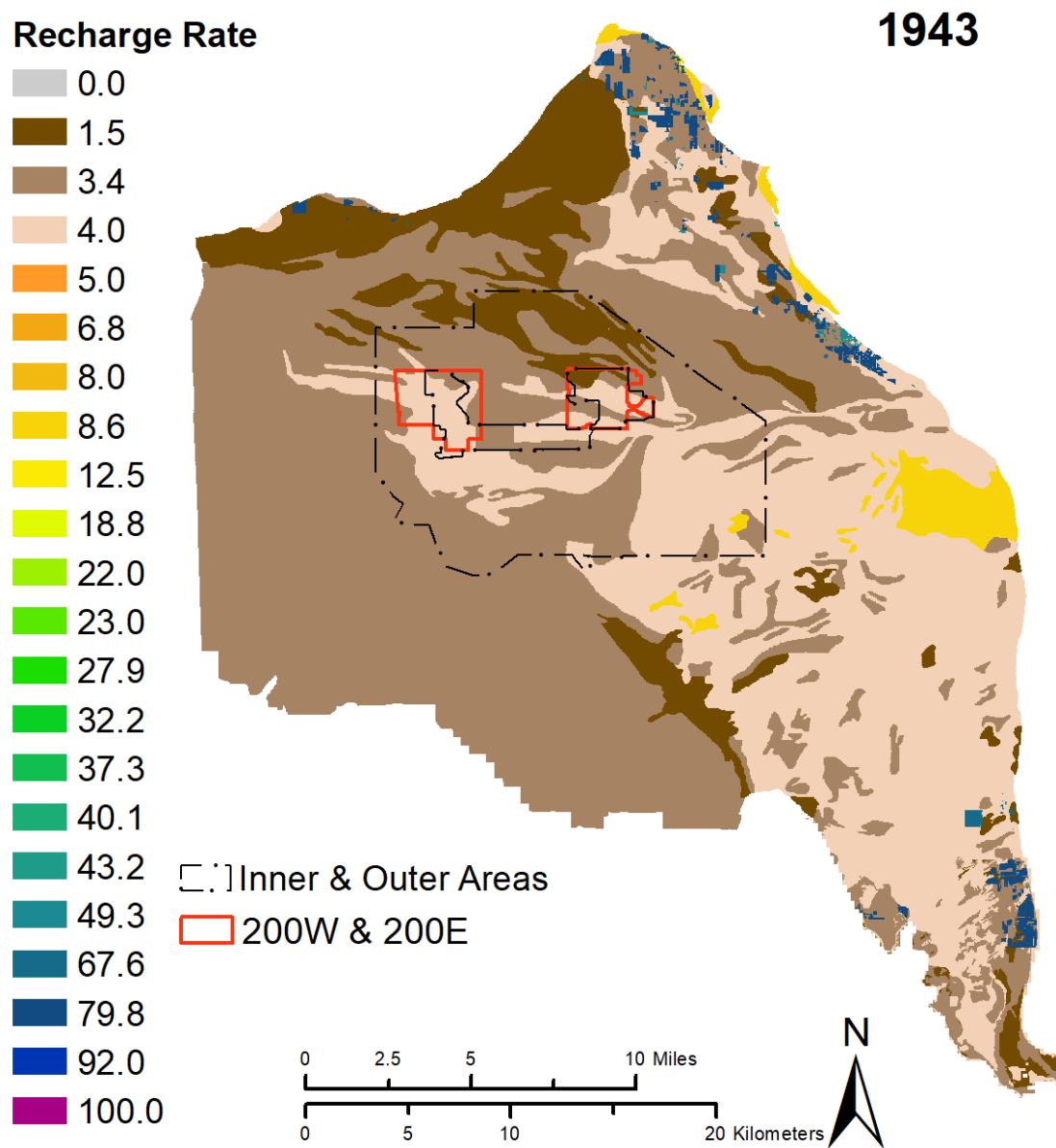



Figure 39. Hanford RET 1943

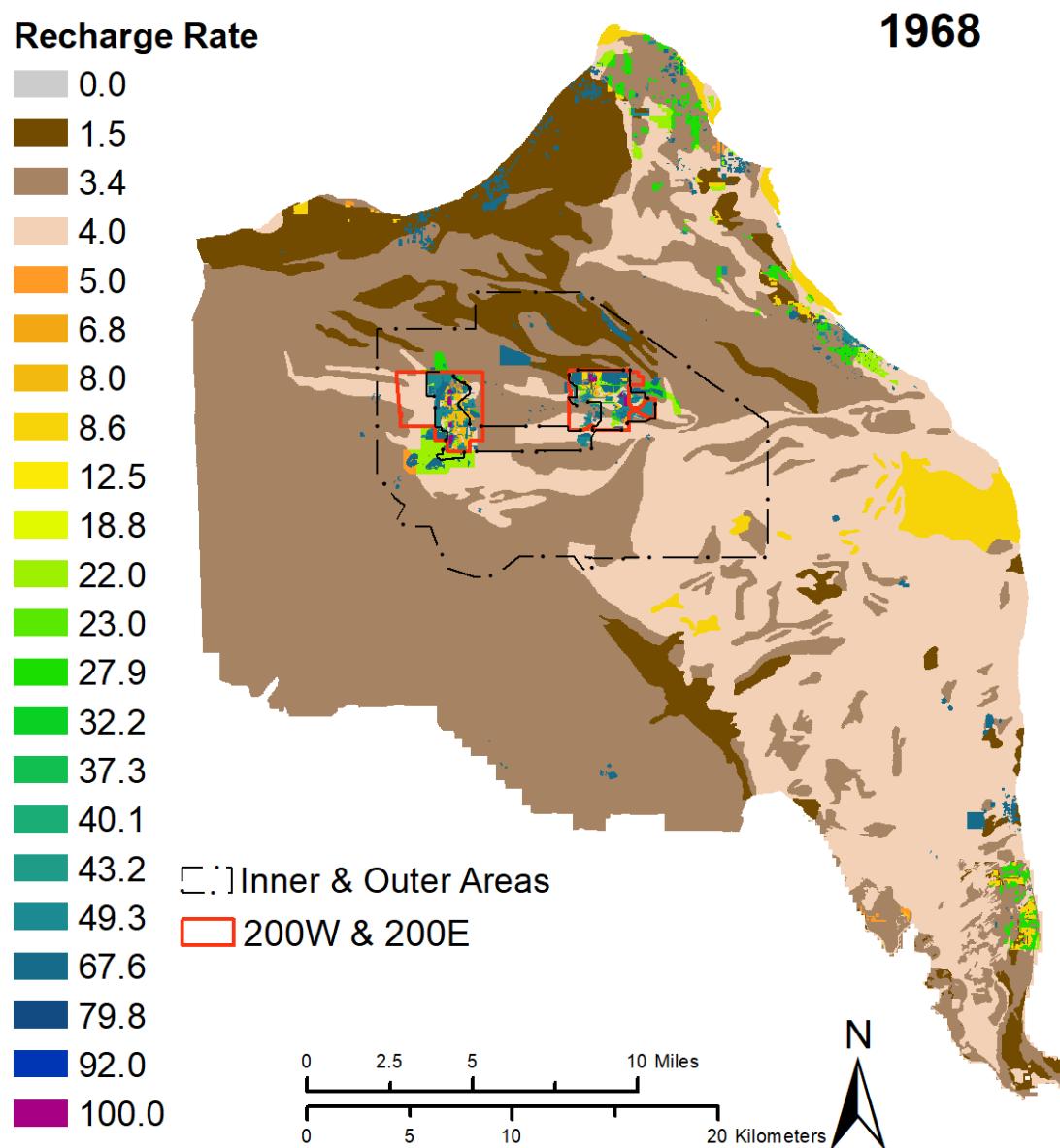



Figure 40. Hanford RET 1968

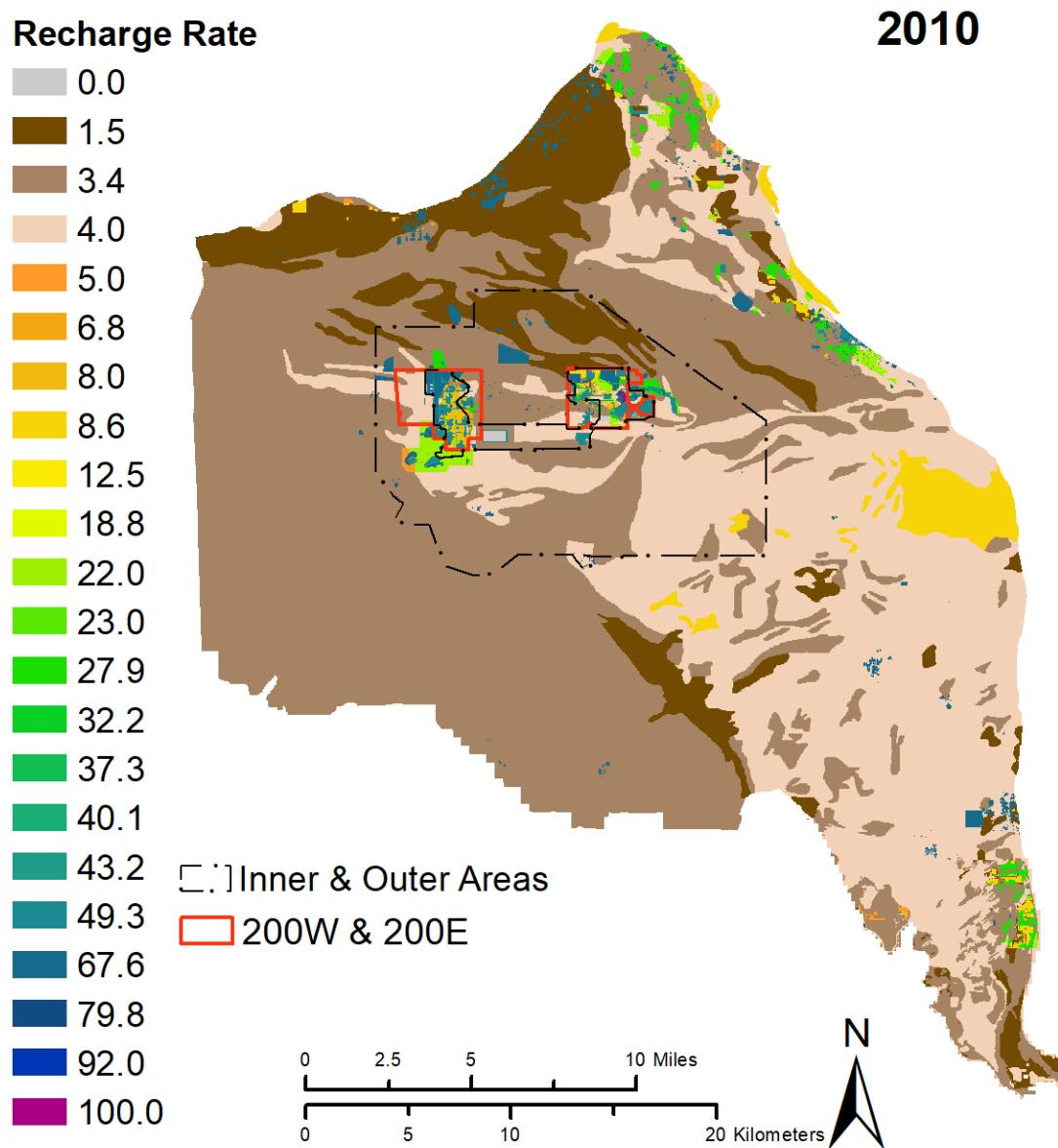



Figure 41. Hanford RET 2010

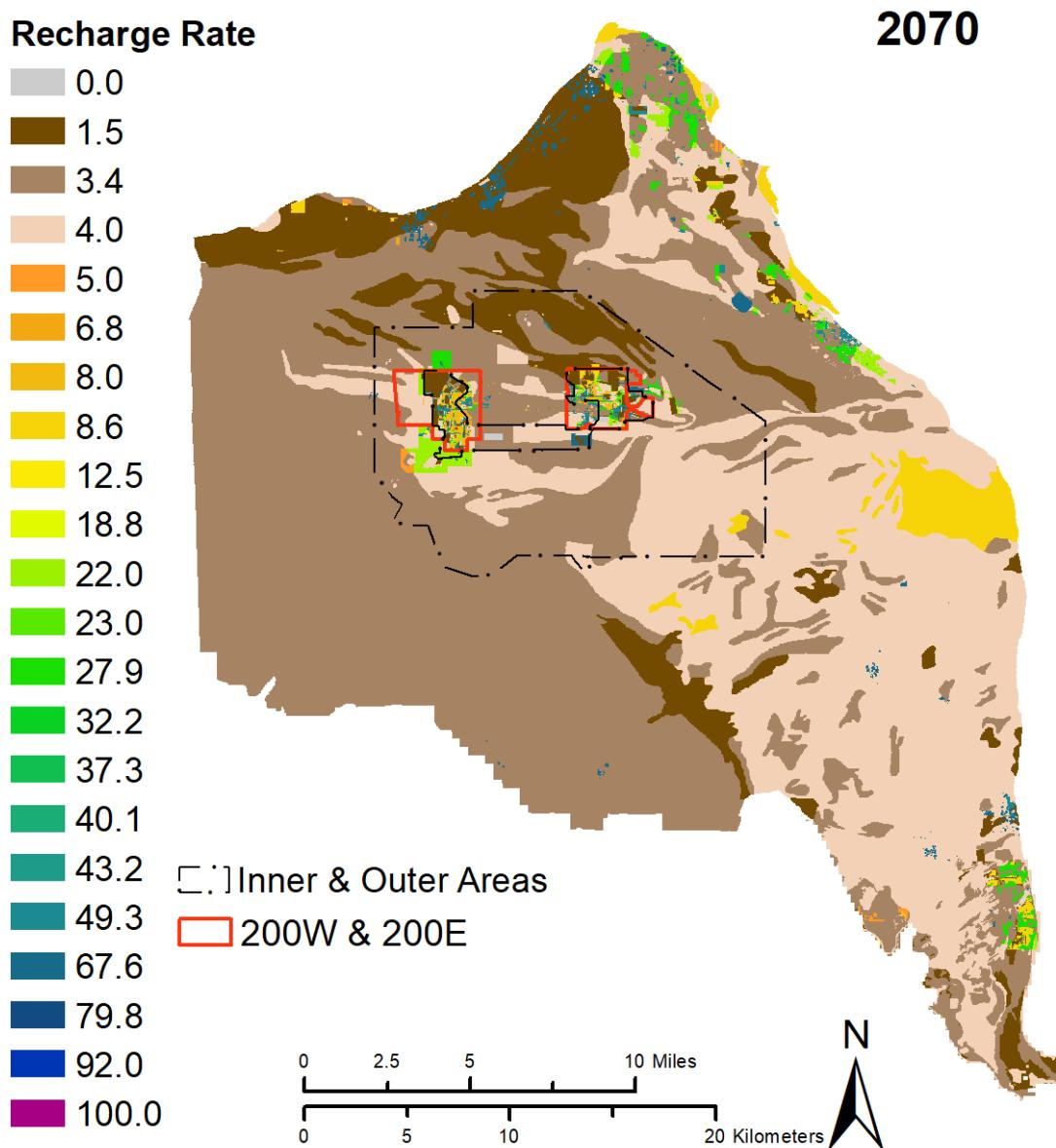



Figure 42. Hanford RET 2070

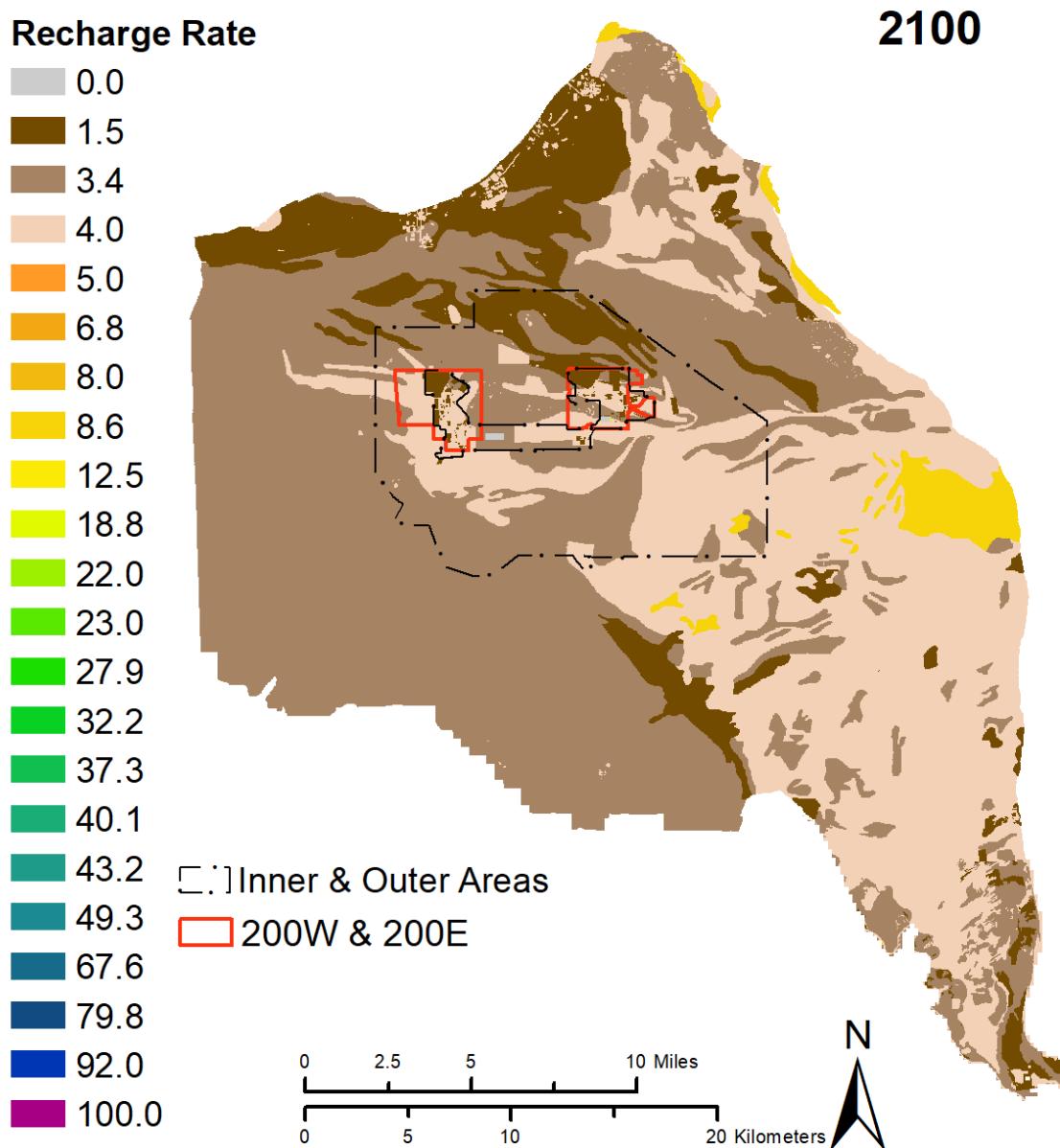



Figure 43. Hanford RET 2100

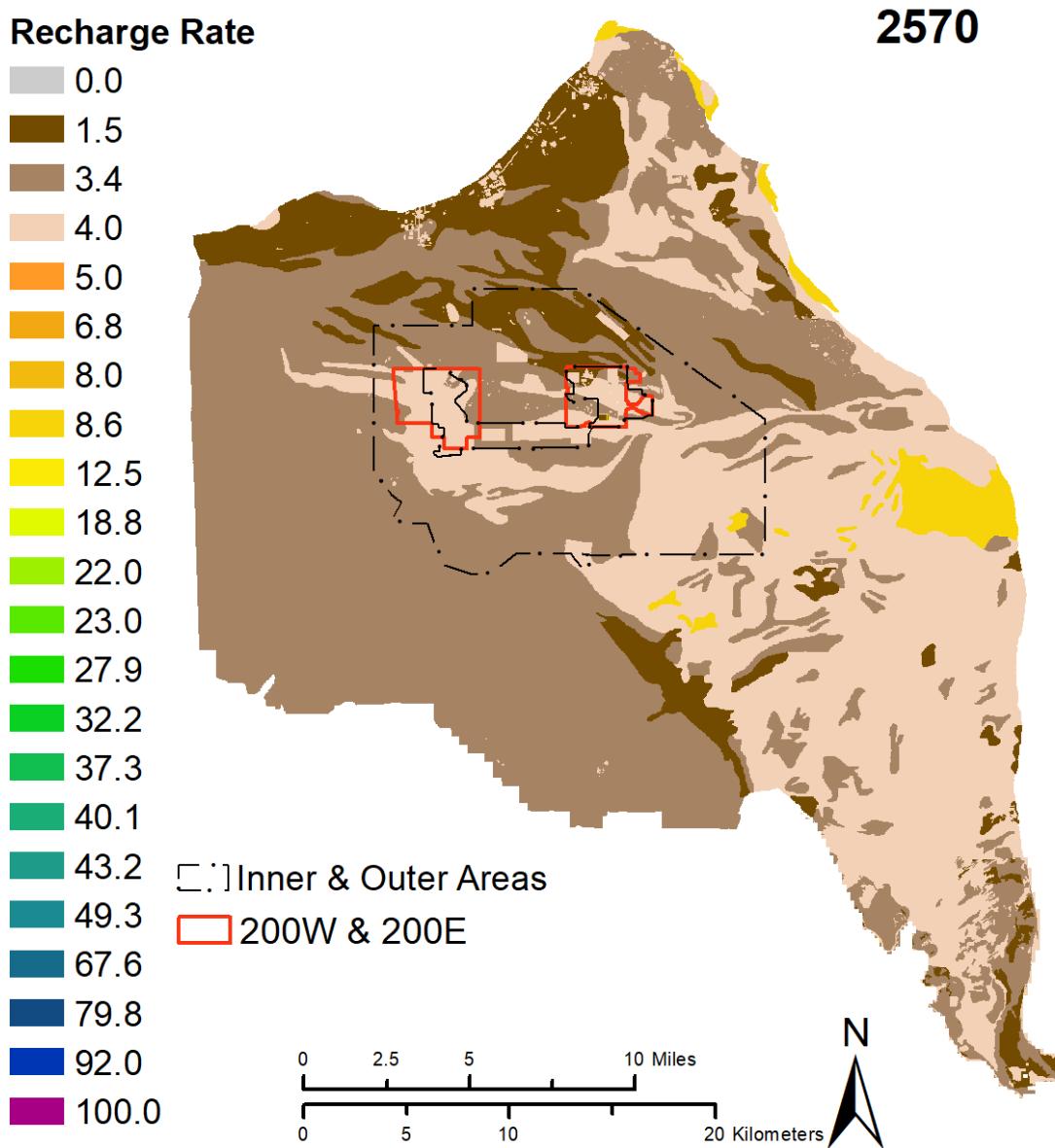



Figure 44. Hanford RET 2570

## 7.2 Notable Areas of the RET Calculation

After performing the RET calculation and prior to its final release, the output recharge rates were altered in several instances to provide additional detail to several locations within the analysis focus area for the Central Plateau. These edits will be discussed in the following sections.

### 7.2.1 BRMP Layer (Near T Plant)

To the southeast of T Plant there was found a section of the Central Plateau focus area for vadose models where a discontinuity existed. The discontinuity was based on the initial boundary of the vadose zone model calculations for the CA produced at the start of RET dataset development. These boundaries were

slightly changed as work on vadose zone modeling progressed. Figure 45 shows the location where the discontinuity exists. To mitigate the effects of this discontinuity, a section of the recharge rates directly to the north was extended down into the discontinuous zone and produced recharge rates that removed the discontinuity (Figure 46). This process was repeated on a year-by-year basis for all years produced in this calculation.

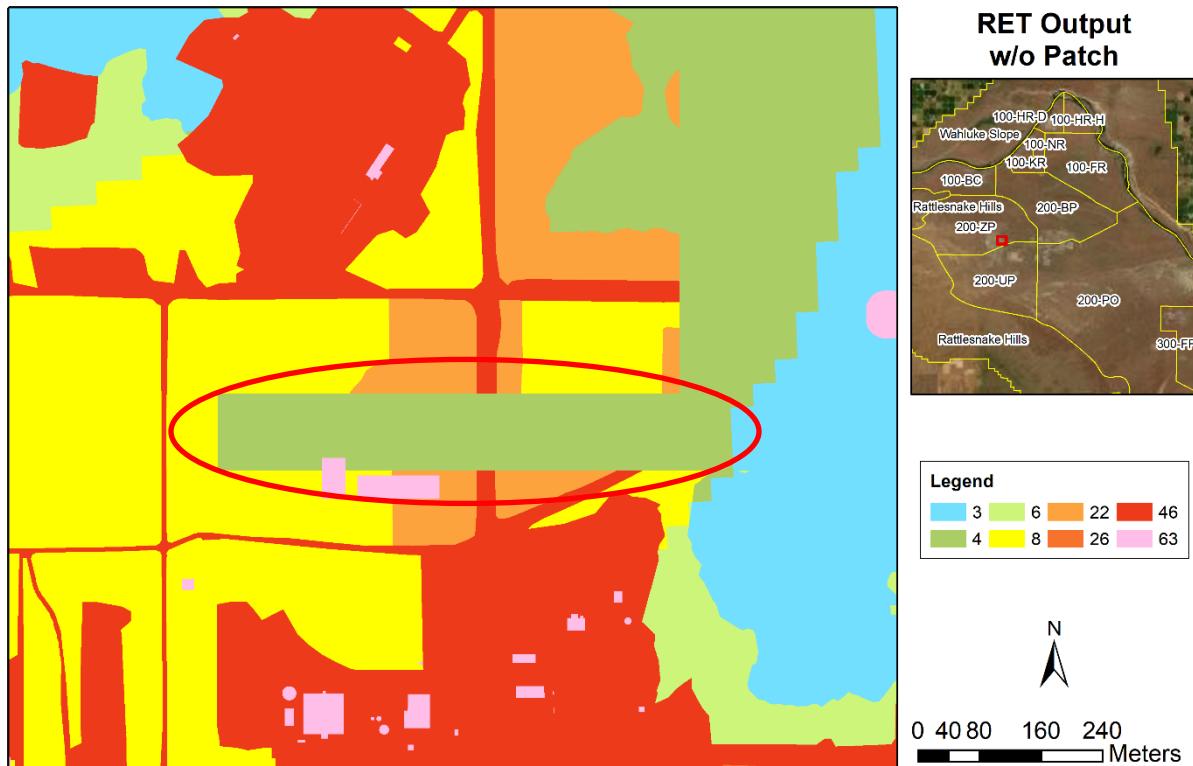



Figure 45. Close-Up of Gap in BRMP Layer (RET Output Year: 2019)

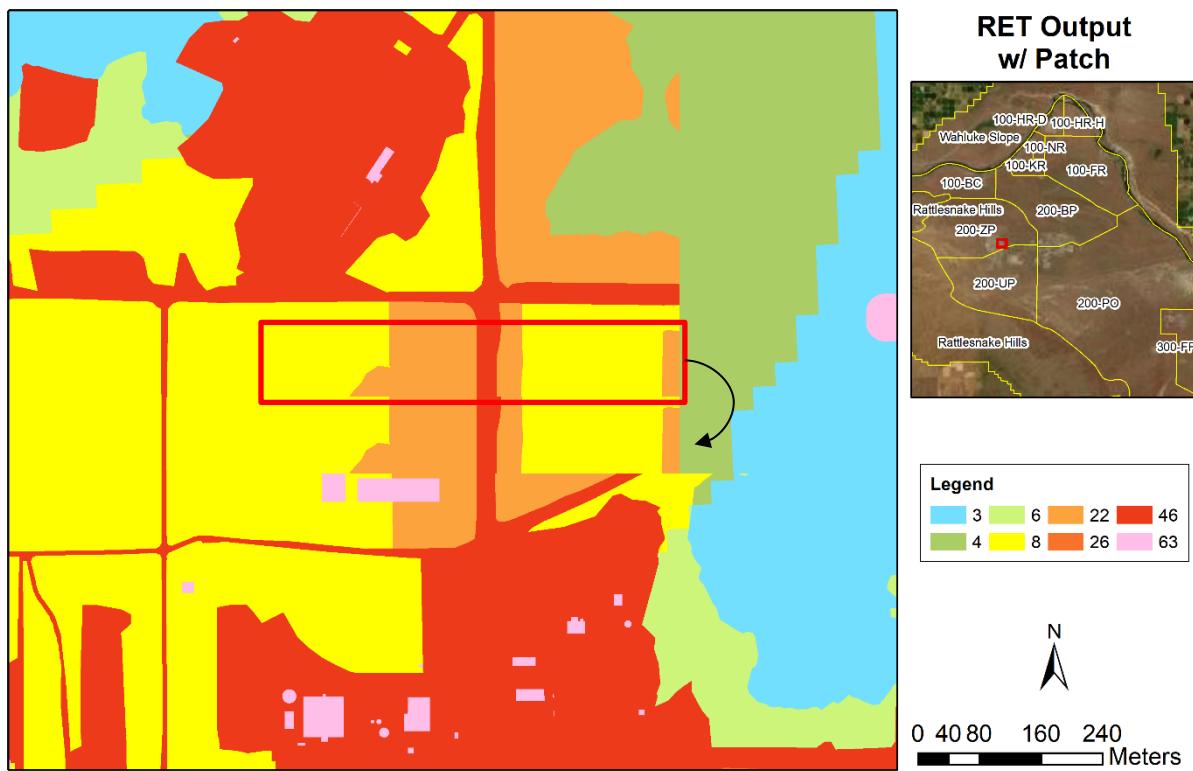



Figure 46. RET Output with Fix Applied (RET Output Year: 2019)

### 7.2.2 End States and Revegetation Cycles

Some sites were observed to have the wrong end recharge rate or applied an incorrect revegetation pattern due to the disposition timeline assigned in the HSDB. These sites were hand-modified to match the appropriate revegetation pattern (stepwise versus linear) and end state recharge rate (Table 9).

**Table 9. Sites Whose End State/Revegetation Cycle(s) Were Revisited**

| Site ID   |           |              |            |           |          |           |           |
|-----------|-----------|--------------|------------|-----------|----------|-----------|-----------|
| 200-E-102 | 216-B-15  | 216-B-2-2    | 216-B-42   | 216-B-8   | 216-S-23 | 216-T-24  | 216-U-8   |
| 200-W-52  | 216-B-16  | 216-B-3      | 216-B-43   | 216-B-9   | 216-S-4  | 216-T-25  | 216-W-LWC |
| 216-A-1   | 216-B-17  | 216-B-3      | 216-B-44   | 216-C-10  | 216-S-5  | 216-T-26  | 216-Z-16  |
| 216-A-10  | 216-B-18  | 216-B-30     | 216-B-45   | 216-C-5   | 216-S-6  | 216-T-27  | 216-Z-21  |
| 216-A-18  | 216-B-19  | 216-B-31     | 216-B-46   | 216-C-7   | 216-S-7  | 216-T-28  | 216-Z-4   |
| 216-A-19  | 216-B-20  | 216-B-32     | 216-B-47   | 216-S-10P | 216-S-8  | 216-T-32  | 216-Z-6   |
| 216-A-2   | 216-B-21  | 216-B-33     | 216-B-48   | 216-S-13  | 216-S-9  | 216-T-35  |           |
| 216-A-20  | 216-B-22  | 216-B-34     | 216-B-49   | 216-S-14  | 216-T-14 | 216-T-4A  |           |
| 216-A-21  | 216-B-23  | 216-B-35     | 216-B-50   | 216-S-16P | 216-T-15 | 216-T-4A  |           |
| 216-A-32  | 216-B-24  | 216-B-36     | 216-B-52   | 216-S-17  | 216-T-16 | 216-T-5   |           |
| 216-A-39  | 216-B-25  | 216-B-37     | 216-B-53A  | 216-S-17  | 216-T-17 | 216-T-6   |           |
| 216-A-4   | 216-B-26  | 216-B-38     | 216-B-53B  | 216-S-17  | 216-T-18 | 216-T-7   |           |
| 216-A-40  | 216-B-27  | 216-B-39     | 216-B-54   | 216-S-17  | 216-T-19 | 216-U-10  |           |
| 216-A-5   | 216-B-28  | 216-B-3B RAD | 216-B-55   | 216-S-17  | 216-T-20 | 216-U-12  |           |
| 216-B-10A | 216-B-29  | 216-B-3C RAD | 216-B-58   | 216-S-1&2 | 216-T-21 | 216-U-13  |           |
| 216-B-10B | 216-B-2-1 | 216-B-40     | 216-B-59   | 216-S-21  | 216-T-22 | 216-U-15  |           |
| 216-B-14  | 216-B-2-1 | 216-B-41     | 216-B-7A&B | 216-S-22  | 216-T-23 | 216-U-1&2 |           |

### 7.2.3 Start Years

Many sites lacked a start year for an operational/construction period in the HSDB. Additional research was done to ascertain if these sites had new information available to allow for a more appropriate start year or to confirm the 1943 start year. The analysis start year 1943 defines pre-Hanford Site conditions. Thus, a default start date of 1944 was assigned in cases where no additional information was available. The list of sites affected and their modified start years with associated assumption/reference is shown in Table 10. The RET output was modified to match the new start years listed.

**Table 10. Sites Whose Start Years Were Modified**

| Waste Site ID | New Start Year | Reference/Logic                                                                   |
|---------------|----------------|-----------------------------------------------------------------------------------|
| 600-124       | 1944           | Assume 1944 start year                                                            |
| 600-125       | 1944           | Assume 1944 start year                                                            |
| 600-127       | 1944           | Assume 1944 start year                                                            |
| 600-129       | 1944           | Assume 1944 start year                                                            |
| 600-146       | 1944           | Assume 1944 start year                                                            |
| 600-220       | 1958           | Recent WIDS information suggests that this area was active during the year listed |
| 600-222       | 1944           | Assume 1944 start year                                                            |
| 600-223       | 1958           | Recent WIDS information suggests that this area was active during the year listed |

**Table 10. Sites Whose Start Years Were Modified**

| Waste Site ID | New Start Year | Reference/Logic                                                                   |
|---------------|----------------|-----------------------------------------------------------------------------------|
| 600-224       | 1958           | Recent WIDS information suggests that this area was active during the year listed |
| 600-227       | 1944           | Assume 1944 start year                                                            |
| 600-228       | 1944           | Assume 1944 start year                                                            |
| 600-232       | 1944           | Assume 1944 start year                                                            |
| 600-236       | 1944           | Assume 1944 start year                                                            |
| 600-237       | 1984           | Recent WIDS information suggests that this area was active during the year listed |
| 600-239       | 1944           | Assume 1944 start year                                                            |
| 600-240       | 1944           | Assume 1944 start year                                                            |
| 600-245       | 1944           | Assume 1944 start year                                                            |
| 600-246       | 1944           | Assume 1944 start year                                                            |
| 600-247       | 1944           | Assume 1944 start year                                                            |
| 600-248       | 1944           | Assume 1944 start year                                                            |
| 600-39        | 1958           | Recent WIDS information suggests that this area was active during the year listed |
| 600-53        | 1958           | Recent WIDS information suggests that this area was active during the year listed |
| 6607-3        | 1945           | Recent WIDS information suggests that this area was active during the year listed |
| 600-23        | 1944           | Assume 1944 start year                                                            |

WIDS = Waste Information Data System.

## 7.3 Future Considerations

The RET is designed so as more data and detailed analysis are conducted, the implementation of these data into the spatiotemporal recharge estimate can be improved in subsequent revisions. The focus of this revision was within the Central Plateau of the Hanford Site. Enhancements to the data and algorithms applied in this version are described in the following sections. These include increased utilization of aerial imagery, further refinement of the HSDB, surface condition estimates expansion, and alteration to the automation scripts used in the RET. The merit of any of these activities should be weighed against the likelihood of recharge influencing future impacts to groundwater from the influence of recharge.

### 7.3.1 Aerial Imagery

Digitized aerial photography through time can be used to more precisely determine the location of anthropogenic activities at the Hanford Site. Aerial photography has the benefit of definitively showing areas of disturbance. The data can be used to further refine the evolution of disturbances through time using multiple aerial imagery datasets. Time should be devoted to evaluating methods to automate the process of aerial imagery analysis using software designed for this purpose to increase the efficiency of the process.

### 7.3.2 HSDB

The HSDB provides both a history and anticipated projection of surface conditions for waste sites described in the dataset. An important characteristic of the HSDB is that it provides pertinent timeline information for as much of the Hanford Site as possible. A recommendation for improving the HSDB dataset is to ensure that the database encapsulates as much as possible of the Hanford Site in its history and anticipated actions.

After review of this calculation, sites recommended for additional research and verification are included in Appendix F of this ECF. The recommendation for these sites is to ascertain proper dates and references for actions and active operation years. The current algorithm of the RET lends itself to conservatively higher recharge rates by assigning start dates based on nearby locations. Otherwise, the site with no information could remain at pre-Hanford Site conditions longer than occurred. Future revisions of the HSDB should include further detail to the timeline for these sites where referenced information can be identified.

### 7.3.3 Surface Condition

As new information on surface condition in different time periods become available, refine the ranking of data sources and update the process automation to incorporate the new sources. For example, there is multispectral aerial imagery available for 1976, which could provide representation of actual operations relative to the current assumptions. Another source of variable surface condition are road features. The current transportation feature classes provide accurate information on the location of features, and at least some information about the condition (trails and two-track roads that have grown-over will differ from regularly maintained gravel or paved roadways). Further, if the collective influence of roadways on local recharge is deemed valuable, then a pre-operations road layer could be developed, by first evaluating which of the existing roads were already active in 1943, and then adding any additional ones that were present in 1943 but not part of the current transportation feature sets.

Basalt subcrops and outcrops within the Hanford Site were not considered as part of the current calculation because these locations are currently outside the groundwater model domain. However, because the recharge rates [PNL-10285 (UC2010)] for this substrate are relatively high (86.7 mm/yr) to all other soil types considered, future sitewide recharge calculations may want to account for these areas.

### 7.3.4 Refine the Current Automation Process

The geoprocessing scripts for the spatiotemporal recharge estimates have improvements that could be made. The improvements target the performance of the script, which currently takes approximately 6 days to complete a full RET simulation. Aspects of the tool architecture could be modified to improve the efficiency of the tool. The following are recommended improvements:

- The current script contains redundancies in its production of metadata. Adjusting the algorithm to use a single geodatabase containing multiple feature classes whose attributes span the differences in years would reduce this load.
- The metadata should be populated by the script. This includes the time of file creation, the date and version of the input used, and the version of the RET script used to produce the outputs. Additional metadata should also be considered for transparency in showing what inputs contribute to the resulting recharge rate (on a polygon-by-polygon basis).
- Increasing the user options for customizing RET output could also provide efficiencies. Example options include limited spatial and temporal extent, customizable disposition information, and/or recharge values.

- Add logic to the script to handle duplicate IDs in the HSDB. The current implementation depends on the user interaction to verify the input HSDB table.
- Simplify the geoprocessing steps. It is not necessary that shapefiles be merged repeatedly as does the current RET calculation. Instead, an initial mosaic of polygons can be produced and held in memory, then assigned the appropriate recharge rates and metadata. This would significantly decrease the computation time.

## 8 References

AR-02612, 2019, *Determination: Tri-Party Program Managers agree to maintain the 4.0 mm/year long-term recharge rate for the 200-EA-1 Operable Unit (OU) RFI/RI groundwater protection evaluations, and to perform a sensitivity analysis during the 200-EA-1 OU CMS/FS remedial alternatives evaluations, as described in this determination*, United States Department of Energy, Richland Operations Office, Richland, Washington. Available at: <https://pdw.hanford.gov/document/AR-02612>.

CHPRC-04002, 2020, *Recharge Evolution Tool (RET) Integrated Software Management Plan*, Rev. 1, CH2M HILL Plateau Remediation Company, Richland, Washington.

CP-60254, 2017, *Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline*, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <https://www.osti.gov/servlets/purl/1412547>.

CP-63386, 2020, *Hanford Site Disposition Baseline for Composite Analysis*, Rev. 0, CH2M HILL Plateau Remediation Company, Richland, Washington. Available at: <https://www.osti.gov/servlets/purl/1615522>.

DOE/EIS-0391, 2012, *Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS)*, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <https://www.hanford.gov/page.cfm/FinalTCWMEIS>.

DOE/RL-94-76, 1994, *Constructability Report for the 200-BP-1 Prototype Surface Barrier*, Draft A, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <https://pdw.hanford.gov/document/D196057701>.

DOE/RL-96-17, 2009, *Remedial Design Report/Remedial Action Work Plan for the 100 Area*, Rev. 6, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <https://pdw.hanford.gov/document/1112281625>.

DOE/RL-96-32, 2013, *Hanford Site Biological Resources Management Plan*, Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington. Available at: <http://www.hanford.gov/files.cfm/DOE-RL-96-32-01.pdf>.

DOE/RL-2011-50, 2012, *Regulatory Basis and Implementation of a Graded Approach to Evaluation of Groundwater Protection*, Rev. 1, United States Department of Energy, Richland Operations Office, Richland, Washington. Available at: <http://pdw.hanford.gov/arpir/index.cfm/viewDoc?acquisition=0093361>

DOE/RL-2016-37, 2016, *Prototype Hanford Barrier 1994 to 2016*, Rev. 0, United States Department of Energy, Richland Operations Office, Richland, Washington. Available at:  
<https://pdw.hanford.gov/document/0075777H>.  
<https://pdw.hanford.gov/document/0075776H>.

ECF-HANFORD-11-0063, 2014, *STOMP 1D Modeling for Determination of Soil Screening Levels and Preliminary Remediation Goals for Waste Sites in the 100D and 100H Source Operable Units*, Rev. 6, CH2M Hill Plateau Remediation Company, Richland, Washington. Available at:  
<http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=1408080204>.

Ecology, EPA, and DOE, 1989, *Hanford Federal Facility Agreement and Consent Order*, 2 vols., as amended, Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy, Olympia, Washington. Available at:  
<https://www.hanford.gov/page.cfm/TriParty/TheAgreement>.

PNL-10285 (UC-2010), 1995, *Estimated Recharge Rates at the Hanford Site*, Pacific Northwest National Laboratory, Richland, Washington. Available at:  
<http://www.osti.gov/scitech/servlets/purl/10122247>.

PNNL-14702, 2006, *Vadose Zone Hydrology Data Package for Hanford Assessments*, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington. Available at:  
[http://www.pnl.gov/main/publications/external/technical\\_reports/PNNL-14702rev1.pdf](http://www.pnl.gov/main/publications/external/technical_reports/PNNL-14702rev1.pdf).

*Resource Conservation and Recovery Act of 1976*, Pub. L. 94-580, 42 USC 6901 et seq. Available at:  
<https://www.govinfo.gov/content/pkg/STATUTE-90/pdf/STATUTE-90-Pg2795.pdf>.

RPP-CALC-61032, 2017, *Vadose Zone and Saturated Zone Flow and Transport Calculations for the Integrated Disposal Facility Performance Assessment*, Rev. 0, Washington River Protection Solutions, LLC, Richland, Washington.

RPP-ENV-58782, 2016, *Performance Assessment of Waste Management Area C, Hanford Site, Washington*, CH2M Hill Plateau Remediation Company, Richland, Washington. Available at:  
<https://pdw.hanford.gov/document/0065503H>.

RPP-RPT-59958, 2018, *Performance Assessment for the Integrated Disposal Facility, Hanford Site, Washington*, Rev. 1, Washington River Protection Solutions, Richland, Washington.

WCH-520, 2013, *Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington*, Washington Closure Hanford, Richland, Washington. Available at:  
<https://pdw.hanford.gov/document/0083701>.

WDOH/320-015, 1997, *Hanford Guidance for Radiological Cleanup*, Washington State Department of Health, Olympia, Washington. Available at:  
[http://www.doh.wa.gov/Portals/1/Documents/Pubs/320-015\\_cleanup\\_e.pdf](http://www.doh.wa.gov/Portals/1/Documents/Pubs/320-015_cleanup_e.pdf).

This page intentionally left blank.

## **Appendix A**

### **Cover Page for EMDT-RE-0019**

This page intentionally left blank.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|--|
| 76b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Environmental Modeling Data Transmittal Cover Page</b> |                        |  |
| <b>No.:</b> EMDT-RD-0019<br><small>[Request EMDT number from Modeling Team Leader]</small>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | <b>Revision No.:</b> 0 |  |
| <b>Title:</b> Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | <b>Date:</b> 9/18/2017 |  |
| <b>1. Data Description</b><br><i>Provide the description of data set or data type.</i><br><p>Data packaged in this transmittal page contains selected Excel spreadsheets, documents, and STOMP model outputs that were developed to complete the 2017 performance assessment (PA) of the Hanford Integrated Disposal Facility (IDF) reported in RPP-RPT-59958 Revision B. The selected model outputs are fluxes of technetium-99 (Tc-99) and iodine-129 (I-129) to the water table from simulated contaminant releases from IDF in the PA model base case for a 10,000-year period following the assumed facility closure in calendar year 2051, and these outputs are extracted from a larger set of model output files archived with RPP-CALC-61032 Revision 0 in the Environmental Model Management Archive (EMMA). As of September 2017, these outputs provide the best information currently available on long-term groundwater impacts from future disposal of solid waste at IDF, given the objectives of the Hanford Site Composite Analysis.</p> <p>In Fiscal Year 2017, the Department of Energy Office of River Protection and its subcontractors completed development of a PA for the near-surface disposal of low-level and mixed low-level waste at IDF. IDF is a double-lined landfill expected to be the disposal facility for the vitrified low-activity waste that will be produced at the Hanford Waste Treatment and Immobilization Plant (WTP). The IDF is also expected to receive secondary solid waste (SSW) generated by the WTP, SSW generated by the Effluent Treatment Facility (ETF), and other solid wastes from Hanford site remediation efforts. Phase 1 construction of IDF was completed between 2004 and 2006. The 2017 IDF PA uses computer models to assess the potential impacts of disposed waste to human health and the environment after facility closure for multiple exposure pathways, including a groundwater pathway. Contaminant fate and transport for the groundwater pathway is simulated in a three-dimensional finite difference model of the vadose zone and saturated zone at IDF and the surrounding area using the Subsurface Transport Over Multiple Phases (STOMP) simulator described in PNNL-15782. Although the 2017 IDF PA has not completed all of its regulatory reviews and is not yet publicly available, it is appropriate to include its outputs in the Hanford Site Composite Analysis, because a 2013 Record of Decision ("Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: Record of Decision", 78 FR 75913) designated IDF as the permanent disposal destination for significant inventories of contaminants, and because the 2017 IDF PA incorporates changes in assumptions developed at or since that time which supersede past PA analyses of WTP wastes or of preconstruction concepts of the IDF.</p> |                                                           |                        |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|--|
| 76b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Environmental Modeling Data Transmittal Cover Page</b> |                        |  |
| <br><b>No.:</b> EMDT-RD-0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           | <b>Revision No.:</b> 0 |  |
| <i>[Request EMDT number from Modeling Team Leader]</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |                        |  |
| <b>Title:</b> Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | <b>Date:</b> 9/18/2017 |  |
| <b>2. Data Intended Use</b><br><i>Identify the data's intended use. Describe the rationale for its selection and how the data will be incorporated into a model, report, or database. Include discussion of the extent to which the data demonstrate the properties of interest.</i><br>The intended use of the data is to provide contaminant mass flux from IDF to the Hanford Composite Analysis (CA) groundwater model.<br><br>The 2013 Record of Decision ("Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: Record of Decision", 78 FR 75913) designates IDF as the permanent disposal destination for low activity waste generated by the WTP (among other wastes). Consistent with numerous other Hanford Site PAs and modeling analyses, the 2017 IDF PA (RPP-RPT-59958 Revision B) determined that Tc-99 and I-129 are by far the dominant IDF waste contaminants contributing to radiological risk for the groundwater pathway. Simulation results indicating Tc-99 does not arrive at the water table during the compliance timeframe of 1,000 years following facility closure while assuming Tc-99 is a non-sorbing solute support a conclusion that no other contaminants would arrive at the water table within the compliance timeframe. The 2017 IDF PA base case simulated I-129 with a Kd of 0.1 mL/g. The PA also reported uncertainty and sensitivity analyses with a small range of I-129 soil Kd values based on PNNL – 13037 Rev. 2. The STOMP simulation results for flux of Tc-99 and I-129 released by IDF to the water table are the most directly useful form of IDF-related input for the CA groundwater model. |                                                           |                        |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <p>76b</p> <p> CH2M-HILL<br/>A CH2M Company</p> <p><b>Environmental Modeling Data Transmittal Cover Page</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| <p>No.: EMDT-RD-0019</p> <p><i>[Request EMDT number from Modeling Team Leader]</i></p> <p>Title: Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility</p> <p>Revision No.: 0</p> <p>Date: 9/18/2017</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <p><b>3. Data Sources</b></p> <p><i>List databases, documents, etc. – provide sufficient detail to enable data to be located by independent reviewer</i></p> <p>The base case inventory was adopted from Inventory Case 7 in RPP- ENV- 58562 Rev.3</p> <p>The 2017 IDF PA model base case outputs are extracted from output files archived with RPP-CALC-61032 Revision 0 and transmitted as follows.</p> <p>Data Folder: IDF Base case input and raw output "surface" files selected for transmittal were placed in a .zip file</p> <ul style="list-style-type: none"> <li>• Input and output files were provided by IDF PA team in file "IDF_PA_basecase.zip"</li> <li>• This .zip file contains base case runs that simulate mass flux of combined waste forms from IDF to the groundwater table. Individual subfolders for radionuclides I-129 and Tc-99 contain files needed to execute simulations. The subfolder names match the base case simulation IDs used for the PA files in RPP-CALC-61032: <ul style="list-style-type: none"> <li>◦ Vzp00_Inf06_gwp15_all_I-129_Ph1-2_kd1</li> <li>◦ Vzp00_Inf06_gwp15_all_Tc-99_Ph1-2</li> </ul> </li> </ul> <p>Data Folder: Post-processed STOMP results</p> <ul style="list-style-type: none"> <li>• Post-processed STOMP results provided in a project directory, " STOMP Model Results".</li> <li>• This folder contains .dat files that were converted from raw surface files in order to view base case results in a user-friendly format. Initial conversion was done with the Perl script surfaceTo.pl distributed with STOMP. The .dat files were then converted to 2 Excel (.xlsx) files for Tc-99 and I-129 results. Within each spreadsheet, highlighted columns A and F represent calendar year (assuming facility closure in 2051) and solute flux to the water table, respectively.</li> </ul> |  |
| <p><b>4. Impact of Use or Nonuse of Data</b></p> <p><i>Describe the importance of the data to the model, report, and/or conclusions which they support. Identify the value added and discuss the impacts of not using the data.</i></p> <p>Base case results for groundwater pathway were calculated using the 3-D STOMP model of the vadose zone and saturated zone at IDF.</p> <p>Performance assessment results can be used to support decisions regarding best management practices (ALARA) and cost-benefit analysis during future operation on the IDF. Because the IDF is currently in pre-operational stages, PA conclusions could also influence final design features of the facility.</p> <p>The 2013 Record of Decision ("Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: Record of Decision", 78 FR 75913) designated IDF as the permanent disposal destination for significant inventories of Hanford Site contaminants, therefore nonuse of the data from the 2017 IDF PA from the Composite Analysis would constitute an unacceptable omission from the site-wide contaminant mass inventory.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

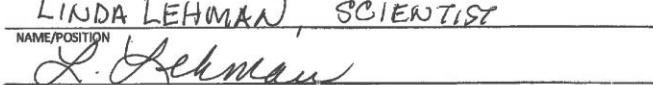
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <p>76b</p> <p> <b>Environmental Modeling Data Transmittal Cover Page</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |
| <p>No.: EMDT-RD-0019</p> <p><i>[Request EMDT number from Modeling Team Leader]</i></p> <p>Title: Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <p>Revision No.: 0</p> <p>Date: 9/18/2017</p> |
| <p><b>5. Prior Uses</b></p> <p><i>Identify the data's prior uses. Describe whether the data have been used in similar applications by the scientific or regulatory community. Include the associated verification processes and prior reviews and review results.</i></p> <p>The data were used in the 2017 performance assessment (PA) of the Hanford Integrated Disposal Facility (IDF) reported in RPP-RPT-59958 Revision B. The data are from model outputs documented in RPP-CALC-61032 Revision 0. As documented in RPP-CALC-61032, the simulations were performed, checked, and internally reviewed in accordance with 10 CFR 830, "Nuclear Safety Management," and Subpart A, "Quality Assurance"; DOE O 414.1D, "Quality Assurance"; ASME-NQA-1-2008 with 2009 addenda; other State and Federal environmental regulations; and associated quality assurance procedures by Washington River Protection Solutions, LLC (WRPS) for preparation and issuance of Environmental Model Calculation Files, which are equivalent to the procedures used by CH2M Hill Plateau Remediation Company. Among other measures, implementation of these procedures included verification of inputs, rerunning base case simulations, and verification of post-processing by an independent checker not involved in preparation of the model files and use of an internal senior reviewer. RPP-CALC-61032 and RPP-RPT-59958 were also externally reviewed by subject matter experts at Pacific Northwest National Laboratory, Savannah River National Laboratory, and Savannah River Site. An LFRG review is currently scheduled to be initiated in October 2017.</p> <p>Note that as of September 2017, the 2017 IDF PA has not completed all of its regulatory reviews including the DOE-mandated review by an LFRG committee. Therefore, the documentation is not publicly available and base case assumptions and results are subject to change. The LFRG Review is scheduled to be initiated in October 2017.</p> |                                               |

**6. Data Acquisition Method(s)**

*Describe the data acquisition method and associated QA/QC, considering the following:*

- a. Qualifications of personnel or organizations generating the data;
- b. Technical adequacy of equipment and procedures used;
- c. Environmental and programmatic conditions if germane to the data quality;
- d. The extent to which acquisition processes reflect modeling requirements;
- e. The quality and reliability of the measurement control program;
- f. The degree to which independent audits of the process were conducted;
- g. Extent and reliability of the associated documentation.

The data development and management used for the IDF PA adheres to EPA and DOE guidance and requirements provided in Section 10 of the IDF PA.


- a. Modeling staff are required to participate in training to ensure QA/QC processes and requirements for model development are communicated and followed. Selection of PA modelers, authors, checkers, and reviewers is based on qualification by education and professional experience as documented in attachments to RPP-RPT-59958 and RPP-CALC-61032.
- b. STOMP software used to calculate vadose fate and transport meets safety and software requirements of ASME-NQA-1-2008 with 2009 addenda and DOE O 414.1D. Technical assumptions and inputs were reviewed by an internal senior reviewer and external peer reviewers.
- c. RPP-RPT-59958 describes environmental conditions and uncertainties associated with the numerous inputs to the 2017 IDF PA models and the assumptions adopted in the base case simulations. In 2013, 78 FR 75913 designated IDF as the permanent disposal destination for low activity waste from WTP and other secondary waste. Phase 1 construction of IDF was completed in 2006, but construction of further phases assumed in the PA is dependent on actual waste generated by WTP, which is not yet operational in 2017. Disposal of waste in IDF requires authorization via updates to the existing RCRA permit and DOE Disposal Authorization Statement issued prior to the 2013 Record of Decision. As of September 2017, the 2017 IDF PA has not completed all regulatory reviews required to approve the PA or obtain such authorizations. Future programmatic conditions may differ from those assumed in the 2017 IDF PA in ways that could affect the nature, quantity, or spatial arrangement of wastes in IDF and thus affect the simulated contaminant releases and impacts to groundwater.
- d. DOE/RL-2011-50 documents the capability of the STOMP code to meet identified attributes and criteria. Technical assumptions and inputs were reviewed by an internal senior reviewer and external peer reviewers.
- e. Quality of underlying data used in model input is addressed in multiple data packages cited in RPP-RPT-59958. STOMP software is registered in the Hanford Information Systems Inventory, under controlled management by CHPRC. PA modeling attributes are compliant with the following Quality Assurance documents:
  - i. EPA Guidance for Quality Assurance Project Plans for Modeling (EPA/240/R-02/007)
  - ii. CHPRC Procedure for Controlled Software Management (PRC-PRO-IRM-309)
  - iii. DOE management expectations for compliance in EM Quality Assurance Program (EM-QA-001)
- f. Simulation inputs and outputs were checked by an independent checker who did not participate in preparing the model input files. Simulation inputs and results were reviewed by an internal senior reviewer and external peer reviewers. In accordance with TFC-PLN-155, WRPS quality assurance personnel provided oversight including two independent surveillances and multiple work site assessments.
- g. The 2017 IDF PA results are documented in RPP-RPT-59958 Revision A, RPP-CALC-61032 Rev. 0, and associated model package reports, environmental model calculation files, data packages, environmental modeling data transmittals, and other documents cited therein. The documentation is verified by independent checkers and reviewed by internal senior reviewers and external peer reviewers. As of September 2017, the 2017 IDF PA has not completed all regulatory reviews including review by an LFRG committee.

*For databases, identify query language used to obtain data from database (SQL, etc.), briefly describe the query description and attach copy*

Not applicable.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <b>76b</b><br> <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| <b>No.:</b> EMDT-RD-0019<br><i>[Request EMDT number from Modeling Team Leader]</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Revision No.:</b> 0 |
| <b>Title:</b> Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| <b>Date:</b> 9/18/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| <b>7. Corroborating Data</b><br><i>Identify and discuss any corroborating datasets. Provide any documentation that confirms the corroborating data substantiate existing parameter values, distributions, or data quality</i><br>Data Packages, reports, and literature with corroborating data referenced in the vadose zone and saturated zone fate and transport modeling included:<br>PNNL – 13037 Rev.2, PNNL 14744, PNNL-14960, PNNL – 15237, PNNL- 23711, RPP- 20691 Rev.1 and RPP-58562 Rev.3.<br>Fayer, M.J. and G.W. Gee, 2006, "Multiple-Year Water Balance of Soil Covers in a Semiarid Setting." <i>Journal of Environmental Quality</i> , Vol. 35, No. 2, pp.366-377.<br>Zhang, Z.F. and R. Khaleel, 2010, "Simulating field-scale moisture flow using a combined power-averaging and tensile connectivity-tortuosity approach," <i>Water Resources Research</i> , Vol.46, W09505, pp. 1-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| <b>xc8. Data Quality Considerations</b><br><i>Discuss data quality considerations not identified in other sections. Include discussion of data quality indicators (i.e., accuracy, precision, representativeness, completeness, and comparability).</i><br>RPP-RPT-59958 reports sensitivity and uncertainty analyses of the inputs and assumptions of the 2017 IDF PA model base case and includes discussion of accuracy, representativeness, etc. of the simulation results. Fluxes to the water table are calculated with high precision but are accurate to only 2 or 3 significant digits at the most and subject to conceptual uncertainties affecting the first digit, typical of other PA simulation results. Simulation times are specified exactly, however the cumulative uncertainties in the contaminant transport calculations imply timing of results over the 1,000-year timeframe is likely uncertain to the nearest decade or more. Assumptions adopted for the base case parameterization ranged from representative to reasonable conservative. The base case does not represent a central tendency or most likely case, although as shown in the probabilistic uncertainty analyses the base case results are similar to the mean of the probabilistic results. It is the responsibility of the data user to determine whether those assumptions are reasonably consistent with those of other inputs for the Composite Analysis. |                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>76b</b><br> Environmental Modeling Data Transmittal Cover Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| No.: EMDT-RD-0019<br><i>(Request EMDT number from Modeling Team Leader)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revision No.: 0 |
| Title: Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| Date: 9/18/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| <b>9. Assumptions and Limitations on Data Use</b><br><i>Document known uncertainties, assumptions, constraints or limits on data.</i><br>Summaries of key uncertainties and key assumptions can be found in Sections 1.9 and 2.8 of the IDF PA, respectively. Base case assumptions are detailed in Section 5.2.1 of the PA. Significance of key assumptions is discussed in Section 8.4. As of September 2017, the 2017 IDF PA has not completed all regulatory reviews including review by an LFRG committee. Therefore, the documentation is not publicly available, and base case assumptions and results are subject to change. |                 |
| <b>Data Configuration Item Submittal:</b><br>Data Provider NAME/POSITION: <u>Anvil Carter / Data Provider</u><br>Submittal SIGNATURE: <br>DATE: <u>10-11-17</u>                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| <b>Data Configuration Item Review and Verification:</b><br><b>10. Verification Process</b><br><i>Describe steps taken to verify that these data are appropriate for intended use, noting any limitations</i><br>Reviewed all citations and section numbers provided, requested additional detail be provided in some areas.                                                                                                                                                                                                                                                                                                          |                 |

|                                                                                                                                                                                                                                                                                                                                          |                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| <b>76b</b><br> Environmental Modeling Data Transmittal Cover Page                                                                                                                                                                                       |                                                                     |
| No.: EMDT-RD-0019<br><i>[Request EMDT number from Modeling Team Leader]</i>                                                                                                                                                                                                                                                              | Revision No.: 0                                                     |
| <b>Title:</b> Performance Assessment Results for Inclusion in Composite Analysis: Integrated Disposal Facility <b>Date:</b> 9/18/2017                                                                                                                                                                                                    |                                                                     |
| <b>11. Summary of Data Review</b><br><i>The review shall ensure that the report meets the listed criteria. Consideration includes ensuring that the data collection method employed was appropriate for the type of data being considered and confidence in the data acquisition and subsequent processing methodology is warranted.</i> |                                                                     |
| Is documentation technically adequate, complete, and correct?                                                                                                                                                                                                                                                                            | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
| Are uncertainties and limitations on appropriate use of data discussed?                                                                                                                                                                                                                                                                  | <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No |
| Are the assumptions, constraints, bounds, or limits on the data identified?                                                                                                                                                                                                                                                              | <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No |
| Data Reviewer Approval<br>Approval of Data Configuration Item<br>LINDA LEHMAN, SCIENTIST<br>NAME/POSITION<br><br>SIGNATURE<br>10/11/17<br>DATE                                                                                                       |                                                                     |

**EMDT accepted for Composite Analysis input  
in Data Readiness Review on 11/20/2017.**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                 |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      |                 |                  |
| No.: EMDT-GR-0035<br><i>{Request EMDT number from Modeling Team Leader}</i>                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      | Revision No.: 0 |                  |
| Title: Waste Site and Structure Footprint Shapefiles for Inclusion in Updated Composite Analysis                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                 | Date: 06/24/2019 |
| <b>Data Configuration Item Submittal:</b>                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      |                 |                  |
| Data Provider Submittal                                                                                                                                                                                                                                                                                                                                                                                                                            | Jose Lopez/GIS Analyst<br>NAME/POSITION<br><i>Joe Lopez</i><br>SIGNATURE                                                                                             | G-24-19<br>DATE |                  |
| <b>Data Configuration Item Review and Verification:</b>                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                 |                  |
| <p><b>10. Verification Process</b></p> <p>Describe steps taken to verify that these data are appropriate for intended use, noting any limitations</p> <p><i>I reviewed this document and the data provided by Margo Aye on July 24, 2018. The information stated herein is accurate.</i></p>                                                                                                                                                       |                                                                                                                                                                      |                 |                  |
| <p><b>11. Summary of Data Review</b></p> <p>The review shall ensure that the report meets the listed criteria. Consideration includes ensuring that the data collection method employed was appropriate for the type of data being considered and confidence in the data acquisition and subsequent processing methodology is warranted.</p>                                                                                                       |                                                                                                                                                                      |                 |                  |
| <p>Is documentation technically adequate, complete, and correct? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No</p> <p>Are uncertainties and limitations on appropriate use of data discussed? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No</p> <p>Are the assumptions, constraints, bounds, or limits on the data identified? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No</p> |                                                                                                                                                                      |                 |                  |
| Data Reviewer Approval                                                                                                                                                                                                                                                                                                                                                                                                                             | <p>Approval of Data Configuration Item</p> <p><i>Leonard Haber, P.E. Engineer</i><br/>NAME/POSITION<br/><i>LH</i><br/>SIGNATURE</p> <p><i>6/24/2019</i><br/>DATE</p> |                 |                  |

This page intentionally left blank.

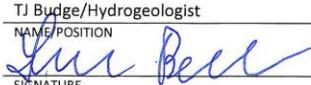
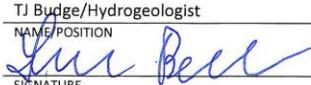
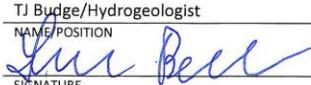
## **Appendix B**

### **Cover Page for EMDT-GR-0035**

This page intentionally left blank.

| <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <b>No.:</b> EMDT-GR-0035<br><i>[Request EMDT number from Modeling Team Leader]</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Revision No.:</b> 0 |
| <b>Title:</b> Waste Site and Structure Footprint Shapefiles for Inclusion in Updated Composite Analysis <b>Date:</b> 06/24/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| <b>1. Data Description</b><br><i>Provide the description of data set or data type.</i><br><p>Ehsit is a shapefile of known or suspected waste sites across the Hanford site (3,390 features in this version). Bggenexs is a shapefile of existing buildings/structures across the Hanford site (2,443 features in this version).</p>                                                                                                                                                                                                                                                                                                 |                        |
| <b>2. Data Intended Use</b><br><i>Identify the data's intended use. Describe the rationale for its selection and how the data will be incorporated into a model, report, or database. Include discussion of the extent to which the data demonstrate the properties of interest.</i><br><p>These shapefiles provide the footprints to identify features commonly modeled/reported. They identify the location of where these features are on the Hanford site and the extent of their domains.</p>                                                                                                                                   |                        |
| <b>3. Data Sources</b><br><i>List databases, documents, etc. – provide sufficient detail to enable data to be located by independent reviewer</i><br><p>These were obtained as part of the data transfer to create the 2017 HIGRV. These files were originally sent as a feature dataset within an ArcGIS geodatabase by Margo Aye at Jacobs, to Jose Lopez at INTERA via email on 7/26/2018.</p> <p>The original geodatabase and shapefiles can be found at:</p> <p>S:\PSC\CHPRC.C003.HANOFF\Rel.044\HIGRV2017\Data\MargoAye@Jacobs</p>                                                                                             |                        |
| <b>4. Impact of Use or Nonuse of Data</b><br><i>Describe the importance of the data to the model, report, and/or conclusions which they support. Identify the value added and discuss the impacts of not using the data.</i><br><p>This dataset has supported, and still supports, a variety of Hanford projects. These can be used as visual aids by generating figures for reports, presentations, or for discussions. Attributes, such as inventory, are also mapped to these features to evaluate their impact. Excluding this dataset would impact a project's ability to identify a site spatially with a reliable source.</p> |                        |
| <b>5. Prior Uses</b><br><i>Identify the data's prior uses. Describe whether the data have been used in similar applications by the scientific or regulatory community. Include the associated verification processes and prior reviews and review results.</i><br><p>Ehsit and bggenexs have been used to support the Hanford Groundwater Annual Reports. Figures in the report incorporate these datasets. The Hanford Interactive Groundwater Viewer (HIGRV) of the annual report also use these datasets.</p>                                                                                                                     |                        |

| <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <b>No.:</b> EMDT-GR-0035<br><small>[Request EMDT number from Modeling Team Leader]</small>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Revision No.:</b> 0 |
| <b>Title:</b> Waste Site and Structure Footprint Shapefiles for Inclusion in Updated Composite Analysis <b>Date:</b> 06/24/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| <b>6. Data Acquisition Method(s)</b><br><i>Describe the data acquisition method and associated QA/QC, considering the following:</i> <ul style="list-style-type: none"> <li>a. Qualifications of personnel or organizations generating the data;</li> <li>b. Technical adequacy of equipment and procedures used;</li> <li>c. Environmental and programmatic conditions if germane to the data quality;</li> <li>d. The extent to which acquisition processes reflect modeling requirements;</li> <li>e. The quality and reliability of the measurement control program;</li> <li>f. The degree to which independent audits of the process were conducted;</li> <li>g. Extent and reliability of the associated documentation.</li> </ul> |                        |
| <i>For databases, identify query language used to obtain data from database (SQL, etc.), briefly describe the query description and attach copy</i><br><p>As mentioned in section 3, these files were given to INTERA by Margo Aye. Margo Aye is the GISP Lead Soil and Ground Water at Jacobs. Margo retrieved this data from the Mission Support Alliance (MSA) Central Mapping Services server. Ehxit was retrieved on 12/14/2017 and bgenexs on 12/17/2017.</p>                                                                                                                                                                                                                                                                       |                        |
| <b>7. Corroborating Data</b><br><i>Identify and discuss any corroborating datasets. Provide any documentation that confirms the corroborating data substantiate existing parameter values, distributions, or data quality.</i><br><p>Not applicable.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| <b>8. Data Quality Considerations</b><br><i>Discuss data quality considerations not identified in other sections. Include discussion of data quality indicators (i.e., accuracy, precision, representativeness, completeness, and comparability).</i><br><p>Waste site (and structure) data are compiled using a variety of methods including translations from annotated field maps, estimates based on published reports, and digitizing from aerial photography/scanned drawings/global positioning surveys. Mapped location is based on the best available information at the time. As new data becomes available, mapped location is modified to account for newly identified information.</p>                                       |                        |
| <b>9. Assumptions and Limitations on Data Use</b><br><i>Document known uncertainties, assumptions, constraints or limits on data.</i><br><p>Due to the explanation in section 8, there may be a level of uncertainty behind this dataset. None of the mapped locations are absolute. Features may have changed/removed/added throughout different iterations of this dataset.</p>                                                                                                                                                                                                                                                                                                                                                         |                        |




## **Appendix C**

### **Cover Page for EMDT-BC-0033**

This page intentionally left blank.

| Environmental Modeling Data Transmittal Cover Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| No.: EMDT-BC-0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Revision No.: 0 |
| <b>Title:</b> Data Sources for Accounting for Recharge Spatial and Temporal Variability at the Hanford Site (Inputs to the Recharge Evolution Tool) <b>Date:</b> 12/16/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| <b>1. Data Description</b><br><i>Provide the description of data set or data type.</i><br>The inputs included in this Environmental Modeling Data Transmittal (EMDT) include 2 groups of data: <ul style="list-style-type: none"> <li>1. The Performance Assessment (PA) Recharge zones</li> <li>2. The Interim Surface Barriers</li> </ul> The PA recharge zones are defined as shapefiles with attribute fields represent key years in the PA models where recharge rates change (e.g. 1943, 2020, 2050, etc.). Values of the attribute fields correspond with the recharge rates that should be applied with their corresponding polygon feature at the time indicated by the name of the attribute column (e.g. attribute name of 2050 with a value of 0.5 represents a polygon in the shapefile whose entire area should be a recharge rate of 0.5 mm/yr in the year 2050). The PA's included in this shapefile are the Environmental Restoration Disposal Facility (ERDF), Waste Management Area C (WMA C), and Integrated Disposal Facility (IDF). |                 |
| The interim surface barriers are also represented as a shapefile dataset. Attribute fields include a name field (associated with the associated Hanford facility to be covered), the construction year ("CONSTR_YEA"), and the type of cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| <b>2. Data Intended Use</b><br><i>Identify the data's intended use. Describe the rationale for its selection and how the data will be incorporated into a model, report, or database. Include discussion of the extent to which the data demonstrate the properties of interest.</i><br>The intended use of the PA and interim surface barrier shapefile datasets is to provide spatiotemporal information relevant to recharge estimation within the extents of these datasets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |

| <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| No.: EMDT-BC-0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revision No.: 0 |
| <p>Title: Data Sources for Accounting for Recharge Spatial and Temporal Variability at the Hanford Site (Inputs to the Recharge Evolution Tool)      Date: 12/16/2019</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| <p><b>3. Data Sources</b><br/> <i>List databases, documents, etc. – provide sufficient detail to enable data to be located by independent reviewer</i><br/> Information for the PA recharge zones is described in the following documents:</p> <ul style="list-style-type: none"> <li>• ERDF: <i>Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington</i> (WCH-520)</li> <li>• WMA C: <i>Performance Assessment of Waste Management Area C, Hanford Site, Washington</i> (RPP-ENV-58782)</li> <li>• IDF: <i>Vadose zone and saturated zone flow and transport calculations for the Integrated Disposal Facility Performance Assessment</i> (RPP-CALC-61032)</li> </ul> <p>Supporting information for the interim surface barriers comes from satellite imagery, viewable on <a href="http://www.google.com/maps">www.google.com/maps</a> as of December 16, 2019 (only for existing barriers). Barriers with an expected installation date have approximate spatial covers corresponding with the extent of tanks within tank farms that are planned to be covered. Temporal information such as the start or end year corresponding with surface barrier construction comes from the Tri-Party Agreement (TPA) milestones (M-045-93) and the <i>Hanford Site Disposition Baseline for Composite Analysis</i>; CP-60254 (draft in progress).</p> |                 |
| <p><b>4. Impact of Use or Nonuse of Data</b><br/> <i>Describe the importance of the data to the model, report, and/or conclusions which they support. Identify the value added and discuss the impacts of not using the data.</i><br/> The importance of the data described in this EMDT is its ease of application. In contrast to the reports mentioned as sources for the shapefiles described in this EMDT, data in shapefiles are more readily extracted than the same information in text format. The nonuse of this data would mean that the intended user must translate the report information into a format for use in any modeling or geospatial application.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| <p><b>5. Prior Uses</b><br/> <i>Identify the data's prior uses. Describe whether the data have been used in similar applications by the scientific or regulatory community. Include the associated verification processes and prior reviews and review results.</i><br/> This data's first use-case was to support the recharge information product documented in ECF-HANFORD-0019 Rev. 1. No other use cases have been documented for this data.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |

| <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-------------------------|--|---------------|--|-------------------------------------------------------------------------------------|--|-----------|--|----------|--|------|
| No.: EMDT-BC-0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Revision No.: 0                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p>Title: Data Sources for Accounting for Recharge Spatial and Temporal Variability at the Hanford Site (Inputs to the Recharge Evolution Tool)      Date: 12/16/2019</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p><b>6. Data Acquisition Method(s)</b><br/> <i>Describe the data acquisition method and associated QA/QC, considering the following:</i></p> <ol style="list-style-type: none"> <li>a. Qualifications of personnel or organizations generating the data;</li> <li>b. Technical adequacy of equipment and procedures used;</li> <li>c. Environmental and programmatic conditions if germane to the data quality;</li> <li>d. The extent to which acquisition processes reflect modeling requirements;</li> <li>e. The quality and reliability of the measurement control program;</li> <li>f. The degree to which independent audits of the process were conducted;</li> <li>g. Extent and reliability of the associated documentation.</li> </ol> <p>Coordinate information and satellite imagery were used to digitize the spatial coverage. Information from the reports were indexed manually into the corresponding attribute fields for each location</p> |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p><i>For databases, identify query language used to obtain data from database (SQL, etc.), briefly describe the query description and attach copy</i></p> <p>Not Applicable</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p><b>7. Corroborating Data</b><br/> <i>Identify and discuss any corroborating datasets. Provide any documentation that confirms the corroborating data substantiate existing parameter values, distributions, or data quality.</i></p> <p>Not Applicable</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p><b>8. Data Quality Considerations</b><br/> <i>Discuss data quality considerations not identified in other sections. Include discussion of data quality indicators (i.e., accuracy, precision, representativeness, completeness, and comparability).</i></p> <p>Not applicable</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p><b>9. Assumptions and Limitations on Data Use</b><br/> <i>Document known uncertainties, assumptions, constraints or limits on data.</i></p> <p>This data is limited to the spatial and temporal extents recorded in the shapefiles. The scope of these shapefiles is limited to the inner area of the Central Plateau of the Hanford Site.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
| <p><b>Data Configuration Item Submittal:</b></p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 15%;">Data Provider Submittal</td> <td style="width: 15%;">TJ Budge/Hydrogeologist</td> </tr> <tr> <td></td> <td>NAME/POSITION</td> </tr> <tr> <td></td> <td></td> </tr> <tr> <td></td> <td>SIGNATURE</td> </tr> <tr> <td></td> <td>12-18-19</td> </tr> <tr> <td></td> <td>DATE</td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     | Data Provider Submittal | TJ Budge/Hydrogeologist |  | NAME/POSITION |  |  |  | SIGNATURE |  | 12-18-19 |  | DATE |
| Data Provider Submittal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TJ Budge/Hydrogeologist                                                             |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NAME/POSITION                                                                       |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIGNATURE                                                                           |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12-18-19                                                                            |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE                                                                                |                         |                         |  |               |  |                                                                                     |  |           |  |          |  |      |

| <b>Environmental Modeling Data Transmittal Cover Page</b>                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.: EMDT-BC-0033                                                                                                                                                                                                                                                                                                                        | Revision No.: 0                                                                                                                                                                                |
| Title: Data Sources for Accounting for Recharge Spatial and Temporal Variability at the Hanford Site (Inputs to the Recharge Evolution Tool)      Date: 12/16/2019                                                                                                                                                                       |                                                                                                                                                                                                |
| <b>Data Configuration Item Review and Verification:</b>                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                |
| <b>10. Verification Process</b><br><i>Describe steps taken to verify that these data are appropriate for intended use, noting any limitations</i><br>This information was brought into a software application to view the data records captured in the shapefiles. All information captured herein is as described/stated.               |                                                                                                                                                                                                |
| <b>11. Summary of Data Review</b><br><i>The review shall ensure that the report meets the listed criteria. Consideration includes ensuring that the data collection method employed was appropriate for the type of data being considered and confidence in the data acquisition and subsequent processing methodology is warranted.</i> |                                                                                                                                                                                                |
| Is documentation technically adequate, complete, and correct? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                                                                                                        |                                                                                                                                                                                                |
| Are uncertainties and limitations on appropriate use of data discussed? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                                                                                              |                                                                                                                                                                                                |
| Are the assumptions, constraints, bounds, or limits on the data identified? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No                                                                                                                                                                                          |                                                                                                                                                                                                |
| <b>Data Reviewer Approval</b><br>Data Reviewer Approval                                                                                                                                                                                                                                                                                  | <i>Approval of Data Configuration Item</i><br>NAME/POSITION<br>JB Fullerton/Hydrogeologist<br>SIGNATURE<br> |
|                                                                                                                                                                                                                                                                                                                                          | DATE<br>12/18/19                                                                                                                                                                               |

## **Appendix D**

### **Summary of HSDB Changes for Application in the RET**

This page intentionally left blank.

## **Appendix D**

### **Summary of HSDB Changes for Application in the RET**

This page intentionally left blank.

## **D1 Preface**

This Appendix summarizes the changes made to the HSDB for application in the RET. Initial changes described in Sections 2-16 may have been overwritten by changes documented in CP-63386. The changes described in Document CP-63386 and documented in the spreadsheets “CA\_CIE\_Disposition\_04.24.2019.xlsx” and “Non\_CA\_CIE\_Waste\_Sites\_Updated\_4.25.19.xlsx” should be considered final.

## D2 Tank Farm Barriers

### Issue

While evaluating the list of solid waste release models for recharge rates to be applied through time, it was discovered that tank farms with RODs were assigned barrier dispositions too early [explained in the OneNote page entitled "RODs (final and interim)"], while some tanks were misrepresented with "no action" remedies as their future/final state.

### Change

- Assign each tank farm as having a surface barrier to match the footprint of the WMA
- Where information is not available, follow current closure plans and apply barriers in 2050

This change was applied in the RET version of the HSDB on 1/22/2019

### D3 Start/End Dates from SIMV2

#### Issue

Based on the information given by the SIMV2 data package, waste sites were found to have dates inconsistent with those reported in the HSDB (usually differing by a couple years at most).

#### Change

The start dates have been modified to match the SIMV2 inventory for consistency. The changes made are shown in the table below

WSTR's, sub model of the HDW (Hanford Defined Waste), mainly records from SIMV1. See LA-UR-96-3860 for the years listed for the transactions.

<<StartEnd Dates from SIMV2 - Spreadsheet.xlsx>>

| SITE_NUM      | Date Begin | Date End | Final Action | Final Disposition | Notes/Changes                                                                                                                                                                |
|---------------|------------|----------|--------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 116-B-1       | 1948       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 116-H-1       | 1950       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 200-W PP      | 1984       | 1995     | 2070         | RTD               | Added because of known inventory in SIM-V2 model. Final disposition data taken from 216-U-14 based on the comment provided in WIDS about the two waste sites being combined. |
| 216-A-7       | 1955       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-B-32      | 1956       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-B-33      | 1956       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-B-34      | 1956       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-B-3B RAD  | 1983       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-B-3C RAD  | 1983       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-B-42      | 1954       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-C-1       | 1952       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-S-10P     | 1951       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-S-13      | 1951       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 216-T-7       | 1947       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 2607-Z        | 1948       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| 6607-5        | 1985       |          |              |                   | Modified start year to match SIM-V2 model inventory.                                                                                                                         |
| UPR-200-E-82  | 1968       | 1968     |              |                   | Added because of known inventory in SIM-V2 model                                                                                                                             |
| UPR-200-W-163 | 1952       | 1988     |              |                   | Added because of known inventory in SIM-V2 model.                                                                                                                            |

## D4 Disposition Corrections

### Issue

Some waste sites do not have the proper dispositions identified by the cited documents. The Prototype Hanford Barrier is an example of this change.

The WIDS report for 216-B-57 does not include the any action in the summary report regarding the barrier construction in 1994, however the barrier has proven to be effective at keeping recharge to groundwater less than 0.5 mm/yr since it's construction.

IDF (200-E-106) is another example of a disposition in the RET that needs modification. This relates more to the RET and how to fit in the appropriate dispositions for the respective time periods. The HSDB does not include a disposition for the construction of waste sites, so the assumption used by the RET is that all waste sites (excluding contaminant migration and unplanned releases) signal a removal of vegetation and disturbance to the soil (representing excavation activities). In the case of IDF, the waste site is a lined landfill designed to prevent water from penetrating the footprint of the waste site.

### Change

Summarized below are the changes made to these two waste sites, others will be added as deemed necessary.



Disposition Corrections - Spreadsheet.xlsx

| SITE_NUM  | Date_Begin | Begin_Disposition | Date_End | End_Disposition | 1st_Action | Actual_Disposition | Final_Action | Final_Disposition | Notes/Changes                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|------------|-------------------|----------|-----------------|------------|--------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200-E-106 | 2005       |                   | Null     |                 | 2005       |                    |              |                   | The start year was updated to match the WIDS report for IDF. Also changed 1st Action to match the start year and removed end year (makes IDF act as barrier from onset, expected behavior). This was done given that IDF is a lined landfill and will have a barrier disposition, bypassing the typical waste site ("typical" meaning sites which are created by disturbing the natural vegetation and increasing net recharge to groundwater). |
| 216-B-57  | 1968       | Bare, Disturbed   | 1973     | Bare_Disturbed  | 1994       | Hanford Barrier    | 2070         | Hanford Barrier   | Added the 1st Action of remediation as Hanford Barrier. Changed Final_Disposition to Hanford Barrier. The source documentation is DOE-RL-2016-37                                                                                                                                                                                                                                                                                                |

## D5 Adjacent Remedies

### Issue

Waste sites were often labeled with a disposition of "Addressed by adjacent remedy" which is not effective for assigning a disposition as the RET cannot distinguish what the adjacent site(s) should be, relative to each other.

Corrections were made based on the contextual information provided and the "Addressed by adjacent..." was replaced with the actual/anticipated disposition. The list of those changes is provided in the following table.

### Changes

<<Adjacent Remedies - Spreadsheet.xlsx>>

| SITE_NUM    | Notes/Changes                                                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200-E-102   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" to match the comment in Column J and the remedy selected for 202-A (PUREX Canyon) |
| 200-E-136   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" to match the comment in Column J and the remedy selected for 202-A (PUREX Canyon) |
| 200-E-28    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier, ET Cap" to match the comment in Column J and the remedy selected for 221-B (B Plant Canyon)     |
| 200-E-56    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" to match site 200-E-41                                                                          |
| 200-E-57    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" to match site 200-E-41                                                                          |
| 200-W-126   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Hanford or ET barrier"                                                                                   |
| 200-W-128   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier plus treatment" to match 218-W-4A                                                                |
| 200-W-136   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Hanford or ET barrier" based on comments                                                                 |
| 200-W-144   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments                                                                 |
| 200-W-76    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments                                                                 |
| 200-W-81    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier plus GW monitoring" based on comments                                                            |
| 201-C       | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                               |
| 207-A-SOUTH | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Remove" based on comments                                                                                |
| 216-A-2     | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments                                                                 |

| SITE_NUM   | Notes/Changes                                                                                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216-A-39   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Hanford Barrier", waste site lies between 241-A Tank Farm Complex tanks. The tanks will be capped with a surface barrier to the north and south of 216-A-39, making it a logical decision to include 216-A-39 as a barrier as well as the tanks. |
| 216-A-4    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments                                                                                                                                                                                                         |
| 216-C-1    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 216-C-10   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 216-C-3    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 216-C-5    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 216-S-15   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 216-S-3    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier", waste site intersects with 216-S-15 which will be covered by the S Tank Farm barrier.                                                                                                                                                  |
| 216-S-4    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "RTD", waste site falls within boundary for U-10 whose final disposition is RTD.                                                                                                                                                                  |
| 216-T-4A   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier plus GW monitoring" based on comments                                                                                                                                                                                                    |
| 216-T-4B   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier plus GW monitoring" based on comments                                                                                                                                                                                                    |
| 221-B-WS-2 | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments                                                                                                                                                                                                         |
| 241CXV     | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 244-A LS   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus void fill" based on comments                                                                                                                                                                                                       |
| 244AR40    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "RTD" based on comments                                                                                                                                                                                                                           |
| 244-S DCRT | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier", waste site in close proximity to 216-S-3, based on available information and context this area will also be covered with a barrier.                                                                                                    |
| 271BA      | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "RTD" based on comments                                                                                                                                                                                                                           |
| 276B       | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 291AK      | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 291-C      | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| 291-C-1    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments                                                                                                                                                                                                                       |
| TRUSAF     | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments                                                                                                                                                                                                         |

| <b>SITE_NUM</b> | <b>Notes/Changes</b>                                                                                                                    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| UPR-200-E-1     | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Demolish plus Barrier" based on comments |
| UPR-200-E-144   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Hanford or ET barrier" based on comments |
| UPR-200-E-21    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier plus RTD" based on comments      |
| UPR-200-E-37    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-E-79    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "RTD" based on comments                   |
| UPR-200-E-95    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-W-102   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-W-162   | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-W-2     | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-W-20    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-W-38    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |
| UPR-200-W-97    | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "RTD" based on comments                   |
| WESF            | Changed Column H of '!CP_Optimization_Study' from "Addressed by remedy from adjacent site" to "Barrier" based on comments               |

## D6 Added Sites

### Issue

Based on modeling needs and additional information, additional entries were added to the HSDB. Some examples for adding these sites include known waste inventory being dumped in areas/sites not previously denoted by the HSDB and adding in the tank waste management areas to specify closure dates more explicitly for barrier placement.

The sites added and the associated reasons are included in the table below. Some sites overlap with other corrections mentioned in this notebook.

### Changes

<<Added Sites - Spreadsheet.xlsx>>

| SITE_NUM | Date_Begin | Date_End | Final_Action | Final_Disposition      | Notes/Changes                                                                                                                                                                |
|----------|------------|----------|--------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200-W PP | 1984       | 1995     | 2070         | RTD                    | Added because of known inventory in SIM-V2 model. Final disposition data taken from 216-U-14 based on the comment provided in WIDS about the two waste sites being combined. |
| 241SX    |            |          | 2050         | Void Fill Plus Barrier | WMA SX to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241 SY   |            |          | 2050         | Void Fill Plus Barrier | WMA SY to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241A     |            |          | 2050         | Void Fill Plus Barrier | WMA A to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                         |
| 241AN    |            |          | 2050         | Void Fill Plus Barrier | WMA AN to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241AW    |            |          | 2050         | Void Fill Plus Barrier | WMA AW to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241AX    |            |          | 2050         | Void Fill Plus Barrier | WMA AX to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241AY    |            |          | 2050         | Void Fill Plus Barrier | WMA AY to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241AZ    |            |          | 2050         | Void Fill Plus Barrier | WMA AZ to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241B     |            |          | 2050         | Void Fill Plus Barrier | WMA B to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                         |
| 241BX    |            |          | 2050         | Void Fill Plus Barrier | WMA BX to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241BY    |            |          | 2050         | Void Fill Plus Barrier | WMA BY to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |
| 241S     |            |          | 2050         | Void Fill Plus Barrier | WMA S to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                         |
| 241T     |            |          | 2050         | Void Fill Plus Barrier | WMA T to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                         |
| 241TX    |            |          | 2050         | Void Fill Plus Barrier | WMA TX to have a barrier, added this designation using the bgenexs shapefile (from HGIS_Prod on HLAN)                                                                        |

| <b>SITE_NUM</b> | <b>Date_Begin</b> | <b>Date_End</b> | <b>Final_Action</b> | <b>Final_Disposition</b> | <b>Notes/Changes</b>                                                                                   |
|-----------------|-------------------|-----------------|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------|
| 241TY           |                   |                 | 2050                | Void Fill Plus Barrier   | WMA TY to have a barrier, added this designation using the bggenexs shapefile (from HGIS_Prod on HLAN) |
| UPR-200-E-82    | 1968              | 1968            |                     |                          | Added because of known inventory in SIM-V2 model                                                       |
| UPR-200-W-163   | 1952              | 1988            |                     |                          | Added because of known inventory in SIM-V2 model.                                                      |

## D7 Solid Waste Release Model (Barrier Locations)

### Issue

**From:** Jacob Fullerton  
**Sent:** Tuesday, January 29, 2019 10:24 AM  
**To:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>  
**Cc:** Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Dennis G. Fryar <[DFryar@intera.com](mailto:DFryar@intera.com)>; Greg Ruskauff <[GRuskauff@intera.com](mailto:GRuskauff@intera.com)>  
**Subject:** Solid Waste Release Final Dispositions

All:

I have updated the new barriers shapefile, checking those with Dennis Fryar soon. After creating the new barriers shapefile I was able to assign barrier recharge rates to several more areas. However, the question remains now for the list of waste sites that I am providing in this email as a table. Please let me know if it is acceptable for these waste sites to have non-barrier recharge rates. I especially need to know which (if any) of these waste sites should be barriers.

| Waste Site   | Build Year | 1st Action Year | 1st Remedial Action | Final Action Year | Final Remedial Action | Source                |
|--------------|------------|-----------------|---------------------|-------------------|-----------------------|-----------------------|
| 212B (212-B) | 1969       |                 |                     | 2050              | D4 to slab-on-grade   | Action Memo           |
| 234-5Z       | 1949       |                 |                     | 2050              | RTD                   | CP Optimization Study |
| 236-Z        | 1964       | NULL            | D4                  | 2050              | RTD                   | CP Optimization Study |
| 241-T-361    | 1944       | NULL            | CSNA                | 2050              | MESC/MNA/IC           | Proposed Plans        |
| 242Z         | 1964       |                 |                     | 2050              | RTD                   | CP Optimization Study |

2

|        |      |      |    |      |           |                       |
|--------|------|------|----|------|-----------|-----------------------|
| 2736-Z | 1971 | 2012 | D4 | 2050 | No Action | CP Optimization Study |
| 291-Z  | 1949 | NULL | D4 | 2050 | Void Fill | CP Optimization Study |

Jacob Fullerton | E.I.T.



INTERA Incorporated  
 3240 Richardson Road,  
 Suite 2 Richland,  
 WA 99354  
 Main: 509.946.1213  
[www.intera.com](http://www.intera.com)



---

**From:** Jacob Fullerton <JFullerton@intera.com>  
**Sent:** Thursday, January 31, 2019 1:14 PM  
**To:** Nichols, William E <william\_e\_nichols@rl.gov>; Mark Williams <MWilliams@intera.com>  
**Cc:** Mart Oostrom <MOostrom@intera.com>; Ryan Nell <RNell@intera.com>; Christelle Courbet <CCourbet@intera.com>; Dennis G. Fryar <dfryar@intera.com>; Greg Ruskauff <gruskauff@intera.com>  
**Subject:** RE: Solid Waste Release Final Dispositions

All:

I haven't heard back on this issue and I just wanted to refresh this question/email thread for Christelle's sake as she is waiting on me for her MPR writeup. I need to know if it is ok if we do not have barriers over all of the solid waste release modeling sites. Those sites which I have questions about are listed in the message from earlier this week.

Jacob Fullerton | E.I.T.



INTERA Incorporated  
3240 Richardson Road,  
Suite 2 Richland,  
WA 99354  
Main: 509.946.1213  
[www.intera.com](http://www.intera.com)



**Jacob Fullerton**

---

**From:** Nichols, William E <william\_e\_nichols@rl.gov>  
**Sent:** Thursday, January 31, 2019 3:11 PM  
**To:** Jacob Fullerton; Mark Williams  
**Cc:** Mart Oostrom; Ryan Nell; Christelle Courbet; Dennis G. Fryar; Greg Ruskauff; Lehman, Linda L; Mehta, Sunil  
**Subject:** RE: Solid Waste Release Final Dispositions

The LLBG Closure Plan (DOE/RL-2000-70, Rev. 0) calls for different covers depending on whether the facility is Category 1 or Category 3:

- Category 1 LLW facility: The Category 1 facility would be covered by a minimum thickness about 3 m (10 ft) of sand-gravel cover with no vegetation or sparse shallow-rooted vegetation such as cheatgrass, permitting a maximum amount of moisture infiltration (assumed to be 5 cm/yr, 2 in/yr) into the buried waste layer. The thickness of cover material would not be sufficient to prevent an inadvertent intruder who digs a basement or drills a well from coming into direct contact with buried waste. Stabilization of buried waste to support a final cover was not assumed. Immobilization of radionuclides in waste disposed in a Category 1 facility is not required.
- Category 3 LLW facility: The Category 3 facility would be covered with suitable soil to support natural vegetation, including a mix of shallow- and deep-rooted plant species. The cover treatment would limit infiltration into the waste layer to 0.5 cm/yr (0.2 in/yr). A minimum of 5 m (16.1 ft) of cover materials would be placed over a Category 3 facility, so that the inadvertent intruder would not expose buried waste in a typical basement excavation, but would penetrate the waste layer in the process of drilling a well. The assumption was made that buried waste in a Category 3 facility would have to be stabilized to achieve acceptable cover performance. Immobilization of radionuclides may be required for some wastes disposed in a Category 3 facility, depending on the concentrations of long-lived radionuclides that are mobile in the soil column.

The CP goes on to note, however, that the Category 1 and 3 wastes have not been segregated, so in fact the cover requirements for Category 3 would be applied to all LLBGs. Hence, the CP calls for a Modified RCRA Subtitle C Barrier for final closure of the active LLBGs. For the inactive LLBGs, final remediation will follow the CERCLA process, but the CP proposes transitioning active LLBGs to the ER Program after conclusion of operations so these can be closed in an integrated manner.

Taken together, I read all this to mean we should assume a barrier will go over all the LLBGs. (That will be a LOT of barrier.) I also note the EIS only put a barrier over Trenches 31 and 34, and left the rest outside their barrier extents. However, the EIS treated all LLBGs outside of Tr31/34 under cumulative impacts with no further actions.

**Will Nichols**  
Modeling Team Leader  
**D** 1 509 376 4553  
**M** 1 505 551 4394

**CH2MHILL**  
Plateau Remediation Company

*a Jacobs company*

This e-mail may contain confidential information or material protected by the attorney-client privilege. If you are not the intended recipient, please inform by return e-mail.

[Linked in profile](#)

[ResearchGate](#)

## Changes

After receiving guidance from Will, I will modify the HSDB to mark the waste sites listed in the table with barriers. A summary of the changes is included below:

| Waste Site   | Build Year | 1st Action Year | 1st Remedial Action | Final Action Year | Final Remedial Action | Source                 |
|--------------|------------|-----------------|---------------------|-------------------|-----------------------|------------------------|
| 212B (212-B) | 1969       |                 |                     | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |
| 234-5Z       | 1949       |                 |                     | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |
| 236-Z        | 1964       | NULL            | D4                  | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |
| 241-T-361    | 1944       | NULL            | CSNA                | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |
| 242Z         | 1964       |                 |                     | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |
| 2736-Z       | 1971       | 2012            | D4                  | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |
| 291-Z        | 1949       | NULL            | D4                  | 2050              | Barrier               | DOE/RL-2000-70, Rev. 0 |

## D8 RODS (final and interim)

### Issue

The problem is two-fold:

1. The HSDB records the dates of the ROD signatures and applies this date as the year for the disposition. ROD signature dates should have no bearing on the disposition unless the ROD was immediately implemented
2. RODs by nature are final actions. The current HSDB structure treats final RODs as "actual" dispositions and interim RODs as "future" dispositions.

An illustration of these problems is given in the table below:

### Example: 241-T-106, (a Single-Shell Tank)

| Action/State                    | Year | Source for Year                | Disposition     | Source for Disposition |
|---------------------------------|------|--------------------------------|-----------------|------------------------|
| Construction                    | 1947 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| Cease Operations                | 1973 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| 1 <sup>st</sup> Remedial Action | 2013 | ROD Signature                  | Grout, barrier  | ROD                    |
| Final Remedial Action           | 2043 | DOE/RL-2015-10, M-045-00 (TPA) | No RL-40 action | CP Optimization Study  |

### Outlook Email

Date: Tue 1/22/2019 5:08 PM

From: Jacob Fullerton [JFullerton@intera.com](mailto:JFullerton@intera.com)

Re: HSDB ROD Dispositions and Dates

To: Nichols, William E [william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov), Mark Williams [MWilliams@intera.com](mailto:MWilliams@intera.com), Greg Ruskauff [GRuskauff@intera.com](mailto:GRuskauff@intera.com), Mart Oostrom [MOostrom@intera.com](mailto:MOostrom@intera.com)

CC: Batal, Wafa H ([Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)), Randy Dockter <RDockter@intera.com>

All:

While evaluating the dispositions and dates assigned to waste sites listed with RODs (interim and final), I came across some inconsistencies. The dates used in the HSDB for final ROD resolutions are the years that the documents were signed. Interim RODs were also included in the spreadsheet column as the future (and final) disposition for corresponding waste sites. This is inconsistent with the document and the macro created for the HSDB, and I would maintain the spreadsheet's interpretation of Interim RODs as an appropriate "future or final" disposition where no better data are available (which would mean changing the document and macro to match the spreadsheet in its next revision).

As an example of the problem this creates, the tank farm in WMA T area has a bad selection of dispositions/remedies. Taking 241-T-106 for this example (a Single-Shell Tank):

| Action/State                    | Year | Source for Year                | Disposition     | Source for Disposition |
|---------------------------------|------|--------------------------------|-----------------|------------------------|
| Construction                    | 1947 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| Cease Operations                | 1973 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| 1 <sup>st</sup> Remedial Action | 2013 | ROD Signature                  | Grout, barrier  | ROD                    |
| Final Remedial Action           | 2043 | DOE/RL-2015-10, M-045-00 (TPA) | No RL-40 action | CP Optimization Study  |

I'll identify the problems first before suggesting a way forward. The problem here is two-fold: 1) The ROD signature has no bearing on the actual disposition and should not be considered for the year assignment for any disposition, 2) RODs by nature are final actions and should not be included in 1<sup>st</sup> Remedial Actions and should be considered future/final dispositions. In the document describing the HSDB both interim and final RODs were considered "Actual/Existing" remedies, but in the case of final RODs the action should not be superseded by any future action, and interim RODs should only be used when there is no final ROD.

The solution I propose for your consideration is to treat interim and final ROD dispositions as "future" dispositions. The dates for these dispositions should be the TPA date as denoted in DOE/RL-2015-10. Interim RODs will still be considered in the same way as before, superseded only by dispositions from final RODs. The resultant change will resemble something like the following (using 241-T-106 as an example again):

| Action/State                    | Year | Source for Year                | Disposition     | Source for Disposition |
|---------------------------------|------|--------------------------------|-----------------|------------------------|
| Construction                    | 1947 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| Cease Operations                | 1973 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| 1 <sup>st</sup> Remedial Action | NULL | NULL                           | NULL            | NULL                   |
| Final Remedial Action           | 2043 | DOE/RL-2015-10, M-045-00 (TPA) | Grout, barrier  | ROD                    |

Let me know your feedback concerning this proposed modification to the HSDB (for the RET).

Jacob Fullerton | E.I.T.



**INTERA Incorporated**

3240 Richardson Road,

Suite 2 Richland,

WA 99354

Main: 509.946.1213

[www.intera.com](http://www.intera.com)**Changes**

1. Dates for RODs (interim and final) should be those dates used by the TPA in DOE/RL-2015-10
2. Final and interim RODs should be considered as "future" remedies

Applying these changes would result in the following for 241-T-106:

| Action/State                    | Year | Source for Year                | Disposition     | Source for Disposition |
|---------------------------------|------|--------------------------------|-----------------|------------------------|
| Construction                    | 1947 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| Cease Operations                | 1973 | WIDS                           | Bare, Disturbed | RET (Assumption)       |
| 1 <sup>st</sup> Remedial Action | NULL | NULL                           | NULL            | NULL                   |
| Final Remedial Action           | 2043 | DOE/RL-2015-10, M-045-00 (TPA) | Grout, barrier  | ROD                    |

**Discussion:**

1/23/2019

- The suggestions are appropriate given the available data. The better alternative would be to collect ROD completion years from the RODs where available (to be extracted/discussed further).
- Approved for application by Will Nichols and Greg Ruskauff January 29, 2019. Use TPA dates where no better data is provided by the RODs, apply RODs as final/future dispositions in HSDB.

## D9 Added Fields

### Issues

Given that the current array of information has not satisfactorily answered all of the waste sites, additional fields were added to the spreadsheet to provide additional data where needed. The columns added are:

- Intermediate Dispositions
  - The latest known disposition or interim remedy of a site
- Citation (Intermediate)
  - The citation/reference/explanation for the intermediate disposition
- Year (Intermediate)
  - The year which the intermediate disposition is to be applied
- Final Dispositions
  - The final disposition
- Citation (Final)
  - The citation/reference/explanation for the final disposition
- Year (Final)
  - The year in which the final disposition is to be applied

The particular sites for which these fields have been used for are shown in the table copied below.

### Changes

| ID         | Intermediate Dispositions | Citation (Intermediate) | Year (Intermediate) | Final Dispositions     | Citation (Final)       | Year (Final) |
|------------|---------------------------|-------------------------|---------------------|------------------------|------------------------|--------------|
| 200-E-106  | Barrier                   |                         | 2005                |                        |                        |              |
| 200-W-20   |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70, Rev. 0 |              |
| 216-B-57   |                           |                         |                     | Hanford Barrier        | DOE-RL-2016-37         | 1994         |
| 241-AN-101 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241-AN-102 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |

| ID         | Intermediate Dispositions | Citation (Intermediate) | Year (Intermediate) | Final Dispositions     | Citation (Final)      | Year (Final) |
|------------|---------------------------|-------------------------|---------------------|------------------------|-----------------------|--------------|
| 241-AN-103 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AN-104 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AN-105 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AN-106 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AN-107 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-101 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-102 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-103 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-104 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-105 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-106 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AP-107 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |

| ID         | Intermediate Dispositions | Citation (Intermediate) | Year (Intermediate) | Final Dispositions     | Citation (Final)      | Year (Final) |
|------------|---------------------------|-------------------------|---------------------|------------------------|-----------------------|--------------|
| 241-AP-108 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AW-101 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AW-102 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AW-103 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AW-104 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AW-105 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AW-106 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AY-101 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AY-102 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AZ-101 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-AZ-102 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |
| 241-SY-101 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS) |              |

| ID         | Intermediate Dispositions | Citation (Intermediate) | Year (Intermediate) | Final Dispositions     | Citation (Final)       | Year (Final) |
|------------|---------------------------|-------------------------|---------------------|------------------------|------------------------|--------------|
| 241-SY-102 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241-SY-103 |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241-T-361  |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70         |              |
| 212B       |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70, Rev. 0 |              |
| 234-5Z     |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70         |              |
| 236Z       |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70, Rev. 0 |              |
| 241A       |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241AN      |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241AP      |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241AW      |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241AX      |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241AY      |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |

| ID    | Intermediate Dispositions | Citation (Intermediate) | Year (Intermediate) | Final Dispositions     | Citation (Final)       | Year (Final) |
|-------|---------------------------|-------------------------|---------------------|------------------------|------------------------|--------------|
| 241AZ |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241B  |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241BX |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241BY |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241S  |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241SX |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241SY |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241T  |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241TX |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241TY |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 241U  |                           |                         |                     | Void Fill Plus Barrier | Final ROD (TC&WM EIS)  |              |
| 242Z  |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70, Rev. 0 |              |

| ID    | Intermediate Dispositions | Citation (Intermediate) | Year (Intermediate) | Final Dispositions     | Citation (Final)       | Year (Final) |
|-------|---------------------------|-------------------------|---------------------|------------------------|------------------------|--------------|
| 2736Z |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70, Rev. 0 |              |
| 291Z  |                           |                         |                     | Void Fill Plus Barrier | DOE/RL-2000-70, Rev. 0 |              |

## D10 Order of Priority (Future Disposition)

### Issues

#### **Jacob Fullerton**

---

**From:** Greg Ruskauff  
**Sent:** Wednesday, February 13, 2019 2:06 PM  
**To:** Jacob Fullerton; Nichols, William E; Mark Williams; Mart Oostrom  
**Cc:** Randy Dockter; Batal, Wafa H (Wafa\_H\_Batal@rl.gov); Wafa Batal  
**Subject:** RE: HSDB

The action memo should come first. At the B Complex an action memo was written prior to the removal action work plan.

---

**From:** Jacob Fullerton  
**Sent:** Wednesday, February 13, 2019 1:29 PM  
**To:** Nichols, William E <William\_E\_Nichols@rl.gov>; Mark Williams <MWilliams@intera.com>; Mart Oostrom <MOostrom@intera.com>; Greg Ruskauff <gruskauff@intera.com>  
**Cc:** Randy Dockter <rdockter@intera.com>; Batal, Wafa H (Wafa\_H\_Batal@rl.gov) <Wafa\_H\_Batal@rl.gov>; Wafa Batal <WBatal@intera.com>  
**Subject:** HSDB

All:

I want to know which should come first in this pair: "Proposed Plans" or "Action Memos". The current implementation of the HSDB uses Proposed Plans first where available, then Action Memos. These sources are difficult in that specific dates for either source are not provided in an easily accessible column of data.

I'm having second guesses about this ordering and am currently inclined to put Action Memos before Proposed Plans. I look forward to your input on this matter.

Jacob Fullerton | E.I.T.



**INTERA Incorporated**  
3240 Richardson Road,  
Suite 2 Richland,  
WA 99354  
Main: 509.946.1213  
[www.intera.com](http://www.intera.com)



### Changes

Per the email discussion attached above, the order of the HSDB master list columns were changed accordingly.

## D11 Surplus Reactor Disposal Site

### Issue

#### **Jacob Fullerton**

**From:** Nichols, William E <william\_e\_nichols@rl.gov>  
**Sent:** Wednesday, February 20, 2019 6:57 AM  
**To:** Mart Oostrom; Jacob Fullerton; Mark Williams; Dennis G. Fryar  
**Cc:** Lehman, Linda L  
**Subject:** RE: Reactor Core Question

We will assume it will be capped, just as we are assuming for all LLBGs.

Linda, please kindly ensure the issue already entered for the surplus reactor disposal includes this assumption.

#### **Will Nichols**

*Modeling Team Leader*

**D** 1 509 376 4553

**M** 1 509 551 4394

**CH2MHILL**  
Plateau Remediation Company  
a Jacobs company

This e-mail may contain confidential information or material protected by the attorney-client privilege. If you are not the intended recipient, please inform by return e-mail.

[LinkedIn profile](#)

[ResearchGate](#)

---

**From:** Mart Oostrom <MOostrom@intera.com>  
**Sent:** Tuesday, February 19, 2019 3:55 PM  
**To:** Jacob Fullerton <JFullerton@intera.com>; Nichols, William E <william\_e\_nichols@rl.gov>; Mark Williams <MWilliams@intera.com>  
**Cc:** Dennis G. Fryar <dfryar@intera.com>  
**Subject:** Re: Reactor Core Question

It's hard to see how this site, of all places, would not be capped. But I'm deferring to Will for the final answer.

Mart

---

**From:** Jacob Fullerton  
**Sent:** Tuesday, February 19, 2019 2:42:06 PM  
**To:** Nichols, William E; Mark Williams  
**Cc:** Mart Oostrom; Dennis G. Fryar  
**Subject:** Reactor Core Question

All:

The reactor core site (the site where the river corridor site reactors will be moved single-piece for final disposal) is not part of the HSDB (not surprising as it doesn't have an official destination yet). How do we want to treat this site with regard to recharge? The buildings housing the reactor cores will be cocooned in a concrete shell of some sort according to their RODs, but once they've been relocated to the Central Plateau is there a plan to build a surface barrier to prevent recharge from reaching the cores/concrete shells?

Do we place a barrier over the top of the reactor core site?

Jacob Fullerton | E.I.T.



**INTERA Incorporated**  
3240 Richardson Road,  
Suite 2 Richland,  
WA 99354  
Main: 509.946.1213  
[www.intera.com](http://www.intera.com)



---

**From:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>  
**Sent:** Tuesday, February 19, 2019 10:47 AM  
**To:** Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>; Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>  
**Cc:** Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>  
**Subject:** RE: RET status please

Yes; recall the attached email of Jan. 31 on this subject.

**Will Nichols**  
*Modeling Team Leader*  
**D** 1 509 376 4553  
**M** 1 509 551 4394



This e-mail may contain confidential information or material protected by the attorney-client privilege. If you are not the intended recipient, please inform by return e-mail.



---

**From:** Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>  
**Sent:** Tuesday, February 19, 2019 10:30 AM  
**To:** Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>; Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>  
**Cc:** Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>  
**Subject:** Re: RET status please

Will ... Is there a plan to put covers on all these? We discussed the one trench yesterday?

Mark

On Feb 19, 2019, at 10:20 AM, Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)> wrote:

So I wasn't aware until I was discussing with Ryan that LLBG's were officially being added in as solid waste release models. I need to know the full list of the solid waste release models so that I can place barriers over the tops of each location in our STOMP models. When will this list be locked down?

Jacob Fullerton | E.I.T.



**INTERA Incorporated**

3240 Richardson Road,  
Suite 2 Richland,

WA 99354

Main: 509.946.1213

[www.intera.com](http://www.intera.com)



**From:** Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>

**Sent:** Monday, February 18, 2019 8:52 PM

**To:** Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>

**Cc:** Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>

**Subject:** RET status please

## Changes



CA\_Reactor\_Core\_Model.zip

The new site footprint is also included now as part of the barrier shapefile

## D12 T Plant Canyon Barrier

### Issues

Two sites that were questionable as to whether they should have a barrier in place were: 200-W-20 and 2706T. 2706T is being included as a solid waste release location and 200-W-20 does not have any known inventory associated with the waste site (in specific, sites within the domain do have known inventory).

Email Conversation:

**From:** Mark Williams<[MWilliams@intera.com](mailto:MWilliams@intera.com)>

**RE:** Barrier Questions

**Sent:** Tuesday, February 26, 2019 3:45 PM

**To:** Jacob Fullerton, Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>

**Cc:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Batal, Wafa H ([Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)) <[Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)>

Jacob, I'm good with this (note to others that we have been discussing this on the side, I'm sure you are grateful). The figures were really helpful (thanks).

Just to be clear, U and T Canyon Complexes have the overarching complex footprint used for barriers (200-W-16 and 200-W-20). S and B Canyon Complexes do not. There is no inventory associated with the large areas of 200-W-16 and 200-W-20 (rubble from demolition of the canyons goes into canyon building footprints, e.g. 221-U and 221-T).

Mark

**From:** Jacob Fullerton

**Sent:** Tuesday, February 26, 2019 12:29 PM

**To:** Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>; Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>

**Cc:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Batal, Wafa H ([Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)) <[Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)>

**Subject:** RE: Barrier Questions

I've made a map of the T Canyon for more context of what I'm trying to resolve. I've highlighted and made callouts for the two barriers that are up for debate in this thread.

Jacob Fullerton | E.I.T.



**INTERA Incorporated**

3240 Richardson Road,

Suite 2 Richland,

WA 99354

Main: 509.946.1213

[www.intera.com](http://www.intera.com)



**From:** Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>

**Sent:** Tuesday, February 26, 2019 9:12 AM

**To:** Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>; Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>

**Cc:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Batal, Wafa H (Wafa\_H\_Batal@rl.gov) <[Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)>

**Subject:** RE: Barrier Questions

Mark,

I agree with what Jacob outlined below. There are also a few liquid discharge waste sites near the T Plant that fall under 200-WA-1 which may/may not require extending the barrier. Being conservative on the barrier extent seems appropriate considering the ROD and WP language. This can also be a point of updating during RET maintenance if progress is made for these sites in the future.

For the purposes of inventory, we will assign the 200-W-20 inventory to the T Plant itself.

**From:** Mark Williams

**Sent:** Tuesday, February 26, 2019 8:59 AM

**To:** Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>

**Cc:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>; Batal, Wafa H (Wafa\_H\_Batal@rl.gov) <[Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)>

**Subject:** Re: Barrier Questions

200-W-20 is an enormous footprint. It's that entire complex including many buildings, parking lots, and waste sites (which may need covers).

For T-plant to be treated like the other canyons, we need to assign it to 221-T.

This is what we are doing for the inventory in the CA (Ryan, Mart, and I looked at this for a while before). The barriers should follow that to be consistent.

Mark

On Feb 26, 2019, at 8:46 AM, Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)> wrote:

I did more homework on this, hopefully this will help for making a decision.

I read in the work plan under the Canyons section (DOE/RL-2010-49). The text states the following:

**T Plant:** The T Plant (221T Facility) is currently operational and has not yet been assigned to an OU. The final remedy is also expected to be similar to the remedy selected for the U Plant, except that waste sites in the vicinity of T Plant will be assigned to the same OU as the T Plant Facility. The anticipated remedy will be considered when identifying data needs and potential remedies for adjacent 200-WA-1 OU waste sites.”

**“U Plant (200-CU-1):** The 221U Facility ROD (EPA et al., 2005, *Record of Decision 221-U Facility (Canyon Disposition Initiative) Hanford Site, Washington*) selected partial demolition of the canyon, void filling to stabilize contamination and mitigate subsidence potential, and placement of a surface barrier as a final remedy. Waste sites adjacent to the U Plant are likely to be covered by the barrier footprint; however, these waste sites are not addressed in the 221U Facility ROD. The barrier will be considered when identifying data needs and potential remedies for adjacent 200-WA-1 OU waste sites. The barrier footprint may be evaluated during remedial design to consider consolidation with adjacent 200-WA-1 OU waste site remedial action.”

Based on this, I still come to having a barrier over 200-W-20 and 2706T until we have more information. However, I don't anticipate that in reality these locations will have barriers once the RI/FS is done for this area (unless contamination exists under the building footprint). Anyway, I present this information to you all, hopefully we can come to a consensus on what we need to do for this region.

This is important to the RET as I can't finalize a barriers coverage until we decide on these stragglers.

**Jacob Fullerton | E.I.T.**

**INTERA Incorporated**

3240 Richardson Road,

Suite 2 Richland,

WA 99354

Main: 509.946.1213

[www.intera.com](http://www.intera.com)

[<image002.png>](#)

**From:** Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>

**Sent:** Monday, February 25, 2019 4:18 PM

**To:** Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>

**Cc:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>; Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>; Batal, Wafa H ([Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)) <[Wafa\\_H\\_Batal@rl.gov](mailto:Wafa_H_Batal@rl.gov)>

**Subject:** Re: Barrier Questions

As usual, I could be completely wrong. I hope others chime in to correct me.

On Feb 25, 2019, at 4:11 PM, Mark Williams <[MWWilliams@intera.com](mailto:MWWilliams@intera.com)> wrote:

For T plant, the highly contaminated canyon building will be broken up and buried in place. Definitely with a barrier. Note that we are using 221-T for the disposal waste site not 200-w-20. We attempted to get this corrected in Appendix F, but failed.

I don't think the assumption that all demolished buildings get covers is appropriate unless specific info states it will (such as the canyon building). The rubble from a lot of decommissioned buildings has gone to ERDF in the past.

Sometimes they have found contamination beneath the building after demolition. Then they've gotta do something. But they don't plan on that as far as I know.

Mark

On Feb 25, 2019, at 3:59 PM, Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)> wrote:

Will,

I dug through the WIDS document for 200-W-20 which contains details about 2706T in addition to several other sites. It describes 2706T as a decontamination facility whose wastewater was piped over to the 211-T collection sump and thence to the 211-T collection tank system. Not having better information, 200-W-20 is currently being treated as a low-level burial ground. The optimization study states that 200-W-20 will be treated the same as T Plant, which is somewhat ambiguous as various treatments are used over T Plant area. Barriers are used in several locations within the area discussed, but it is unclear whether a barrier should be placed over the entire location.

The 2706T building and 200-W-20 are similar in their ambiguity, partially due to their coincident location, but also for the available disposition information (very little specific information). I don't have a lot more than that at the moment. If I were to continue with what I have, I would suggest that barriers be placed over the area for both the waste site and the building. This would be consistent with the EIS future end state and the PNNL Remedy references.

Jacob Fullerton | E.I.T.

**INTERA Incorporated**

3240 Richardson Road,

Suite 2 Richland,

WA 99354

Main: 509.946.1213

**From:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>  
**Sent:** Monday, February 25, 2019 2:00 PM  
**To:** Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>; Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>  
**Cc:** Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>  
**Subject:** RE: Barrier Questions

As a building, presumably, D&D'd down to slab on grade, I cannot imagine the need for a barrier.  
Unless there is substantial subsurface contamination – do we know if this is the case?

**Will Nichols**

*Modeling Team Leader*

**D** 1 509 376 4553

**M** 1 509 551 4394

<image004.png>

This e-mail may contain confidential information or material protected by the attorney-client privilege. If you are not the intended recipient, please inform by return e-mail.

[<image005.gif>](#)

[<image006.png>](#)

**From:** Jacob Fullerton <[JFullerton@intera.com](mailto:JFullerton@intera.com)>  
**Sent:** Friday, February 22, 2019 10:09 AM  
**To:** Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Mark Williams <[MWilliams@intera.com](mailto:MWilliams@intera.com)>; Mart Oostrom <[MOostrom@intera.com](mailto:MOostrom@intera.com)>  
**Cc:** Greg Ruskauff <[gruskauff@intera.com](mailto:gruskauff@intera.com)>; Dennis G. Fryar <[dfryar@intera.com](mailto:dfryar@intera.com)>; Christelle Courbet <[CCourbet@intera.com](mailto:CCourbet@intera.com)>; Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>  
**Subject:** Barrier Questions

All:

After looking through the solid waste release models again I have a question about 2706T.

The Hanford Disposition Baseline currently lists 2706T as being demolished by 2050. Do we want to treat this "Grouted Residual Waste" site as having a surface barrier over top even though it isn't officially anything other than a building?

**Jacob Fullerton | E.I.T.**

**INTERA Incorporated**

3240 Richardson Road,

Suite 2 Richland,

WA 99354

Main: 509.946.1213

[www.intera.com](http://www.intera.com)

**Changes**

It has been decided after some lengthy discussion that we should have this site capped, consistent with the decisions made for the U Plant Canyon. Analogous to the 200-W-20 is the 200-W-136 of the U Plant Canyon. However, neither the B Plant nor the S Plant Canyons have large sites equivalent to 200-W-20 or 200-W-136.

## D13 Site Naming Convention (MasterList Sheet)

### Issues

The current site naming convention is subject to change in accordance with the unified convention currently in development for the CA/CIE projects. The changes made up to this point are included in this page (see spreadsheet below).

When this finalized list comes out, the names will need to be updated to match the unified convention. It will be crucial that the naming convention is carried forward throughout the entire workbook of the HSDB as the linked references depend on

### Changes

<<Site Naming Convention - Spreadsheet.xlsx>>

| SITE_NUM   | Notes/Changes                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------|
| 116-DR-1&2 | Changed "SITE_NUM" field to replace '%' with '&' to match ehsit designation                              |
| 216-B-7A&B | Changed "SITE_NUM" field to replace '%' with '&' to match ehsit designation (throughout entire workbook) |
| 216-S-1&2  | Changed "SITE_NUM" field to replace '%' with '&' to match ehsit designation                              |
| 216-U-1&2  | Changed "SITE_NUM" field to replace '%' with '&' to match ehsit designation                              |

### Discussion:

1/23/2019

- Need to make all names compatible with Access Database format (Randy to check translation)

## D14 Excel “RODs” Sheet Changes

### Issues

#### Changes

| Sites (original)      | Sites (modified)   | Reason                                                                                                                                                                |
|-----------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 600-104               | 600-104_superseded | Ecology and DOE, 1997, "Action Memorandum, USDOE Hanford 100 Area NPL, 100-IU-3 Operable Unit (Wahluke Slope), Hanford Site, Adams, Grant, and Franklin Counties, WA" |
| 216-Z-19 Ditch        | 216-Z-19           |                                                                                                                                                                       |
| 216-Z-1D Ditch        | 216-Z-1D           |                                                                                                                                                                       |
| 216-Z-20 Tile Field   | 216-Z-20           |                                                                                                                                                                       |
| 216-Z-8 French drain  | 216-Z-8            |                                                                                                                                                                       |
| 241-Z-8 settling tank | 241-Z-8            |                                                                                                                                                                       |
| 628-4 (Landfill 1d)   | 628-4              |                                                                                                                                                                       |
| JA Jones #1           | JA JONES 1         |                                                                                                                                                                       |

## D15 Excel “Action Memos” Sheet Changes

### Issues

#### Changes

| Sites ID (original) | Sites ID (modified) |
|---------------------|---------------------|
| 600 OCL             | 600 OCL             |
|                     |                     |
|                     |                     |
|                     |                     |

## **D16 218-W-4C**

### **Issues**

There is a conflict between DOE guidance in DOE/RL-2000-70 Rev. 0 and a later action memo (DOE, EPA, and Ecology, 2004, "Action Memorandum: U.S. Department of Energy, 200 Area, Burial Ground 218-W-4C Waste Retrieval, Hanford Site, Benton County, Washington," U.S. Department of Energy, Richland Operations Office; U.S. Environmental Protection Agency; and Washington State Department of Ecology, Richland, Washington, April 19.)

Because the Action Memo is ambiguous about a definitive action to take place (can be indefinitely postponed) the decision is to assume an ET Cap/Barrier over the waste site area until the action memo is carried out or superseded by a later regulatory decision.

### **Changes**

**Jacob Fullerton**

---

**From:** Nichols, William E <william\_e\_nichols@rl.gov>  
**Sent:** Thursday, March 14, 2019 3:51 PM  
**To:** Jacob Fullerton; Mark Williams; Mart Oostrom; Greg Ruskauff; Ryan Nell  
**Cc:** Batal, Wafa H; Wafa Batal  
**Subject:** RE: 218-W-4C

Judgment call, and I suppose I get to be the judge.

My coin flip is to assume indefinite delay and no RTD. This is an assumption – and of course needs to be documented.

**Will Nichols**

*Modeling Team Leader*  
**D** 1 509 376 4553  
**M** 1 509 551 4394

**CH2MHILL**  
Plateau Remediation Company

*a Jacobs company*

This e-mail may contain confidential information or material protected by the attorney-client privilege. If you are not the intended recipient, please inform by return e-mail.

[LinkedIn profile](#)

[ResearchGate](#)

---

**From:** Jacob Fullerton <JFullerton@intera.com>  
**Sent:** Thursday, March 14, 2019 3:48 PM  
**To:** Mark Williams <MWilliams@intera.com>; Mart Oostrom <MOostrom@intera.com>; Greg Ruskauff <gruskauff@intera.com>; Nichols, William E <william\_e\_nichols@rl.gov>; Ryan Nell <RNell@intera.com>  
**Cc:** Batal, Wafa H <wafa\_h\_batal@rl.gov>; Wafa Batal <WBatal@intera.com>  
**Subject:** RE: 218-W-4C

Just want to revive this question because I haven't had an answer on this.

Jacob Fullerton | E.I.T.

**INTERA**  
GEOSCIENCE & ENGINEERING SOLUTIONS

**INTERA Incorporated**  
3240 Richardson Road,  
Suite 2 Richland,  
WA 99354  
Main: 509.946.1213  
[www.intera.com](http://www.intera.com)

**LinkedIn**

---

**From:** Jacob Fullerton  
**Sent:** Monday, March 11, 2019 1:52 PM  
**To:** Mark Williams <MWilliams@intera.com>; Mart Oostrom <MOostrom@intera.com>; Greg Ruskauff

<[GRuskauff@intera.com](mailto:GRuskauff@intera.com)>; Nichols, William E <[william\\_e\\_nichols@rl.gov](mailto:william_e_nichols@rl.gov)>; Ryan Nell <[RNell@intera.com](mailto:RNell@intera.com)>  
**Subject:** 218-W-4C

All:

While preparing a site list for a presentation on the sites currently known to have a ROD or Action Memo I came across a case that needs clarification. 218-W-4C has a signed Action Memo from 2009 (DOE/RL-2009-86 Rev.0) to "RTD" the site. However, following guidance from DOE/RL-2000-70 we would put a barrier over the top, but of course the Action Memo would take precedence in this case as it has a later date.

The question I have relevant to the RET and HSDB is whether we would do a source removal plan for this site given that the Action Memo doesn't actually have a time for completion and could possibly be delayed indefinitely (stated in the Action Memo). The current designation is that this LLBG is active without immediate plans to carry out this Action Memo based on what I can see in the HSDB.

I'll keep my eyes open to other such cases.

Jacob Fullerton | E.I.T.



**INTERA Incorporated**  
3240 Richardson Road,  
Suite 2 Richland,  
WA 99354  
Main: 509.946.1213  
[www.intera.com](http://www.intera.com)



## D17 CP-63386 Documentation

Additional changes made to the HSDB are described in Document CP-63386 and documented in the following spreadsheets:

- CA\_CIE\_Disposition\_04.24.2019.xlsx
- Non\_CA\_CIE\_Waste\_Sites\_Updated\_4.25.19.xlsx

It is possible that the changes described in Section 2 – 16 were overwritten by changes made in the CP-63386 document. The changes made in the CP-63386 document are the final and accepted alterations to the HSDB for incorporation into the RET.

Changes were made to the following site numbers.

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| UPR-200-E-83                                                    | 200-E-100                                                 |
| OCSA                                                            | 200-E-102                                                 |
| CWC                                                             | 200-E-103                                                 |
| GTFL                                                            | 200-E-107                                                 |
| 600-38                                                          | 200-E-136                                                 |
| 600-354                                                         | 200-E-25                                                  |
| 600 CL                                                          | 200-E-28                                                  |
| 216-B-3-1                                                       | 200-E-30                                                  |
| 200-E-304                                                       | 200-E-4                                                   |
| UPR-600-20                                                      | 200-E-41                                                  |
| 218-W-6                                                         | 200-E-54                                                  |
| 600-355                                                         | 200-E-55                                                  |
| 600-60                                                          | 200-E-56                                                  |
| 200 CP                                                          | 200-E-57                                                  |
| 200-E-109                                                       | 200-E-60                                                  |
| 200-W BP                                                        | 200-E-61                                                  |
| UPR-200-E-37                                                    | 200-E-62                                                  |
| 600-364                                                         | 200-E-63                                                  |
| 600-70                                                          | 200-E-64                                                  |
| GTF                                                             | 200-E-65                                                  |
| 200-W-33                                                        | 200-E-67                                                  |
| 600 NRDWL                                                       | 200-E-68                                                  |
| 200-E-17                                                        | 200-E-69                                                  |
| 200-A TEDF                                                      | 200-E-70                                                  |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 200-E BP                                                        | 200-E-71                                                  |
| 271-U                                                           | 200-E-72                                                  |
| 216-A-29                                                        | 200-E-73                                                  |
| 291-U                                                           | 200-E-74                                                  |
| 291-U-1                                                         | 200-E-75                                                  |
| 216-B-3A                                                        | 200-E-76                                                  |
| 200-W ADB                                                       | 200-E-77                                                  |
| 600-388                                                         | 200-E-78                                                  |
| WRAP                                                            | 200-E-79                                                  |
| 200-W-136                                                       | 200-E-80                                                  |
| 292-U                                                           | 200-E-81                                                  |
| 216-N-8                                                         | 200-E-82                                                  |
| 200-W-54                                                        | 200-E-84                                                  |
| 300-10                                                          | 200-E-88                                                  |
| 600-214                                                         | 200-E-89                                                  |
| 300-109                                                         | 200-E-90                                                  |
| 300-18                                                          | 200-E-91                                                  |
| 300-224                                                         | 200-E-92                                                  |
| 300-258                                                         | 200-E-93                                                  |
| 300-259                                                         | 200-E-94                                                  |
| UPR-200-W-41                                                    | 200-E-95                                                  |
| 200-W-53                                                        | 200-E-97                                                  |
| 600-220                                                         | 200-E-98                                                  |
| UPR-300-FF-1                                                    | 200-E-99                                                  |
| 300-270                                                         | 200-W PP                                                  |
| 300-274                                                         | 200-W-20                                                  |
| 600-361                                                         | 200-W-22                                                  |
| 200-E-296                                                       | 200-W-42                                                  |
| 600-36                                                          | 200-W-44                                                  |
| 300-275                                                         | 200-W-45                                                  |
| 200-W-236                                                       | 200-W-52                                                  |
| 200-E-44                                                        | 200-W-72                                                  |
| 300-276                                                         | 200-W-9                                                   |
| 200-W-245                                                       | 201-C                                                     |
| 300-277                                                         | 202-S                                                     |
| 200-W-246                                                       | 2101-M POND                                               |
| UPR-200-W-117                                                   | 212-B                                                     |
| 300-52                                                          | 216-A-1                                                   |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 200-E-13                                                        | 216-A-10                                                  |
| 400-40                                                          | 216-A-11                                                  |
| 200 ETF                                                         | 216-A-12                                                  |
| UPR-200-W-161                                                   | 216-A-13                                                  |
| 216-B-59B                                                       | 216-A-14                                                  |
| 300-279                                                         | 216-A-15                                                  |
| 300-286                                                         | 216-A-16                                                  |
| 300-289                                                         | 216-A-17                                                  |
| UPR-200-W-65                                                    | 216-A-18                                                  |
| 200-W-11                                                        | 216-A-19                                                  |
| 202-A                                                           | 216-A-2                                                   |
| UPR-200-W-76                                                    | 216-A-20                                                  |
| UPR-200-E-69                                                    | 216-A-21                                                  |
| UPR-200-E-144                                                   | 216-A-22                                                  |
| UPR-200-E-64                                                    | 216-A-23A                                                 |
| 216-S-16D                                                       | 216-A-23B                                                 |
| UPR-200-W-99                                                    | 216-A-24                                                  |
| 216-T-4-1D                                                      | 216-A-25                                                  |
| 600-362                                                         | 216-A-26                                                  |
| 200-E PD                                                        | 216-A-26A                                                 |
| 300-32                                                          | 216-A-27                                                  |
| 300-4                                                           | 216-A-28                                                  |
| 200-W-247                                                       | 216-A-3                                                   |
| 218-W-11                                                        | 216-A-30                                                  |
| UPR-200-W-167                                                   | 216-A-31                                                  |
| 618-2                                                           | 216-A-32                                                  |
| 200-E-295                                                       | 216-A-35                                                  |
| 600-360                                                         | 216-A-36A                                                 |
| 600-391                                                         | 216-A-36B                                                 |
| 216-B-2-3                                                       | 216-A-37-1                                                |
| 200-W-71                                                        | 216-A-37-2                                                |
| 300-45                                                          | 216-A-39                                                  |
| 200-E-139                                                       | 216-A-4                                                   |
| 216-A-42                                                        | 216-A-40                                                  |
| 200-E-121                                                       | 216-A-41                                                  |
| 207-S                                                           | 216-A-45                                                  |
| 2607-W16                                                        | 216-A-5                                                   |
| 600-398                                                         | 216-A-6                                                   |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 300-7                                                           | 216-A-7                                                   |
| 207-U                                                           | 216-A-8                                                   |
| 300-8                                                           | 216-A-9                                                   |
| 200-E-46                                                        | 216-B-10A                                                 |
| 216-B-3-2                                                       | 216-B-10B                                                 |
| 200-E-294                                                       | 216-B-11A&B                                               |
| 600-62                                                          | 216-B-12                                                  |
| 218-E-9                                                         | 216-B-13                                                  |
| 216-S-18                                                        | 216-B-14                                                  |
| 300-9                                                           | 216-B-15                                                  |
| 303-M SA                                                        | 216-B-16                                                  |
| 303-M UOF                                                       | 216-B-17                                                  |
| 618-3                                                           | 216-B-18                                                  |
| 221-B-WS-2                                                      | 216-B-19                                                  |
| 200-E-24                                                        | 216-B-20                                                  |
| 200-E-29                                                        | 216-B-21                                                  |
| 216-S-11                                                        | 216-B-2-1                                                 |
| JA JONES 1                                                      | 216-B-22                                                  |
| CTFN 2703-E                                                     | 216-B-2-2                                                 |
| 600-49                                                          | 216-B-23                                                  |
| 316-1                                                           | 216-B-24                                                  |
| 200-E-5                                                         | 216-B-25                                                  |
| 316-2                                                           | 216-B-26                                                  |
| UPR-200-E-89                                                    | 216-B-27                                                  |
| 216-B-64                                                        | 216-B-28                                                  |
| 200-W-240                                                       | 216-B-29                                                  |
| 200-W-13                                                        | 216-B-3                                                   |
| 316-4                                                           | 216-B-30                                                  |
| UPR-200-W-115                                                   | 216-B-31                                                  |
| 400-42                                                          | 216-B-32                                                  |
| 316-5                                                           | 216-B-33                                                  |
| 200-E-43                                                        | 216-B-34                                                  |
| 200-W-239                                                       | 216-B-35                                                  |
| 618-1                                                           | 216-B-36                                                  |
| 333 ESHWSA                                                      | 216-B-37                                                  |
| 333 WSTF                                                        | 216-B-38                                                  |
| 6607-16                                                         | 216-B-39                                                  |
| 600-278                                                         | 216-B-3A RAD                                              |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 200-W-87                                                        | 216-B-3B RAD                                              |
| 207-A-NORTH                                                     | 216-B-3C RAD                                              |
| 207-A-SOUTH                                                     | 216-B-4                                                   |
| 207-B                                                           | 216-B-40                                                  |
| 216-A-38-1                                                      | 216-B-41                                                  |
| 216-T-4-2                                                       | 216-B-42                                                  |
| 300-50                                                          | 216-B-43                                                  |
| 400 PPSS                                                        | 216-B-44                                                  |
| 218-E-2A                                                        | 216-B-45                                                  |
| 207-T                                                           | 216-B-46                                                  |
| 200-W-55                                                        | 216-B-47                                                  |
| 216-B-3-3                                                       | 216-B-48                                                  |
| 600-281                                                         | 216-B-49                                                  |
| UPR-200-W-71                                                    | 216-B-5                                                   |
| 200-E-135                                                       | 216-B-50                                                  |
| 200-E-287                                                       | 216-B-51                                                  |
| 300-49                                                          | 216-B-52                                                  |
| 400-37                                                          | 216-B-53A                                                 |
| 200-E-297                                                       | 216-B-53B                                                 |
| UPR-200-W-116                                                   | 216-B-54                                                  |
| 6241-V                                                          | 216-B-55                                                  |
| 6241-A                                                          | 216-B-57                                                  |
| 200-W-243                                                       | 216-B-58                                                  |
| 200-W-127                                                       | 216-B-59                                                  |
| UPR-200-E-95                                                    | 216-B-6                                                   |
| 400-38                                                          | 216-B-60                                                  |
| 200-E-7                                                         | 216-B-62                                                  |
| 216-T-4B                                                        | 216-B-63                                                  |
| 600-109                                                         | 216-B-7A&B                                                |
| 600-334                                                         | 216-B-8                                                   |
| 200-E-53                                                        | 216-B-9                                                   |
| 600-110                                                         | 216-BY-201                                                |
| 200-N-3                                                         | 216-C-1                                                   |
| 600-387                                                         | 216-C-10                                                  |
| 600 OCL                                                         | 216-C-2                                                   |
| 200-W-64                                                        | 216-C-3                                                   |
| 244-A LS                                                        | 216-C-4                                                   |
| 200-E-2                                                         | 216-C-5                                                   |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 200-W-249                                                       | 216-C-6                                                   |
| 216-A-34                                                        | 216-C-7                                                   |
| 200-W-67                                                        | 216-C-8                                                   |
| 216-S-10D                                                       | 216-C-9                                                   |
| 218-W-9                                                         | 216-N-1                                                   |
| 600-359                                                         | 216-N-2                                                   |
| 600-186                                                         | 216-N-3                                                   |
| 200-E-45                                                        | 216-N-4                                                   |
| 600-227                                                         | 216-N-5                                                   |
| 600-202                                                         | 216-N-6                                                   |
| 600-282                                                         | 216-N-7                                                   |
| 600-288                                                         | 216-S-1&2                                                 |
| 200-W-81                                                        | 216-S-10P                                                 |
| 600-389                                                         | 216-S-12                                                  |
| 241-EW-151                                                      | 216-S-13                                                  |
| UPR-200-N-1                                                     | 216-S-14                                                  |
| 200-W-172                                                       | 216-S-15                                                  |
| 400-31                                                          | 216-S-16P                                                 |
| UPR-600-12                                                      | 216-S-17                                                  |
| 242-A                                                           | 216-S-19                                                  |
| 616                                                             | 216-S-20                                                  |
| 300-51                                                          | 216-S-21                                                  |
| 200-W-241                                                       | 216-S-22                                                  |
| 622-R ST                                                        | 216-S-23                                                  |
| 200-W-89                                                        | 216-S-25                                                  |
| 600-205                                                         | 216-S-26                                                  |
| 200-W-43                                                        | 216-S-3                                                   |
| 600-228                                                         | 216-S-4                                                   |
| 600-208                                                         | 216-S-5                                                   |
| 2727-S                                                          | 216-S-6                                                   |
| UPR-200-E-100                                                   | 216-S-7                                                   |
| 242-S                                                           | 216-S-8                                                   |
| 200-E-300                                                       | 216-S-9                                                   |
| 600-40                                                          | 216-SX-2                                                  |
| 200-W-63                                                        | 216-T-1                                                   |
| 200-W-1                                                         | 216-T-12                                                  |
| 244-AR VAULT                                                    | 216-T-14                                                  |
| 600-337                                                         | 216-T-15                                                  |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 200-E-110                                                       | 216-T-16                                                  |
| 600-23                                                          | 216-T-17                                                  |
| 600-320                                                         | 216-T-18                                                  |
| 200-W-253                                                       | 216-T-19                                                  |
| 200-W-104                                                       | 216-T-2                                                   |
| 200-W-92                                                        | 216-T-20                                                  |
| 200-W-106                                                       | 216-T-21                                                  |
| 200-E-292                                                       | 216-T-22                                                  |
| 242-T                                                           | 216-T-23                                                  |
| 600-239                                                         | 216-T-24                                                  |
| 200-W-14                                                        | 216-T-25                                                  |
| UPR-200-W-164                                                   | 216-T-26                                                  |
| 600-71                                                          | 216-T-27                                                  |
| 300-44                                                          | 216-T-28                                                  |
| 244-CR VAULT                                                    | 216-T-29                                                  |
| 218-W-8                                                         | 216-T-3                                                   |
| 2607-EE                                                         | 216-T-32                                                  |
| 600-390                                                         | 216-T-33                                                  |
| 600-316                                                         | 216-T-34                                                  |
| 600-259                                                         | 216-T-35                                                  |
| 200-E-124                                                       | 216-T-36                                                  |
| 291-C                                                           | 216-T-4A                                                  |
| 2607-WT                                                         | 216-T-5                                                   |
| 204-AR                                                          | 216-T-6                                                   |
| 200-W-6                                                         | 216-T-7                                                   |
| 221-T CSTF                                                      | 216-T-8                                                   |
| 600-325                                                         | 216-TY-201                                                |
| 207-SL                                                          | 216-U-1&2                                                 |
| 600-272                                                         | 216-U-10                                                  |
| 6607-5                                                          | 216-U-12                                                  |
| 600-322                                                         | 216-U-13                                                  |
| UPR-200-W-14                                                    | 216-U-14                                                  |
| 600-321                                                         | 216-U-15                                                  |
| 200-W-21                                                        | 216-U-16                                                  |
| 600-365                                                         | 216-U-17                                                  |
| 600-323                                                         | 216-U-3                                                   |
| 2727-WA                                                         | 216-U-4                                                   |
| 2607-EJ                                                         | 216-U-4A                                                  |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 207-Z                                                           | 216-U-4B                                                  |
| 600-336                                                         | 216-U-5                                                   |
| 6607-4                                                          | 216-U-6                                                   |
| 200-E-26                                                        | 216-U-7                                                   |
| 200-E-16                                                        | 216-U-8                                                   |
| 200-E-293                                                       | 216-W-LWC                                                 |
| 600-324                                                         | 216-Z-1&2                                                 |
| UPR-200-W-48                                                    | 216-Z-10                                                  |
| 600-327                                                         | 216-Z-11                                                  |
| 241-A-151                                                       | 216-Z-12                                                  |
| 241-TX-153                                                      | 216-Z-13                                                  |
| 200-W-251                                                       | 216-Z-14                                                  |
| 200-W-237                                                       | 216-Z-15                                                  |
| 200-W-80                                                        | 216-Z-16                                                  |
| 241-TXR-151                                                     | 216-Z-17                                                  |
| 4843                                                            | 216-Z-18                                                  |
| 200-W-83                                                        | 216-Z-19                                                  |
| 244-BXR VAULT                                                   | 216-Z-1A                                                  |
| 200-E-6                                                         | 216-Z-1D                                                  |
| 600-328                                                         | 216-Z-20                                                  |
| 240-S-151                                                       | 216-Z-21                                                  |
| 200-E-115                                                       | 216-Z-3                                                   |
| 241-TX-155                                                      | 216-Z-4                                                   |
| 241-C-801                                                       | 216-Z-5                                                   |
| 216-T-13                                                        | 216-Z-6                                                   |
| 200-W-231                                                       | 216-Z-7                                                   |
| 6607-2                                                          | 216-Z-8                                                   |
| 241-TXR-152                                                     | 216-Z-9                                                   |
| 244-UR VAULT                                                    | 218-C-9                                                   |
| 600-318                                                         | 218-E-1                                                   |
| 241-BXR-152                                                     | 218-E-10                                                  |
| 600-329                                                         | 218-E-12A                                                 |
| 244-TXR VAULT                                                   | 218-E-12B                                                 |
| 241-BYR-152                                                     | 218-E-14                                                  |
| 241-BR-152                                                      | 218-E-15                                                  |
| 241-TXR-153                                                     | 218-E-2                                                   |
| 241-BXR-153                                                     | 218-E-4                                                   |
| 241-AP VP                                                       | 218-E-5                                                   |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 600-59                                                          | 218-E-5A                                                  |
| 222-SD                                                          | 218-E-8                                                   |
| 241-BYR-153                                                     | 218-W-1                                                   |
| 241-TY-153                                                      | 218-W-1A                                                  |
| 216-T-11                                                        | 218-W-2                                                   |
| 241-UR-153                                                      | 218-W-2A                                                  |
| 241-CR-151                                                      | 218-W-3                                                   |
| 241-UR-152                                                      | 218-W-3A                                                  |
| 600-342                                                         | 218-W-3AE                                                 |
| 216-T-9                                                         | 218-W-4A                                                  |
| 241-SX-402                                                      | 218-W-4B                                                  |
| 216-T-10                                                        | 218-W-4C                                                  |
| 600-353                                                         | 218-W-5                                                   |
| 241-SX-401                                                      | 218-W-REACTOR                                             |
| 241-CR-153                                                      | 221-B                                                     |
| 241-UX-302A                                                     | 221T                                                      |
| 241-UR-154                                                      | 221-U                                                     |
| 241-TR-152                                                      | 222-S                                                     |
| 244-BX DCRT                                                     | 224-B                                                     |
| 600-187                                                         | 224-T                                                     |
| 241-CR-152                                                      | 231Z                                                      |
| 2607-WUT                                                        | 232-Z                                                     |
| 200-W-101                                                       | 233-S                                                     |
| 241-SX-151                                                      | 234-5Z                                                    |
| 241-BYR-154                                                     | 236Z                                                      |
| 241-UX-154                                                      | 241-A-ANC                                                 |
| UPR-200-W-60                                                    | 241-A-101                                                 |
| 241-A-152                                                       | 241-A-102                                                 |
| 600-400                                                         | 241-A-103                                                 |
| 241-SX-302                                                      | 241-A-104                                                 |
| 2607-WTX                                                        | 241-A-105                                                 |
| 244-TX DCRT                                                     | 241-A-106                                                 |
| 241-ER-151                                                      | 241-AN-ANC                                                |
| 241-UR-151                                                      | 241-AN-101                                                |
| 244-S DCRT                                                      | 241-AN-102                                                |
| 241-A-417                                                       | 241-AN-103                                                |
| 200-W-76                                                        | 241-AN-104                                                |
| 244-U DCRT                                                      | 241-AN-105                                                |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 200-E-130                                                                            | 241-AN-106                                                                     |
| 600-343                                                                              | 241-AN-107                                                                     |
| 200-W-58                                                                             | 241-AP-ANC                                                                     |
| 600-262                                                                              | 241-AP-101                                                                     |
| 600-224                                                                              | 241-AP-102                                                                     |
| 200-E-27                                                                             | 241-AP-103                                                                     |
| 200-W-73                                                                             | 241-AP-104                                                                     |
| 241-TX-154                                                                           | 241-AP-105                                                                     |
| UPR-200-W-112                                                                        | 241-AP-106                                                                     |
| 241-BXR-151                                                                          | 241-AP-107                                                                     |
| 600-319                                                                              | 241-AP-108                                                                     |
| 600-350                                                                              | 241-AW-ANC                                                                     |
| 241-S-151                                                                            | 241-AW-101                                                                     |
| 200-W-82                                                                             | 241-AW-102                                                                     |
| 600-356                                                                              | 241-AW-103                                                                     |
| 200-W-90                                                                             | 241-AW-104                                                                     |
| 600-367                                                                              | 241-AW-105                                                                     |
| 200-W-144                                                                            | 241-AW-106                                                                     |
| 600-378                                                                              | 241-AX-ANC                                                                     |
| 600-386                                                                              | 241-AX-101                                                                     |
| 200-E-9                                                                              | 241-AX-102                                                                     |
| 200-E-299                                                                            | 241-AX-103                                                                     |
| 200-W-85                                                                             | 241-AX-104                                                                     |
| 241-BX-302C                                                                          | 241-AY-ANC                                                                     |
| 200-E-123                                                                            | 241-AY-101                                                                     |
| 200-W-59                                                                             | 241-AY-102                                                                     |
| 600-46                                                                               | 241-AZ-ANC                                                                     |
| 218-W-7                                                                              | 241-AZ-101                                                                     |
| 332 SF                                                                               | 241-AZ-102                                                                     |
| 241-AX-151                                                                           | 241-B-ANC                                                                      |
| 200-E-301                                                                            | 241-B-101                                                                      |
| UPR-600-15                                                                           | 241-B-102                                                                      |
| 600-326                                                                              | 241-B-103                                                                      |
| 200-W-12                                                                             | 241-B-104                                                                      |
| 200-W-15                                                                             | 241-B-105                                                                      |
| 241-CX-70                                                                            | 241-B-106                                                                      |
| 241-ER-311                                                                           | 241-B-107                                                                      |
| 241-ER-311A                                                                          | 241-B-108                                                                      |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 600-47                                                          | 241-B-109                                                 |
| 241-A-431                                                       | 241-B-110                                                 |
| 241-TR-153                                                      | 241-B-111                                                 |
| 241-B-154                                                       | 241-B-112                                                 |
| 200-E-298                                                       | 241-B-153                                                 |
| 241-S-302A                                                      | 241-B-201                                                 |
| 241-BX-302A                                                     | 241-B-202                                                 |
| 240-S-302                                                       | 241-B-203                                                 |
| 200-E-118                                                       | 241-B-204                                                 |
| 241-TX-302C                                                     | 241-B-361                                                 |
| UPR-200-E-67                                                    | 241-BX-ANC                                                |
| 241-B-302B                                                      | 241-BX-101                                                |
| 241-TY-302A                                                     | 241-BX-102                                                |
| 241-TX-302A                                                     | 241-BX-103                                                |
| 200-E-14                                                        | 241-BX-104                                                |
| 241-C-252                                                       | 241-BX-105                                                |
| 241-BX-153                                                      | 241-BX-106                                                |
| 241-AZ-152                                                      | 241-BX-107                                                |
| UPR-200-W-108                                                   | 241-BX-108                                                |
| 241-TX-302B                                                     | 241-BX-109                                                |
| 2607-W14                                                        | 241-BX-110                                                |
| 241-B-252                                                       | 241-BX-111                                                |
| 200-W-128                                                       | 241-BX-112                                                |
| 241-T-252                                                       | 241-BY-ANC                                                |
| 241-B-301                                                       | 241-BY-101                                                |
| UPR-200-W-109                                                   | 241-BY-102                                                |
| 241-C-301                                                       | 241-BY-103                                                |
| 600-63                                                          | 241-BY-104                                                |
| 241-T-301B                                                      | 241-BY-105                                                |
| 200-E-285                                                       | 241-BY-106                                                |
| 241-C-153                                                       | 241-BY-107                                                |
| 200-E-117                                                       | 241-BY-108                                                |
| 241-U-252                                                       | 241-BY-109                                                |
| 200-E-129                                                       | 241-BY-110                                                |
| 241-S-302B                                                      | 241-BY-111                                                |
| 241-U-152                                                       | 241-BY-112                                                |
| UPR-200-W-114                                                   | 241C                                                      |
| 241-U-153                                                       | 241-C-101                                                 |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 618-10                                                          | 241-C-102                                                 |
| 276-S-142                                                       | 241-C-103                                                 |
| 241-TY-302B                                                     | 241-C-104                                                 |
| 200-W-36                                                        | 241-C-105                                                 |
| 618-11                                                          | 241-C-106                                                 |
| 200-E-125                                                       | 241-C-107                                                 |
| 241-SX-152                                                      | 241-C-108                                                 |
| 241-AY-152                                                      | 241-C-109                                                 |
| 231-W-151                                                       | 241-C-110                                                 |
| 276-S-141                                                       | 241-C-111                                                 |
| 241-C-152                                                       | 241-C-112                                                 |
| 241-B-152                                                       | 241-C-201                                                 |
| 241-A-302B                                                      | 241-C-202                                                 |
| 218-E-7                                                         | 241-C-203                                                 |
| 241-TX-302XB                                                    | 241-C-204                                                 |
| 618-12                                                          | 241-CX-72                                                 |
| 241-ER-153                                                      | 241-S-ANC                                                 |
| 241-TX-302BR                                                    | 241-S-101                                                 |
| 241-T-152                                                       | 241-S-102                                                 |
| 241-AX-152DS                                                    | 241-S-103                                                 |
| 2607-W10                                                        | 241-S-104                                                 |
| UPR-200-N-2                                                     | 241-S-105                                                 |
| 292-S                                                           | 241-S-106                                                 |
| 6607-18                                                         | 241-S-107                                                 |
| 618-4                                                           | 241-S-108                                                 |
| 241-BX-302B                                                     | 241-S-109                                                 |
| 200-W-252                                                       | 241-S-110                                                 |
| 618-5                                                           | 241-S-111                                                 |
| 242-TA-R1                                                       | 241-S-112                                                 |
| 241-U-151                                                       | 241-SX-ANC                                                |
| 241-T-151                                                       | 241-SX-101                                                |
| 241-T-153                                                       | 241-SX-102                                                |
| 241-AN-B                                                        | 241-SX-103                                                |
| 618-7                                                           | 241-SX-104                                                |
| 2607-W12                                                        | 241-SX-105                                                |
| 2607-W11                                                        | 241-SX-106                                                |
| 2607-W15                                                        | 241-SX-107                                                |
| 240-S-152                                                       | 241-SX-108                                                |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 241-AN-A                                                        | 241-SX-109                                                |
| 241-BX-155                                                      | 241-SX-110                                                |
| 241-S-A                                                         | 241-SX-111                                                |
| 241-C-151                                                       | 241-SX-112                                                |
| 600-314                                                         | 241-SX-113                                                |
| 241-B-151                                                       | 241-SX-114                                                |
| 241-S-D                                                         | 241-SX-115                                                |
| 241-SX-A                                                        | 241-SY-ANC                                                |
| 241-S-B                                                         | 241-SY-101                                                |
| 241-U-B                                                         | 241-SY-102                                                |
| 200-W-242                                                       | 241-SY-103                                                |
| 241-AW-A                                                        | 241-T-ANC                                                 |
| 241-AX-B                                                        | 241-T-101                                                 |
| 6607-13                                                         | 241-T-102                                                 |
| 241-SX-B                                                        | 241-T-103                                                 |
| 241-AX-A                                                        | 241-T-104                                                 |
| 241-SY-A                                                        | 241-T-105                                                 |
| 241-S-C                                                         | 241-T-106                                                 |
| 241-AW-B                                                        | 241-T-107                                                 |
| 241-A-153                                                       | 241-T-108                                                 |
| 241-U-D                                                         | 241-T-109                                                 |
| 241-U-A                                                         | 241-T-110                                                 |
| 2607-E13                                                        | 241-T-111                                                 |
| 241-U-C                                                         | 241-T-112                                                 |
| 241-ER-152                                                      | 241-T-201                                                 |
| 200-E-137                                                       | 241-T-202                                                 |
| 241-A-B                                                         | 241-T-203                                                 |
| 241-A-A                                                         | 241-T-204                                                 |
| 241-A-302A                                                      | 241-T-361                                                 |
| 241-SY-B                                                        | 241-TX-ANC                                                |
| 600-212                                                         | 241-TX-101                                                |
| 241-BX-154                                                      | 241-TX-102                                                |
| 241-AX-155                                                      | 241-TX-103                                                |
| 296-A-13                                                        | 241-TX-104                                                |
| 216-A-508                                                       | 241-TX-105                                                |
| 216-A-524                                                       | 241-TX-106                                                |
| 200-W-77                                                        | 241-TX-107                                                |
| 270-W                                                           | 241-TX-108                                                |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 270-E-1                                                         | 241-TX-109                                                |
| 200-E-284                                                       | 241-TX-110                                                |
| 200-E-58                                                        | 241-TX-111                                                |
| 241-AR-151                                                      | 241-TX-112                                                |
| 2904-S-171                                                      | 241-TX-113                                                |
| 242-T-151                                                       | 241-TX-114                                                |
| 300 SE                                                          | 241-TX-115                                                |
| 6607-8                                                          | 241-TX-116                                                |
| 242-B-151                                                       | 241-TX-117                                                |
| 216-S-172                                                       | 241-TX-118                                                |
| UPR-200-W-3                                                     | 241-TY-ANC                                                |
| 600-65                                                          | 241-TY-101                                                |
| 6607-17                                                         | 241-TY-102                                                |
| 334 TFWAST                                                      | 241-TY-103                                                |
| 241-TX-152                                                      | 241-TY-104                                                |
| 6607-6                                                          | 241-TY-105                                                |
| 2607-EF                                                         | 241-TY-106                                                |
| 241-AZ-151DS                                                    | 241-U-ANC                                                 |
| 200-E-223                                                       | 241-U-101                                                 |
| 2607-ES                                                         | 241-U-102                                                 |
| 200-W-232                                                       | 241-U-103                                                 |
| 2904-S-160                                                      | 241-U-104                                                 |
| 241-S-152                                                       | 241-U-105                                                 |
| 241-AY-151                                                      | 241-U-106                                                 |
| 241-S-304                                                       | 241-U-107                                                 |
| 219-S-101                                                       | 241-U-108                                                 |
| 219-S-102                                                       | 241-U-109                                                 |
| 241-C-154                                                       | 241-U-110                                                 |
| 200-W-7                                                         | 241-U-111                                                 |
| 334-A-TK-B                                                      | 241-U-112                                                 |
| 334-A-TK-C                                                      | 241-U-201                                                 |
| 200-W-86                                                        | 241-U-202                                                 |
| 241-AX-501                                                      | 241-U-203                                                 |
| 618-8                                                           | 241-U-204                                                 |
| 241-AX-IX                                                       | 241-U-361                                                 |
| 200-E-179                                                       | 241-WR VAULT                                              |
| 628-4                                                           | 241-Z                                                     |
| 600-37                                                          | 241-Z-361                                                 |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 200-W-75                                                        | 241-Z-8                                                   |
| 200-E-190                                                       | 242-Z                                                     |
| 200-E-189                                                       | 2607-E1                                                   |
| 219-S-104                                                       | 2607-E10                                                  |
| 219-S-103                                                       | 2607-E11                                                  |
| HSVP                                                            | 2607-E12                                                  |
| 200-W-126                                                       | 2607-E1A                                                  |
| 216-A-33                                                        | 2607-E3                                                   |
| 600-58                                                          | 2607-E4                                                   |
| 200-E-138                                                       | 2607-E5                                                   |
| UPR-300-7                                                       | 2607-E6                                                   |
| 200-W-238                                                       | 2607-E7A                                                  |
| 200-E-141                                                       | 2607-E8                                                   |
| 241-CX-71                                                       | 2607-E8A                                                  |
| 241-A-702-WS-1                                                  | 2607-E9                                                   |
| 209-E-WS-2                                                      | 2607-EA                                                   |
| UPR-200-E-56                                                    | 2607-EB                                                   |
| 616-WS-1                                                        | 2607-EC                                                   |
| 200-W-16                                                        | 2607-ED                                                   |
| UPR-200-W-64                                                    | 2607-EG                                                   |
| UPR-200-E-54                                                    | 2607-EK                                                   |
| 200-E-128                                                       | 2607-EL                                                   |
| 221-T-6-1                                                       | 2607-EM                                                   |
| UPR-200-W-67                                                    | 2607-EP                                                   |
| UPR-200-W-110                                                   | 2607-EQ                                                   |
| 600-66                                                          | 2607-ER                                                   |
| 200-E-303                                                       | 2607-FSN                                                  |
| UPR-200-E-33                                                    | 2607-W1                                                   |
| UPR-200-E-101                                                   | 2607-W2                                                   |
| UPR-200-E-66                                                    | 2607-W3                                                   |
| 221-B-27-4                                                      | 2607-W4                                                   |
| 200-W-119                                                       | 2607-W5                                                   |
| UPR-200-E-43                                                    | 2607-W6                                                   |
| UPR-200-E-35                                                    | 2607-W7                                                   |
| UPR-200-W-43                                                    | 2607-W8                                                   |
| UPR-200-E-50                                                    | 2607-W9                                                   |
| UPR-200-E-10                                                    | 2607-WA                                                   |
| 296-S-21                                                        | 2607-WB                                                   |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| UPR-200-W-36                                                    | 2607-WC                                                   |
| UPR-200-E-19                                                    | 2607-WL                                                   |
| UPR-300-30                                                      | 2607-Z                                                    |
| 221-B-WS-1                                                      | 2607-Z1                                                   |
| UPR-300-38                                                      | 2706T                                                     |
| UPR-300-22                                                      | 2736Z                                                     |
| UPR-300-28                                                      | 291-C-1                                                   |
| UPR-200-E-2                                                     | 291-S                                                     |
| 200-W-116                                                       | 291Z                                                      |
| UPR-200-E-99                                                    | 600-211                                                   |
| UPR-200-E-45                                                    | 6607-9                                                    |
| UPR-200-W-55                                                    | T31                                                       |
| 202-A-G7                                                        | T34                                                       |
| 221-B SDT                                                       | TRUSAF                                                    |
| 221-B-29-4                                                      | UPR-200-E-1                                               |
| 221-B-28-3                                                      | UPR-200-E-105                                             |
| 241-AZ-154                                                      | UPR-200-E-107                                             |
| UPR-200-W-56                                                    | UPR-200-E-108                                             |
| 200-W-115                                                       | UPR-200-E-109                                             |
| 221-T-5-6                                                       | UPR-200-E-110                                             |
| 244-A CT                                                        | UPR-200-E-117                                             |
| UPR-200-W-35                                                    | UPR-200-E-119                                             |
| UPR-200-W-57                                                    | UPR-200-E-141                                             |
| 202-A-WS-1                                                      | UPR-200-E-145                                             |
| 241-A-350                                                       | UPR-200-E-16                                              |
| UPR-200-E-52                                                    | UPR-200-E-17                                              |
| 2704-C-WS-1                                                     | UPR-200-E-29                                              |
| 400-5                                                           | UPR-200-E-3                                               |
| UPR-300-25                                                      | UPR-200-E-38                                              |
| UPR-300-47                                                      | UPR-200-E-39                                              |
| UPR-200-W-78                                                    | UPR-200-E-40                                              |
| 221-B-28-4                                                      | UPR-200-E-7                                               |
| UPR-200-W-165                                                   | UPR-200-E-73                                              |
| 202-A-F16                                                       | UPR-200-E-74                                              |
| UPR-300-20                                                      | UPR-200-E-75                                              |
| UPR-200-W-51                                                    | UPR-200-E-77                                              |
| 202-A-F15                                                       | UPR-200-E-78                                              |
| 299-E24-111                                                     | UPR-200-E-79                                              |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 221-B NANU                                                                           | UPR-200-E-80                                                                   |
| UPR-300-8                                                                            | UPR-200-E-81                                                                   |
| 221-T-5-9                                                                            | UPR-200-E-82                                                                   |
| 221-B-27-3                                                                           | UPR-200-E-84                                                                   |
| 209-E-WS-3                                                                           | UPR-200-E-85                                                                   |
| 202-A-E-F11                                                                          | UPR-200-E-86                                                                   |
| 200-W-121                                                                            | UPR-200-E-87                                                                   |
| 200-W-117                                                                            | UPR-200-E-9                                                                    |
| UPR-200-E-103                                                                        | UPR-200-W-100                                                                  |
| 200-W-113                                                                            | UPR-200-W-102                                                                  |
| UPR-200-E-21                                                                         | UPR-200-W-103                                                                  |
| UPR-200-E-18                                                                         | UPR-200-W-113                                                                  |
| 200-E-59                                                                             | UPR-200-W-12                                                                   |
| 2607-E7B                                                                             | UPR-200-W-127                                                                  |
| UPR-200-E-55                                                                         | UPR-200-W-130                                                                  |
| UPR-600-21                                                                           | UPR-200-W-131                                                                  |
| UPR-200-W-6                                                                          | UPR-200-W-132                                                                  |
| 221-T-15-1                                                                           | UPR-200-W-135                                                                  |
| UPR-300-46                                                                           | UPR-200-W-138                                                                  |
| UPR-200-E-72                                                                         | UPR-200-W-162                                                                  |
| 200-W-51                                                                             | UPR-200-W-163                                                                  |
| UPR-200-W-111                                                                        | UPR-200-W-19                                                                   |
| 2607-WZ                                                                              | UPR-200-W-2                                                                    |
| UPR-200-E-42                                                                         | UPR-200-W-20                                                                   |
| 300-3                                                                                | UPR-200-W-21                                                                   |
| 202-A-E5                                                                             | UPR-200-W-24                                                                   |
| 200-W-3                                                                              | UPR-200-W-28                                                                   |
| 221-T-11-R                                                                           | UPR-200-W-29                                                                   |
| UPR-200-E-62                                                                         | UPR-200-W-32                                                                   |
| UPR-200-E-20                                                                         | UPR-200-W-33                                                                   |
| UPR-200-W-166                                                                        | UPR-200-W-38                                                                   |
| UPR-300-15                                                                           | UPR-200-W-39                                                                   |
| HWVP                                                                                 | UPR-200-W-61                                                                   |
| UPR-300-23                                                                           | UPR-200-W-74                                                                   |
| UPR-200-W-4                                                                          | UPR-200-W-8                                                                    |
| 202-A-U4                                                                             | UPR-200-W-82                                                                   |
| UPR-200-W-124                                                                        | UPR-200-W-87                                                                   |
| UPR-200-E-12                                                                         | UPR-200-W-95                                                                   |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 200-W-250                                                                            | UPR-200-W-96                                                                   |
| 600-226                                                                              | UPR-200-W-97                                                                   |
| 200-W-2                                                                              | UPR-200-W-98                                                                   |
| 200-E8 BPDS                                                                          | WESF                                                                           |
| UPR-200-E-96                                                                         |                                                                                |
| UPR-300-27                                                                           |                                                                                |
| 202-A-U3                                                                             |                                                                                |
| 200-W ADS                                                                            |                                                                                |
| UPR-200-W-118                                                                        |                                                                                |
| 296-S-16                                                                             |                                                                                |
| 600-394                                                                              |                                                                                |
| UPR-300-29                                                                           |                                                                                |
| 242-T-135                                                                            |                                                                                |
| UPR-300-19                                                                           |                                                                                |
| UPR-200-E-98                                                                         |                                                                                |
| 216-B-3C                                                                             |                                                                                |
| UPR-300-9                                                                            |                                                                                |
| 221-B SHNU                                                                           |                                                                                |
| 200-W-171                                                                            |                                                                                |
| UPR-300-21                                                                           |                                                                                |
| 2904-S-170                                                                           |                                                                                |
| 221-B-30-3                                                                           |                                                                                |
| 216-B-3B                                                                             |                                                                                |
| 202-A-F18                                                                            |                                                                                |
| UPR-200-W-5                                                                          |                                                                                |
| 200-W-122                                                                            |                                                                                |
| UPR-200-W-70                                                                         |                                                                                |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 221-T-5-7                                                       |                                                           |
| 200-E-142                                                       |                                                           |
| UPR-200-E-91                                                    |                                                           |
| UPR-200-E-143                                                   |                                                           |
| UPR-300-26                                                      |                                                           |
| 200-W-120                                                       |                                                           |
| 213-W-1                                                         |                                                           |
| 200-E-1                                                         |                                                           |
| 437 MASF                                                        |                                                           |
| 200-W-114                                                       |                                                           |
| UPR-200-E-44                                                    |                                                           |
| 241-U-301                                                       |                                                           |
| 200-W-112                                                       |                                                           |
| UPR-200-W-46                                                    |                                                           |
| UPR-300-24                                                      |                                                           |
| UPR-600-11                                                      |                                                           |
| 296-S-13                                                        |                                                           |
| 200-W-118                                                       |                                                           |
| 221-B-26-1                                                      |                                                           |
| UPR-200-W-23                                                    |                                                           |
| UPR-200-E-28                                                    |                                                           |
| 333-TK-7                                                        |                                                           |
| 333-TK-11                                                       |                                                           |
| UPR-600-22                                                      |                                                           |
| 200-E-302                                                       |                                                           |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 216-T-31                                                        |                                                           |
| 200-W-234                                                       |                                                           |
| 244-CR-WS-1                                                     |                                                           |
| 600-237                                                         |                                                           |
| 218-E-12B ANNEX                                                 |                                                           |
| 600-246                                                         |                                                           |
| 200-W-25                                                        |                                                           |
| 200-E-21                                                        |                                                           |
| 216-E-28                                                        |                                                           |
| 200-E-20                                                        |                                                           |
| 600-240                                                         |                                                           |
| 200-E-19                                                        |                                                           |
| 200-W-26                                                        |                                                           |
| 200-E-49                                                        |                                                           |
| 200-W-29                                                        |                                                           |
| 600-248                                                         |                                                           |
| 200-E-140                                                       |                                                           |
| 200-W CSLA                                                      |                                                           |
| 200-E-286                                                       |                                                           |
| 200-W-28                                                        |                                                           |
| 218-W-4C ANNEX                                                  |                                                           |
| 200-W-24                                                        |                                                           |
| 600-97                                                          |                                                           |
| 200-E PAP                                                       |                                                           |
| 200-E-280                                                       |                                                           |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| 600-206                                                         |                                                           |
| 200-W-123                                                       |                                                           |
| 600-276                                                         |                                                           |
| 600-247                                                         |                                                           |
| 600-50                                                          |                                                           |
| 200-E-52                                                        |                                                           |
| 600-245                                                         |                                                           |
| 400-17                                                          |                                                           |
| 600-96                                                          |                                                           |
| 200-W PAP                                                       |                                                           |
| 600-207                                                         |                                                           |
| 200-W-27                                                        |                                                           |
| 400-6                                                           |                                                           |
| 200-E-42                                                        |                                                           |
| 200-W-62                                                        |                                                           |
| 300-220                                                         |                                                           |
| 200-E-314                                                       |                                                           |
| 600-118                                                         |                                                           |
| 400-18                                                          |                                                           |
| 400-1                                                           |                                                           |
| 400-8                                                           |                                                           |
| 600-250                                                         |                                                           |
| 600-26                                                          |                                                           |
| 622-1                                                           |                                                           |
| 400-2                                                           |                                                           |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 400-4                                                                                |                                                                                |
| 200-E-23                                                                             |                                                                                |
| 600-117                                                                              |                                                                                |
| 200-E-101                                                                            |                                                                                |
| 600-1                                                                                |                                                                                |
| 400-35                                                                               |                                                                                |
| 600-406                                                                              |                                                                                |
| 200-E-122                                                                            |                                                                                |
| 400-13                                                                               |                                                                                |
| 600-27                                                                               |                                                                                |
| 200-W-70                                                                             |                                                                                |
| 600-236                                                                              |                                                                                |
| 600-169                                                                              |                                                                                |
| 203-S & 205-S                                                                        |                                                                                |
| UPR-200-E-93                                                                         |                                                                                |
| 600-39                                                                               |                                                                                |
| 600-357                                                                              |                                                                                |
| 600-283                                                                              |                                                                                |
| 400-3                                                                                |                                                                                |
| 200-E-12                                                                             |                                                                                |
| 600-153                                                                              |                                                                                |
| UPR-200-W-104                                                                        |                                                                                |
| 216-B-61                                                                             |                                                                                |
| UPR-200-W-105                                                                        |                                                                                |
| 600-20                                                                               |                                                                                |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 600-216                                                                              |                                                                                |
| 400-39                                                                               |                                                                                |
| UPR-200-W-106                                                                        |                                                                                |
| UPR-200-E-92                                                                         |                                                                                |
| 600-266                                                                              |                                                                                |
| 600-210                                                                              |                                                                                |
| 400-11                                                                               |                                                                                |
| 600 BPHWSA                                                                           |                                                                                |
| 212-R                                                                                |                                                                                |
| 212-P                                                                                |                                                                                |
| 200-E-35                                                                             |                                                                                |
| 218-E-3                                                                              |                                                                                |
| 200-E-315                                                                            |                                                                                |
| 200-W-74                                                                             |                                                                                |
| 600-53                                                                               |                                                                                |
| 600-268                                                                              |                                                                                |
| 400 RSP                                                                              |                                                                                |
| 200-E-51                                                                             |                                                                                |
| 216-B-56                                                                             |                                                                                |
| 400-19                                                                               |                                                                                |
| 200-W-57                                                                             |                                                                                |
| 276-U                                                                                |                                                                                |
| 242-B                                                                                |                                                                                |
| 400-16                                                                               |                                                                                |
| 200-W-35                                                                             |                                                                                |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 200-W-61                                                                             |                                                                                |
| 276-S                                                                                |                                                                                |
| 400-14                                                                               |                                                                                |
| 600-185                                                                              |                                                                                |
| 200-E-318                                                                            |                                                                                |
| UPR-200-W-49                                                                         |                                                                                |
| 200-E-306                                                                            |                                                                                |
| 600-69                                                                               |                                                                                |
| 226-B HWSA                                                                           |                                                                                |
| 200-E-313                                                                            |                                                                                |
| 600-223                                                                              |                                                                                |
| 215-C                                                                                |                                                                                |
| 4831 LHWSA                                                                           |                                                                                |
| 200-E-312                                                                            |                                                                                |
| 600-192                                                                              |                                                                                |
| 200-E-307                                                                            |                                                                                |
| 6607-3                                                                               |                                                                                |
| 200-W-40                                                                             |                                                                                |
| 213-W                                                                                |                                                                                |
| 400-7                                                                                |                                                                                |
| 600-215                                                                              |                                                                                |
| 293-S                                                                                |                                                                                |
| 291-S-1                                                                              |                                                                                |
| 400 SBT                                                                              |                                                                                |
| 200-W-46                                                                             |                                                                                |

| <b>SITE_NUM</b><br>From<br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br>From<br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 200-W-56                                                                      |                                                                         |
| 200-E-8                                                                       |                                                                         |
| 200-E-317                                                                     |                                                                         |
| 217-B NU                                                                      |                                                                         |
| 200-E-50                                                                      |                                                                         |
| 427 HWSA                                                                      |                                                                         |
| 200-W-60                                                                      |                                                                         |
| 600-260                                                                       |                                                                         |
| 6607-1                                                                        |                                                                         |
| 600-219                                                                       |                                                                         |
| 233-SA                                                                        |                                                                         |
| 200-E-319                                                                     |                                                                         |
| 600-156                                                                       |                                                                         |
| 4713-B HWSA                                                                   |                                                                         |
| 200-W-10                                                                      |                                                                         |
| 200-E-316                                                                     |                                                                         |
| 2718-S                                                                        |                                                                         |
| 2711-S                                                                        |                                                                         |
| 600-217                                                                       |                                                                         |
| 333 LHWSA                                                                     |                                                                         |
| 200-W-145                                                                     |                                                                         |
| 200-W-49                                                                      |                                                                         |
| 200-W-66                                                                      |                                                                         |
| 600-333                                                                       |                                                                         |
| UPR-300-13                                                                    |                                                                         |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 2718-E-WS-1                                                                          |                                                                                |
| 2904-SA                                                                              |                                                                                |
| 200-W-103                                                                            |                                                                                |
| 600-330                                                                              |                                                                                |
| 600-335                                                                              |                                                                                |
| 200-E-105                                                                            |                                                                                |
| UPR-200-W-44                                                                         |                                                                                |
| 400 RST                                                                              |                                                                                |
| UPR-200-E-34                                                                         |                                                                                |
| 296-S-12                                                                             |                                                                                |
| 296-S-7                                                                              |                                                                                |
| 200-W-41                                                                             |                                                                                |
| 200-W-68                                                                             |                                                                                |
| UPR-200-W-160                                                                        |                                                                                |
| 2607-R                                                                               |                                                                                |
| 400-22                                                                               |                                                                                |
| 211-A NU                                                                             |                                                                                |
| 200-W-37                                                                             |                                                                                |
| 400 FD5                                                                              |                                                                                |
| UPR-200-W-45                                                                         |                                                                                |
| UPR-200-E-15                                                                         |                                                                                |
| UPR-200-E-22                                                                         |                                                                                |
| 400 FD10A                                                                            |                                                                                |
| UPR-200-W-89                                                                         |                                                                                |
| 241-AX-152CT                                                                         |                                                                                |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| UPR-200-E-53                                                    |                                                           |
| 2607-GF                                                         |                                                           |
| UPR-200-W-77                                                    |                                                           |
| UPR-200-W-126                                                   |                                                           |
| UPR-200-W-134                                                   |                                                           |
| UPR-200-E-97                                                    |                                                           |
| UPR-200-E-133                                                   |                                                           |
| UPR-200-W-143                                                   |                                                           |
| 400 FD1A                                                        |                                                           |
| 300-79                                                          |                                                           |
| UPR-200-W-140                                                   |                                                           |
| 218-E-6                                                         |                                                           |
| 200-W-108                                                       |                                                           |
| UPR-200-W-86                                                    |                                                           |
| 400-20                                                          |                                                           |
| UPR-600-9                                                       |                                                           |
| UPR-200-W-156                                                   |                                                           |
| UPR-200-W-159                                                   |                                                           |
| 200-E-3                                                         |                                                           |
| UPR-200-E-142                                                   |                                                           |
| TFS OF 218-E-4                                                  |                                                           |
| 241-T-302                                                       |                                                           |
| UPR-200-E-137                                                   |                                                           |
| UPR-200-E-36                                                    |                                                           |
| UPR-200-E-125                                                   |                                                           |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| UPR-200-E-127                                                   |                                                           |
| UPR-200-E-129                                                   |                                                           |
| UPR-200-E-132                                                   |                                                           |
| UPR-200-E-106                                                   |                                                           |
| 600-155                                                         |                                                           |
| 2703-E HWSA                                                     |                                                           |
| 400 FD2                                                         |                                                           |
| UPR-200-W-148                                                   |                                                           |
| UPR-200-W-83                                                    |                                                           |
| 200-W-109                                                       |                                                           |
| 296-S-1                                                         |                                                           |
| 400-21                                                          |                                                           |
| UPR-200-W-17                                                    |                                                           |
| 400-25                                                          |                                                           |
| UPR-600-10                                                      |                                                           |
| 600-265                                                         |                                                           |
| UPR-200-W-157                                                   |                                                           |
| UPR-200-W-13                                                    |                                                           |
| 200-W-18                                                        |                                                           |
| UPR-200-E-4                                                     |                                                           |
| UPR-200-E-114                                                   |                                                           |
| UPR-200-W-144                                                   |                                                           |
| UPR-200-W-154                                                   |                                                           |
| 400-23                                                          |                                                           |
| UPR-200-W-79                                                    |                                                           |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| UPR-200-E-126                                                   |                                                           |
| 600-256                                                         |                                                           |
| UPR-200-E-49                                                    |                                                           |
| UPR-200-E-140                                                   |                                                           |
| 200-E-47                                                        |                                                           |
| UPR-200-W-129                                                   |                                                           |
| UPR-600-5                                                       |                                                           |
| UPR-200-W-150                                                   |                                                           |
| 234-5Z HWSA                                                     |                                                           |
| 224-U CNT                                                       |                                                           |
| UPR-200-W-90                                                    |                                                           |
| UPR-200-W-91                                                    |                                                           |
| UPR-200-E-138                                                   |                                                           |
| UPR-200-W-80                                                    |                                                           |
| UPR-200-W-141                                                   |                                                           |
| 400-26                                                          |                                                           |
| 4721 FD                                                         |                                                           |
| 296-S-4                                                         |                                                           |
| 200-W-17                                                        |                                                           |
| 2704-E HWSA                                                     |                                                           |
| UPR-200-W-81                                                    |                                                           |
| UPR-200-W-145                                                   |                                                           |
| UPR-200-W-72                                                    |                                                           |
| UPR-200-E-61                                                    |                                                           |
| 400 STF                                                         |                                                           |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| UPR-600-4                                                                            |                                                                                |
| 200-W-4                                                                              |                                                                                |
| 2607-WWA                                                                             |                                                                                |
| UPR-200-W-137                                                                        |                                                                                |
| UPR-200-W-88                                                                         |                                                                                |
| UPR-200-W-26                                                                         |                                                                                |
| UPR-200-W-34                                                                         |                                                                                |
| UPR-200-E-118                                                                        |                                                                                |
| UPR-200-E-128                                                                        |                                                                                |
| 400 FD10                                                                             |                                                                                |
| UPR-200-E-134                                                                        |                                                                                |
| 200-E-11                                                                             |                                                                                |
| UPR-200-W-68                                                                         |                                                                                |
| UPR-200-W-7                                                                          |                                                                                |
| UPR-200-E-65                                                                         |                                                                                |
| UPR-200-W-153                                                                        |                                                                                |
| 400 RFD                                                                              |                                                                                |
| UPR-600-1                                                                            |                                                                                |
| UPR-200-E-59                                                                         |                                                                                |
| 400-9                                                                                |                                                                                |
| 400-10                                                                               |                                                                                |
| 400 SS                                                                               |                                                                                |
| 300-21                                                                               |                                                                                |
| UPR-200-W-59                                                                         |                                                                                |
| UPR-200-W-42                                                                         |                                                                                |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 200-W-111                                                                            |                                                                                |
| UPR-200-E-63                                                                         |                                                                                |
| UPR-200-W-75                                                                         |                                                                                |
| UPR-200-E-58                                                                         |                                                                                |
| 400 FD9                                                                              |                                                                                |
| UPR-200-E-136                                                                        |                                                                                |
| 296-S-2                                                                              |                                                                                |
| UPR-200-E-26                                                                         |                                                                                |
| UPR-200-W-37                                                                         |                                                                                |
| 224-U HWSA                                                                           |                                                                                |
| UPR-200-E-94                                                                         |                                                                                |
| UPR-200-W-152                                                                        |                                                                                |
| UPR-200-E-27                                                                         |                                                                                |
| 200-W-65                                                                             |                                                                                |
| 4722-C FD                                                                            |                                                                                |
| 2607-EH                                                                              |                                                                                |
| 400 FD4                                                                              |                                                                                |
| UPR-200-E-30                                                                         |                                                                                |
| UPR-300-14                                                                           |                                                                                |
| UPR-400-1                                                                            |                                                                                |
| UPR-200-E-32                                                                         |                                                                                |
| UPR-200-E-70                                                                         |                                                                                |
| 400 FD7                                                                              |                                                                                |
| 200-E-119                                                                            |                                                                                |
| 4713-B FD                                                                            |                                                                                |

| SITE_NUM<br>From<br>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx | CA_CIE_Site<br>From<br>CA_CIE_Disposition_04.24.2019.xlsx |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| UPR-200-W-149                                                   |                                                           |
| UPR-200-E-23                                                    |                                                           |
| UPR-600-7                                                       |                                                           |
| 400-12                                                          |                                                           |
| 400 FD3                                                         |                                                           |
| UPR-200-W-84                                                    |                                                           |
| 403 FD                                                          |                                                           |
| UPR-200-W-69                                                    |                                                           |
| UPR-200-W-128                                                   |                                                           |
| 200-W-32                                                        |                                                           |
| UPR-200-W-16                                                    |                                                           |
| UPR-200-E-25                                                    |                                                           |
| UPR-200-W-52                                                    |                                                           |
| UPR-200-E-116                                                   |                                                           |
| UPR-200-E-76                                                    |                                                           |
| UPR-200-E-68                                                    |                                                           |
| 205-A                                                           |                                                           |
| UPR-200-E-135                                                   |                                                           |
| UPR-200-W-147                                                   |                                                           |
| UPR-200-E-51                                                    |                                                           |
| UPR-200-W-85                                                    |                                                           |
| UPR-200-E-115                                                   |                                                           |
| 200-W-110                                                       |                                                           |
| UPR-200-W-40                                                    |                                                           |
| UPR-600-6                                                       |                                                           |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 200-W-47                                                                             |                                                                                |
| UPR-200-E-24                                                                         |                                                                                |
| 200-W-107                                                                            |                                                                                |
| UPR-200-W-107                                                                        |                                                                                |
| UPR-200-W-142                                                                        |                                                                                |
| 4713-B LDFD                                                                          |                                                                                |
| UPR-200-E-31                                                                         |                                                                                |
| 400 FD1B                                                                             |                                                                                |
| 4722 PSHWSA                                                                          |                                                                                |
| 4722-B FD                                                                            |                                                                                |
| UPR-200-W-47                                                                         |                                                                                |
| 202-A NU                                                                             |                                                                                |
| UPR-200-E-60                                                                         |                                                                                |
| 2607-Z8                                                                              |                                                                                |
| 296-U-10                                                                             |                                                                                |
| UPR-200-W-146                                                                        |                                                                                |
| UPR-200-E-131                                                                        |                                                                                |
| UPR-200-W-53                                                                         |                                                                                |
| UPR-200-W-50                                                                         |                                                                                |
| 2715-EA HWSA                                                                         |                                                                                |
| 400-15                                                                               |                                                                                |
| 241-AZ-151CT                                                                         |                                                                                |
| UPR-200-E-90                                                                         |                                                                                |
| UPR-200-E-130                                                                        |                                                                                |
| UPR-200-E-14                                                                         |                                                                                |

| <b>SITE_NUM</b><br><b>From</b><br><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b> | <b>CA_CIE_Site</b><br><b>From</b><br><b>CA_CIE_Disposition_04.24.2019.xlsx</b> |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 296-S-6                                                                              |                                                                                |
| 400 FD6                                                                              |                                                                                |
| UPR-200-W-151                                                                        |                                                                                |
| 200-W-31                                                                             |                                                                                |
| UPR-600-3                                                                            |                                                                                |
| UPR-200-W-15                                                                         |                                                                                |
| 600-251                                                                              |                                                                                |
| 200-E-48                                                                             |                                                                                |
| UPR-600-2                                                                            |                                                                                |
| 400-36                                                                               |                                                                                |
| 400 FD8                                                                              |                                                                                |
| UPR-200-E-5                                                                          |                                                                                |
| UPR-200-W-123                                                                        |                                                                                |
| UPR-200-W-10                                                                         |                                                                                |
| 200-W-19                                                                             |                                                                                |
| 202-A HWSA                                                                           |                                                                                |
| 200-W-48                                                                             |                                                                                |
| 200-W-124                                                                            |                                                                                |
| UPR-200-E-48                                                                         |                                                                                |
| 400-24                                                                               |                                                                                |
| UPR-200-E-47                                                                         |                                                                                |
| UPR-200-W-155                                                                        |                                                                                |
| UPR-600-8                                                                            |                                                                                |
| 200-W-30                                                                             |                                                                                |
| 600-404                                                                              |                                                                                |

|                                                                                        |                                                                                  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <p><b>SITE_NUM</b><br/>From<br/><b>Non_CA_CIE_Waste_Sites_Updated_4.25.19.xlsx</b></p> | <p><b>CA_CIE_Site</b><br/>From<br/><b>CA_CIE_Disposition_04.24.2019.xlsx</b></p> |
| 2607-P                                                                                 |                                                                                  |
| 209-E-WS-1                                                                             |                                                                                  |

This page intentionally left blank.

## **Appendix E**

### **RET Software Installation and Checkout Form**

This page intentionally left blank.

| <b>CHPRC SOFTWARE INSTALLATION AND CHECKOUT FORM</b>                                                                                                                                                                                                                                  |                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>Software Owner Instructions:</b><br>Complete Fields 1-13, then run test cases in Field 14. Compare test case results listed in Field 15 to corresponding Test Report outputs. If results are the same, sign and date Field 19. If not, resolve differences and repeat above steps. |                                                                                                      |
| <b>Software Subject Matter Expert Instructions:</b><br>Assign test personnel. Approve the installation of the code by signing and dating Field 21, then maintain form as part of the software support documentation.                                                                  |                                                                                                      |
| <b>GENERAL INFORMATION:</b>                                                                                                                                                                                                                                                           |                                                                                                      |
| 1. Software Name: <u>Recharge Evolution Tool (RET)</u>                                                                                                                                                                                                                                | Software Version No.: <u>Bld 2</u>                                                                   |
| <b>EXECUTABLE INFORMATION:</b>                                                                                                                                                                                                                                                        |                                                                                                      |
| 2. Executable Name (include path):                                                                                                                                                                                                                                                    | <u>\RET\Build 002\CA RET v3.3.1.py"</u>                                                              |
| 3. Executable Size (bytes):                                                                                                                                                                                                                                                           | <u>132,000</u>                                                                                       |
| <b>COMPILEATION INFORMATION:</b>                                                                                                                                                                                                                                                      |                                                                                                      |
| 4. Hardware System (i.e., property number or ID):                                                                                                                                                                                                                                     | <u>Not Applicable</u>                                                                                |
| 5. Operating System (include version number):                                                                                                                                                                                                                                         | <u>Not Applicable</u>                                                                                |
| <b>INSTALLATION AND CHECKOUT INFORMATION:</b>                                                                                                                                                                                                                                         |                                                                                                      |
| 6. Hardware System (i.e., property number or ID):                                                                                                                                                                                                                                     | <u>INTERA-00771</u>                                                                                  |
| 7. Operating System (include version number):                                                                                                                                                                                                                                         | <u>Windows 10 Professional 64-bit, version: 1903</u>                                                 |
| 8. Open Problem Report? <input checked="" type="radio"/> No <input type="radio"/> Yes                                                                                                                                                                                                 | PR/CR No.                                                                                            |
| <b>TEST CASE INFORMATION:</b>                                                                                                                                                                                                                                                         |                                                                                                      |
| 9. Directory/Path:                                                                                                                                                                                                                                                                    | <u>\RET\Build 002"</u>                                                                               |
| 10. Procedure(s):                                                                                                                                                                                                                                                                     | <u>CHPRC-04002 Rev. 1</u>                                                                            |
| 11. Libraries:                                                                                                                                                                                                                                                                        | <u>Not Applicable</u>                                                                                |
| 12. Input Files:                                                                                                                                                                                                                                                                      | <u>\RET\Build 002\RET STP Data 1-3.gdb"</u>                                                          |
| 13. Output Files:                                                                                                                                                                                                                                                                     | <u>\RET\Build 002"</u>                                                                               |
| 14. Test Cases:                                                                                                                                                                                                                                                                       | <u>\RET\Build 002"</u>                                                                               |
| 15. Test Case Results:                                                                                                                                                                                                                                                                | <u>\RET\Build 002"</u>                                                                               |
| 16. Test Performed By:                                                                                                                                                                                                                                                                | <u>Jacob Fullerton</u>                                                                               |
| 17. Test Results:                                                                                                                                                                                                                                                                     | <input checked="" type="radio"/> Satisfactory, Accepted for Use <input type="radio"/> Unsatisfactory |
| 18. Disposition (include HISI update):                                                                                                                                                                                                                                                | <u>Accepted; installation added to HISI Entry -WEN</u>                                               |

| CHPRC SOFTWARE INSTALLATION AND CHECKOUT FORM (continued)                                                                        |                                                                                                                                  |              |             |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| 1. Software Name: <u>Recharge Evolution Tool (RET)</u>                                                                           | Software Version No.: <u>Bld 2</u>                                                                                               |              |             |
| Prepared By: <u>WILLIAM NICHOLS</u>                                                                                              | <small>Digitally signed by WILLIAM NICHOLS (Affiliate)<br/>Date: 2019.12.18 15:32:00 -08'00'</small>                             |              |             |
| 19. <u>(Affiliate)</u>                                                                                                           | <u>William Nichols</u>                                                                                                           | <u>Print</u> | <u>Date</u> |
| Software Owner (Signature)                                                                                                       |                                                                                                                                  |              |             |
| 20. Test Personnel:                                                                                                              | <u>Jacob Fullerton</u><br><u>Jacob Fullerton</u><br><u>Sign</u> <u>Print</u> <u>Date</u><br><u>Sign</u> <u>Print</u> <u>Date</u> |              |             |
| <u>Jacob Fullerton</u><br><u>Jacob Fullerton</u><br><u>Sign</u> <u>Print</u> <u>Date</u><br><u>Sign</u> <u>Print</u> <u>Date</u> |                                                                                                                                  |              |             |
| Approved By:                                                                                                                     |                                                                                                                                  |              |             |
| 21. <u>Software SME (Signature)</u>                                                                                              | <u>Not required per SMP</u>                                                                                                      | <u>Print</u> | <u>Date</u> |

## **Appendix F**

### **Sites Recommended for Further Evaluation**

This page intentionally left blank.

Table F-1. Sites Recommended for Additional Research

| Site_ID              |                      |             |            |                      |                      |            |
|----------------------|----------------------|-------------|------------|----------------------|----------------------|------------|
| 100-B (A) Riverlines | 100-C-6:1            | 100-D-31:3  | 100-D-67   | 100-D-98             | 100-F-38             | 100-H-14   |
| 100-B (B) Riverlines | 100-C-6:2            | 100-D-31:4  | 100-D-68   | 100-D-98:1           | 100-F-39             | 100-H-17   |
| 100-B-1              | 100-C-6:3            | 100-D-31:5  | 100-D-69   | 100-D-98:2           | 100-F-4              | 100-H-2    |
| 100-B-10             | 100-C-6:4            | 100-D-31:6  | 100-D-7    | 100-D-98:3           | 100-F-42             | 100-H-21   |
| 100-B-12             | 100-C-7              | 100-D-31:7  | 100-D-70   | 100-D-99             | 100-F-43             | 100-H-22   |
| 100-B-14:1           | 100-C-7:1            | 100-D-31:8  | 100-D-72   | 100-DR Riverlines    | 100-F-44             | 100-H-24   |
| 100-B-14:2           | 100-C-9:1            | 100-D-31:9  | 100-D-73   | 100-F (A) Riverlines | 100-F-44:1           | 100-H-28   |
| 100-B-14:3           | 100-C-9:2            | 100-D-32    | 100-D-74   | 100-F (B) Riverlines | 100-F-44:2           | 100-H-28:1 |
| 100-B-14:4           | 100-C-9:3            | 100-D-4     | 100-D-75   | 100-F-10             | 100-F-44:4           | 100-H-28:2 |
| 100-B-14:5           | 100-C-9:4            | 100-D-42    | 100-D-75:1 | 100-F-11             | 100-F-44:5           | 100-H-28:3 |
| 100-B-14:6           | 100-D (A) Riverlines | 100-D-43    | 100-D-75:2 | 100-F-12             | 100-F-44:8           | 100-H-28:4 |
| 100-B-14:7           | 100-D (B) Riverlines | 100-D-45    | 100-D-75:3 | 100-F-14             | 100-F-44:9           | 100-H-28:5 |
| 100-B-15             | 100-D-1              | 100-D-46    | 100-D-77   | 100-F-15             | 100-F-45             | 100-H-28:6 |
| 100-B-16             | 100-D-100            | 100-D-47    | 100-D-78   | 100-F-16             | 100-F-46             | 100-H-28:8 |
| 100-B-18             | 100-D-101            | 100-D-48:1  | 100-D-80   | 100-F-18             | 100-F-48             | 100-H-30   |
| 100-B-19             | 100-D-102            | 100-D-48:2  | 100-D-80:1 | 100-F-19:1           | 100-F-49             | 100-H-31   |
| 100-B-2              | 100-D-103            | 100-D-48:3  | 100-D-80:2 | 100-F-19:2           | 100-F-50             | 100-H-34   |
| 100-B-20             | 100-D-104            | 100-D-48:4  | 100-D-81   | 100-F-19:3           | 100-F-51             | 100-H-35   |
| 100-B-21             | 100-D-105            | 100-D-49:1  | 100-D-82   | 100-F-2              | 100-F-52             | 100-H-36   |
| 100-B-21:1           | 100-D-106            | 100-D-49:2  | 100-D-83   | 100-F-20             | 100-F-53             | 100-H-37   |
| 100-B-21:2           | 100-D-107            | 100-D-49:3  | 100-D-83:1 | 100-F-23             | 100-F-54             | 100-H-38   |
| 100-B-21:3           | 100-D-108            | 100-D-49:4  | 100-D-83:2 | 100-F-24             | 100-F-55             | 100-H-4    |
| 100-B-21:4           | 100-D-109            | 100-D-50    | 100-D-83:3 | 100-F-25             | 100-F-56             | 100-H-40   |
| 100-B-22             | 100-D-12             | 100-D-50:1  | 100-D-83:4 | 100-F-26:1           | 100-F-56:1           | 100-H-41   |
| 100-B-22:1           | 100-D-14             | 100-D-50:10 | 100-D-83:5 | 100-F-26:10          | 100-F-56:2           | 100-H-42   |
| 100-B-22:2           | 100-D-15             | 100-D-50:2  | 100-D-84   | 100-F-26:11          | 100-F-57:1           | 100-H-43   |
| 100-B-23             | 100-D-18             | 100-D-50:5  | 100-D-84:1 | 100-F-26:12          | 100-F-57:2           | 100-H-44   |
| 100-B-24             | 100-D-2              | 100-D-50:6  | 100-D-84:2 | 100-F-26:13          | 100-F-58             | 100-H-45   |
| 100-B-25             | 100-D-20             | 100-D-50:7  | 100-D-85   | 100-F-26:14          | 100-F-59             | 100-H-46   |
| 100-B-26             | 100-D-21             | 100-D-50:8  | 100-D-85:1 | 100-F-26:15          | 100-F-60             | 100-H-48   |
| 100-B-27             | 100-D-23             | 100-D-50:9  | 100-D-85:2 | 100-F-26:16          | 100-F-61             | 100-H-49   |
| 100-B-28             | 100-D-24             | 100-D-52    | 100-D-86   | 100-F-26:2           | 100-F-62             | 100-H-49:1 |
| 100-B-31             | 100-D-25             | 100-D-54    | 100-D-86:1 | 100-F-26:3           | 100-F-63             | 100-H-49:2 |
| 100-B-32             | 100-D-27             | 100-D-56    | 100-D-86:2 | 100-F-26:4           | 100-F-64             | 100-H-5    |
| 100-B-33             | 100-D-28             | 100-D-56:1  | 100-D-86:3 | 100-F-26:5           | 100-F-65             | 100-H-50   |
| 100-B-34             | 100-D-28:1           | 100-D-56:2  | 100-D-87   | 100-F-26:6           | 100-F-7              | 100-H-51   |
| 100-B-35             | 100-D-29             | 100-D-58    | 100-D-88   | 100-F-26:7           | 100-F-9              | 100-H-51:1 |
| 100-B-35:1           | 100-D-3              | 100-D-60    | 100-D-9    | 100-F-26:8           | 100-H (A) Riverlines | 100-H-51:2 |
| 100-B-35:2           | 100-D-30             | 100-D-61    | 100-D-90   | 100-F-26:9           | 100-H (B) Riverlines | 100-H-51:3 |
| 100-B-8:1            | 100-D-31:1           | 100-D-62    | 100-D-94   | 100-F-31             | 100-H-1              | 100-H-51:4 |
| 100-B-8:2            | 100-D-31:10          | 100-D-63    | 100-D-96   | 100-F-33             | 100-H-10             | 100-H-51:5 |
| 100-C (A) Riverlines | 100-D-31:11          | 100-D-64    | 100-D-96:1 | 100-F-34             | 100-H-11             | 100-H-51:6 |
| 100-C (B) Riverlines | 100-D-31:12          | 100-D-65    | 100-D-96:2 | 100-F-35             | 100-H-12             | 100-H-53   |
| 100-C-3              | 100-D-31:2           | 100-D-66    | 100-D-97   | 100-F-37             | 100-H-13             | 100-H-54   |

Table F-1. Sites Recommended for Additional Research

| Site_ID              |            |                  |            |                    |                     |           |
|----------------------|------------|------------------|------------|--------------------|---------------------|-----------|
| 100-H-56             | 100-K-131  | 100-K-74         | 100-N-13   | 100-N-68           | 105D Water tunnels  | 111KE     |
| 100-H-57             | 100-K-132  | 100-K-75         | 100-N-14   | 100-N-77           | 105DR               | 1120N     |
| 100-H-58             | 100-K-14   | 100-K-77         | 100-N-16   | 100-N-78           | 105DR Water tunnels | 112B      |
| 100-H-59             | 100-K-18   | 100-K-78         | 100-N-17   | 100-N-79           | 105F                | 1134NA    |
| 100-H-59:1           | 100-K-19   | 100-K-79         | 100-N-18   | 100-N-80           | 105H                | 1143N     |
| 100-H-59:2           | 100-K-25   | 100-K-79:1       | 100-N-22   | 100-N-81           | 105KE               | 114D      |
| 100-H-60             | 100-K-27   | 100-K-79:2       | 100-N-23   | 100-N-82           | 105KE Basin         | 115KE     |
| 100-H-7              | 100-K-29   | 100-K-79:3       | 100-N-24   | 100-N-83           | 105KE Water Tunnels | 115KW     |
| 100-H-8              | 100-K-30   | 100-K-79:4       | 100-N-25   | 100-N-84           | 105KW               | 116-B-10  |
| 100-H-9              | 100-K-31   | 100-K-79:5       | 100-N-26   | 100-N-84:1         | 105KW Basin         | 116-B-12  |
| 100-K (A) Riverlines | 100-K-32   | 100-K-79:6       | 100-N-28   | 100-N-84:2         | 105KW Water tunnels | 116-B-16  |
| 100-K (B) Riverlines | 100-K-33   | 100-K-79:7       | 100-N-29   | 100-N-84:3         | 105N                | 116-B-2   |
| 100-K-1              | 100-K-34   | 100-K-79:8       | 100-N-3    | 100-N-84:4         | 105NA               | 116-B-5   |
| 100-K-100            | 100-K-35   | 100-K-80         | 100-N-30   | 100-N-84:5         | 105NB               | 116-B-6A  |
| 100-K-101            | 100-K-36   | 100-K-81         | 100-N-31   | 100-N-84:6         | 105NC               | 116-B-6B  |
| 100-K-102            | 100-K-38   | 100-K-82         | 100-N-32   | 100-N-84:7         | 105ND               | 116-B-7   |
| 100-K-103            | 100-K-42   | 100-K-83         | 100-N-33   | 100-N-84:8         | 105NE               | 116-B-9   |
| 100-K-104            | 100-K-43   | 100-K-84         | 100-N-34   | 100-N-84:9         | 107K                | 116-C-1   |
| 100-K-105            | 100-K-46   | 100-K-85         | 100-N-36   | 100-N-85           | 107N                | 116-C-2A  |
| 100-K-106            | 100-K-47   | 100-K-86         | 100-N-37   | 100-N-86           | 108F                | 116-C-2B  |
| 100-K-107            | 100-K-48   | 100-K-87         | 100-N-38   | 100-N-88           | 108N                | 116-C-2C  |
| 100-K-108            | 100-K-49   | 100-K-88         | 100-N-4    | 100-N-89           | 109N                | 116-C-3   |
| 100-K-109            | 100-K-5    | 100-K-89         | 100-N-46   | 100-N-90           | 109NA               | 116-C-6   |
| 100-K-110            | 100-K-50   | 100-K-90         | 100-N-5    | 100-N-91           | 1100 BSUHR          | 116-D-7   |
| 100-K-111            | 100-K-54   | 100-K-91         | 100-N-51   | 100-N-92           | 1100 HPADS          | 116-DR-6  |
| 100-K-113            | 100-K-55:1 | 100-K-92         | 100-N-51B  | 100-N-93           | 1100 HWSA           | 116-F-1   |
| 100-K-114            | 100-K-55:2 | 100-K-94         | 100-N-52   | 100-N-94           | 1100 UOT4           | 116-F-10  |
| 100-K-115            | 100-K-56:1 | 100-K-95         | 100-N-53   | 100-N-95           | 1100 UOT5           | 116-F-11  |
| 100-K-116            | 100-K-56:2 | 100-K-96         | 100-N-55   | 100-N-96           | 1100 UOT6           | 116-F-12  |
| 100-K-117            | 100-K-56:3 | 100-K-97         | 100-N-58   | 100-N-97           | 1100 USPT2          | 116-F-14  |
| 100-K-118            | 100-K-57   | 100-K-98         | 100-N-59   | 100-N-98           | 1100 USPT3          | 116-F-15  |
| 100-K-119            | 100-K-6    | 100-K-99         | 100-N-6    | 100-N-99           | 1100-1              | 116-F-16  |
| 100-K-120            | 100-K-60   | 100-N Riverlines | 100-N-60   | 100EMS             | 1100-11             | 116-F-2   |
| 100-K-121            | 100-K-61   | 100-N-100        | 100-N-61:1 | 103B               | 1100-19             | 116-F-3   |
| 100-K-122            | 100-K-63   | 100-N-101        | 100-N-61:2 | 103D               | 1100-2              | 116-F-4   |
| 100-K-123            | 100-K-64   | 100-N-102        | 100-N-61:3 | 104B1              | 1100-3              | 116-F-6   |
| 100-K-124            | 100-K-66   | 100-N-102:1      | 100-N-61:4 | 104B2              | 1100-4              | 116-F-7:1 |
| 100-K-125            | 100-K-67   | 100-N-102:2      | 100-N-63:1 | 104N               | 1100-8              | 116-F-7:2 |
| 100-K-126            | 100-K-68   | 100-N-103        | 100-N-63:2 | 105B               | 110KE               | 116-F-9   |
| 100-K-127            | 100-K-69   | 100-N-103:1      | 100-N-64:1 | 105C               | 110KW               | 116-H-1   |
| 100-K-128            | 100-K-70   | 100-N-104        | 100-N-64:2 | 105C Fan room      | 1112N               | 116-H-2   |
| 100-K-129            | 100-K-71   | 100-N-106        | 100-N-64:3 | 105C High tanks    | 1112NA              | 116-H-3   |
| 100-K-13             | 100-K-72   | 100-N-107        | 100-N-65   | 105C Water tunnels | 1112NB              | 116-H-4   |
| 100-K-130            | 100-K-73   | 100-N-108        | 100-N-67   | 105D               | 111B                | 116-H-7   |

Table F-1. Sites Recommended for Additional Research

| Site_ID   |            |            |           |                  |           |         |
|-----------|------------|------------|-----------|------------------|-----------|---------|
| 116-K-1   | 117NVH     | 118C4      | 126-H-2   | 1322N            | 1605KE    | 1608B   |
| 116-K-2   | 118-B-10   | 118D       | 126-KE-2  | 1322NA           | 1605KW    | 1608D   |
| 116-K-3   | 118-B-2    | 118H       | 128-B-2   | 1322NB           | 1605NE    | 1608DR  |
| 116-KE-2  | 118-B-3    | 118KE      | 128-B-3   | 1322NC           | 1606D     | 1608F   |
| 116-KE-4  | 118-B-4    | 118KW      | 128-C-1   | 1323N            | 1606K     | 1608H   |
| 116-KE-6B | 118-B-5    | 119B       | 128-D-2   | 1324N            | 1606KA    | 1608K   |
| 116-KE-6C | 118-B-8    | 119DR      | 128-F-2   | 1324NA           | 1607-B1   | 1614D3  |
| 116-KE-6D | 118-B-8:1  | 119KE      | 128-F-3   | 1325N            | 1607-B10  | 1614K3  |
| 116-KW-2  | 118-B-8:2  | 119KW      | 128-H-2   | 1327N            | 1607-B11  | 1614N   |
| 116-KW-3  | 118-B-8:3  | 119N       | 128-H-3   | 1330N            | 1607-B2   | 163N    |
| 116-N-1   | 118-C-1    | 119NA      | 128-K-2   | 1331N            | 1607-B2:1 | 165KE   |
| 116-N-3   | 118-C-2    | 11N        | 128-N-1   | 1332N            | 1607-B2:2 | 165KW   |
| 116-N-4   | 118-C-3:1  | 120-B-1    | 130-K-2   | 13N              | 1607-B3   | 166AKE  |
| 1161      | 118-C-3:2  | 120-D-2    | 130-KE-2  | 141-C            | 1607-B4   | 166KE   |
| 1162      | 118-C-3:3  | 120-F-1    | 130-KW-1  | 142K             | 1607-B5   | 166KW   |
| 1163      | 118-C-4    | 120-KE-1   | 130-KW-2  | 142KA            | 1607-B6   | 166N    |
| 1164      | 118-D-2:1  | 120-KE-2   | 130-N-1   | 147D             | 1607-B8   | 167K    |
| 1167      | 118-D-2:2  | 120-KE-3   | 130-N-1:1 | 1506K1           | 1607-B9   | 1701BA  |
| 1167A     | 118-D-3:1  | 120-KE-4   | 130-N-1:2 | 1506K2           | 1607-D2:2 | 1701NA  |
| 1168      | 118-D-3:2  | 120-KE-5   | 1300N     | 150KE            | 1607-D2:3 | 1702C   |
| 1169      | 118-D-6:1  | 120-KE-6   | 1301N     | 150KW            | 1607-D2:4 | 1702DR  |
| 116B      | 118-D-6:2  | 120-KE-8   | 1303N     | 151-B SwitchYard | 1607-D2:5 | 1702N   |
| 116C      | 118-D-6:3  | 120-KE-9   | 1304N     | 151-D SwitchYard | 1607-D3   | 1703N   |
| 116D      | 118-D-6:4  | 120-KW-3   | 1310N     | 1512N            | 1607-F1   | 1705KE  |
| 116DR     | 118-DR-2:1 | 120-KW-4   | 1312N     | 1515N            | 1607-F2   | 1705N   |
| 116KE     | 118-DR-2:2 | 120-KW-6   | 1313N     | 1516N            | 1607-F3   | 1705NA  |
| 116KW     | 118-F-1    | 120-KW-7   | 1314N     | 1517N            | 1607-F4   | 1706KE  |
| 116N      | 118-F-2    | 120-N-7    | 1315N     | 1518N            | 1607-F5   | 1706KEL |
| 1170      | 118-F-3    | 120DR      | 1315NA    | 1519N            | 1607-F6   | 1706KER |
| 1171      | 118-F-8:1  | 122-DR-1:1 | 1316N     | 151B             | 1607-F7   | 1706N   |
| 1171A     | 118-F-8:2  | 122-DR-1:2 | 1316NA    | 151D             | 1607-H1   | 1706NA  |
| 1171B     | 118-F-8:3  | 122-DR-1:3 | 1316NB    | 151K             | 1607-H2   | 1707N   |
| 1171C     | 118-F-8:4  | 122-DR-1:4 | 1316NC    | 151KE            | 1607-H4   | 1712N   |
| 1172A     | 118-H-1:1  | 122-DR-1:5 | 132-B-2   | 151KW            | 1607-K1   | 1713H   |
| 1173      | 118-H-1:2  | 122-DR-1:6 | 132-B-6   | 151N             | 1607-K2   | 1713KE  |
| 1174      | 118-H-6:1  | 122-DR-1:7 | 132-C-2   | 1524N            | 1607-K4   | 1713KER |
| 1175      | 118-H-6:2  | 1220       | 132-D-2   | 1525N            | 1607-K5   | 1713KW  |
| 1176      | 118-H-6:3  | 124-N-1    | 132-F-1   | 152K             | 1607-K6   | 1714C   |
| 1177      | 118-H-6:4  | 124-N-10   | 132-F-4:1 | 153N             | 1607K     | 1714KE  |
| 1179      | 118-H-6:5  | 124-N-3    | 132-F-4:2 | 155N             | 1607KA    | 1714KW  |
| 117DR     | 118-H-6:6  | 124-N-9    | 132-H-1   | 1601D            | 1607N1    | 1714N   |
| 117KE     | 118-KE-1   | 126-B-2    | 132-H-2   | 1601H            | 1607N2    | 1714NA  |
| 117KW     | 118-KW-1   | 126-DR-1   | 132-H-3   | 1602H            | 1607N3    | 1714NB  |
| 117N      | 118-N-1    | 126-F-2    | 132-KW-1  | 1604K            | 1607N9    | 1715N   |

Table F-1. Sites Recommended for Additional Research

| Site_ID |            |           |                |                |                |                |
|---------|------------|-----------|----------------|----------------|----------------|----------------|
| 1715NA  | 183.1KW    | 1901H17   | 2.51E+07       | 200-E-125      | 200-E-160-PL   | 200-E-193-PL   |
| 1716N   | 183.2KE    | 1901U     | 2.61E+09       | 200-E-126-PL-A | 200-E-161-PL   | 200-E-194-PL   |
| 1716NE  | 183.2KW    | 1901Y     | 2.61E+18       | 200-E-126-PL-B | 200-E-162-PL   | 200-E-195-PL   |
| 1717AKE | 183.3KE    | 1901Z     | 2.71E+69       | 200-E-127-PL-A | 200-E-162-PL:1 | 200-E-195-PL:1 |
| 1717K   | 183.3KW    | 1902D     | 2.96E+03       | 200-E-127-PL-B | 200-E-162-PL:2 | 200-E-195-PL:2 |
| 1720HA  | 183.4KE    | 1902N     | 200 CP         | 200-E-128      | 200-E-164-PL   | 200-E-196-PL   |
| 1720K   | 183.4KW    | 1902N81   | 200 ETF        | 200-E-129      | 200-E-165-PL   | 200-E-197-PL   |
| 1722N   | 183.5KE    | 1903N     | 200-A TEDF     | 200-E-13       | 200-E-165-PL:1 | 200-E-198-PL   |
| 1723N   | 183.5KW    | 1904B1    | 200-E BP       | 200-E-130      | 200-E-165-PL:2 | 200-E-199-PL   |
| 1723NX  | 183.6KE    | 1904B2    | 200-E PAP      | 200-E-131      | 200-E-166-PL   | 200-E-2        |
| 1724K   | 183.6KW    | 1904D     | 200-E PD       | 200-E-132      | 200-E-167-PL   | 200-E-20       |
| 1724KA  | 183.7KE    | 1904K     | 200-E-1        | 200-E-133      | 200-E-168-PL   | 200-E-200-PL   |
| 1724KB  | 183.7KW    | 1904N     | 200-E-100      | 200-E-134      | 200-E-169-PL   | 200-E-201-PL   |
| 1724N   | 183B       | 1904NA    | 200-E-101      | 200-E-135      | 200-E-17       | 200-E-202-PL   |
| 1734N   | 183C       | 1904NB    | 200-E-102      | 200-E-136      | 200-E-170-PL   | 200-E-203-PL   |
| 175KE   | 183D       | 1904NC    | 200-E-103      | 200-E-137      | 200-E-171-PL   | 200-E-204-PL   |
| 1802N   | 183F       | 1908-N    | 200-E-105      | 200-E-138      | 200-E-172-PL   | 200-E-204-PL:1 |
| 1802NE  | 183F (old) | 1908K     | 200-E-106      | 200-E-139      | 200-E-173-PL   | 200-E-204-PL:2 |
| 1803K   | 183H       | 1908KE    | 200-E-107      | 200-E-14       | 200-E-174-PL   | 200-E-205-PL   |
| 1804D   | 183H TSD   | 1908N     | 200-E-109      | 200-E-140      | 200-E-174-PL:1 | 200-E-205-PL:1 |
| 1805D   | 183KE      | 1908NE    | 200-E-11       | 200-E-141      | 200-E-174-PL:2 | 200-E-205-PL:2 |
| 1806D   | 183KW      | 1909F     | 200-E-110      | 200-E-142      | 200-E-174-PL:3 | 200-E-206-PL   |
| 180B    | 183N       | 1909KE    | 200-E-111-PL   | 200-E-143-PL   | 200-E-174-PL:4 | 200-E-207-PL   |
| 180D    | 183NA      | 1909KW    | 200-E-112-PL   | 200-E-144-PL   | 200-E-175-PL   | 200-E-208-PL   |
| 181B    | 183NB      | 1909N     | 200-E-112-PL:1 | 200-E-145-PL   | 200-E-176-PL-A | 200-E-209-PL   |
| 181B101 | 183NC      | 190C      | 200-E-112-PL:2 | 200-E-147-PL   | 200-E-176-PL-B | 200-E-21       |
| 181B102 | 184D       | 190D      | 200-E-112-PL:3 | 200-E-148-PL   | 200-E-177-PL   | 200-E-210-PL   |
| 181B66  | 184N       | 190DA     | 200-E-112-PL:4 | 200-E-149-PL   | 200-E-178-PL   | 200-E-211-PL   |
| 181D    | 184NA      | 190DR     | 200-E-113-PL   | 200-E-150-PL   | 200-E-179      | 200-E-212-PL   |
| 181D101 | 184NB      | 190KE     | 200-E-114-PL   | 200-E-151-PL   | 200-E-180-PL   | 200-E-213-PL   |
| 181D102 | 184NC      | 190KW     | 200-E-114-PL:1 | 200-E-152-PL   | 200-E-182-PL   | 200-E-214-PL   |
| 181KE   | 184ND      | 1914N     | 200-E-114-PL:2 | 200-E-153-PL   | 200-E-183-PL   | 200-E-215-PL   |
| 181KW   | 184NE      | 1926N     | 200-E-114-PL:3 | 200-E-154-PL   | 200-E-184-PL   | 200-E-216-PL   |
| 181N    | 184NF      | 195D      | 200-E-115      | 200-E-155-PL   | 200-E-185-PL   | 200-E-216-PL:1 |
| 181NA   | 185D       | 2.16E+45  | 200-E-116-PL   | 200-E-156-PL   | 200-E-186-PL   | 200-E-216-PL:2 |
| 181NB   | 185K       | 2.18E+09  | 200-E-117      | 200-E-157-PL   | 200-E-187-PL   | 200-E-216-PL:3 |
| 181NC   | 185N       | 2.18E+16  | 200-E-118      | 200-E-157-PL:1 | 200-E-188-PL   | 200-E-217-PL   |
| 181NE   | 186B       | 2.18E+17  | 200-E-119      | 200-E-157-PL:2 | 200-E-189      | 200-E-217-PL:1 |
| 182-F   | 186D       | 2.18E+18  | 200-E-12       | 200-E-158-PL   | 200-E-19       | 200-E-217-PL:2 |
| 182B    | 186N       | 2.19E+03  | 200-E-120      | 200-E-159-PL   | 200-E-190      | 200-E-218-PL   |
| 182D    | 188D       | 2.19E+203 | 200-E-121      | 200-E-159-PL:1 | 200-E-191-PL   | 200-E-219-PL   |
| 182K    | 189D       | 2.51E+04  | 200-E-122      | 200-E-159-PL:2 | 200-E-192-PL   | 200-E-219-PL:1 |
| 182N    | 189K       | 2.51E+05  | 200-E-123      | 200-E-159-PL:3 | 200-E-192-PL:1 | 200-E-219-PL:2 |
| 183.1KE | 1900N      | 2.51E+06  | 200-E-124      | 200-E-16       | 200-E-192-PL:2 | 200-E-220-PL   |

Table F-1. Sites Recommended for Additional Research

| Site_ID        |                |                |           |              |                  |                |
|----------------|----------------|----------------|-----------|--------------|------------------|----------------|
| 200-E-220-PL:1 | 200-E-247-PL:2 | 200-E-277-PL:2 | 200-E-319 | 200-E-8      | 200-W-115        | 200-W-150-PL:1 |
| 200-E-220-PL:2 | 200-E-248-PL   | 200-E-277-PL:3 | 200-E-35  | 200-E-80     | 200-W-116        | 200-W-150-PL:2 |
| 200-E-221-PL   | 200-E-248-PL:1 | 200-E-277-PL:4 | 200-E-4   | 200-E-81     | 200-W-117        | 200-W-150-PL:3 |
| 200-E-222-PL   | 200-E-248-PL:2 | 200-E-278-PL   | 200-E-41  | 200-E-82     | 200-W-118        | 200-W-150-PL:4 |
| 200-E-222-PL:1 | 200-E-249-PL   | 200-E-279-PL   | 200-E-42  | 200-E-84     | 200-W-119        | 200-W-151-PL   |
| 200-E-222-PL:2 | 200-E-249-PL:1 | 200-E-28       | 200-E-43  | 200-E-85     | 200-W-12         | 200-W-152-PL   |
| 200-E-223      | 200-E-249-PL:2 | 200-E-280      | 200-E-44  | 200-E-88     | 200-W-120        | 200-W-153-PL   |
| 200-E-224-PL   | 200-E-25       | 200-E-281-PL   | 200-E-45  | 200-E-89     | 200-W-121        | 200-W-153-PL:1 |
| 200-E-225-PL   | 200-E-250-PL   | 200-E-282-PL   | 200-E-46  | 200-E-9      | 200-W-122        | 200-W-153-PL:2 |
| 200-E-226-PL   | 200-E-251-PL   | 200-E-283-PL   | 200-E-47  | 200-E-90     | 200-W-123        | 200-W-154-PL   |
| 200-E-227-PL   | 200-E-252-PL   | 200-E-284      | 200-E-48  | 200-E-91     | 200-W-124        | 200-W-155-PL-A |
| 200-E-228-PL   | 200-E-253-PL   | 200-E-285      | 200-E-49  | 200-E-92     | 200-W-125-PL     | 200-W-155-PL-B |
| 200-E-228-PL:1 | 200-E-254-PL   | 200-E-286      | 200-E-5   | 200-E-93     | 200-W-125-PL:1   | 200-W-156-PL   |
| 200-E-228-PL:2 | 200-E-255-PL   | 200-E-287      | 200-E-50  | 200-E-94     | 200-W-125-PL:2   | 200-W-157-PL   |
| 200-E-228-PL:3 | 200-E-256-PL   | 200-E-288-PL   | 200-E-51  | 200-E-95     | 200-W-126        | 200-W-157-PL:1 |
| 200-E-229-PL   | 200-E-257-PL   | 200-E-289-PL   | 200-E-52  | 200-E-97     | 200-W-127        | 200-W-157-PL:2 |
| 200-E-23       | 200-E-258-PL   | 200-E-29       | 200-E-53  | 200-E-98     | 200-W-128        | 200-W-158-PL   |
| 200-E-230-PL   | 200-E-259-PL   | 200-E-290-PL   | 200-E-54  | 200-E-99     | 200-W-129-PL     | 200-W-159-PL   |
| 200-E-231-PL   | 200-E-26       | 200-E-291-PL   | 200-E-55  | 200-E8 BPDS  | 200-W-13         | 200-W-16       |
| 200-E-232-PL   | 200-E-260-PL   | 200-E-292      | 200-E-56  | 200-N-3      | 200-W-130-PL     | 200-W-160-PL   |
| 200-E-232-PL:1 | 200-E-261-PL   | 200-E-293      | 200-E-57  | 200-W ADB    | 200-W-131-PL     | 200-W-161-PL   |
| 200-E-232-PL:2 | 200-E-262-PL   | 200-E-294      | 200-E-58  | 200-W ADS    | 200-W-132-PL     | 200-W-162-PL   |
| 200-E-233-PL   | 200-E-263-PL   | 200-E-295      | 200-E-59  | 200-W BP     | 200-W-136        | 200-W-163-PL   |
| 200-E-234-PL   | 200-E-264-PL   | 200-E-296      | 200-E-6   | 200-W CSLA   | 200-W-137-PL     | 200-W-163-PL:1 |
| 200-E-234-PL:1 | 200-E-265-PL   | 200-E-297      | 200-E-60  | 200-W PAP    | 200-W-138-PL     | 200-W-163-PL:2 |
| 200-E-234-PL:2 | 200-E-265-PL:1 | 200-E-298      | 200-E-61  | 200-W PP     | 200-W-139-PL     | 200-W-163-PL:3 |
| 200-E-237-PL   | 200-E-265-PL:2 | 200-E-299      | 200-E-62  | 200-W-1      | 200-W-14         | 200-W-164-PL   |
| 200-E-237-PL:1 | 200-E-265-PL:3 | 200-E-3        | 200-E-63  | 200-W-10     | 200-W-140-PL     | 200-W-165-PL   |
| 200-E-237-PL:2 | 200-E-266-PL   | 200-E-30       | 200-E-64  | 200-W-100-PL | 200-W-141-PL     | 200-W-166-PL   |
| 200-E-238-PL   | 200-E-267-PL   | 200-E-300      | 200-E-65  | 200-W-101    | 200-W-142-PL     | 200-W-167-PL   |
| 200-E-239-PL   | 200-E-268-PL   | 200-E-301      | 200-E-67  | 200-W-102-PL | 200-W-143-PL     | 200-W-168-PL   |
| 200-E-24       | 200-E-269-PL   | 200-E-302      | 200-E-68  | 200-W-103    | 200-W-144        | 200-W-168-PL:1 |
| 200-E-240-PL   | 200-E-27       | 200-E-303      | 200-E-69  | 200-W-104    | 200-W-145        | 200-W-168-PL:2 |
| 200-E-241-PL   | 200-E-270-PL   | 200-E-304      | 200-E-7   | 200-W-105-PL | 200-W-146-PL     | 200-W-169-PL   |
| 200-E-241-PL:1 | 200-E-271-PL   | 200-E-305-PL   | 200-E-70  | 200-W-106    | 200-W-147-PL-A   | 200-W-17       |
| 200-E-241-PL:2 | 200-E-272-PL   | 200-E-306      | 200-E-71  | 200-W-107    | 200-W-147-PL-A:1 | 200-W-170-PL   |
| 200-E-241-PL:3 | 200-E-273-PL   | 200-E-307      | 200-E-72  | 200-W-108    | 200-W-147-PL-A:2 | 200-W-171      |
| 200-E-242-PL   | 200-E-273-PL:1 | 200-E-312      | 200-E-73  | 200-W-109    | 200-W-147-PL-B   | 200-W-172      |
| 200-E-243-PL   | 200-E-273-PL:2 | 200-E-313      | 200-E-74  | 200-W-11     | 200-W-149-PL     | 200-W-173-PL   |
| 200-E-244-PL   | 200-E-274-PL   | 200-E-314      | 200-E-75  | 200-W-110    | 200-W-149-PL:1   | 200-W-174-PL   |
| 200-E-245-PL   | 200-E-275-PL   | 200-E-315      | 200-E-76  | 200-W-111    | 200-W-149-PL:2   | 200-W-174-PL:1 |
| 200-E-246-PL   | 200-E-276-PL   | 200-E-316      | 200-E-77  | 200-W-112    | 200-W-149-PL:3   | 200-W-174-PL:2 |
| 200-E-247-PL   | 200-E-277-PL   | 200-E-317      | 200-E-78  | 200-W-113    | 200-W-15         | 200-W-175-PL   |
| 200-E-247-PL:1 | 200-E-277-PL:1 | 200-E-318      | 200-E-79  | 200-W-114    | 200-W-150-PL     | 200-W-176-PL   |

Table F-1. Sites Recommended for Additional Research

| Site_ID        |                |                |             |               |               |             |
|----------------|----------------|----------------|-------------|---------------|---------------|-------------|
| 200-W-177-PL   | 200-W-205-PL:2 | 200-W-229-PL   | 200-W-4     | 200-W-82      | 202-S         | 2102E       |
| 200-W-178-PL   | 200-W-206-PL   | 200-W-230-PL   | 200-W-40    | 200-W-83      | 202-S:1       | 2102F       |
| 200-W-179-PL   | 200-W-207-PL-A | 200-W-230-PL:1 | 200-W-41    | 200-W-84-PL   | 2025E         | 2102HV      |
| 200-W-18       | 200-W-207-PL-B | 200-W-230-PL:2 | 200-W-42    | 200-W-84-PL:1 | 2025EA        | 2102M       |
| 200-W-180-PL   | 200-W-208-PL   | 200-W-230-PL:3 | 200-W-43    | 200-W-84-PL:2 | 2025EC71      | 2102N       |
| 200-W-180-PL:1 | 200-W-208-PL:1 | 200-W-231      | 200-W-44    | 200-W-84-PL:3 | 2025ED        | 2103HV      |
| 200-W-180-PL:2 | 200-W-208-PL:2 | 200-W-232      | 200-W-45    | 200-W-85      | 202A          | 2104M       |
| 200-W-181-PL   | 200-W-208-PL:3 | 200-W-233      | 200-W-46    | 200-W-86      | 202A417       | 2104N       |
| 200-W-182-PL   | 200-W-209-PL   | 200-W-234      | 200-W-47    | 200-W-87      | 202S          | 2105HV      |
| 200-W-183-PL   | 200-W-209-PL:1 | 200-W-235-PL   | 200-W-48    | 200-W-88-PL   | 203-S & 205-S | 2106HV      |
| 200-W-184-PL   | 200-W-209-PL:2 | 200-W-236      | 200-W-49    | 200-W-88-PL:1 | 203A          | 2107        |
| 200-W-185-PL   | 200-W-209-PL:3 | 200-W-237      | 200-W-51    | 200-W-88-PL:2 | 203U          | 2109E       |
| 200-W-186-PL   | 200-W-21       | 200-W-238      | 200-W-52    | 200-W-88-PL:3 | 203UX         | 210A        |
| 200-W-187-PL   | 200-W-210-PL   | 200-W-239      | 200-W-53    | 200-W-88-PL:4 | 203UXA        | 210E        |
| 200-W-188-PL   | 200-W-210-PL:1 | 200-W-24       | 200-W-54    | 200-W-88-PL:5 | 204-AR        | 210M        |
| 200-W-188-PL:1 | 200-W-210-PL:2 | 200-W-240      | 200-W-55    | 200-W-88-PL:6 | 204A          | 210T        |
| 200-W-188-PL:2 | 200-W-210-PL:3 | 200-W-241      | 200-W-56    | 200-W-89      | 204AR         | 210W        |
| 200-W-189-PL   | 200-W-211-PL   | 200-W-242      | 200-W-57    | 200-W-9       | 205-A         | 211-A NU    |
| 200-W-19       | 200-W-211-PL:1 | 200-W-243      | 200-W-58    | 200-W-90      | 205A          | 211A        |
| 200-W-190-PL   | 200-W-211-PL:2 | 200-W-244-PL   | 200-W-59    | 200-W-92      | 206A          | 211B        |
| 200-W-191-PL   | 200-W-211-PL:3 | 200-W-245      | 200-W-6     | 200-W-93      | 207-A-NORTH   | 211BA       |
| 200-W-192-PL   | 200-W-211-PL:4 | 200-W-246      | 200-W-60    | 200-W-94      | 207-A-SOUTH   | 211BA151    |
| 200-W-192-PL:1 | 200-W-212-PL   | 200-W-247      | 200-W-61    | 200-W-95      | 207-B         | 211BB       |
| 200-W-192-PL:2 | 200-W-213-PL   | 200-W-248-PL   | 200-W-62    | 200-W-96      | 207-S         | 211E        |
| 200-W-192-PL:3 | 200-W-213-PL:1 | 200-W-249      | 200-W-63    | 200-W-97-PL   | 207-SL        | 211ED       |
| 200-W-192-PL:4 | 200-W-213-PL:2 | 200-W-25       | 200-W-64    | 200-W-98-PL   | 207-T         | 211H        |
| 200-W-193-PL   | 200-W-214-PL   | 200-W-250      | 200-W-65    | 200-W-99-PL   | 207-U         | 211S        |
| 200-W-194-PL   | 200-W-215-PL   | 200-W-251      | 200-W-66    | 200CC-BA      | 207-Z         | 211T        |
| 200-W-195-PL   | 200-W-216-PL   | 200-W-252      | 200-W-67    | 201-C         | 207A          | 211T52      |
| 200-W-196-PL   | 200-W-217-PL   | 200-W-253      | 200-W-68    | 201C          | 207B          | 211U        |
| 200-W-197-PL   | 200-W-218-PL   | 200-W-254      | 200-W-69    | 201R          | 207BA         | 211UA       |
| 200-W-198-PL   | 200-W-219-PL   | 200-W-255      | 200-W-7     | 201W          | 207S          | 212-B       |
| 200-W-199-PL   | 200-W-22       | 200-W-26       | 200-W-70    | 202-A         | 207SL         | 212-P       |
| 200-W-2        | 200-W-220-PL   | 200-W-27       | 200-W-71    | 202-A HWSA    | 207T          | 212-R       |
| 200-W-20       | 200-W-221-PL   | 200-W-28       | 200-W-72    | 202-A NU      | 207U          | 2120WA      |
| 200-W-200-PL   | 200-W-222-PL   | 200-W-29       | 200-W-73    | 202-A-E-F11   | 209-E-WS-1    | 2120WB      |
| 200-W-201-PL   | 200-W-223-PL   | 200-W-3        | 200-W-74    | 202-A-E5      | 209-E-WS-2    | 2125E       |
| 200-W-202-PL   | 200-W-224-PL   | 200-W-30       | 200-W-75    | 202-A-F15     | 209-E-WS-3    | 2125E (old) |
| 200-W-202-PL:1 | 200-W-224-PL:1 | 200-W-31       | 200-W-76    | 202-A-F16     | 209-E-WS-3:1  | 212A        |
| 200-W-202-PL:2 | 200-W-224-PL:2 | 200-W-32       | 200-W-77    | 202-A-F18     | 209E          | 212C        |
| 200-W-203-PL   | 200-W-225-PL   | 200-W-33       | 200-W-78-PL | 202-A-G7      | 209EA         | 212E        |
| 200-W-204-PL   | 200-W-226-PL   | 200-W-35       | 200-W-79-PL | 202-A-U3      | 2101-M POND   | 212ED       |
| 200-W-205-PL   | 200-W-227-PL   | 200-W-36       | 200-W-80    | 202-A-U4      | 2101HV        | 212H        |
| 200-W-205-PL:1 | 200-W-228-PL   | 200-W-37       | 200-W-81    | 202-A-WS-1    | 2101M         | 212N        |

Table F-1. Sites Recommended for Additional Research

| Site_ID   |             |              |            |           |            |          |
|-----------|-------------|--------------|------------|-----------|------------|----------|
| 212P      | 216-A-24    | 216-B-2-2    | 216-B-50   | 216-S-18  | 216-T-36   | 216-Z-3  |
| 212R      | 216-A-25    | 216-B-2-3    | 216-B-51   | 216-S-20  | 216-T-4-1D | 216-Z-4  |
| 212S      | 216-A-26    | 216-B-20     | 216-B-52   | 216-S-21  | 216-T-4-2  | 216-Z-5  |
| 212T      | 216-A-26A   | 216-B-21     | 216-B-53A  | 216-S-22  | 216-T-4A   | 216-Z-6  |
| 212W      | 216-A-27    | 216-B-22     | 216-B-53B  | 216-S-23  | 216-T-4B   | 216-Z-7  |
| 212Z      | 216-A-28    | 216-B-23     | 216-B-54   | 216-S-25  | 216-T-5    | 216-Z-8  |
| 213-W     | 216-A-29    | 216-B-24     | 216-B-55   | 216-S-3   | 216-T-6    | 216-Z-9  |
| 213-W-1   | 216-A-3     | 216-B-25     | 216-B-56   | 216-S-4   | 216-T-7    | 216A     |
| 213A      | 216-A-30    | 216-B-26     | 216-B-57   | 216-S-5   | 216-T-8    | 216A1A   |
| 213E      | 216-A-31    | 216-B-27     | 216-B-58   | 216-S-5:1 | 216-T-9    | 216A25   |
| 213J      | 216-A-32    | 216-B-28     | 216-B-59   | 216-S-5:2 | 216-TY-201 | 216A271  |
| 213K      | 216-A-33    | 216-B-29     | 216-B-59B  | 216-S-6   | 216-U-1&2  | 216A29A  |
| 213P      | 216-A-34    | 216-B-3      | 216-B-6    | 216-S-7   | 216-U-10   | 216A37-1 |
| 213S      | 216-A-35    | 216-B-3-1    | 216-B-60   | 216-S-8   | 216-U-11   | 216A37-2 |
| 213W      | 216-A-36A   | 216-B-3-2    | 216-B-61   | 216-S-9   | 216-U-12   | 216A40A  |
| 213WB     | 216-A-36B   | 216-B-3-3    | 216-B-62   | 216-SX-2  | 216-U-13   | 216A42E  |
| 213WTK1   | 216-A-37-1  | 216-B-30     | 216-B-63   | 216-T-1   | 216-U-14   | 216A524  |
| 214A      | 216-A-37-2  | 216-B-31     | 216-B-7A&B | 216-T-10  | 216-U-15   | 216A5A   |
| 214C      | 216-A-38-1  | 216-B-32     | 216-B-8    | 216-T-11  | 216-U-16   | 216ATK1  |
| 214E      | 216-A-39    | 216-B-33     | 216-B-9    | 216-T-12  | 216-U-17   | 216ATK2  |
| 214F      | 216-A-4     | 216-B-34     | 216-BY-201 | 216-T-13  | 216-U-3    | 216B351  |
| 214G      | 216-A-40    | 216-B-35     | 216-C-1    | 216-T-14  | 216-U-4    | 216B352  |
| 214T      | 216-A-41    | 216-B-36     | 216-C-10   | 216-T-15  | 216-U-4A   | 216B353  |
| 215-C     | 216-A-42    | 216-B-37     | 216-C-2    | 216-T-16  | 216-U-4B   | 216B354  |
| 215A      | 216-A-45    | 216-B-38     | 216-C-3    | 216-T-17  | 216-U-5    | 216B57   |
| 215C      | 216-A-5     | 216-B-39     | 216-C-4    | 216-T-18  | 216-U-6    | 216B59   |
| 215E      | 216-A-508   | 216-B-3A     | 216-C-5    | 216-T-19  | 216-U-7    | 216B59A  |
| 216-A-1   | 216-A-524   | 216-B-3A RAD | 216-C-6    | 216-T-2   | 216-U-8    | 216B59B  |
| 216-A-10  | 216-A-6     | 216-B-3B     | 216-C-7    | 216-T-20  | 216-U-9    | 216E28A  |
| 216-A-11  | 216-A-7     | 216-B-3B RAD | 216-C-8    | 216-T-21  | 216-W-LWC  | 216E28B  |
| 216-A-12  | 216-A-8     | 216-B-3C     | 216-C-9    | 216-T-22  | 216-Z-1&2  | 216E28C  |
| 216-A-13  | 216-A-9     | 216-B-3C RAD | 216-E-28   | 216-T-23  | 216-Z-10   | 216E43A  |
| 216-A-14  | 216-B-10A   | 216-B-4      | 216-N-8    | 216-T-24  | 216-Z-11   | 216E43B  |
| 216-A-15  | 216-B-10B   | 216-B-40     | 216-S-1&2  | 216-T-25  | 216-Z-12   | 216Z9A   |
| 216-A-16  | 216-B-11A&B | 216-B-41     | 216-S-10D  | 216-T-26  | 216-Z-13   | 216Z9B   |
| 216-A-17  | 216-B-12    | 216-B-42     | 216-S-10P  | 216-T-27  | 216-Z-14   | 216Z9C   |
| 216-A-18  | 216-B-13    | 216-B-43     | 216-S-11   | 216-T-28  | 216-Z-15   | 216ZP1   |
| 216-A-19  | 216-B-14    | 216-B-44     | 216-S-12   | 216-T-29  | 216-Z-16   | 216ZP1A  |
| 216-A-2   | 216-B-15    | 216-B-45     | 216-S-13   | 216-T-3   | 216-Z-17   | 216ZP1B  |
| 216-A-20  | 216-B-16    | 216-B-46     | 216-S-14   | 216-T-31  | 216-Z-18   | 216ZP1C  |
| 216-A-21  | 216-B-17    | 216-B-47     | 216-S-15   | 216-T-32  | 216-Z-19   | 217-B NU |
| 216-A-22  | 216-B-18    | 216-B-48     | 216-S-16P  | 216-T-33  | 216-Z-1A   | 217A     |
| 216-A-23A | 216-B-19    | 216-B-49     | 216-S-17   | 216-T-34  | 216-Z-1D   | 217AZ    |
| 216-A-23B | 216-B-2-1   | 216-B-5      | 216-S-172  | 216-T-35  | 216-Z-20   | 217B     |

Table F-1. Sites Recommended for Additional Research

| Site_ID         |            |           |            |             |           |                |
|-----------------|------------|-----------|------------|-------------|-----------|----------------|
| 217E            | 218HV      | 221-T-6-1 | 223E       | 2262W       | 234ZB     | 241-A-106      |
| 217F            | 218W5-252  | 221-U     | 224-B      | 2263W       | 234ZC     | 241-A-151      |
| 217G            | 218W5-252A | 221-U:1   | 224-T      | 2264W       | 236Z      | 241-A-152      |
| 217H            | 218W5T31T1 | 221-U:2   | 224-U CNT  | 2265W       | 240-S-151 | 241-A-153      |
| 217I            | 218W5T34T1 | 221-U:3   | 224-U HWSA | 2266E       | 240-S-152 | 241-A-302A     |
| 218-C-9         | 218W7      | 221A      | 2240E      | 2268E       | 240-S-302 | 241-A-302B     |
| 218-E-1         | 218W8      | 221B      | 2241B      | 2269E       | 2400E     | 241-A-350      |
| 218-E-10        | 219-S-101  | 221BA     | 2242B      | 226B        | 2401W     | 241-A-417      |
| 218-E-12A       | 219-S-102  | 221BB     | 2244B      | 226W        | 2402EA    | 241-A-431      |
| 218-E-12B       | 219-S-103  | 221BC     | 2245B      | 226Z        | 2402EB    | 241-A-501      |
| 218-E-12B ANNEX | 219-S-104  | 221BD     | 2247B      | 227S        | 2402EC    | 241-A-702-WS-1 |
| 218-E-14        | 219A       | 221BE     | 2249B      | 229E        | 2402ED    | 241-A-A        |
| 218-E-15        | 219A1      | 221BF     | 224B       | 229W        | 2402EF    | 241-A-ANC      |
| 218-E-2         | 219A201    | 221BG     | 224T       | 2300W       | 2402EG    | 241-A-B        |
| 218-E-2A        | 219B       | 221BK     | 224U       | 2304W       | 2402W     | 241-AN-101     |
| 218-E-3         | 219C       | 221T      | 224UA      | 2305W       | 2402WB    | 241-AN-102     |
| 218-E-4         | 219D       | 221TA     | 2251E      | 2306W       | 2402WC    | 241-AN-103     |
| 218-E-5         | 219E       | 221TB     | 2252E      | 2307W       | 2402WD    | 241-AN-104     |
| 218-E-5A        | 219F       | 221U      | 2253E      | 2308W       | 2402WE    | 241-AN-105     |
| 218-E-6         | 219G       | 222-S     | 2254E      | 2309W       | 2402WF    | 241-AN-106     |
| 218-E-7         | 219H       | 222-SD    | 2255E      | 231-W-151   | 2402WG    | 241-AN-107     |
| 218-E-8         | 219S       | 2220E     | 2255EA     | 231-W-151:1 | 2402WH    | 241-AN-A       |
| 218-E-9         | 219T       | 2220W     | 2256E      | 231-W-151:2 | 2402WI    | 241-AN-ANC     |
| 218-W-1         | 2200B      | 222B      | 2256WTP    | 2310W       | 2402WJ    | 241-AN-B       |
| 218-W-11        | 2201B      | 222S-BA   | 2257E      | 2314W       | 2402WK    | 241-AP VP      |
| 218-W-1A        | 2202E      | 222SA     | 2258E      | 2315W       | 2402WL    | 241-AP-101     |
| 218-W-2         | 220A       | 222SB     | 2259W      | 2316W       | 2403E     | 241-AP-102     |
| 218-W-2A        | 221-B      | 222SC     | 225B       | 2318W       | 2403EA    | 241-AP-103     |
| 218-W-3         | 221-B SDT  | 222SD     | 225B-BA    | 231W151     | 2403WA    | 241-AP-104     |
| 218-W-3A        | 221-B-26-1 | 222SE     | 225BA      | 231Z        | 2403WB    | 241-AP-105     |
| 218-W-3AE       | 221-B-27-2 | 222SF     | 225BB      | 232-Z       | 2403WC    | 241-AP-106     |
| 218-W-4A        | 221-B-27-3 | 222SH     | 225BC      | 232-Z:1     | 2403WD    | 241-AP-107     |
| 218-W-4B        | 221-B-27-4 | 222T      | 225BD      | 232-Z:2     | 2404E     | 241-AP-108     |
| 218-W-4C        | 221-B-28-3 | 222U      | 225BE      | 232-Z:3     | 2404WA    | 241-AP-ANC     |
| 218-W-4C ANNEX  | 221-B-28-4 | 2230E     | 225BF      | 232Z        | 2404WB    | 241-AR-151     |
| 218-W-5         | 221-B-29-4 | 2231E     | 225BG      | 233-S       | 2404WC    | 241-AW-101     |
| 218-W-6         | 221-B-30-3 | 2232E     | 225BG-GEN1 | 233-SA      | 2405W     | 241-AW-102     |
| 218-W-7         | 221-B-WS-1 | 2233E     | 225E       | 2336W       | 2406W     | 241-AW-103     |
| 218-W-8         | 221-B-WS-2 | 2234E     | 225EC      | 233SA       | 240W      | 241-AW-104     |
| 218-W-9         | 221-T-11-R | 2235E     | 225W       | 234-5Z      | 241-A-101 | 241-AW-105     |
| 218-W-REACTOR   | 221-T-15-1 | 2236E     | 225WA      | 234-5Z HWSA | 241-A-102 | 241-AW-106     |
| 218A            | 221-T-5-6  | 2237E     | 225WB      | 234-5Z-BA   | 241-A-103 | 241-AW-A       |
| 218B            | 221-T-5-7  | 2238E     | 225WC      | 234-5Z-BE   | 241-A-104 | 241-AW-ANC     |
| 218E16101       | 221-T-5-9  | 2239E     | 226-B HWSA | 234-5ZA     | 241-A-105 | 241-AW-B       |

Table F-1. Sites Recommended for Additional Research

| Site_ID      |             |              |             |            |              |                |
|--------------|-------------|--------------|-------------|------------|--------------|----------------|
| 241-AX-101   | 241-B-110   | 241-BY-106   | 241-ER-152  | 241-SX-302 | 241-TX-107   | 241-U-110      |
| 241-AX-102   | 241-B-111   | 241-BY-107   | 241-ER-153  | 241-SX-401 | 241-TX-108   | 241-U-111      |
| 241-AX-103   | 241-B-112   | 241-BY-108   | 241-ER-311  | 241-SX-402 | 241-TX-109   | 241-U-112      |
| 241-AX-104   | 241-B-151   | 241-BY-109   | 241-ER-311A | 241-SX-A   | 241-TX-110   | 241-U-151      |
| 241-AX-151   | 241-B-152   | 241-BY-110   | 241-EW-151  | 241-SX-ANC | 241-TX-111   | 241-U-152      |
| 241-AX-151:1 | 241-B-153   | 241-BY-111   | 241-S-101   | 241-SX-B   | 241-TX-112   | 241-U-153      |
| 241-AX-151:2 | 241-B-154   | 241-BY-112   | 241-S-102   | 241-SY-101 | 241-TX-113   | 241-U-201      |
| 241-AX-151:3 | 241-B-201   | 241-BY-ANC   | 241-S-103   | 241-SY-102 | 241-TX-114   | 241-U-202      |
| 241-AX-151:4 | 241-B-202   | 241-BY-ITS1  | 241-S-104   | 241-SY-103 | 241-TX-115   | 241-U-203      |
| 241-AX-151:5 | 241-B-203   | 241-BYR-09A  | 241-S-105   | 241-SY-A   | 241-TX-116   | 241-U-204      |
| 241-AX-152CT | 241-B-204   | 241-BYR-152  | 241-S-106   | 241-SY-ANC | 241-TX-117   | 241-U-252      |
| 241-AX-152DS | 241-B-252   | 241-BYR-153  | 241-S-107   | 241-SY-B   | 241-TX-118   | 241-U-301      |
| 241-AX-153   | 241-B-301   | 241-BYR-154  | 241-S-108   | 241-T-101  | 241-TX-152   | 241-U-361      |
| 241-AX-155   | 241-B-302B  | 241-C-101    | 241-S-109   | 241-T-102  | 241-TX-153   | 241-U-A        |
| 241-AX-501   | 241-B-361   | 241-C-102    | 241-S-110   | 241-T-103  | 241-TX-154   | 241-U-ANC      |
| 241-AX-A     | 241-B-ANC   | 241-C-103    | 241-S-111   | 241-T-104  | 241-TX-155   | 241-U-B        |
| 241-AX-ANC   | 241-BR-152  | 241-C-103 VP | 241-S-112   | 241-T-105  | 241-TX-302A  | 241-U-C        |
| 241-AX-B     | 241-BX-101  | 241-C-104    | 241-S-151   | 241-T-106  | 241-TX-302B  | 241-U-D        |
| 241-AX-IX    | 241-BX-102  | 241-C-105    | 241-S-152   | 241-T-107  | 241-TX-302BR | 241-UR-151     |
| 241-AY-101   | 241-BX-103  | 241-C-106    | 241-S-302A  | 241-T-108  | 241-TX-302C  | 241-UR-152     |
| 241-AY-102   | 241-BX-104  | 241-C-107    | 241-S-302B  | 241-T-109  | 241-TX-302XB | 241-UR-153     |
| 241-AY-151   | 241-BX-105  | 241-C-108    | 241-S-304   | 241-T-110  | 241-TX-ANC   | 241-UR-154     |
| 241-AY-152   | 241-BX-106  | 241-C-109    | 241-S-A     | 241-T-111  | 241-TXR-151  | 241-UX-154     |
| 241-AY-501   | 241-BX-107  | 241-C-110    | 241-S-ANC   | 241-T-112  | 241-TXR-152  | 241-UX-302A    |
| 241-AY-ANC   | 241-BX-108  | 241-C-111    | 241-S-B     | 241-T-151  | 241-TXR-153  | 241-WR VAULT   |
| 241-AZ VP    | 241-BX-109  | 241-C-112    | 241-S-C     | 241-T-152  | 241-TY-101   | 241-WR VAULT:1 |
| 241-AZ-101   | 241-BX-110  | 241-C-151    | 241-S-D     | 241-T-153  | 241-TY-102   | 241-WR VAULT:2 |
| 241-AZ-102   | 241-BX-111  | 241-C-152    | 241-SX-101  | 241-T-201  | 241-TY-103   | 241-Z          |
| 241-AZ-151CT | 241-BX-112  | 241-C-153    | 241-SX-102  | 241-T-202  | 241-TY-104   | 241-Z-361      |
| 241-AZ-151DS | 241-BX-153  | 241-C-154    | 241-SX-103  | 241-T-203  | 241-TY-105   | 241-Z-8        |
| 241-AZ-152   | 241-BX-154  | 241-C-201    | 241-SX-104  | 241-T-204  | 241-TY-106   | 241A152        |
| 241-AZ-154   | 241-BX-155  | 241-C-202    | 241-SX-105  | 241-T-252  | 241-TY-153   | 241A201        |
| 241-AZ-155   | 241-BX-302A | 241-C-203    | 241-SX-106  | 241-T-301B | 241-TY-302A  | 241A271        |
| 241-AZ-301   | 241-BX-302B | 241-C-204    | 241-SX-107  | 241-T-302  | 241-TY-302B  | 241A401        |
| 241-AZ-ANC   | 241-BX-302C | 241-C-252    | 241-SX-108  | 241-T-361  | 241-TY-ANC   | 241A431        |
| 241-B-101    | 241-BX-ANC  | 241-C-301    | 241-SX-109  | 241-T-ANC  | 241-U-101    | 241A701        |
| 241-B-102    | 241-BXR-151 | 241-C-801    | 241-SX-110  | 241-TR-152 | 241-U-102    | 241A702        |
| 241-B-103    | 241-BXR-152 | 241-CR-151   | 241-SX-111  | 241-TR-153 | 241-U-103    | 241AA          |
| 241-B-104    | 241-BXR-153 | 241-CR-152   | 241-SX-112  | 241-TX-101 | 241-U-104    | 241AB          |
| 241-B-105    | 241-BY-101  | 241-CR-153   | 241-SX-113  | 241-TX-102 | 241-U-105    | 241AN271       |
| 241-B-106    | 241-BY-102  | 241-CX-70    | 241-SX-114  | 241-TX-103 | 241-U-106    | 241AN273       |
| 241-B-107    | 241-BY-103  | 241-CX-71    | 241-SX-115  | 241-TX-104 | 241-U-107    | 241AN274       |
| 241-B-108    | 241-BY-104  | 241-CX-72    | 241-SX-151  | 241-TX-105 | 241-U-108    | 241AN801       |
| 241-B-109    | 241-BY-105  | 241-ER-151   | 241-SX-152  | 241-TX-106 | 241-U-109    | 241ANA         |

Table F-1. Sites Recommended for Additional Research

| Site_ID   |           |                 |                 |            |          |             |
|-----------|-----------|-----------------|-----------------|------------|----------|-------------|
| 241ANB    | 241CX72   | 242AB           | 244-BXR VAULT:2 | 251W       | 2607-ER  | 2701AB      |
| 241AP271  | 241CXV    | 242AC           | 244-BXR VAULT:3 | 251W66     | 2607-ES  | 2701AC      |
| 241AP273  | 241EW151  | 242AL11         | 244-BXR VAULT:4 | 2524WTP    | 2607-FSM | 2701EC      |
| 241AP801  | 241S271A  | 242AL42         | 244-CR VAULT    | 252A       | 2607-FSN | 2701HV      |
| 241AW271  | 241S271B  | 242AL43         | 244-CR VAULT:1  | 252AB      | 2607-GF  | 2701M       |
| 241AW273  | 241SX271  | 242AL44         | 244-CR VAULT:2  | 252AC      | 2607-P   | 2701Z       |
| 241AW801  | 241SX281  | 242AL71         | 244-CR VAULT:3  | 252BY      | 2607-R   | 2701ZA      |
| 241AX80   | 241SX401  | 242B            | 244-CR VAULT:4  | 252E       | 2607-W1  | 2701ZB      |
| 241AX801A | 241SX402  | 242BL           | 244-CR-WS-1     | 252S       | 2607-W10 | 2701ZC      |
| 241AX801B | 241SX701  | 242S            | 244-S DCRT      | 252U       | 2607-W11 | 2701ZD      |
| 241AX801C | 241SY271  | 242S302C        | 244-TX DCRT     | 252W       | 2607-W12 | 2701ZE      |
| 241AXA    | 241SY272  | 242S702         | 244-TXR VAULT   | 252Z1      | 2607-W13 | 2702Z       |
| 241AXB    | 241SY274  | 242T            | 244-TXR VAULT:1 | 253E       | 2607-W14 | 2703-E HWSA |
| 241AY401  | 241SY275  | 242T271         | 244-TXR VAULT:2 | 254E       | 2607-W15 | 2703E       |
| 241AY402  | 241SY276  | 242T601         | 244-TXR VAULT:3 | 2607-E10   | 2607-W16 | 2704-C-WS-1 |
| 241AY51   | 241T361   | 242T701         | 244-U DCRT      | 2607-E11   | 2607-W2  | 2704-E HWSA |
| 241AY51A  | 241T701   | 242TB           | 244-UR VAULT    | 2607-E12   | 2607-W3  | 2704C       |
| 241AY801A | 241TX154  | 242TC           | 244-UR VAULT:1  | 2607-E12:1 | 2607-W4  | 2704HV      |
| 241AZ156  | 241TX302C | 242ZA           | 244-UR VAULT:2  | 2607-E12:2 | 2607-W5  | 2704S       |
| 241AZ271  | 241TX701  | 243G1           | 244-UR VAULT:3  | 2607-E13   | 2607-W6  | 2704W       |
| 241AZ301  | 241U271   | 243G12          | 244-UR VAULT:4  | 2607-E14   | 2607-W7  | 2704Z       |
| 241AZ301A | 241U361   | 243G1A          | 244A            | 2607-E1A   | 2607-W8  | 2705S       |
| 241AZ401  | 241U701   | 243G2           | 244AR           | 2607-E3    | 2607-W9  | 2705Z       |
| 241AZ402  | 241UX302A | 243G3           | 244AR40         | 2607-E4    | 2607-WA  | 2706S       |
| 241AZ701  | 241WR     | 243G4           | 244AR701        | 2607-E5    | 2607-WB  | 2706T       |
| 241AZ702  | 241Z      | 243G5           | 244AR702        | 2607-E6    | 2607-WC  | 2706TA      |
| 241AZ801A | 241ZA     | 243G6           | 244AR712        | 2607-E7A   | 2607-WL  | 2706TB      |
| 241B361   | 241ZB     | 243G8           | 244AR715        | 2607-E7B   | 2607-WT  | 2707AR      |
| 241B701   | 241ZG     | 243G81          | 244AR716        | 2607-E8    | 2607-WTX | 2707AX      |
| 241BX155  | 241ZRB    | 243G82          | 244AR717        | 2607-E8A   | 2607-WUT | 2707E       |
| 241BY254  | 242-A     | 243G9           | 244BX271        | 2607-E9    | 2607-WWA | 2707SX      |
| 241BY301  | 242-B     | 243S-TK1        | 244CR           | 2607-EA    | 2607-WZ  | 2707W       |
| 241BY302  | 242-B-151 | 243T            | 244S271         | 2607-EB    | 2607-Z   | 2708AR      |
| 241C      | 242-S     | 243Z            | 244S2904        | 2607-EC    | 2607-Z1  | 2708S       |
| 241C51    | 242-T     | 243ZA           | 244TX271        | 2607-ED    | 2607-Z8  | 2709A       |
| 241C51A   | 242-T-135 | 243ZB           | 244TX2904       | 2607-EE    | 2607W1   | 270A        |
| 241C73    | 242-T-151 | 244-A CT        | 244U271         | 2607-EF    | 2610E    | 270E        |
| 241C801   | 242-TA-R1 | 244-A LS        | 244U2904        | 2607-EG    | 2611E    | 270W        |
| 241C90    | 242-Z     | 244-A LS:1      | 2451E           | 2607-EH    | 2620W    | 270Z        |
| 241C91    | 2420W     | 244-A LS:2      | 246S            | 2607-EK    | 2652WTP  | 271-U       |
| 241CR271  | 242A      | 244-AR VAULT    | 2503Z           | 2607-EL    | 267Z     | 2710E       |
| 241CX40   | 242A-BA   | 244-BX DCRT     | 2506W1          | 2607-EM    | 268Z     | 2710S       |
| 241CX70   | 242A702   | 244-BXR VAULT   | 2506W4          | 2607-EP    | 270-E-1  | 2710W       |
| 241CX71   | 242A81    | 244-BXR VAULT:1 | 251E            | 2607-EQ    | 270-W    | 2711-B1     |

Table F-1. Sites Recommended for Additional Research

| Site_ID      |             |         |           |                          |            |         |
|--------------|-------------|---------|-----------|--------------------------|------------|---------|
| 2711-S       | 2716E       | 2724W   | 2736ZA    | 277E                     | 289TC      | 291-U   |
| 2711A        | 2716S       | 2724WB  | 2736ZB    | 277T                     | 289TD      | 291-U-1 |
| 2711B        | 2716T       | 2725E   | 2736ZC    | 277W                     | 289TE      | 291A    |
| 2711E        | 2716U       | 2726S   | 2736ZD    | 278AW                    | 289TF      | 291A001 |
| 2711E66A     | 2718-E-WS-1 | 2726U   | 2736ZF    | 278WA                    | 289W       | 291AA   |
| 2711EA       | 2718-S      | 2727-WA | 2736ZG    | 279W                     | 2901A      | 291AB   |
| 2711EB       | 2718E       | 2727E   | 2736ZH    | 281A                     | 2901E      | 291AC   |
| 2711EC       | 2718S       | 2727W   | 2736ZM    | 281W                     | 2901R      | 291AD   |
| 2711ED       | 2719E       | 2727WA  | 2736ZN    | 282B                     | 2901S      | 291AE   |
| 2711EF       | 2719EA      | 2727Z   | 2736ZP    | 282BA                    | 2901SX1    | 291AF   |
| 2711S        | 2719WB      | 2728W   | 2736ZQ    | 282E                     | 2901SX2    | 291AG   |
| 2712A        | 271AB       | 2729Z   | 2736ZR    | 282EA                    | 2901T      | 291AH   |
| 2712B        | 271B        | 272A    | 2736ZS    | 282EB                    | 2901U      | 291AJ   |
| 2712S        | 271BA       | 272AW   | 2736ZU    | 282EC                    | 2901W      | 291AK   |
| 2712T        | 271CR       | 272B    | 273E      | 282ED                    | 2901X      | 291AR   |
| 2712U        | 271E        | 272BA   | 273EA     | 282W                     | 2901Y      | 291B    |
| 2712Z        | 271T        | 272BB   | 273W      | 282WA                    | 2901Z      | 291B001 |
| 2713E        | 271U        | 272BC   | 2740W     | 282WB                    | 2902B      | 291BA   |
| 2713S        | 271UR       | 272E    | 274AW     | 282WC                    | 2902E      | 291BB   |
| 2713W        | 2720EA      | 272EA   | 274E      | 282WD                    | 2902HV80   | 291BC   |
| 2713WB       | 2721E       | 272HV   | 2750E     | 283E                     | 2902HV82   | 291BD   |
| 2713WC       | 2721EA      | 272S    | 2751E     | 283E-BA                  | 2902HV83   | 291BF   |
| 2714A        | 2721Z       | 272U    | 2752E     | 283EA                    | 2902T      | 291BG   |
| 2714AR       | 2722E       | 272W    | 2753E     | 283W                     | 2902W      | 291BH   |
| 2714S        | 2722W       | 272W-BA | 2754W     | 283W-BA                  | 2902Z      | 291BJ   |
| 2714U        | 2722Z       | 272WA   | 275E      | 283WA                    | 2904-S-160 | 291BK   |
| 2715-EA HWSA | 2723W       | 2731Z   | 275E-BA   | 283WB                    | 2904-S-170 | 291CR   |
| 2715AW       | 2724A       | 2731ZA  | 275EA     | 283WC                    | 2904-S-171 | 291S001 |
| 2715B        | 2724AB      | 2734EA  | 275UR     | 283WD                    | 2904-SA    | 291T    |
| 2715E        | 2724AY      | 2734S   | 275W      | 283WE                    | 2904AR     | 291T001 |
| 2715EA       | 2724AZ      | 2734SX  | 276-S     | 283WF                    | 2904EA     | 291U    |
| 2715EC       | 2724B       | 2734Z   | 276-S-141 | 284E                     | 2904S160   | 291U001 |
| 2715ED       | 2724BX      | 2734ZA  | 276-S-142 | 284E Salt Dissolving Pit | 2904S170   | 291Z    |
| 2715EF       | 2724BY      | 2734ZB  | 276-U     | 284EA                    | 2904S171   | 291Z001 |
| 2715M        | 2724BYA     | 2734ZC  | 2766E     | 284EB                    | 2904S172   | 292-S   |
| 2715S        | 2724C       | 2734ZD  | 2767E     | 284W                     | 2904SA     | 292-U   |
| 2715T        | 2724CA      | 2734ZF  | 276A      | 284W Salt Dissolving Pit | 2904ZA     | 292A    |
| 2715U        | 2724SX      | 2734ZG  | 276B      | 284WB                    | 2904ZB     | 292AA   |
| 2715UA       | 2724SY      | 2734ZH  | 276C      | 285W                     | 2905P      | 292AB   |
| 2715WA       | 2724T       | 2734ZJ  | 276S      | 286W                     | 2905R      | 292AR   |
| 2715Z        | 2724TX      | 2734ZK  | 276S141   | 287W                     | 291-C      | 292B    |
| 2715ZL       | 2724TXA     | 2734ZL  | 276S142   | 289T                     | 291-C-1    | 292T    |
| 2716A        | 2724TXB     | 2735Z   | 276U      | 289TA                    | 291-S      | 292U    |
| 2716B        | 2724U       | 2736Z   | 277A      | 289TB                    | 291-S-1    | 293-S   |

Table F-1. Sites Recommended for Additional Research

| Site_ID  |              |          |             |                |          |             |
|----------|--------------|----------|-------------|----------------|----------|-------------|
| 293A     | 296B012      | 300-15   | 300-284     | 303-M UOF      | 313-TK-2 | 324B        |
| 293AA    | 296B013      | 300-15:1 | 300-286     | 303A           | 314      | 324C        |
| 293S     | 296C005      | 300-15:2 | 300-287     | 303B           | 314A     | 324D        |
| 293W     | 296C006      | 300-15:3 | 300-288     | 303C           | 314B     | 324S        |
| 294A     | 296C007      | 300-15:4 | 300-288:1   | 303E           | 315      | 325         |
| 294B     | 296G001      | 300-16   | 300-288:2   | 303F           | 315A     | 325 WTF     |
| 295A     | 296G1        | 300-16:1 | 300-289     | 303G           | 315B     | 325-BA      |
| 295AA    | 296H212      | 300-16:2 | 300-29      | 303J           | 315C     | 325A        |
| 295AB    | 296K105      | 300-16:3 | 300-290     | 303K           | 315D     | 325B        |
| 295AC    | 296K142      | 300-175  | 300-291     | 303M           | 316-1    | 325C        |
| 295AD    | 296P017      | 300-18   | 300-293     | 304            | 316-2    | 325D        |
| 295AE    | 296P022      | 300-19   | 300-293:1   | 304 CF         | 316-5    | 325E        |
| 295AZ    | 296P023      | 300-21   | 300-293:2   | 304 SA         | 317T     | 326         |
| 296-A-13 | 296P026      | 300-214  | 300-294     | 304A           | 318      | 326-BA      |
| 296-S-1  | 296P028      | 300-22   | 300-296     | 305            | 318-BA   | 327         |
| 296-S-12 | 296S012      | 300-220  | 300-3       | 305-B SF       | 318B     | 327-BA      |
| 296-S-13 | 296S015      | 300-223  | 300-32      | 305-BA         | 318C     | 328         |
| 296-S-16 | 296S016      | 300-23   | 300-33      | 305A           | 320      | 328-BA      |
| 296-S-2  | 296S018      | 300-24   | 300-34      | 305AA          | 320-BA   | 328A        |
| 296-S-21 | 296S021      | 300-249  | 300-35      | 305B           | 321      | 329         |
| 296-S-4  | 296S025      | 300-25   | 300-4       | 306E           | 3212     | 331         |
| 296-S-6  | 296S07E      | 300-251  | 300-40      | 306E-BA        | 3212LS   | 331 Dog Run |
| 296-S-7  | 296S07W      | 300-253  | 300-41      | 306W           | 321B     | 331 LSLDF   |
| 296-U-10 | 296U006      | 300-255  | 300-43      | 307            | 321C     | 331 LSLT1   |
| 296A008  | 296Z003      | 300-256  | 300-44      | 308            | 321D     | 331 LSLT2   |
| 296A010  | 296Z006      | 300-257  | 300-45      | 308A           | 3220     | 331-BA      |
| 296A012  | 296Z015      | 300-258  | 300-46      | 309            | 3221     | 331A        |
| 296A013  | 299-E24-111  | 300-259  | 300-48      | 310            | 3222     | 331B        |
| 296A018  | 300 ASH PITS | 300-260  | 300-49      | 310S           | 3223     | 331C        |
| 296A019  | 300 FBP:1    | 300-262  | 300-5       | 310T1          | 3224     | 331D        |
| 296A020  | 300 FBP:2    | 300-263  | 300-50      | 310T2          | 3225     | 331G        |
| 296A021  | 300 RFBP     | 300-265  | 300-51      | 310T3          | 3226     | 331H        |
| 296A022  | 300 RLWS     | 300-269  | 300-53      | 310T7A         | 3227     | 331K        |
| 296A027  | 300 RLWS:1   | 300-270  | 300-7       | 310T7B         | 3228     | 332         |
| 296A028  | 300 RLWS:2   | 300-272  | 300-79      | 310V           | 3229     | 332 SF      |
| 296A029  | 300 RRLWS    | 300-274  | 300-8       | 311            | 323      | 333         |
| 296A030  | 300 VTS      | 300-275  | 300-80      | 311-TK-40      | 323-BA   | 333 ESHWSA  |
| 296A040  | 300-1        | 300-277  | 300-9       | 311-TK-50      | 3231     | 333 LHWSA   |
| 296A041  | 300-10       | 300-278  | 3000 JYHWSA | 312            | 3232     | 333-TK-11   |
| 296A044  | 300-109      | 300-279  | 3000 UUOT   | 3128           | 3234     | 333-TK-7    |
| 296A045  | 300-11       | 300-28   | 3000/1234   | 313            | 3235     | 334         |
| 296A048  | 300-110      | 300-280  | 300LYS      | 313 CENTRIFUGE | 324      | 334 TFWAST  |
| 296A049  | 300-121      | 300-281  | 3020        | 313 ESSP       | 324-BA   | 334-A-TK-B  |
| 296B010  | 300-123      | 300-283  | 303-M SA    | 313 FP         | 324A     | 334-A-TK-C  |

Table F-1. Sites Recommended for Additional Research

| Site_ID     |            |         |           |            |             |            |
|-------------|------------|---------|-----------|------------|-------------|------------|
| 334A        | 3621D      | 3718G   | 3902A     | 400-24     | 437 MASF:6  | 4727       |
| 334TF       | 366        | 3718M   | 3902B     | 400-25     | 437 MASF:7  | 4732A      |
| 335         | 366A       | 3718N   | 3906      | 400-26     | 437 MASF:8  | 4732B      |
| 336         | 3701C      | 3718O   | 3906A     | 400-3      | 440         | 4732C      |
| 337         | 3701D      | 3718P   | 3906B     | 400-31     | 451A        | 4734A      |
| 337-BA      | 3701L      | 3718S   | 3906C     | 400-35     | 451B        | 4734B      |
| 337B        | 3701U      | 3719    | 3906D     | 400-36     | 453A        | 4734C      |
| 338         | 3704       | 3720    | 3906E     | 400-37     | 453B        | 4734D      |
| 339A        | 3705       | 3720-BA | 3906F     | 400-38     | 453C        | 4760       |
| 340         | 3705-BA    | 3721    | 400 FD10  | 400-39     | 4607        | 4790       |
| 340 COMPLEX | 3706       | 3722    | 400 FD10A | 400-4      | 4607T2      | 4790A      |
| 340A        | 3706-BA    | 3723    | 400 FD1A  | 400-40     | 4608B       | 4791TC     |
| 340B        | 3706A      | 3726    | 400 FD1B  | 400-40:1   | 4621E       | 4802       |
| 3410        | 3707D      | 3727    | 400 FD2   | 400-40:2   | 4621W       | 480A       |
| 342         | 3707E      | 3728    | 400 FD3   | 400-41     | 4701A       | 480B       |
| 3420        | 3707EA     | 3730    | 400 FD4   | 400-42     | 4701B       | 480D       |
| 3425        | 3707F      | 3731    | 400 FD5   | 400-5      | 4701C       | 481        |
| 342A        | 3707G      | 3731A   | 400 FD6   | 400-6      | 4702        | 4814       |
| 342B        | 3707H      | 3734A   | 400 FD7   | 400-7      | 4703        | 481A       |
| 342C        | 3708       | 3745    | 400 FD8   | 400-8      | 4704N       | 482A       |
| 3430        | 3709       | 3745A   | 400 FD9   | 400-9      | 4704S       | 482B       |
| 3440        | 3709A      | 3745B   | 400 PPSS  | 402        | 4706        | 482C       |
| 350         | 3709B      | 3746    | 400 RFD   | 403        | 4707        | 483        |
| 3503A       | 3710A      | 3746A   | 400 RSP   | 403 FD     | 4710        | 4831       |
| 3503B       | 3711       | 3746D   | 400 RST   | 405        | 4713-B FD   | 4831 LHWSA |
| 3506A       | 3712       | 3760    | 400 SBT   | 408A       | 4713-B HWSA | 483A       |
| 3506B       | 3712 USSA  | 3762    | 400 SS    | 408B       | 4713-B LDFD | 483B       |
| 3506C       | 3713       | 3763    | 400 STF   | 408C       | 4713A       | 484        |
| 3507        | 3714       | 3764    | 400-1     | 409A       | 4713B       | 4842A      |
| 350A        | 3715       | 3766    | 400-10    | 409B       | 4713C       | 4842B      |
| 350B        | 3716       | 3767    | 400-11    | 4220       | 4713D       | 4852       |
| 350C        | 3717       | 3768    | 400-12    | 4221       | 4716        | 4862       |
| 350D        | 3717B      | 3769    | 400-13    | 427        | 4717        | 491E       |
| 350LS       | 3717C      | 377     | 400-14    | 427 HWSA   | 4718        | 491S       |
| 351         | 3718       | 3770    | 400-15    | 427A       | 4719        | 491W       |
| 351A        | 3718-F BS  | 3790    | 400-16    | 432A       | 4721        | 506A       |
| 351B        | 3718-F SF  | 3802A   | 400-17    | 436        | 4721 FD     | 506B       |
| 352E        | 3718-F TT1 | 382     | 400-18    | 437        | 4722 PSHWSA | 506BA      |
| 352F        | 3718-F TT2 | 382-BA  | 400-19    | 437 MASF   | 4722-B FD   | 600 BPHWSA |
| 361         | 3718A      | 382B    | 400-2     | 437 MASF:1 | 4722-C FD   | 600 CL     |
| 3614A       | 3718B      | 382C    | 400-20    | 437 MASF:2 | 4722B       | 600 ESST   |
| 3614B       | 3718C      | 382D    | 400-21    | 437 MASF:3 | 4722C       | 600 NRDWL  |
| 3621-66     | 3718E      | 384     | 400-22    | 437 MASF:4 | 4725        | 600 NSTFST |
| 3621BC      | 3718F      | 385     | 400-23    | 437 MASF:5 | 4726        | 600 NSTFUT |

Table F-1. Sites Recommended for Additional Research

| Site_ID   |           |            |            |           |           |            |
|-----------|-----------|------------|------------|-----------|-----------|------------|
| 600 OCL   | 600-20    | 600-259:2  | 600-299:2  | 600-316   | 600-329   | 600-369    |
| 600-1     | 600-201   | 600-26     | 600-299:3  | 600-316:1 | 600-330   | 600-369:1  |
| 600-102   | 600-202   | 600-260    | 600-299:4  | 600-316:2 | 600-331   | 600-369:2  |
| 600-105   | 600-204   | 600-265    | 600-299:5  | 600-316:3 | 600-332   | 600-369:3  |
| 600-106   | 600-205   | 600-266    | 600-299:6  | 600-316:4 | 600-333   | 600-369:4  |
| 600-108   | 600-206   | 600-268    | 600-3      | 600-316:5 | 600-334   | 600-369:5  |
| 600-111   | 600-207   | 600-269-PL | 600-30     | 600-316:6 | 600-334:1 | 600-369:6  |
| 600-113   | 600-208   | 600-27     | 600-300    | 600-317   | 600-334:2 | 600-369:7  |
| 600-114   | 600-210   | 600-270    | 600-300:1  | 600-318   | 600-335   | 600-369:8  |
| 600-115   | 600-211   | 600-271    | 600-300:10 | 600-318:1 | 600-336   | 600-37     |
| 600-116   | 600-212   | 600-272    | 600-300:11 | 600-318:2 | 600-337   | 600-370    |
| 600-117   | 600-214   | 600-274    | 600-300:12 | 600-318:3 | 600-338   | 600-371    |
| 600-118   | 600-215   | 600-275    | 600-300:2  | 600-318:4 | 600-339   | 600-372    |
| 600-120   | 600-216   | 600-276    | 600-300:3  | 600-318:5 | 600-340   | 600-372:1  |
| 600-124   | 600-217   | 600-278    | 600-300:4  | 600-319   | 600-341   | 600-372:2  |
| 600-125   | 600-218   | 600-279    | 600-300:5  | 600-319:1 | 600-341:1 | 600-373    |
| 600-127   | 600-219   | 600-28     | 600-300:6  | 600-319:2 | 600-341:2 | 600-374    |
| 600-128   | 600-22    | 600-280    | 600-300:7  | 600-319:3 | 600-342   | 600-375    |
| 600-129   | 600-220   | 600-281    | 600-300:8  | 600-320   | 600-343   | 600-375:1  |
| 600-131   | 600-222   | 600-282    | 600-300:9  | 600-320:1 | 600-344   | 600-375:2  |
| 600-132   | 600-223   | 600-283    | 600-301    | 600-320:2 | 600-345   | 600-375:3  |
| 600-139   | 600-224   | 600-284-PL | 600-302    | 600-320:3 | 600-346   | 600-375:4  |
| 600-146   | 600-226   | 600-288    | 600-303    | 600-320:4 | 600-347   | 600-375:5  |
| 600-148   | 600-227   | 600-289    | 600-305    | 600-320:5 | 600-348   | 600-376    |
| 600-149   | 600-228   | 600-290:1  | 600-305:1  | 600-320:6 | 600-349   | 600-376:1  |
| 600-149:1 | 600-23    | 600-290:2  | 600-305:2  | 600-320:7 | 600-35    | 600-376:2  |
| 600-149:2 | 600-230   | 600-291-PL | 600-305:3  | 600-320:8 | 600-350   | 600-377    |
| 600-151   | 600-232   | 600-292-PL | 600-305:4  | 600-320:9 | 600-351   | 600-378    |
| 600-152   | 600-233   | 600-293    | 600-305:5  | 600-321   | 600-353   | 600-379    |
| 600-153   | 600-235   | 600-294    | 600-306    | 600-321:1 | 600-354   | 600-38     |
| 600-155   | 600-236   | 600-295    | 600-307    | 600-321:2 | 600-355   | 600-380    |
| 600-156   | 600-237   | 600-296    | 600-308    | 600-321:3 | 600-356   | 600-381    |
| 600-169   | 600-239   | 600-297    | 600-309    | 600-321:4 | 600-357   | 600-382    |
| 600-176   | 600-240   | 600-298    | 600-310    | 600-322   | 600-358   | 600-382:1  |
| 600-178   | 600-243   | 600-298:1  | 600-311    | 600-323   | 600-359   | 600-382:2  |
| 600-181   | 600-245   | 600-298:2  | 600-312    | 600-324   | 600-36    | 600-382:3  |
| 600-182   | 600-246   | 600-298:3  | 600-313    | 600-325   | 600-360   | 600-382:4  |
| 600-185   | 600-247   | 600-298:4  | 600-314    | 600-325:1 | 600-361   | 600-382:5  |
| 600-186   | 600-248   | 600-298:5  | 600-314:1  | 600-325:2 | 600-362   | 600-383    |
| 600-187   | 600-250   | 600-298:6  | 600-314:2  | 600-326   | 600-363   | 600-383:1  |
| 600-188   | 600-251   | 600-298:7  | 600-314:3  | 600-326:1 | 600-364   | 600-383:10 |
| 600-190   | 600-256   | 600-298:8  | 600-314:4  | 600-326:2 | 600-365   | 600-383:2  |
| 600-191   | 600-257   | 600-299    | 600-314:5  | 600-327   | 600-367   | 600-383:3  |
| 600-192   | 600-259:1 | 600-299:1  | 600-315    | 600-328   | 600-368   | 600-383:4  |

Table F-1. Sites Recommended for Additional Research

| Site_ID    |        |          |          |          |        |           |
|------------|--------|----------|----------|----------|--------|-----------|
| 600-383:5  | 600-61 | 6092V    | 618-7    | 6260     | 6607-4 | 6643      |
| 600-383:6  | 600-62 | 6093     | 618-8    | 6265     | 6607-5 | 6644      |
| 600-383:7  | 600-63 | 6094     | 618-9    | 6265A    | 6607-6 | 6652C     |
| 600-383:8  | 600-65 | 6095     | 618A     | 6266     | 6607-7 | 6652CSHED |
| 600-383:9  | 600-66 | 6096     | 618B     | 6266A    | 6607-8 | 6652D     |
| 600-384    | 600-69 | 6097     | 618C     | 6266B    | 6607-9 | 6652DOME2 |
| 600-384:1  | 600-70 | 6098     | 619C     | 6266L    | 6608   | 6652E     |
| 600-384:2  | 600-71 | 6099     | 620      | 6267     | 6618   | 6652G     |
| 600-384:3  | 600-8  | 609A     | 621A     | 6268     | 6618A  | 6652H     |
| 600-384:4  | 600-96 | 609B     | 621B     | 6269     | 6618B  | 6652I     |
| 600-384:5  | 600-97 | 609C     | 622      | 6270     | 6618C  | 6652J     |
| 600-385    | 6004KW | 609D     | 622-1    | 628-1    | 6618D  | 6652K     |
| 600-386    | 600LYS | 609E     | 622-R ST | 628-2    | 6618E  | 6652L     |
| 600-387    | 6010   | 609G     | 6221N    | 628-3    | 6618F  | 6652M     |
| 600-388    | 604A   | 609H     | 6221NA   | 628-4    | 6618G  | 6652O     |
| 600-389    | 604F   | 609J     | 6223     | 6290     | 6618H  | 6652PH    |
| 600-39     | 604G   | 609K     | 6223A    | 6291     | 6618I  | 6652R     |
| 600-390    | 604H   | 609L     | 6224     | 6291-66  | 6618J  | 6652S     |
| 600-391    | 607    | 609M     | 6224A    | 6291-66A | 6618K  | 6652T     |
| 600-392    | 6088   | 609N     | 6225     | 6291-66B | 6618L  | 6652U     |
| 600-393    | 6089   | 609P     | 6226     | 6292     | 6618M  | 6653      |
| 600-394    | 609    | 610      | 622A     | 6293     | 6618N  | 6653A     |
| 600-395    | 6091   | 611      | 622B     | 6294     | 6618T3 | 6654      |
| 600-396    | 6092   | 612      | 622C     | 630      | 6618T4 | 668       |
| 600-397    | 6092A  | 6120     | 622D     | 631      | 661A   | 669       |
| 600-398    | 6092B  | 613      | 622F     | 633      | 662    | 669A      |
| 600-399-PL | 6092C  | 6130     | 622G     | 635      | 6620   | 6701      |
| 600-40     | 6092D  | 614      | 622R     | 636      | 6621   | 6701A     |
| 600-400    | 6092E  | 6140     | 622S     | 637      | 662A   | 6701B     |
| 600-401-PL | 6092F  | 614A1    | 623      | 637-A    | 663    | 6701C     |
| 600-404    | 6092G  | 614B1    | 6230A    | 638      | 6630   | 6701D     |
| 600-406    | 6092H  | 614BYRL  | 6231NA   | 646      | 6631   | 6701E     |
| 600-44     | 6092I  | 616-WS-1 | 6233A    | 650      | 6632   | 6701F     |
| 600-46     | 6092J  | 616A     | 6234A    | 652      | 6633   | 6701H     |
| 600-47     | 6092K  | 618-1    | 623A     | 6607-1   | 6634   | 671       |
| 600-49     | 6092L  | 618-10   | 623B     | 6607-10  | 6635   | 672       |
| 600-5      | 6092M  | 618-11   | 6241-A   | 6607-13  | 6636   | 674       |
| 600-50     | 6092N  | 618-12   | 6241-V   | 6607-16  | 6637   | 676       |
| 600-51     | 6092O  | 618-1:1  | 6241A    | 6607-17  | 6638   | 678       |
| 600-52     | 6092P  | 618-1:2  | 6241L    | 6607-18  | 6639   | 680       |
| 600-53     | 6092Q  | 618-2    | 6241V    | 6607-19  | 664    | 682A      |
| 600-58     | 6092R  | 618-3    | 6250     | 6607-2   | 6640   | 682B      |
| 600-59     | 6092S  | 618-4    | 6251     | 6607-2A  | 6641   | 682C      |
| 600-60     | 6092U  | 618-5    | 626      | 6607-3   | 6642   | 682D      |

Table F-1. Sites Recommended for Additional Research

| Site_ID                        |                |               |               |              |                |               |
|--------------------------------|----------------|---------------|---------------|--------------|----------------|---------------|
| 682E                           | RBWTK2         | UPR-100-N-23  | UPR-200-E-127 | UPR-200-E-38 | UPR-200-E-83   | UPR-200-W-124 |
| 682F                           | RBWTK3         | UPR-100-N-24  | UPR-200-E-128 | UPR-200-E-39 | UPR-200-E-83:1 | UPR-200-W-126 |
| 683                            | SHLWSTS        | UPR-100-N-25  | UPR-200-E-129 | UPR-200-E-4  | UPR-200-E-83:2 | UPR-200-W-127 |
| 684                            | T11WTP         | UPR-100-N-26  | UPR-200-E-130 | UPR-200-E-40 | UPR-200-E-84   | UPR-200-W-128 |
| 685                            | T1WTP          | UPR-100-N-29  | UPR-200-E-131 | UPR-200-E-42 | UPR-200-E-85   | UPR-200-W-129 |
| 686                            | T23WTP         | UPR-100-N-3   | UPR-200-E-132 | UPR-200-E-43 | UPR-200-E-86   | UPR-200-W-13  |
| 687                            | T27WTP         | UPR-100-N-30  | UPR-200-E-133 | UPR-200-E-44 | UPR-200-E-87   | UPR-200-W-130 |
| 688                            | T28WTP         | UPR-100-N-31  | UPR-200-E-134 | UPR-200-E-45 | UPR-200-E-88   | UPR-200-W-131 |
| 689                            | T31            | UPR-100-N-32  | UPR-200-E-135 | UPR-200-E-47 | UPR-200-E-89   | UPR-200-W-132 |
| 700 WST                        | T31WTP         | UPR-100-N-36  | UPR-200-E-136 | UPR-200-E-48 | UPR-200-E-9    | UPR-200-W-134 |
| 703                            | T33WTP         | UPR-100-N-37  | UPR-200-E-137 | UPR-200-E-49 | UPR-200-E-90   | UPR-200-W-135 |
| 712                            | T34            | UPR-100-N-39  | UPR-200-E-138 | UPR-200-E-5  | UPR-200-E-91   | UPR-200-W-137 |
| 712B                           | T40WTP         | UPR-100-N-4   | UPR-200-E-14  | UPR-200-E-50 | UPR-200-E-92   | UPR-200-W-138 |
| 7220                           | T520-6         | UPR-100-N-42  | UPR-200-E-140 | UPR-200-E-51 | UPR-200-E-93   | UPR-200-W-14  |
| 747                            | TC1301N        | UPR-100-N-43  | UPR-200-E-141 | UPR-200-E-52 | UPR-200-E-94   | UPR-200-W-140 |
| 747A                           | TC1301NA       | UPR-100-N-5   | UPR-200-E-142 | UPR-200-E-53 | UPR-200-E-95   | UPR-200-W-141 |
| 747B                           | TC1301NB       | UPR-100-N-6   | UPR-200-E-143 | UPR-200-E-54 | UPR-200-E-96   | UPR-200-W-142 |
| 748                            | TC272HV        | UPR-100-N-7   | UPR-200-E-144 | UPR-200-E-55 | UPR-200-E-97   | UPR-200-W-143 |
| 77AA                           | TEST           | UPR-100-N-8   | UPR-200-E-145 | UPR-200-E-56 | UPR-200-E-98   | UPR-200-W-144 |
| 8726                           | TFS OF 218-E-4 | UPR-100-N-9   | UPR-200-E-15  | UPR-200-E-58 | UPR-200-E-99   | UPR-200-W-145 |
| 8727                           | TRUSA          | UPR-1100-5    | UPR-200-E-16  | UPR-200-E-59 | UPR-200-N-1    | UPR-200-W-146 |
| B PLANT FILTER                 | TTTF           | UPR-1100-6    | UPR-200-E-17  | UPR-200-E-60 | UPR-200-N-2    | UPR-200-W-147 |
| BTTF                           | UPR-100-D-1    | UPR-200-E-1   | UPR-200-E-18  | UPR-200-E-61 | UPR-200-W-10   | UPR-200-W-148 |
| C8S49                          | UPR-100-D-2    | UPR-200-E-10  | UPR-200-E-19  | UPR-200-E-62 | UPR-200-W-100  | UPR-200-W-149 |
| C8S77                          | UPR-100-D-3    | UPR-200-E-100 | UPR-200-E-2   | UPR-200-E-63 | UPR-200-W-101  | UPR-200-W-15  |
| CTFN 2703-E                    | UPR-100-D-4    | UPR-200-E-101 | UPR-200-E-20  | UPR-200-E-64 | UPR-200-W-102  | UPR-200-W-150 |
| CWC                            | UPR-100-D-5    | UPR-200-E-103 | UPR-200-E-21  | UPR-200-E-65 | UPR-200-W-103  | UPR-200-W-151 |
| EMSL Tr1                       | UPR-100-F-1    | UPR-200-E-105 | UPR-200-E-22  | UPR-200-E-66 | UPR-200-W-104  | UPR-200-W-152 |
| GTF                            | UPR-100-F-2    | UPR-200-E-106 | UPR-200-E-23  | UPR-200-E-67 | UPR-200-W-105  | UPR-200-W-153 |
| GTFL                           | UPR-100-F-3    | UPR-200-E-107 | UPR-200-E-24  | UPR-200-E-68 | UPR-200-W-106  | UPR-200-W-154 |
| HO6405929                      | UPR-100-K-1    | UPR-200-E-108 | UPR-200-E-25  | UPR-200-E-69 | UPR-200-W-107  | UPR-200-W-155 |
| HO646382                       | UPR-100-N-1    | UPR-200-E-109 | UPR-200-E-26  | UPR-200-E-7  | UPR-200-W-108  | UPR-200-W-156 |
| HO646386                       | UPR-100-N-10   | UPR-200-E-111 | UPR-200-E-27  | UPR-200-E-70 | UPR-200-W-109  | UPR-200-W-157 |
| HRD                            | UPR-100-N-11   | UPR-200-E-110 | UPR-200-E-28  | UPR-200-E-72 | UPR-200-W-110  | UPR-200-W-159 |
| HS Units at WRAP               | UPR-100-N-12   | UPR-200-E-112 | UPR-200-E-29  | UPR-200-E-73 | UPR-200-W-111  | UPR-200-W-16  |
| HS0007                         | UPR-100-N-13   | UPR-200-E-114 | UPR-200-E-3   | UPR-200-E-74 | UPR-200-W-112  | UPR-200-W-160 |
| HS0008                         | UPR-100-N-14   | UPR-200-E-115 | UPR-200-E-30  | UPR-200-E-75 | UPR-200-W-113  | UPR-200-W-161 |
| HSPV                           | UPR-100-N-17   | UPR-200-E-116 | UPR-200-E-31  | UPR-200-E-76 | UPR-200-W-114  | UPR-200-W-162 |
| HWVP                           | UPR-100-N-18   | UPR-200-E-117 | UPR-200-E-32  | UPR-200-E-77 | UPR-200-W-115  | UPR-200-W-163 |
| JA JONES 1                     | UPR-100-N-19   | UPR-200-E-118 | UPR-200-E-33  | UPR-200-E-78 | UPR-200-W-116  | UPR-200-W-164 |
| Low-Level Waste Burial Grounds | UPR-100-N-2    | UPR-200-E-119 | UPR-200-E-34  | UPR-200-E-79 | UPR-200-W-117  | UPR-200-W-165 |
| OCSA                           | UPR-100-N-20   | UPR-200-E-12  | UPR-200-E-35  | UPR-200-E-80 | UPR-200-W-118  | UPR-200-W-166 |
| PCTTF                          | UPR-100-N-21   | UPR-200-E-125 | UPR-200-E-36  | UPR-200-E-81 | UPR-200-W-12   | UPR-200-W-167 |
| RBWTK1                         | UPR-100-N-22   | UPR-200-E-126 | UPR-200-E-37  | UPR-200-E-82 | UPR-200-W-123  | UPR-200-W-17  |

Table F-1. Sites Recommended for Additional Research

| Site_ID      |              |              |           |
|--------------|--------------|--------------|-----------|
| UPR-200-W-19 | UPR-200-W-65 | UPR-300-24   | UPR-600-7 |
| UPR-200-W-2  | UPR-200-W-67 | UPR-300-25   | UPR-600-8 |
| UPR-200-W-20 | UPR-200-W-68 | UPR-300-26   | UPR-600-9 |
| UPR-200-W-21 | UPR-200-W-69 | UPR-300-27   | WBF1      |
| UPR-200-W-23 | UPR-200-W-7  | UPR-300-28   | WBF2      |
| UPR-200-W-24 | UPR-200-W-70 | UPR-300-29   | WESF      |
| UPR-200-W-26 | UPR-200-W-71 | UPR-300-30   | WESF:1    |
| UPR-200-W-28 | UPR-200-W-72 | UPR-300-32   | WRAP      |
| UPR-200-W-29 | UPR-200-W-73 | UPR-300-33   | X1        |
| UPR-200-W-3  | UPR-200-W-74 | UPR-300-34   | X13       |
| UPR-200-W-32 | UPR-200-W-75 | UPR-300-35   | X4        |
| UPR-200-W-33 | UPR-200-W-76 | UPR-300-36   | X7        |
| UPR-200-W-34 | UPR-200-W-77 | UPR-300-37   | X8        |
| UPR-200-W-35 | UPR-200-W-78 | UPR-300-38   |           |
| UPR-200-W-36 | UPR-200-W-79 | UPR-300-39   |           |
| UPR-200-W-37 | UPR-200-W-8  | UPR-300-4    |           |
| UPR-200-W-38 | UPR-200-W-80 | UPR-300-40   |           |
| UPR-200-W-39 | UPR-200-W-81 | UPR-300-41   |           |
| UPR-200-W-4  | UPR-200-W-82 | UPR-300-42   |           |
| UPR-200-W-40 | UPR-200-W-83 | UPR-300-45   |           |
| UPR-200-W-41 | UPR-200-W-84 | UPR-300-46   |           |
| UPR-200-W-42 | UPR-200-W-85 | UPR-300-47   |           |
| UPR-200-W-43 | UPR-200-W-86 | UPR-300-48   |           |
| UPR-200-W-44 | UPR-200-W-87 | UPR-300-5    |           |
| UPR-200-W-45 | UPR-200-W-88 | UPR-300-7    |           |
| UPR-200-W-46 | UPR-200-W-89 | UPR-300-8    |           |
| UPR-200-W-47 | UPR-200-W-90 | UPR-300-9    |           |
| UPR-200-W-48 | UPR-200-W-91 | UPR-300-FF-1 |           |
| UPR-200-W-49 | UPR-200-W-95 | UPR-3000-1   |           |
| UPR-200-W-5  | UPR-200-W-96 | UPR-400-1    |           |
| UPR-200-W-50 | UPR-200-W-97 | UPR-600-1    |           |
| UPR-200-W-51 | UPR-200-W-98 | UPR-600-10   |           |
| UPR-200-W-52 | UPR-200-W-99 | UPR-600-11   |           |
| UPR-200-W-53 | UPR-300-10   | UPR-600-12   |           |
| UPR-200-W-55 | UPR-300-12   | UPR-600-15   |           |
| UPR-200-W-56 | UPR-300-13   | UPR-600-16   |           |
| UPR-200-W-57 | UPR-300-14   | UPR-600-2    |           |
| UPR-200-W-58 | UPR-300-15   | UPR-600-20   |           |
| UPR-200-W-59 | UPR-300-17   | UPR-600-21   |           |
| UPR-200-W-6  | UPR-300-19   | UPR-600-22   |           |
| UPR-200-W-60 | UPR-300-20   | UPR-600-3    |           |
| UPR-200-W-61 | UPR-300-21   | UPR-600-4    |           |
| UPR-200-W-63 | UPR-300-22   | UPR-600-5    |           |
| UPR-200-W-64 | UPR-300-23   | UPR-600-6    |           |

This page intentionally left blank.