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Abstract  

 

Crop yield modeling is critical in the design of national strategies for agricultural 

production, particularly in the context of a changing climate. Forecasting yields of bioenergy 

crops at fine spatial resolutions can help to evaluate near- and long-term pathways to scaling up 

bio-based fuel and chemical production, and to understand the impacts of abiotic stressors such 

as severe droughts and temperature extremes on potential biomass supply. We used a large 

dataset of 28,364 Sorghum bicolor yield samples (uniquely identified by county and year of 

observation), environmental variables, and multiple approaches to analyze historical trends in 

sorghum productivity across the U.S. We selected the most accurate machine learning approach 

(a variation of Random Forest) to predict future trends in sorghum yields under four greenhouse 

gas emission scenarios and two irrigation regimes. We identified irrigation practices, vapor 

pressure deficit, and time (a proxy for technological improvement) as the most important 

predictors of sorghum productivity. Our results showed a decreasing trend of sorghum yields 

over future years (on average 2.7% from 2018 to 2099), with greater decline under a high 

greenhouse gas emissions scenario (3.8%) and in the absence of irrigation (4.6%). 

Geographically, we observed the steepest predicted declines in the Great Lakes (8.2%), Upper 

Midwest (7.5%), and Heartland (6.7%) regions. Our study demonstrates the use of machine 

learning to identify environmental controllers of sorghum biomass yield and predict yields with 

reasonable accuracy. These results can inform the development of more realistic biomass supply 

projections for bioenergy if sorghum production is scaled up. 

 

 



3 
 

Introduction 

 

Crop yield predictions are crucial to the development of agricultural strategies that 

maximize output from a limited supply of arable land. While such modeling techniques have 

historically focused on food crops,1–3 their applicability to dedicated bioenergy crops is 

increasingly relevant in view of ambitious renewable energy targets that require substantial 

increases in domestic biofuel production.4 Strategies for scaling up cellulosic biofuel production 

rely on accurate predictions of energy crop yields to forecast long-term feedstock availability 

near potential biorefineries.5 These projections must account for future climate scenarios in 

which severe droughts and extreme temperatures are increasingly common.6 The ability to model 

and compare yield variability of different candidate bioenergy crops in response to 

environmental factors can also inform trait engineering efforts aimed at optimizing crop 

performance at the field level.7 Sorghum is particularly interesting to explore in the bioenergy  

context because of its high biomass yields, drought tolerance, and the availability of historical 

yield data in the U.S. (while many other potential bioenergy crops are not commercially 

produced).8 Previous modeling work has identified drivers of spatio-temporal variability in crop 

yields, including climatological factors such as temperature and precipitation,9,10 and soil 

characteristics including water-holding capacity11 and clay content.12   

There are two broad approaches to crop yield simulation: process-based modeling and 

statistical modeling. Process-based models rely on fundamental mechanisms of plant physiology 

to simulate crop growth under a given set of resource conditions and management practices.13 

They tend to perform well at the scale of experimental field trial plots but are difficult to validate 

at larger spatial scales where input parameters are less easily controlled and measured.14 For 
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example, agronomic practices may differ across geographic regions and there is rarely sufficient 

information on farmer behavior to integrate these differences into a process-based yield model.  

In contrast to process-based models, data driven statistical models       characterize 

relationships between crop yield and environmental parameters—often climate, soil, and crop 

management variables—using historical datasets. Multiple linear regression has been the 

predominant statistical technique of choice, primarily due to its ease of use and interpretability. 

However, numerous studies have shown this assumption of linear relationships between 

predictors and dependent variable may not hold when multiple climate and soil variables are 

used to model crop yields.15,16  

Nonlinear machine learning (ML) algorithms offer an alternative to conventional 

statistical modeling methods. The ML approach includes a family of algorithms that do not 

presume any mechanistic relationships and instead seek to learn a function that best maps input 

parameters to an output. One subclass of ML techniques is a family of algorithms that are built 

upon decision trees which can be used for both classification and regression tasks.17 Breiman et 

al. (1984) first demonstrated the use of Classification and Regression Tree analysis that now 

encompasses a broad suite of derived methods, all of which share the decision tree as their 

fundamental building block. Among these are a variety of ensemble learning techniques, such as 

Random Forest, which employs bootstrap aggregation to build a strong predictive model by 

averaging predictions over a collection of individually weak learners.17 Several studies have 

explored the predictive capabilities of Random Forest approaches for crop yield modeling18 

demonstrated the use of Random Forest regression for estimating vegetation biomass in wetland 

systems from WorldView-2 multispectral satellite data, which achieved a 19% reduction in 

prediction error relative to a baseline stepwise linear regression model. Similarly, it has been 
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shown that Random Forest approach substantially outperforms multiple linear regression for 

predicting crop yields of wheat, maize, and potato at both regional and global spatial scales.12  

Building on these previous studies, we evaluated a number of approaches to predict 

yields of biomass sorghum as a dedicated bioenergy crop.  We then used the best-performing ML 

approach to predict region-specific bioenergy sorghum yields through 2099 in the United States 

under four different greenhouse gas emission scenarios, as defined by the Intergovernmental 

Panel on Climate Change, and two water-supply regimes: rainfed-only and irrigated. The 

objective of this study is to better understand how different linear and tree-based modeling 

techniques compare in their ability to predict county-level biomass sorghum yields in the U.S., 

establish an approach for simulating long-term trends and variability in sorghum yields under 

different climate scenarios, and use that approach to assess potential future biomass sorghum 

yields across the U.S.  

 

 

Materials and Methods 

This study relies entirely on publicly-available historical datasets and future projections, all of 

which are outlined in Table S1 in the Supplementary Information (SI), along with details about 

temporal and geographic aggregation methods; a list is also shown in Figure 1. We sought to 

incorporate as many relevant datasets and predictor variables as possible in the initial regression 

analyses, including several predictors that may not have direct mechanistic links with yield (e.g. 

year, latitude, longitude) to evaluate whether they can serve as proxies for parameters that are not 

otherwise well quantified. However, because the ultimate goal is to develop a predictive model, 
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we did not incorporate data that could not reasonably be projected through 2099 (e.g. market 

prices).    

 

 

Figure 1. Schematic methodology used in this study for sorghum yield prediction over the 

continental United States.  Greater detail on input variables and data sources can be found in the 

Supplementary Information. 
 

Modeling Irrigation Practices 

 

Particularly important for building bioenergy feedstock production scenarios is the choice 

of whether to allow for irrigation. Most recent studies assume that all dedicated bioenergy crops 

will be exclusively rainfed.5 However, unless regulatory policy will prohibit or disincentivize 
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irrigation of bioenergy crops, an arguably more realistic approach would be to attempt to predict 

whether farmers will choose to irrigate, given local conditions. This mixed-irrigation scenario, 

requires both knowledge of historical irrigation practices across growing regions and an ability to 

predict when long-term climatic trends may cause farmers to begin or cease irrigating. Historical 

irrigation practices for sorghum vary over time and space as a function of climate, local market 

prices for biomass, farmer preferences, and a host of other factors. Of the counties and years for 

which sorghum yield was reported, 39.9% of county-year data points were accompanied by 

information as to whether the crop was irrigated. Because the use of irrigation is a crucial input 

for the predictive model, we chose to systematically populate these missing historical values with 

estimated breakdowns of irrigated vs. rainfed production.  

We began by computing percent production irrigated (PPI) values for every county-year 

combination for which disaggregated values of irrigated and non-irrigated sorghum production 

data were available. Because yield is reported at the county level, PPI is equivalent to the 

fraction of land irrigated in each county. A county's PPI in a given year was defined as the 

proportion of total sorghum production reported to come from irrigated fields to that county's 

total sorghum production.19 Since the irrigation status of reported production values were only 

specified in less than half (39.9%) of the NASS data, we performed a two-step method for 

imputing PPI values that could not be computed directly. First, if a county-year specific PPI 

could not be determined because irrigated and rainfed sorghum production were not reported 

separately, we used the mean PPI for that county averaged over the values from all years for 

which PPI could be computed. In water-constrained regions such as the Northern High Plains, 

evidence suggests that irrigated area varies annually as a function of both precipitation (included 

in model) and commodity prices (excluded from model), so these average values are an 
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approximation. If no such mean could be determined for a given county because irrigation 

practices were not specified in any years, then we computed the inter-annual mean PPI of the 

state in which the county is located. If the PPI for a county in a specific year could not be 

determined by these methods due to insufficient data, then no PPI record was included for that 

county-year combination. The resulting dataset was used to train an Extremely Randomized 

Trees (ERT)      random forest model for predicting PPI as a function of the same of input 

parameters used in the yield regression analyses. The purpose of building this model was to 

forecast future changes in irrigation practices in response to the changing climate, which then 

informed our mixed-irrigation predictive yield model. Additional details about the PPI predictor 

model can be found in the SI.  

 

Predicting Future Agronomic Practices and Sorghum Yields 

 

To predict future sorghum yields for the years 2018-2099, we explored a set of possible 

climate scenarios corresponding to the Intergovernmental Panel on Climate Change (IPCC) 

Representative Concentration Pathways (RCPs) 2.6, 4.5 and 6.5 and 8.5. Future temperature and 

precipitation data at 30 km resolution were obtained from the NASA Earth Exchange 

downscaled climate projections (NEX-DCP30) which provides estimates from an ensemble of 

Global Circulation Models (GCMs) conducted under the Coupled Model Intercomparison 

Project Phase 5 (CMIP5). We obtained future predictions of atmospheric CO2 concentrations two 

different Carbon Cycle Models, BERN and ISAM, at ten year intervals from 2020 to 2100.20 

Historical and future Potential Evapotranspiration (PET) values were obtained from the 

Environmental Protection Agency's EnviroAtlas database.21  
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To explore yield variations related to irrigation practices, we used two separate ERT 

models to simulate separate irrigation regimes: a rainfed-only model in which we assumed that 

no irrigation will be used for biomass sorghum production, and a mixed-irrigation model in 

which farmers’ choices to irrigate were predicted using the ERT model described above. Our 

decision to use ERT random forest model was based on a comparative analysis of several linear 

and tree-based modeling approaches which revealed ERT to be the highest performing. Details 

of this supporting analysis can be found in the Supplementary Information section. The 

fundamental difference between our two ERT yield models lies in the historical data used to train 

each one. For the rainfed model, we restrict historical training data to yield samples explicitly 

reported as coming from rainfed fields. The mixed-irrigation model makes use of all available 

data, but also accounts for potential shifts in farmers’ behavior in response to climate change 

(reflected in predicted shifts in PPI). For example, farmers in a county where the growing-season 

precipitation falls below the minimum requirement for rainfed sorghum (11-14 inches22) by 2099 

may decide to irrigate, even if sorghum in that county has historically been all or mostly rainfed. 

For the mixed-irrigation model, we first estimated the proportion of total sorghum 

tonnage produced on irrigated fields for each county in each year using the PPI predictor model 

described above. We then trained an ERT model on all historical yield data and used it to predict 

irrigated yield value for every future year. Additionally, we used the rainfed model to predict a 

rainfed yield value. Finally, to determine a mixed-irrigation yield value for each prediction 

sample, we take the mean of the rainfed and irrigated predictions, weighted by the PPI to 

approximate a mixed-irrigation yield value; that is, a value for counties in which only a portion 

of total sorghum production is likely to be irrigated. One challenge for rainfed-only predictions is 

that, in some arid regions of the U.S., little or no yield data exists for rainfed crops because 
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irrigation is a necessity. To avoid unnecessary extrapolation, we constrained yield predictions in 

the rainfed scenario to counties for which historical rainfed sorghum yield values have been 

reported, or the county's total precipitation during the growing season in the prediction year is 

greater than 10 inches. This cutoff was set based on literature values for the minimum rainfall 

requirement for successful sorghum cultivation.22 

 

 

Results 

 

Evaluating Predictive Performance and Relative Variable Importance 

 

Before applying the ERT models to generate future sorghum yield predictions, we tested 

and applied that model in a predictive capacity. To test the ERT model’s extrapolation 

capabilities over time (for future yield predictions), we used a temporal cutoff to split our data 

into calibration and validation sets. Specifically, data from 1958 through 1987 was used for 

model training, and data from 1988 through 2016 was set aside as the test set for validation. We 

adopted this approach      to evaluate model performance in a manner that best resembled the 

ultimate use of our model, which is to predict sorghum yields over a contiguous span of future 

years through 2099, using all available historical data from the preceding years for model 

training. The final ERT model is, of course, trained on data sampled from the full 1958-2016 

timeframe. Figure 2 shows the results of temporally-binned calibration and validation. Validation 

predictions closely tracked the average trend of observed yields from 1987 to 1995, while 

generally tending to underestimate empirical values from 1995 onwards.  
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The under-prediction after 1995 may be partially related to fluctuations in market prices 

and the impacts on farmer behavior; for example, the market price of grain sorghum nearly 

doubled between 1994 and 1996 and spiked again in 2007-2008 and 2010-2013.23 The cause-

and-effect in the relationship between yields and market price can vary; farmers may respond to 

high prices by applying additional fertilizer and irrigation or high prices may be a consequence 

of a drop in yield due to drought or disease. If market prices increase because of speculation 

about increasing demand, for example, this could incentivize farmers to irrigate and fertilize 

more liberally, thus resulting in a yield increase. The latter is likely what occurred in 2012 when 

market prices were at a near-historic high and yields dropped (see Figure 2).24 Because market 

prices cannot be predicted through 2099 with any reasonable confidence, we decided to exclude 

market prices from the final model, but did explore its impact in a sensitivity analysis as 

discussed further below. Another factor that our model does not currently capture is changes in 

quantities of water and fertilizer applied to sorghum because of limited historical data 

availability. The quantity of nitrogen applied to corn, assuming it is an appropriate proxy, has 

increased by approximately 10% since 1995 after remaining steady for the previous two 

decades.25 
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Figure 2. Time series of sorghum yields by year, showing both observed and predicted values 

using the Extremely Randomized Trees model. Values along the Y-axis represent averages of all 

observations/predictions in the corresponding year.  

 

Without more granular data on agronomic practices, possible phenotypic improvements 

from breeding efforts, or even changes in how farmers report yield data, it is difficult to explain 

differences between model predictions and actual yields with certainty. Extreme events that are 

not well captured in our modeling approach can impact yields. Tornadoes and flooding can either 

destroy crops or shorten the growing season by delaying fall planting dates. Even if we tuned the 

historical model to identify incidences of flooding, incorporating these effects into the future 

projections based on CMIP5 climate modeling results would be near-impossible. Conversely, the 

impacts of drought are fairly well captured in our approach; it is notable that the model 

successfully predicted the dip in yield due to the U.S. drought of 2012.24 
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Variable importance values help to reveal which parameters are driving the model’s 

predictions. These values were calculated from Gini impurities for the top fifteen ranked 

predictors (Figure 3). Unsurprisingly, whether the crop is irrigated or rainfed was ranked as the 

most important factor in predicting sorghum yield, followed by vapor pressure deficit (difference 

between vapor pressure and saturation vapor pressure in the air) during the third month of the 

growing season, year, and longitude. Year, latitude, and longitude are, of course, not directly 

linked to yield in any sort of mechanistic way, but the ERT model has identified them as useful 

proxies for variables not otherwise captured in the input data. For example, the high importance 

of the y     ear variable likely reflects the impact of technological advances in agronomic 

practices, intensification (including increases in fertilizer application), and crop breeding efforts 

which have improved yields over the long-term.26–28 The Supplementary Information includes 

additional discussion of alternative strategies to capturing these long-term increases, such as 

detrending. The top ten ranked predictors accounted for a bulk of the sum total of all importance 

values, and lower-ranked variables all shared similar scores of around 0.012. 
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Figure 3. Variable importance values (calculated by Gini impurities) of top fifteen predictors in 

the Extremely Randomized Trees model. Importance values of all variables sum to one, and 

variables not shown all have similar importance values of around 0.012. Numbers to the right of 

each bar denote the importance ranking of each variable. Variable name abbreviations used along 

the Y-axis are provided in Table S1.  
 

We note that there are many environmental, agronomic and economic variables may have 

not been considered in our model which likely play a role in determining annual sorghum yields. 

Our selection of input parameters was largely based upon extensive review of the literature and 

data availability at the spatial (county) and temporal (annual) scale necessary for our analysis. 

We conducted a sensitivity analysis which considers the market price of grain sorghum as an 

additional input parameter to ERT model.  The inclusion of price as a predictor did not improve 

predictive accuracy and when variable importance values were computed for this new model 

(Figure S6), price was ranked fairly low compared to pre-existing input parameters, suggesting a 

limited influence of market forces on yields as the other variables in our model. Interestingly, we 

observe some substantial changes in the relative importance values of other variables in the 

model with price included. Notably, the importance of Year is significantly lower (possibly 

explained by collinearity with sorghum price) and no longer appears in the top 15 highest ranked 

predictors. Additionally, we see a reduction in the importance of Vapor Pressure Deficit in the 

third month of the growing season a relative increase in the importance of latitude and longitude. 

These changes likely reflect a combination of multicollinearity between input parameters and the 

non-deterministic nature of the ERT algorithm. Consequently, we are wary of drawing 

mechanistic inferences about input parameters from these importance values alone. 
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Generating Future Sorghum Yield Projections 

ERT model predictions for the years 2018 to 2100 indicate a gradual decreasing trend in 

sorghum yields across the U.S. As expected, the rainfed-only scenario results in Figure 4 indicate 

that yields will be comparatively low in the western U.S. if farmers do not irrigate, regardless of 

year or climate scenario. The rainfed predictions are only provided for counties where historical 

USDA yield data exists that is explicitly labeled as rainfed (many yield data points are not 

accompanied by information on irrigation practices). These same regions where rainfed yields 

are low, or insufficient rainfed yield data exists, are the highest-yielding when irrigation 

practices are unconstrained. The decreases in yield through 2099 become more severe in higher-

GHG-emissions scenarios       (Figure S7). This pattern holds under both rainfed-only and 

mixed-irrigation regimes, although there is considerable regional variation in the magnitude of 

the yield declines (Figure 5). In particular, we see the most pronounced yield declines projected 

in the Great Lakes (8.2%), Upper Midwest (7.5%, Heartland (6.7%), Northeastern (5.6%), 

Northern Plains and Eastern Mountain (5.5%) with moderate to stable trends in the Southern 

(4.1%), Delta (4%), Southern Plains (2.3%) and Pacific (0.7%) regions from 2018 to 2099 and a 

slight upward trend in the Mountain region (+2.3%) (Figure 5).   
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Figure 4. Geographic distributions of ERT predicted sorghum yields under mixed-irrigation and 

rainfed scenarios, assuming the highest emissions pathway (RCP 8.5). Input values for 

precipitation, minimum and maximum temperature are CMIP5 ensemble means. 
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Figure 5. Distributions of predicted sorghum yields over future years, using the 25th, 50th and 

75th quartiles of CMIP5 ensemble values for input climate variables under (A) rainfed and (B) 

mixed irrigation scenarios. An emissions scenario of RCP 8.5 is assumed. Values in each boxplot 

are ten-year averages taken over the years corresponding to its position along the X-axis.        
 

 
Figure 6. Sensitivity of predicted sorghum yields (assuming mixed irrigation and the RCP 8.5 

scenario) to climatological input parameters. The lower and upper bounds on each bar 

correspond to yield predictions made using the 25th and 75th quartile values respectively of 

precipitation, minimum and maximum temperature values from the CMIP5 ensemble of global 

circulation models for the corresponding year along the X-axis. 

 

The differences in yield trends across regions are best understood in the context of the 

CMIP5 ensemble values for input climate values, and the sensitivity of yield to those values. The 

Pacific and Mountain regions have the least-negative yield trends (a near-negligible decrease in 

Pacific and a 2.3% increase in Mountain). These two regions are unique in that the climate 

projections show a curious and abrupt increase in TMIN values during the growing season (see 

Figure S4). Most regions exhibit a slight downward shift in the range (25th-75th percentile) of 
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growing season precipitation values (Figure S5).  We also noted substantial regional variation in 

the sensitivity of yields to region-specific input climate parameters. Yield predictions made using 

the 25th, 50th, and 75th quartiles of CMIP5 ensemble values for input climate variables revealed 

that western regions (Mountain and Pacific) were least sensitive to the quartile of climate data 

used, while all other geographic regions exhibited greater variation in quartile-specific 

distributions (Figure 5; Figure 6). The greatest ranges in quartile-specific yield predictions 

corresponded to the Great lakes, Heartland and Upper Midwest, and Northeastern regions 

(Figure 5; Figure 6). 

The narrowing range of projected yield distributions for each 10-year period, especially 

in the Midwest and Northern and Southern Plains (Figure 5), is likely attributed to the 

convergence of our ERT model as values of input climate parameters become geographically 

homogenous at the county-level. That is, as regional climatic values became less dissimilar under 

future emissions scenarios, we observed diminishing regional variability in corresponding yields. 

In reality, extreme events that are not captured well in long-term climate projections, such as 

droughts, flooding, and storms, are likely to drive year-to-year variations in yield. In particular 

strong storms and high winds that result in lodging are not well captured in our model, although 

modern farming equipment can be used to harvest lodged biomass, so the impact of lodging on 

yields is unclear.  

 

Conclusion 

  

Our results indicate that tree-based machine learning algorithms, specifically Random 

Forest and Extremely Randomized Trees regression, can offer robust predictive performance for 
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bioenergy crop modeling. The RF and ERT models evaluated in our study outperformed linear 

prediction techniques on the basis of validation prediction errors using a temporal split of 

historical yield records for training and validation.  The superior performance of the RF and ERT 

models can likely be attributed to the non-linear relationships between our predictor variables 

and yield, and the likelihood of complex interactions between predictors.  Specifically, the tree-

building subroutine, which recursively selects the single best predictor at each tree node, forces a 

given decision tree to be affected by only one variable at a time, circumventing issues of 

multicollinearity and interactions. Although this results in individual decision trees that perform 

weakly on their own, the aggregate performance as a forest is typically far stronger. Thus, the 

ensembling component of these algorithms enables them to account for nuanced effects of 

different predictors captured in different trees and merge them together into robust consensus 

estimates. 

The spatial variation and magnitude of sorghum yields predicted by our ERT model 

generally align with those of other regional-scale studies, although the regional variability in 

yields predicted by mechanistic models is substantially greater. For example, Lee29 generated 

yield potential maps for rainfed biomass sorghum across the continental U.S. by combining field 

trial data from six states over five years and a statistical‐mechanistic framework called the 

Parameter‐elevation Regressions on Independent Slopes Model (PRISM). PRISM uses 

temperature (maximum, mean, and minimum), total precipitation, evapotranspiration, soil 

evaporation (averaged over over the years 1981 to 2010) and soil properties (salinity, pH, and 

drainage) to simulate spatially heterogeneous biomass yields. The model also incorporates crop 

coefficient, average rooting depth, and water stress response factor. Based on these inputs, the 

model predicts yields for the years 2009 to 2015.  Our ML approach uses a number of similar 
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soil and climate datasets that affect crop growth, but does not include all the same heterogenous 

soil conditions (our ML approach uses only available water storage and clay content). Salinity, 

pH, and drainage were not included due to limited data availability at the necessary spatial scale 

and coverage for our analysis.  Our review of the literature found that these soil properties were 

not typically used in other statistical and machine learning approaches to yield prediction.9,12,16 

Ideally, all available soil data should be incorporated in future models. Nevertheless, the near-

term predictions of our rainfed ERT model spatially align those of PRISM, similarly predicting 

the highest rainfed sorghum yields in the Upper Midwestern Region, with values ranging from 

18 – 22 Mg ha-1. However, it is worth noting that, while our ERT yield predictions outside of the 

Upper Midwest region do not drop below 17 Mg ha-1, the PRISM-ELM model predicts much 

lower value ranges for all other regions. This is most pronounced in the Pacific, Mountain, 

Northern and Southern Plains regions where PRISM-ELM estimates yields as low as 1 to 10 Mg 

ha-1.  

Another comprehensive study prior to ours that offers predictions of biomass sorghum 

yield is the U.S. Department of Energy Billion Ton Report5 which utilized a version of PRISM 

developed expressly for use in that study: PRISM Environmental-Model (PRISM-EM). PRISM-

EM was used to estimate biomass sorghum yield within a complex agro-economic and 

environmental simulation framework named the Policy Analysis System (POLYSYS) for a 

variety of scenarios.5 PRISM-EM combines biweekly precipitation and temperature values from 

PRISM, soil pH, drainage, and salinity data from the Soil Survey Geographic (SSURGO) 

Database’s soil pH, drainage, and crop-specific water-use and temperature-tolerance 

relationships to estimate yields.5  
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Despite differences in input parameters, our ERT model and the Billion Ton Study 

version of the POLSYS/PRISM-EM model (Figure S8) output similar in yield predictions across 

the Eastern, Upper Midwest and Great Lakes regions. However, where POLYSYS/PRISM-EM 

predicts higher and lower extremes in other regions, our ERT model maintains fairly consistent 

mid-range values. This regional homogeneity of mid to high yield values over large swaths of the 

U.S. is projected into future years by the ERT model as seen in Figure 5. A model based on 

historical data such as ours will not have trained on records of rainfed yields as low as those 

predicted by PRISM-ELM or POLYSYS/PRISM-EM; any land yielding as low as 1-10 Mg ha-1 

of sorghum biomass under rainfed conditions will either not be planted at all or will be irrigated 

to improve yields. It is possible that lower-than-expected crop yields in the ranges predicted by 

PRISM-ELM and POLYSYS/PRISM-EM for the Western U.S. do occur, and in that case (for 

grain types only), farmers may choose to collect crop insurance payments. In this case, it is likely 

that yields would not be reported to USDA, as the crop must then be destroyed or put to an 

alternative use.  

If the higher rainfed yields predicted in our model for the Southern Plains, Northern 

Plains, and Mountain regions can be achieved, this could have beneficial land-use change 

implications. For example, relatively high-yielding biomass sorghum across a wide geographic 

swath of the U.S., particularly in regions that are considered marginal based on their climate, 

allows for higher-value agricultural land to be cultivated with more profitable crops. In other 

words, if sorghum will grow relatively well across a larger area than has been predicted by 

previously-developed models, a target amount of gross biomass tonnage can be achieved using a 

more diverse range of land conversion strategies. However, if mid-to-low-yielding land is 

prioritized for growing sorghum, an obvious outcome will be a larger total land area requirement. 
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Depending on the geographic distribution and value of such lands—both economic and 

agricultural—this may or may not noticeably increase logistics costs for delivering biomass to 

biorefineries.  

Our analysis contributes to a growing field of biomass yield prediction informed by 

historical data and real-world agronomic practices and lays the foundation for follow-up work on 

scaling up bioenergy crop production. Further analysis is needed to compare and understand the 

performance differences between tree-based ML algorithms and process-based models for 

predicting sorghum yields. The interplay between commodity prices and agricultural yields is 

also largely ignored in bioenergy crop yield projections. Higher market prices will incentivize 

farmers will apply additional fertilizer and irrigation water. Ultimately, the most robust 

predictive yield models will likely emerge from a hybrid of statistical and process-based 

methods. Linking these two modeling paradigms will be a critical next step to improve the 

accuracy, precision, and interpretability of bioenergy crop models. Additionally, incorporating 

mechanistic aspects of process-based modeling will better enable for targeting specific traits and 

underlying genotypes that promote better crop performance under future climate scenarios.  
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