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Sierra Center of Excellence: Lessons Learned

Aaron Black, Adam Bertsch, Johann Dahm, Leopold Grinberg, Ian Karlin, Sara Kokkila-Schumacher,
Edgar A. Le6n, Rob Neely, Ramesh Pankajakshan, Olga Pearce, David Richards

The introduction of heterogeneous computing via GPUs from the Sierra architecture represented a
significant shift in direction for computational science at LLNL, and therefore required significant
preparation. Over the last 5 years, the LLNL Center of Excellence has brought employees with
specific expertise from IBM and NVIDIA together with LLNL in a concentrated effort to prepare the
applications, system software, and tools for the Sierra supercomputer. This article shares the process
we applied for the CoE and documents lessons learned during the collaboration, with the hope that
others will be able to learn both from our success and intermediate setbacks. We describe what we
have found to work for the management of such a collaboration and best practices for algorithms and
source code, system configuration and software stack, tools, and application performance.

1. Introduction

Practically from its founding in 1952, Lawrence
Livermore National Laboratory (LLNL) has been a
pioneer in the use and development of high
performance computers. One of the lab’s very first
large procurements was a Remington-Rand Univac I
computer, delivered in 1953. Since that first Univac,
LLNL has remained at the forefront of computing not
only by operating systems based on the most advanced
technology available, but also by adapting our
applications in response to periods of rapid change in
computer architecture. The arrival of a Cray-1 in 1978
marked the transition to the vector processor era and
Livermore codes adopted algorithms to take advantage
of vector parallelism. The 90’s brought the
microprocessor era and a series of massively parallel
machines including ASCI Blue Pacific (1998),
BlueGene/L (2005), and Sequoia (2012), each of which
was the fastest machine in the world at the time. Codes
adopted MPI and domain decomposition to exploit
those distributed memory architectures. By 2013 it was
apparent that another architectural shift was in
progress, this time to heterogeneous compute nodes
populated with multi-core CPUs and GPU accelerators.
Once again, it was time for application codes at LLNL
to adapt.

In mid-2014, LLNL entered into a contract with IBM
to deploy Sierra, a flagship supercomputer housed at
LLNL in support of the National Security mission of
the NNSA in partnership with Los Alamos and Sandia
National Laboratories. Sierra was ultimately built and
accepted for delivery in 2018 on time and on budget,
and transitioned to a classified network for
programmatic use in early 2019. The 4-5 year lead
time offered ample time for co-design of the system

hardware and software, as well as an opportunity to
prepare our applications for the major shift to
GPU-based heterogeneous computing. In support of
this shift, a Center of Excellence (CoE) [9, 13] was
established early in the contract period as a partnership
between IBM, NVIDIA, and the NNSA laboratories to
begin the long transition of our application code base
and to help ensure Sierra could be put to productive
use as soon as possible upon delivery.

The process of transitioning applications and
application developers from a CPU-only system to a
heterogeneous system is not over, but our experiences
can be documented and shared with a wider audience.
In this paper, we reflect on the lessons learned in the
CoE that can hopefully act as a guide for other
institutions. An earlier publication [14] outlined the
approach used to organize the Sierra CoE. This paper
builds upon that work and focuses more on the
technical lessons learned. Shifting to heterogeneous
computing is a major undertaking, but we feel strongly
that most, if not all, HPC centers are likely to adopt
heterogeneous architectures as they offer compelling
advantages in performance potential over traditional
CPU-only based designs.

We have organized our lessons learned according to
the audience to which they apply. Section 3 contains
advice that applies most directly to developers who are
responsible for porting and optimizing code. Section 4
is directed at developers and users who are responsible
for constructing science workflows. Section 5 speaks to
users and developers of performance tools, Section 6 is
for the team that administers the system, and Section 7
is for the mangers of a CoE. Finally, Section 8 contains
advice that doesn’t fit neatly into other sections.
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Figure 1 A Sierra compute node with two CPUs and four GPUs.
Each CPU has 20 latency-optimized user cores and high-capacity
memory. Each GPU has throughput-optimized cores and high-
bandwidth memory. As shown on the right-hand side the CPU
architecture is SMT-4, which results in 160 user hardware threads.

2. Challenges Moving Production Codes into
the Heterogeneous Computing Era

Moving LLNL mission critical applications to Sierra
was challenging not merely due architectural change,
but also because of the constraints imposed by the
day-to-day production demands placed on these
applications. Production work needed to continue while
the codes were ported. Hence, our codes were required
to remain performant and accurate on a wide range of
systems including laptops, workstations, and
commodity systems even while Sierra support came
online.

Many Advanced Simulation and Computing (ASC)
applications contain hundreds of thousands to millions
of lines of code spread across multiple packages, often
written in different programming languages. These
codes are long-term projects with 15+ years of
development by large teams. As a rule they have
outlived the systems for which they were originally
designed and most are expected to outlive Sierra.
Portability in a single code base is critical to avoid the
maintenance costs of supporting machine specific code
and is necessary to maintain a connection to concurrent
verification and validation efforts. Achieving
performance on a wide range of architectures while
maintaining portability is a formidable challenge.
Therefore, performance portability and methods to
achieve it became a large focus of COE effort.

In shifting to heterogeneous hardware code teams
needed to deal with new challenges of data placement
and movement, along with where to perform compute.
Sierra’s GPU accelerated nodes contained two types of
processors and two memory spaces (see Figure 1) in
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contrast to homogeneous nodes, which have one of
each. GPUs are high throughput devices that require
large amounts of parallelism to sustain peak
performance. In contrast, CPUs are latency oriented
and do not need as much parallelism to run at peak.
GPU and CPU memory on Sierra have different
properties. GPU memory is limited in capacity with
high bandwidth, while CPU memory had large capacity
and lower bandwidth. The shift to two processor types
and two memory spaces with different trade-offs drove
programming decisions and challenges.

Since GPUs have less memory capacity than CPUs,
developers were forced to choose between constraining
problem sizes to fit in the limited space or transfer data
between the CPU and GPU memory to run larger
problems. Data transfer could be handled manually, left
to a runtime, or hybrid approaches could be used.
Manual control often resulted in better performance,
but at a higher programming cost. Having two
processor types each of which, specialize in different
computations presented another decision for teams to
make. Parallelism sometimes dictated which processor
to use, with highly parallel code running on the GPU
and less parallel or serial code on the CPU. However,
since data motion is expensive, data location would
sometimes dictate where to compute. For example,
developers might choose to run a kernel with little
parallelism on the GPU because the required data was
already in GPU memory.

Heterogeneous nodes also introduce new choices and
challenges for sending MPI messages. For data already
in CPU memory, sending messages from the CPU was
best. For data in GPU memory, there are multiple
options: copy data manually to the CPU then send a
message, use GPU aware MPI to stage data through the
CPU, or use GPU aware MPI to send RDMA
messages. Each of these present various trade-offs, in
code complexity, performance and memory usage.
Overall, the switch to heterogeneous computing greatly
complicated the search space for best performance and
many code teams opted to start with functionality
before focusing on performance.

3. Application Modernization

Designing for a heterogeneous CPU/GPU system such
as Sierra is difficult: applications need to be written
with awareness of inter-node communication and data
movement between CPU and GPU devices, all while
coordinating program execution across multiple CPU
cores and GPU devices. This is a substantial step
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beyond what had to be considered on previous systems.
In order to address these additional requirements,
application code teams found that refactoring and
optimization typically progressed through a series of
stages:

e Refactor and simplify the code, removing
anti-patterns

e Create a mini-app to test algorithms and to engage
with others

e Use portable programming models and abstraction
frameworks to ensure code works on different
platforms

e Focus porting effort with a target problem or use
case that exercises the salient features of the
application

e Search for additional parallelism in the algorithms

e Manually manage memory for better performance

e Iteratively refactor and apply the steps above until
desired performance is reached

3.1. Refactor and simplify code

GPUs are highly threaded devices and therefore require
thread-safe code. Some of the code teams at LLNL
found that their first step was to eliminate obviously
unsafe coding practices, such as global variables and
static objects. Codes that use static objects in the
device code will not even build properly. GPUs should
also avoid anti-patterns such as deeply nested
branching, and excessive virtual function calls and
pointer chasing. Refactoring and simplifying the code
to eliminate these common problems may also help the
compiler generate more efficient code for the CPU, and
has generated a speed-up before offloading.

Many standard C++ containers and algorithms are
also hostile to GPUs. Operations like vector’s
push_back () method are not even well-defined in a
parallel execution environment. Other common
constructs such as string operations, exceptions, or CPU
system calls must typically be removed from any code
that intends to target GPU execution. Vendor-supported
libraries such as Thrust [3] provide a subset of
functionality usually obtained from standard libraries.

It may seem tempting to use custom allocators with
standard C++ containers to place data in GPU memory,
but their methods, including data initialization, will still
execute on the host causing either immediate crashes or
frequent data migration—greatly limiting the usefulness
of such an approach. Instead, application developers at
LLNL have found it useful to eliminate standard C++
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containers from their device code and instead
implement their own classes with suitable interfaces
and well defined parallel semantics.

Developers also need to strike a balance between
advanced language features and code simplicity.
Compiler writers strive to fully support advanced
language standards, but in reality applications that rely
on advanced features will need to spend more time
working through issues with the vendor/compiler
teams. It is often a better idea to keep production
device code as simple as possible and use well
established language standards.

3.2. The mighty mini-app

Many code teams found it useful, especially when
engaging with vendors, to write mini-apps as a
playground for testing porting strategies. The small size
of a mini-app greatly facilitates rapid prototyping and
avoids restrictions and complication of passing the full
application between collaborators. Effective mini-apps
should include the salient compute regions and general
application flow without including the external
dependencies or other features that tend to enlarge the
code base. When working with mini-apps it is
important to remember that the full application may
not admit optimizations that seem obvious in the
reduced code base. For example, assuming certain
variables are constants, or altering a specific loop
structure, may improve mini-app performance, but the
corresponding transformations may be impossible in
the larger application.

Predictably, codes without a mini-app struggled to
get support early on, while codes that had openly
available mini-apps received fast-track treatment.
Mini-apps also played a role in compiler development:
advanced code features were exercised more easily in
the mini-apps, and frequently facilitated the process of
sharing reproducers for issues.

Proxy apps that represent only a specific aspect of a
full application have also proven to be extremely useful
for trying out different approaches on the
heterogeneous architecture to solve problems that did
not exist on CPU-only machines. Comb, a proxy app
for halo exchange, is one example of such proxy
(https://github.com/LLNL/Comb). While the application
domains the GPU computes on are large enough to
utilize the computational power of the GPU, the
application frequently and repeatedly invokes the halo
exchange routine, where the boundary information is
sent to the logical neighbors. The data to be exchanged
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Figure 2 The overhead of a halo exchange in a hydrodymanics ap-
plication on Sierra, as demonstrated by the Comb proxy application.

is stored in the GPU memory, and needs to be sent to
the memory of 26 logically neighboring GPUs,
necessitating going off-node on the machine. Prior to
being sent, the boundary data needs to be packed into
buffers. While the cost of packing was negligible on the
CPU-only machines, packing in GPU memory proved
to be kernel-launch-overhead bound, as can be seen in
Figure 2. Using Comb, we explored packing on the
CPU, GPU, and various optimizations such as CUDA
Graphs for running the kernels in parallel and thus
reducing the kernel launch overhead. We also explored
using regular MPI, GPU-aware MPI, GPU-aware GPU
direct, and GPU direct async technologies.

3.3. Use portable programming models and
abstraction frameworks

Codes with a relatively small number of high intensity
kernels can often justify writing platform specific code
for each new architecture. Customizing a few hundred
or even a few thousand lines of code to a
vendor-specific programming model can be the most
effective way to extract maximum performance at a
reasonable level of effort. However, for the large
application codes at LLNL, vendor-specific approaches
such as CUDA were almost immediately deemed
off-limits due to concerns about portability and future
maintainability.

With CUDA off the table, attention focused on the
emerging OpenMP offload model as a potential portable
solution. Unfortunately, it was soon determined that the
number and variety of pragma statements required to
write code capable of running in both CPU and GPU
environments overwhelmed developers and also
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resulted in code that wasn’t actually all that portable.

For C++ codes, RAJA quickly gained momentum as
a parallel programming framework that satisfied
practically all of our requirements. RAJA uses
templatized parallel for loops along with lambda
capture to separate loop content from execution policy.
Mutiple RAJA back-ends are available and allow
developers to target CUDA, HIP, or OpenMP target
offload on GPUs, as well as threaded (OpenMP) or
sequential execution on CPUs without any modification
to the loop kernel (or lambda). RAJA is also designed
for incremental adoption and interoperates with other
GPU and CPU programming models. Developers can
add RAJA to as many (or as few) loops as they need,
depending on whatever constraints may exist in their
development process. Hiding the actual parallel model
behind and abstraction layer is clearly a best practice
for large science codes written in C++.

Because C and Fortran lack the language features
needed to implement strong abstraction layers such as
RAIJA, other solutions are needed. Many C codes are
choosing to convert to C++, specifically to gain access
to abstraction frameworks. As for Fortran. ..

The relatively small community of developers,
compilers, and vendor resources devoted to Fortran,
compared with C and C++, affected the success of
early code porting efforts. LLNL teams found that the
compilers, runtime, and tools mostly worked after a
short period of bugfixes, as long as they wrote Fortran
code using only the set of features common to C and
C++. More advanced modern Fortran features, i.e.,
shaped arrays and array notation, took much longer to
mature. Although these features are supported by the
compilers, they have not been fully supported in GPU
debugging tools because the IBM compilers have to
translate Fortran to C before it can be assembled with
the NVIDIA ptxas assembler.

Naturally, this led to significantly increased
development time and overhead for code teams and
vendors using Fortran. For example, a Fortran code
team at LLNL spent close to two years collaborating
with compiler teams, reporting 60+ issues, before being
able to compile the full application using OpenMP 4.5
target offloading. This cost was exacerbated by the
difficulty in extracting reproducers from the code, as
more complex bugs required increasingly more
complex reproducers.

The effect of the smaller community was also felt on
the support and maturity of the OpenMP standard for
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advanced Fortran features not common to C. Examples
include the inability to map allocatables to the GPU, in
some cases, and the lack of thread team support in

OpenMP workshare for mapping over array operations.

The support for CUDA Fortran was more mature at
the beginning of the CoE effort, and successes were
made porting code to the GPU using CUDA Fortran by
members of the CoE, but these approaches were
unfortunately deemed insufficiently portable for the
large production codes at LLNL. In addition, the same
difficulties were found with tools trying to debug or
troubleshoot GPU kernels as compared to the C
equivalents.

The Fortran language standard committee has been
discussing adding the equivalent of C++ templates and
other functionality which may allow developers to
implement an abstraction layer to select different kernel
implementations. Fortran already has native language
support for expressing some parallelism its “do
concurrent” loops, “co-arrays”, and array operations
syntax. Future work may yield a solution that allows
developers to select different kernel backends similar to
what the C++ RAJA layer can do. As of yet, however,
these are only early discussions and proposals, so the
pragma based solutions, OpenMP and OpenACC, are
currently the only options for portable code in Fortran.

3.4. Start with a target problem

It is easy to be overwhelmed by the problem of porting
a large and complex code to GPUs. There are several
ways to approach the task, but our experience suggests
that starting with a specific target problem or use case
and porting only those parts of the code that are
necessary to run that problem is an effective and
efficient strategy. Working with a specific test problem
will quickly isolate the parts of the code that need to
be moved to the GPU from those features that can wait
until later. Concentrating on a subset of the code will
allow your team to gain experience with the interactions
between the GPUs and your coding patterns and data
structures. This experience will improve productivity
later on when you take on additional features in
sections of the code that were initially deferred.

One of our teams decided to start their port by
classifying every loop in their code and converting
loops to a parallel framework. This had the advantage
that all of the apparently similar work was all
performed at once. However, after the initial
conversion, the team focused on a specific target
problem for optimization. In the process of optimizing
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the code for their target problem they improved their
understanding of GPU programming and found that
some of the initial conversion work needed to be
altered to take advantage of that improved
understanding. Working toward a specific problem from
the beginning would have avoided the need for this
re-work.

3.5. Expose parallelism

The coarse-grained thread- or process-level parallelism
typical of codes developed for CPUs is usually
insufficient to gain a performance advantage from
GPUs; at least thousands or tens of thousands of
threads are necessary. Additionally, whereas CPU
threads are largely independent and can communicate
with each other at any point, GPUs focus on the single
instruction multiple thread (SIMT) model, which splits
execution into blocks of lightweight threads that
execute on streaming multiprocessors composed of
GPU cores.

Application developers often need to revisit
algorithms, carefully analyzing program dependencies
to determine if more parallelism can be obtained by
reordering or collapsing loops, reorganizing data
structures, or even employing different numerical
methods. For kernels with limited compute work, the
overhead of kernel launch can dominate performance.
Kernel fusion can be an effective technique to lower
such overhead, as long as register pressure or local
storage requirements do not limit occupancy or force
register spills. As long as the problem fits on the
device, the key to adding parallelism may be as simple
as running a larger problem size.

Algorithms themselves may need to change in order
to adapt well to GPUs. For example, high-order finite
element codes are switching from matrix-based
approaches with less compute for the amount of data
loaded from memory to matrix-free algorithms with
higher arithmetic intensity. By cleverly writing the
GPU kernels, developers can hide the additional
computation behind the loads and stores.

Other algorithms are less clearly suited to GPU
execution. Algebraic multigrid algorithms are
classically difficult to execute solely on a GPU, due to
the fact that the setup phase has far less parallelism
and much more indirection than the repeated
matrix-vector multiplications of the solve phase.

The process of reorganizing code and refactoring
algorithms is almost certain to introduce bugs.
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Unfortunately, GPU debugging is notoriously difficult
because of an almost complete lack of consistency
guarantees within kernels. Utilizing an abstraction
framework like RAJA can offer significant benefit in
this regard. New algorithms can deployed first with a
sequential execution policy on the CPU to ensure
functional correctness. Next, a CPU-based thread
parallel policy can be used to detect many common
parallel code bugs such as data access dependencies or
race conditions. Code profiling and sanitizer tools
developed for CPUs can be extremely helpful in this
process, even when they are executed on other
platforms.

3.6. Memory management

Applications, especially the large codes at LLNL, have
found the page-based CUDA managed memory and
address translation service (ATS) available on the
Sierra system to be helpful in the process of
incrementally porting code while maintaining
correctness. However, they have also found that relying
solely on this mechanism for host-device transfers fails
to meet application performance goals. Most teams
have found that they need to insert code to explicitly
copy code between CPU and GPU memory. In some
cases this takes the form of making (asynchronous)
prefetch requests to the CUDA runtime. Other codes
use smart pointer abstracts (CHAI) to free developers
from manually inserting requests to move memory.
Adding explicit memory copies also has the advantage
that the application remains portable to systems that do
not yet support unified memory.

Even after optimizing data traffic, some applications
encountered performance issues related to the CUDA
API calls used to allocate managed memory. Allocating
memory through the CUDA API can be 100x (or more)
slower than obtaining heap allocations on the system’s
host memory. As a first step, application teams have
found it important to classify memory allocations, so
that calls for persistent (host or device) and temporary
(device) memory are made through different function
calls. To further address this challenges, LLNL is
developing an open source library, appropriately named
Umpire [2]. This library provides a vendor and system
indepent mechanism to request allocators in different
memory spaces. It also provides a variety of allocation
policies such as pooled memory allocators. With
Umpire’s pooled allocators, the expensive CUDA API
calls can be made only once for a large pool and their
cost amortized over many sub-allocations. Umpire also
supports a robust introspection functionality, allowing
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Porting Step Speedup

1. Compile code and run (x86+K80) 0.01

2. Minimize data motion 0.03

3. Minimize dynamic memory allocations 0.44

4. Add asynchronous kernel execution 1.1

5. Optimize individual kernels 1.9

6. Use early access hardware (P8+P100) 5.3

7. Use Sierra hardware 6.9

Table 1 The process of porting an LLNL production code for a
specific problem of interest. A speed-up, reported relative to a Haskell
node, was not immediate after porting the application. Rather, over
a series of steps the performance was improved 500x to obtain a 7x
speedup over the CPUs.

the calling code to query what allocators created
pointers, how much memory is left in a specific
resource, efc. The application can then make execution
decisions based on that information.

Large codes can also use Umpire to manage
competition for limited GPU memory between multiple
packages. For example, a single temporary allocation
pool can be shared among multiple packages, each
using the corresponding GPU memory while they are
active, but freeing the space for other uses before
surrendering control to the next package in the
execution flow.

3.7. Lather, rinse, repeat

The steps described above are general guidelines—in
reality, application porting is a difficult and iterative
process. Do not be discouraged when the code is
orders of magnitude slower on GPUs the first time it
runs. Good performance almost always requires at least
a few iterations of code restructuring.

Table 1 shows the progress of porting a large LLNL
production code, initially designed and tuned for CPUs,
to Sierra. This process required a sustained effort over
a long period of time to obtain the desired speed-up.

4. Workflow Strategy

As scientific applications add machine learning and
other real-time analytics or visualization into their
simulations, workflows are becoming increasingly
complex. Heterogeneous architectures and multiple
memory resources adds yet another level of complexity
to the mix. To achieve optimal performance on systems
such as Sierra, application developers need to consider
advanced workflow strategies. Key lessons learned
from large-scale workflows include:

e Optimize resource allocations at the workflow level
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e Use workflow management tools

e Consider the memory hierarchy and data sharing
tools when designing a workflow

e Package managers and continuous integration can
help ensure the reproducibility of a workflow

4.1. Resource management

Complex workflows may require multiple applications
to interact. This can cause different applications to
compete for the same resources. In order to avoid
over-subscription, job schedulers play a key role in
resource management. Additionally, developers must
consider which resources, such as CPUs or GPUs, are
the right choice for each application and balance the
different resource needs for each component of a
workflow.

Hierarchical schedulers, such as Flux, or schedulers
that allow the creation of child jobs, such as LSF®
with jsrun, can overcome the challenges of running
complex workflows at scale [1]. In some workflows,
co-allocating applications that are data generators with
an application that consumes the data can be a critical
performance consideration. Other co-allocation
challenges include balancing GPU-heavy applications
with CPU only codes or file I/O intensive applications
with applications that have a low file I/O use. In each
of these instances, users need flexibility in the
scheduler to manage which types of jobs or applications
are co-allocated on the same compute node [7].

Part of the developer’s responsibility when
developing workflows includes deciding which
components of the workflow will benefit from the
different available resources. This means that
developers must consider how the individual
components fit into the full workflow. As an example,
porting an application that is part of a workflow to the
GPU, does not necessarily improve the performance of
the workflow since different applications may have to
compete for resources. One of the lessons learned from
the CoE was that in coordinated workflows with
multiple application interactions, developers should use
GPUs for the most compute intensive components,
co-allocate low memory codes on nodes with memory
intensive codes, and co-allocate file system intensive
codes with codes that have minimal use of the file
system.

4.2. Workflow management
Workflows with tightly coupled interactions or with
thousands of simultaneously running jobs can benefit
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from dedicated workflow management tools. A key
responsibility of workflow managers is to track the
available computational resources and tasks that need
to be scheduled. This may include using machine
learning or other analysis approaches to create priority
queues of tasks. Workflow management tools may play
an active role in the simulation, in which case it is
beneficial to use a workflow management tool that is
closely coupled to multiple schedulers [6, 5]. Workflow
management tools that are coupled to multiple
schedulers also improves the portability of the
workflow. Additional responsibilities should include
checkpointing or restarting entire workflows—a job
which is beyond the scope of the individual tasks’
checkpointing and restarting. In ensemble workflows,
restarting the whole workflow requires ensuring that
each individual component can be restarted and
requires checkpoint capabilities at the workflow level to
ensure that the entire workflow is capable of restarting
from a valid ensemble. One of the lessons learned from
the CoE is that workflow checkpointing and restarting
needs to be designed into the workflow from the start.
Since many things can go wrong during a running
simulation, this approach can help reduce wasted
compute cycles and will make the workflow more
robust against system failures.

4.3. Data management

Sierra offers several different resources for storing data.
In order of increasing capacity (and decreasing
performance), each node of Sierra provides High
Bandwidth Memory (HBM2), DRAM (DDR4), and a
PCle SSD that can be used as a burst buffer or as
extended memory. Sierra also has a parallel file system
(GPFS) with 154 PB of usable storage. With so many
different options for storing data, managing the
memory hierarchy can be an important optimization for
both single applications or large workflows. As an
example from one of the machine-learning enabled
workflows at LLNL, machine-learning or analysis
codes may be able to take advantage of burst-buffer
technology to reduce the impact on GPFS. Optimizing
memory use can also impact the required job layouts
on a compute node, which means that schedulers and
workflow management tools need to allow this type of
optimization.

In workflows where multiple applications produce or
consume data, there is a need to manage how the data
is shared. Traditionally, workflows have used file I/O to
share data between the different applications. As
storage hierarchies become more complex, and
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compute performance further outpaces filesystem
performance developers should consider tools such as
the IBM Data Broker or similar database software to
facilitate data communication between different
applications in a workflow [15].

4.4. Reproduciblity approaches

CoE teams frequently involved many different
developers and collaborations between different teams.
Since one of the goals of the CoE was to help
application teams be ready for Sierra on day one, the
developers were often working on systems that were
undergoing frequent changes (to both hardware and
software). These factors influenced several teams to
explore different approaches to ensuring reproducibility
between developers and across different compute
systems. Updating applications to use continuous
integration helped to maintain code and was useful for
the early detection of issues related to hardware or
system level software changes. Package managers, such
as Nix or Spack, also proved to be useful approaches
for ensuring reproducibility across different developers,
platforms, and compilers [8, 4].

5. Tools

For performance tools, our two most significant
challenges were profiling GPU code and handling HPC
programming models, such as OpenMP and RAJA, that
are needed for GPUs. We tackled these challenges with
a two-pronged approach, using different tools to tackle
each problem. Vendor tools, such as nvprof from
NVIDIA, can provide deep technical insights into GPU
performance, but don’t focus on HPC issues like
scalability or programming models. The open-source
HPC tools community produces tools that handle
scalability and programming-model challenges, but do
not have deep insights into the hardware. To push
forward the open-source tools we worked with the
HPCToolkit team from Rice University to “carve a path
through the jungle” and work through the issues that
performance tools encounter during system design.
This worked well and uncovered numerous issues with
DWARF debugging information, performance, and
interface design. While HPCToolkit can profile GPU
code through the CUPTI interface, providing the same
level of GPU-insights as nvprof remains a challenge,
and we are continuing to work with NVIDIA to
understand both the interfaces and methodologies that
are needed for GPU profiling. Efforts are also ongoing
to make nvprof more usable in HPC environments.
Making nvprof a scalable multi-node tool was not
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viable, but it is still useful as a single-node tool for
focusing on the GPU usage. While issues like proper
OpenMP support are still on NVIDIA’s roadmap, we
made progress with allowing applications to use
annotations to name regions of GPU code. The CoE
also helped provide feedback to developers improving
the NVIDIA profiler, HPC Toolkit, and other system
tools to support the address translation service, and
others.

The key lessons learned from our experiences with
performance tools are mostly a reflection of limitations
we encountered (and mostly worked around) during the
CoE. These include:

e Performance tools need to capture and display all
aspects (CPU, GPU, MPI, and data traffic) of code
execution at various scales

e All tools should provide public APIs for accessing
the tool functionality and/or data collected

e Offloaded kernels should be easily identifiable and
attributable in profiles

e The OpenMP run time should emit errors and
warnings when directives are ignored or not
executed for any reason

5.1. MPI aware tools

The NVIDIA Visual Profiler (nvvp) is a very powerful
interactive profiler that provides both traces and
profiles of applications executing on the GPU. It is
possible to use nvvp with MPI codes if they can be
launched without a MPI launcher (jsrun, mpirun, or
mpiexec) but this is increasingly not the case with
current MPI implementations and our ability to use
nvvp in interactive mode with LLNL applications was
severely limited. Developers were able to make
progress using a command-line based workaround that
involves running multiple experiments and using nvvp
to visualize the results. However, this is a laborious
process involving complex command-line invocations
and is several times slower than using nvvp.

The challenge of collecting and displaying
performance data at large scale will not be solved
easily. Data sets are large and there is no single
obvious way to present the data to developers so that it
can be easily understood and lead to actionable
insights. The addition of heterogeneous hardware only
compounds the problem. Continued co-design with
vendors and open-source developers will be needed to
deliver tools that are better suited to developer needs.

5.2. Comprehensive profiles and traces
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On a heterogeneous node with multiple execution
spaces, profiles and traces must account for all the
execution time of the application. Using a separate tool
for the GPU, CPU and MPI communications leaves
significant swaths of time unaccounted for. The
problem is exacerbated when the GPU kernels are
asynchronous. For SW4 on large problems, this
unaccounted time can be as high as 16% of solution
time. Such a comprehensive tool needs to be usable at
scale since many performance bottlenecks are not
easily reproducible at smaller scales.

5.3. APIs for performance tool data

Trace files generated by nvprof contain a wealth of
information. Unfortunately, the standard GUI tools to
access the traces don’t always meet developer needs.
Trace data often needs to be processed and correlated
to shortlist sections of the code for tuning efforts. For
example, we found that sorting kernels based on some
combination of GPU pagefaults and runtime enabled
developers to locate code sections that would benefit
most from prefetching data from CPU to GPU memory.
A published API for accessing data from profiling and
tracing tools would enable the development of
application specific data mining codes and allow the
use of metrics that are currently inaccessible.

5.4. Human readable kernel names

The use of lambda expressions in RAJA codes results
in very long function names, (approximately 153
characters) with the name of the calling function
embedded somewhere in the middle. In routines with
multiple lambdas it can be impossible to distinguish
between them. OpenMP 4.5 compilers, which have a
similar issue with offloaded sections, handle the
problem by naming the offload section with a
combination of the calling function and line number. A
similar approach is needed for uniquely naming lambda
expressions used for offloading GPU code. The current
workaround is to access and modify the sqlite database
generated by nvprof, demangle the function names and
do a regexp based search and replace. This approach
does not resolve the issue of correlating the lambda
expression to line numbers.

5.5. OpenMP 4.5 silent errors

Updates of mapped regions in OpenMP 4.5 can fail
silently if there is an error in the original mapping. No
warnings or errors are reported by the failed update or
mapping. These kinds of bugs are extremely difficult to
find since every update has to be laboriously checked
by manually computing and comparing the checksum
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of the data on both the host and device. An error
message from the runtime whenever an OpenMP
directive is not carried out would go a long way in
avoiding these problems.

6. System Deployment Strategy

Administering heterogenous machines has presented
some new challenges. While the departure from
standard HPC practices is not as substantial for systems
management as it is for application programming, a
number of techniques have been developed to increase
both stability and usability of these systems. The most
important lessons learned include:

e Run tests frequently to ensure reliability.

e Consider memory bandwidth when sizing the
filesystem.

e Resource management and job scheduling must be
closely coupled.

e Resource affinity and binding on heterogeneous
nodes can confuse even expert users.

6.1. Test early, test often

Failures on past systems have been dominated by
moving parts and power supplies. DRAM and CPUs do
have failures though, and they are the next most
common failure items. CPU failures are particularly
difficult to reliably diagnose. Adding an additional set
of both memory components (HBM) and processors
(accelerators) increases the problem space for
maintaining machine availability. Significant
diagnostics have typically occurred at boot time, but
we were forced to greatly expand the set of diagnostics
that run between jobs in order to maintain the ability to
consistently allocate reliable nodes to user jobs. Tests
were implemented on Sierra for CPU and GPU
performance, correctable and uncorrectable memory
errors, parallel filesystem availability, and CUDA
library calls.

6.2. New considerations for filesystem size
Sizing of the parallel filesystem on previous systems
was accomplished using a metric based on DRAM
capacity of the system. The assumptions leading to this
metric were that /O was dominated by defensive,
write-heavy I/O and that the size of these defensive
checkpoints could be estimated as some fraction of
DRAM. Increased memory bandwidth on
heterogeneous systems leads to much more frequent
saves of scientific data. We also find that novel
computing approaches are increasing the prevalence of
read-heavy I/O workloads. We are fortunate with the
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Sierra system to have a very performant filesystem as
well as an experimental burst buffer. Capacity may end
up being a challenge over time, unlike on previous
advanced technology systems where capacity was
always sufficient as a result of procuring enough disk
spindles to meet bandwidth needs. Costs of long term
storage (tape) are also impacted by the increase in the
rate that scientific data is generated. Future advanced
technology system procurements will need to size
parallel filesystem bandwidth and capacity relative to
system memory bandwidth rather than system memory
capacity.

6.3. Resource management and job scheduling
Sierra has a separate resource manager and scheduler, a
design that was chosen to improve performance and to
provide visibility of the heterogeneous nature of the
nodes at the resource manager level. Separating these
components could also allow a single scheduler to
schedule jobs across a collection of clusters while each
cluster has its own resource manager. Unfortunately,
synchronization between the resource manager and
scheduler with respect to availability and state of
resources has been a persistent problem with this
design on Sierra. Race conditions have proven difficult
to eliminate, and error paths sometimes leave persistent
lack of agreement between these two processes. We
have added monitoring to detect a lack of
synchronization which typically requires administrator
intervention to correct. Future systems should maximize
integration between the resource management and
scheduling of the system, ideally utilizing a single
piece of software to provide both functions.

Handling resource allocation and affinity at the same
time has proven more challenging than we expected
with the initial design. It seemed a very natural thing
to request resources and the associated binding all as
part of the job launch command, but implementation of
a syntax that was both intuitive for common cases, but
powerful enough to handle edge cases, proved very
difficult. This would be particularly challenging if
scheduling individual resources rather than whole
nodes (ability to divide nodes between users). The
most practical solution for Sierra was to schedule jobs
in increments of a whole node. We then implemented a
series of wrappers to make common launch cases easy.

6.4. Tools for affinity and binding

To obtain the high levels of performance that are
needed to deliver breakthroughs in science and
engineering, HPC applications must be efficiently
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Figure 3 Two application mappings on a Sierra node. The applica-
tion consists of eight MPI tasks with OpenMP threads and GPU
kernels. The green numbered boxes represent MPI tasks or GPU
kernels launched by such tasks. On the left mapping, each MPI task
is mapped to a single core and all GPU kernels are executed on the
first GPU. On the right mapping, each task runs on five cores and
executes kernels on a local GPU.

mapped to the computing hardware. Unfortunately,
when left alone, application users are prone to
suboptimal mappings that adversely affect performance.
Examples include running multiple OpenMP threads on
a single core while other cores on the same socket are
idle, OpenMP threads accessing memory in the wrong
NUMA domain, or multiple GPU kernels sharing the
same GPU while other GPUs are idle. Obtaining
optimal mappings is especially challenging on complex
heterogeneous architectures like Sierra.

Job affinity and binding on Sierra is provided by the
IBM Cluster System Management (CSM) jsrun
command, which provides a powerful interface to map
an application to the hardware. One of the strengths of
jsrun is the ability to express complex mappings
through its parameter-rich interface. At the same time,
it is complex and has a high learning curve.

Consider an MPI+OpenMP job with GPU kernels
and eight MPI tasks per node. A reasonable mapping
distributes the tasks across the CPU cores without
crossing NUMA boundaries and launches the GPU
kernels on local GPUs (the right panel in Figure 3). To
do this with jsrun one has to specify:

$ jsrun -a 2 -c¢c 10 —-g 1 -r 4 \
—-d packed -bpacked:5

This means create four resource sets, each with two
MPI tasks, ten cores, and one GPU; assign tasks into
the first resource before using the next resource set
(packed); and bind each task to five cores within a
resource set. This is not an easy task! A user needs to
know the number of cores and GPUs on a compute
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node, distribute them accordingly to MPI tasks, bind
each task to the corresponding CPUs, and distribute the
ranks across the resource sets. Not following the recipe
above can have severe consequences on the
performance and scalability of an application:

If the user specifies only the number of MPI tasks on
the launch command, the tasks are mapped to the first
eight cores of the first socket with four OpenMP
threads per core. Furthermore, without specifying a
particular GPU in the application code, all kernels are
run on the first GPU (the left panel in Figure 3). If the
code is designed to use as many resources as possible,
it will be limited to eight cores and one GPU — as
opposed to 40 cores and four GPUs. This example
shows how easy it is to limit application performance
with even realizing there is a problem.

To address the complexity and the lack of reasonable
default settings, LLNL developed a number of tools to
complement the CSM launching system. These include
lrun to launch jobs and mpibind to provide
affinity [11, 12]. The key concepts of these abstractions
distilled from our experience with affinity on
heterogeneous systems include:

e Provide a simple and intuitive interface.

e Use the memory hierarchy, as opposed to the
compute resources, to guide application mappings.

e [everage locality of resources.

e Encompass hybrid programming abstractions.

e Assign at most one NUMA domain per MPI task.

Using the LLNL interface, the hypothetical eight
rank-per-node MPI+OpenMP job described above is
launched with the command:

S lrun -T8

(right panel in Figure 3). While the interface is simple
and the resulting mapping efficient, this mapping policy
does not cover all cases. As such, jsrun’s full-feature
launcher continues to play an important role in Sierra’s
runtime system.

7. Management Considerations

By its very nature, a Center of Excellence is designed
to bring multiple teams (and in our case multiple
organizations) under a common umbrella for the
purposes of maximizing training opportunities, sharing
of best practices, and pursuing a common goal
presenting extensive challenges. The idea that the
“whole is greater than the sum of the parts” is a core
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concept, and as such demands a managed structure that
is designed to work across organization and discipline
boundaries.

A core set of lessons we would recommend to others
include:

e Start with a high-level strategy (but be prepared to
deviate)

e Build agile and adaptable plans

e Schedule activities to ensure 2-way engagement

e Invest in collaboration tools

7.1. Establish a High-level Strategy Early

The Sierra CoE was established as an LLNL
subcontract to our vendor partners at IBM and
NVIDIA, and managed by a CoE steering committee
consisting of representatives from each of those
organizations. Work was defined through the
development of bi-annual work plans that outlined the
goals for the following six month period. Reports were
generated at the end of each period as milestones and
used as contract deliverables, but more importantly as a
record of work performed that could be shared with
other stakeholders and across application teams. We
found that six months was an appropriate cadence as it
allowed a significant body of work to be performed
while forcing regular reflection of priorities. The work
plans intentionally included a roadmap for more work
than was possible to achieve with given resources—thus
building in agility and allowing flexibility in the
management team to pursue the most fruitful
engagements that arose. Unlike standard contractor
relationships, a CoE should be treated as a partnership
with mutual co-design benefit; application teams get
access to vendor expertise and access to pre-production
software, and vendors get insight into the challenges of
large-scale application development that will help
harden their own offerings prior to public release.

The earliest phases of the Sierra CoE were largely
focused on training, workshops, and occasional
OpenMP hack-a-thons designed to familiarize CoE
staff with the programming models, tools, and basics of
GPU computing, and in the case of hack-a-thons, help
influence future standards based on early
experiences[10]. As discussed earlier, mini-apps proved
to be an invaluable tool for coordination, particularly in
our environment where applications were not freely
distributable due to export control and classification
restrictions. As the CoE entered its second and third
years, increased attention was paid to algorithmic
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restructuring, hack-a-thons, and continued development
of the underlying performance-portable abstractions in
RAJA, Umpire, CHAI, and Kokkos. Finally, as early
access hardware and software came available, the
organization of the CoE pivoted to taking the lessons
learned in prior years and achieving our ultimate goal
of transitioning our large application base.

Applications will always be in various stages of
readiness for such a large undertaking. However, we
found that most teams followed a similar progression:

1) Train the team in basics of GPU programming

2) Test ideas in a mini-app (if available), often
starting with CUDA

3) Transition to use a performance-portable
abstraction such as RAJA or OpenMP

4) Ensure your full application kernels are
thread-safe, often using CPU-based OpenMP
constructs

5) Take lessons learned in prior steps into the full
application

6) Profile, develop, repeat

Early in the CoE we mapped out a high level
engagement plan that took into consideration the
application teams we wanted to prioritize (those we
would anticipate using more of the system cycles, or
were more “ready”), as well as external events such as
planned software releases from our vendor partners,
early access systems, and other milestones. This proved
a valuable tool in giving the entire suite of application
leads an idea of where they fit into a broader schedule,
but didn’t lock us in to an overly restrictive planning
schedule that would’ve subsequently proven fatally
flawed.

7.2. The importance of agility

Each team will necessarily take the approach that
works best for them on a timescale that makes sense
for them. A reliable solution for the node-level
programming model should be established early in the
process and the CoE used to maximize leverage across
those teams. Having vendor engagement proved
invaluable for the Sierra CoE, largely because much of
the supporting toolchain was still nascent, required
workarounds, and—most importantly—a solid
relationship to rapidly address deficiencies in
pre-production software. As heterogeneous computing
becomes the norm, we anticipate many of these issues
will be relegated to something a more traditional
vendor-customer relationship can deal with.
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Teams will not all operate in lockstep. Application
teams with only a few small kernels or a representative
mini-app will be able to run ahead, while those dealing
with foundational code cleanup and/or thread-safety
issues will straggle along behind. Even the best
prepared code teams can see their progress derailed by
problems in the compiler, debugger, profiler, etc. As
such, agility in the organization of your CoE is key to
maintaining forward progress even when some aspects
of the work don’t go as planned.

7.3. 2-way engagement

Aligning work from multiple organizations (e.g., the
vendor and lab teams) such that there is sufficient
engagement on each side requires planning and, once
again, agility. Some of our most inefficient teaming
occurred when vendor expertise was assigned to an
application team at a time when that team had other
priorities and could not provide sufficient mentoring or
guidance to vendor staff coming in brand new to the
project. Likewise, teams seeking immediate help
without prior planning are likely to find vendor
personnel are not immediately available resulting in
missed opportunities. These issues are not unique to a
CoE, but are part of any good project managers role.
Recognize that by working with a CoE, you have
increased the size of your team and should give them
the same consideration in learning the culture and
technologies of the team, and the application and
algorithmic characteristics that you would offer a new
staff hire.

7.4. Collaboration tools

Finally, collaboration tools such as common wikis,
repositories, and bug trackers are essential and
important tools that should be established early in the
process. This can be particularly challenging when
proprietary vendor data must be properly protected.
Likewise your own applications may not be open
source and need protections. Mutual trust in protecting
data is presumed based on the CoE partnership, but
tools must be able to enforce that trust and pass muster
with security organizations.

When personnel are remote, as is often the case,
screen-sharing tools typically used for presentations
can be utilized as an effective way to collaborate on
code development—similar to the team programming
principals of agile programming. With a common view
of source code editors, debuggers, and profiling tools
the communication bandwidth between developer
partners is much higher than trading emails, chats, or
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8. Other Adyvice

To wrap up our lessons learned we present a few final
suggestions that didn’t fit in elsewhere but are too
important to omit.

e Organize hack-a-thons
e Build multi-disciplinary teams
e Commit to reducing technical debt

8.1. Organize hack-a-thons

A hack-a-thon is a collaboration event that gathers
application developers with compiler and tool
developers for a concentrated period of time (usually
2-4 days). Hack-a-thons proved to be an extremely
effective tool to collectively work through issues, learn
from each other in a software co-design environment,
and rapidly address issues in either the application
implementation or the underlying compiler and system
software without the usual long-delayed
implement-test-fix cycle typical in collaborative
software development.

The Sierra CoE hack-a-thons were largely focused
around the development of OpenMP in the IBM
compiler stack. OpenMP v4.x target offload was still
an emerging standard during the early phases of the
Sierra CoE, and hack-a-thons proved to be a
high-bandwidth approach to help application developers
understand OpenMP usage while simultaneously
providing opportunities for the developers of compilers
and the OpenMP runtime to react to deficiencies in the
standard. In fact, early hack-a-thons in the Sierra CoE
had a large impact on the OpenMP 4.0 standard and
informed a series of changes to the standard, many of
which were realized in the OpenMP 4.5 and 5.0
standards.

8.2. Build multi-disciplinary teams

The process of adapting a large application to a
heterogeneous architecture requires a wide variety of
skills and experience that is best addressed by a
multi-disciplinary team. The subject matter knowledge
and computer science expertise required to refactor and
optimize codes practically requires teams that include
both domain scientists and computer scientists as
integral members. Many teams have also adopted more
rigorous version tracking and continuous integration
testing to ensure code correctness and portability.
Effectively implementing those practices requires yet
another set of skills and experience. To maximize the
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effectiveness of teams with mixed skills, we strongly
recommend co-locating the team members to the
greatest degree possible. In any case, the days when a
single person, or small team of domain scientists could
develop a large and complex code are fading away in
the rear-view mirror.

8.3. Commit to reducing technical debt

Every software team constantly juggles the competing
demands of effort levels, feature requests, delivery
schedule, and code quality. Without some relief from
the constraints of effort, features, and schedule, the
additional job of adapting to architectural change will
inevitably drive teams to sacrifice code quality. Rather
than allowing GPU porting activities to ring up even
more charges on the technical debt credit card, teams
(and their managers) should commit to taking
opportunities to improve code quality as part of the
refactoring process. Teams that pay attention to quality
as they transition to heterogeneous architectures are
likely to find that they emerge with less technical debt
rather than more.

9. Center of Excellence Successes

The work done and lessons learned in the COE have
produced impressive performance gains for important
LLNL applications. Performance gains relative to an
identical number of two-socket Broadwell nodes for
selected problems on various applications are shown in
Table 2.

In reporting this data, we acknowledge that speedup
is an imperfect metric for reporting performance.
Speedup doesn’t consider differences in the optimal
problem sizes on different architectures, can easily be
inflated by unoptimized baselines, and ignores
differences in hardware cost. However, to our
knowledge, no perfect metric exists and the speedup
numbers presented do provide at least some indication
that the CoE did accomplish its goal to have LLNL
applications ready to take advantage of Sierra as soon
as the machine was delivered.

10. Conclusions

Preparing for Sierra has been a long journey, but we
are starting to reap the rewards for our efforts and
increased performance is opening doors to previously
impossible science. Furthermore, with the size and
power of Sierra generating enormous amounts of data,
application workflows and data management are
quickly becoming critical pieces of a scientist’s toolkit.
There are also many more challenges to come as we
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Code Science Domain Problem Description Programming Environment Speedup
ALE3D Hydrodynamics Shaped Charge C++, RAJA 8x
Ardra Deterministic Transport Reactor Safety C++, RAJA 16x
Ares Hydrodynamics RT Mixing C++, RAJA 13x
Kull/Teton | Radiation Transport Radiating Sphere Fortran, OpenMP 7x

SW4 Seismic modeling Hayward Fault C++, RAJA 28x

Table 2 Speedup relative to dual socket Broadwell node of selected applications optimized by the COE.

expand the portfolio of GPU-enabled applications, and

add features to applications already ported. Fortunately,
the Sierra Center of Excellence has established a strong

foundation and body of experience to ensure the
success of that future work.
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