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Abstract
Deep Learning (DL) is vulnerable to out-of-distribution and
adversarial examples resulting in incorrect outputs. To make
DL more robust, several posthoc anomaly detection tech-
niques to detect (and discard) these anomalous samples have
been proposed in the recent past. This survey tries to provide
a structured and comprehensive overview of the research on
anomaly detection for DL based applications. We provide a
taxonomy for existing techniques based on their underlying
assumptions and adopted approaches. We discuss various
techniques in each of the categories and provide the relative
strengths and weaknesses of the approaches. Our goal in
this survey is to provide an easier yet better understanding
of the techniques belonging to different categories in which
research has been done on this topic. Finally, we highlight the
unsolved research challenges while applying anomaly detec-
tion techniques in DL systems and present some high-impact
future research directions.

1. INTRODUCTION

Deep Learning (DL) techniques provide incredible opportuni-
ties to answer some of the most important and difficult ques-
tions in a wide range of applications in science and engi-
neering. Therefore, scientists and engineers are increasingly
adopting the use of DL for making potentially important deci-
sions in the context of applications of interest, such as bioin-
formatics, healthcare, cyber-security, and fully autonomous
vehicles. Several of these applications are often high-regret
(i.e., incurring significant costs) in nature. In such applica-
tions, incorrect decisions or predictions have significant costs
either in terms of experimental resources when testing drugs,
lost opportunities to observe rare phenomena, or in health and
safety when certifying parts. Most DL methods implicitly as-
sume ideal conditions and rely on the assumption that test
data comes from the “same distribution” as the training data.
However, this assumption is not satisfied in many real-world
applications and virtually all problems require various levels
of transformation of the DL output as test data is typically
different from the training data either due to noise, adver-
sarial corruptions, or other changes in distribution possibly
due to temporal and spatial effects. These deviant (or out-of-

distribution) data samples are often referred to as anomalies,
outliers, novelties in different domains. It is well known that
DL models are highly sensitive to such anomalies, which of-
ten leads to unintended and potentially harmful consequences
due to incorrect results generated by DL. Hence, it is criti-
cal to determine whether the incoming test data is so different
from the training dataset that the output of the model cannot
be trusted (referred to as the anomaly detection problem).

Due to its practical importance, anomaly detection has re-
ceived a lot of attention from statistics, signal processing and
machine learning communities. Recently, there has been a
surge of interest in devising anomaly detection methods for
DL applications. This survey aims to provide a structured
overview of recent studies and approaches to anomaly detec-
tion in DL based high-regret applications. To the best of our
knowledge, there has not been any comprehensive review of
anomaly detection approaches in DL systems. Although a
number of surveys have appeared for conventional machine
learning applications, none of these are specifically for DL
applications. This has motivated this survey paper especially
in light of recent research results in DL. We expect that this
review will facilitate a better understanding of the different
directions in which research has been carried out on this topic
and potential high-impact future directions.

1.1. What are Anomalies?

The problem setup for anomaly detection in deep neural
networks (DNNs) is as follows: the DNN is trained on in-
distribution data and is asked to perform predictions on both
in-distribution as well as out-of-distribution (OOD) test sam-
ples. In-distribution test samples are from the same distribu-
tion as the training data and the trained DNN is expected to
perform reliably on them. On the other hand, anomalous test
samples are samples which do not conform to the distribution
of the training data. Therefore, predictions of DNNs based on
these anomalous samples should not be trusted. The goal of
the anomaly detection problem is to design post-hoc detectors
to detect these nonconforming test samples (see Fig. 1).

Next we discuss the types of anomalies, and present their
respective differences. We classify anomalies into (a) unin-
tentional and (b) intentional (see Fig. 2) types. Unintentional
anomalies are independent of the DNN model, as opposed to,



Fig. 1: Schematic of anomaly detection in DL.

intentional anomalies which are intentionally designed by an
attacker to force the DNN model to yield incorrect results,
and are model dependent.

1.1.1. Unintentional: Novel and out-of-distribution exam-
ples

The unintentional anomalies are further classified into novel
and OOD examples1. Novelty detection is the identification
of new or unknown in-distribution data that a machine learn-
ing system is not aware of during training. However, the OOD
example comes from a distribution other than that of the train-
ing data. The distinction between novelties and OOD data is
that the novel data samples are typically incorporated into the
normal model after being detected, however, OOD samples
are usually discarded. In Fig. 2, the blue circles outside class
boundaries are OOD examples. The OOD examples do not
belong to any of the classes. In other words, the classifier is
either unaware or does not recognize the OOD examples.

A related problem arises in Domain adaptation (DA) and
transfer learning [1] which deal with scenarios where a model
trained on a source distribution is used in the context of a dif-
ferent (but related) target distribution. The difference between
the DA and OOD problems is that DA techniques assume that
the test/target distribution is related to the task (or distribu-
tion) of interest (thus, utilized during training). On the other
hand, OOD techniques are designed to detect if incoming data
is so different (and unrelated) from the training data that the
model cannot be trusted.

1.1.2. Intentional: Adversarial Examples

The intentional anomalies (also known as the adversarial ex-
amples) are the test inputs that are intentionally designed by
an attacker to coerce the model to make a mistake. For exam-
ple, an attacker can modify the input image to fool the DNN
classifier which could lead to unforeseen consequences, such
as, accidents of autonomous cars or possible bank frauds. In
Fig. 2, the examples in red are adversarial in nature. Via small
perturbation at the input, these examples have been moved to
other class regions leading to misclassification. The classifier
may or may not have access to some of the labels of these
examples leading to different techniques in the literature.

1Note that we refer to samples as examples.

Fig. 2: (a) A simple example of anomalies in a 2-dimensional data
set. (b) Different variants of anomalous examples for the Panda vs.
Gibbon classification problem. Captions indicate the true label and
the color indicates whether the prediction is correct or wrong (blue
for correct and red for wrong).

1.2. Challenges

As mentioned above, anomalies are data samples that do not
comply with the expected normal behavior. Hence, a naive
approach for detecting anomalies is to define a region in the
data space that represents normal behavior and declare an
example as anomaly if it does not lie in this region. How-
ever, there are several factors that make this seemingly simple
method ineffective:

• The boundary between the normal and anomalous re-
gions is very difficult to define, especially, in complex
DNN feature spaces.

• Based on the type of applications, the definition of an
anomaly changes. For certain applications, a small de-
viation in the classification result from that of the nor-
mal input data may have far reaching consequences and
thus may be declared as anomaly. In other applications,
the deviation needs to be large for the input to be de-
clared as an anomaly.

• The success of some anomaly detection techniques in
the literature depends on the availability of the labels
for the training and/or testing data.

• Anomaly detection is particularly difficult when the ad-
versarial examples tend to disguise themselves as nor-
mal data.

The aforementioned difficulties make the anomaly detec-
tion problem difficult to solve in general. Therefore, most of
the techniques in the literature tend to solve a specific instance
of the general problem based on the type of application, type
of input data and model, availability of labels for the training
and/or testing data, and type of anomalies.



1.3. Related Work

Anomaly detection is the subject of various surveys, review
articles, and books. In [2], a comprehensive survey of various
categories of anomaly detection techniques for conventional
machine learning as well as statistical models is presented.
For each category of detection, various techniques and their
respective assumptions along with the advantages and dis-
advantages are discussed. The computational complexity of
each technique is also mentioned. A comprehensive survey of
the novelty detection techniques is presented in [3]. Various
techniques are classified based on the statistical models used
and the complexity of methods. Recently, an elaborate survey
is presented in [4] where DL based anomaly detection tech-
niques are discussed. Here, two more categories of anomaly
detection, namely, hybrid models as well as one-class DNN
techniques are also included. Note that our survey paper is
different from [4] as our focus is on discussing unintentional
and intentional anomalies specifically in the context of DNNs
whereas [4] discusses approaches which use DNN based de-
tectors applied to conventional ML problems. In some sense,
our survey paper is much broader in the context of DL appli-
cations. In [5], a survey of the data mining techniques used for
anomaly detection are discussed. The techniques discussed
are clustering, regression, and rule learning. Furthermore,
in [6], the authors discuss the models that are adaptive to
account for the data coming from the dynamically changing
characteristics of the environment and detect anomalies from
the evolving data. Here, the techniques account for the change
in the underlying data distribution and the corresponding un-
supervised techniques are reviewed. In [7], the anomaly
detection techniques are classified based on the type of data
namely, metric data, evolving data, and multi-structured data.
The metric data anomaly detection techniques consider the
use of metrics like distance, correlation, and distribution.
The evolving data include discrete sequences and time series.
In [8], various statistical techniques, data mining based tech-
niques, and machine learning based techniques for anomaly
detection are discussed. In [9, 10], the existing techniques
for anomaly detection which include statistical, neural net-
work based, and other machine learning based techniques are
discussed. Various books [11, 12, 13, 14] also discussed the
techniques for anomaly detection.

1.4. Our Contributions

To the best of our knowledge, this survey is the first attempt
to provide a structured and a broad overview of extensive re-
search on detection techniques spanning both unintentional
and intentional anomalies in the context of DNNs. Most of the
existing surveys on anomaly detection focus on (i) anomaly
detection techniques for conventional machine learning algo-
rithms and statistical models, (ii) novelty detection techniques
for statistical models, (iii) DL based anomaly detection tech-
niques. In contrast, we provide a focused survey on post-

Fig. 3: Schematic representation of different types of anomaly de-
tection techniques discussed in this survey.

hoc anomaly detection techniques for DL. We classify these
techniques based on the availability of labels for the training
data corresponding to anomalies, namely, supervised, semi-
supervised, and unsupervised techniques. We discuss vari-
ous techniques in each of the categories and provide the rel-
ative strengths and weaknesses of the approaches. We also
briefly discuss anomaly detection techniques that do not fall
in the post-hoc category, e.g.,training-based, architecture de-
sign, etc.

1.5. Organization

This survey is organized mainly in three parts: detection
of unintentional anomalies, detection of intentional anoma-
lies, and applications. For both unintentional and intentional
anomalies, we will discuss different types of approaches (as
illustrated in Fig. 3). In Sec. 2, we present various post-hoc
anomaly detection techniques which are used to detect un-
intentional anomalies. These techniques are classified based
on the availability of labels. In Sec. 3, we present various
post-hoc anomaly detection techniques which are used to
detect intentional anomalies (or adversarial examples). The
techniques are again classified based on the availability of
labels. In Sec. 4, we discuss strengths and weaknesses of
different categories of methods. In Sec. 5, we describe vari-
ous application domains where anomaly detection is applied.
Finally, we conclude and present open questions in this area
in Sec. 6.

2. UNINTENTIONAL ANOMALY DETECTION

In this section, we discuss the detection techniques which de-
tect the OOD examples given a pre-trained neural network.
Most DL approaches assume that the test examples belong to
the same distribution as the training examples. Consequently,
the neural networks are vulnerable to test examples which are
OOD. Hence, we need techniques to improve the reliability of
the predictions or determine whether the test example is dif-
ferent in distribution from that of the training dataset. Here,
we concentrate on the techniques that determine whether the
test example is different in distribution from that of the train-
ing dataset, using the pre-trained DNN followed by a detec-
tor. We refer to this architecture as post-hoc anomaly detec-
tion. A topic related to OOD example detection is novelty



Table 1: OOD detection related papers.

Classification Type Reference Contributions

Supervised [18]
Uncertainty measure based on the

gradient of the negative log-likelihood
is used as a measure of confidence

Supervised [19]
Confidence scores based on Mahalanobis

distance from different layers is
combined using weighted averaging

Supervised [20]
Invariance of classifier’s softmax under
various transformations to input image

is used as a measure of confidence

Supervised [21]
Ratio of Hausdorff distances between test
sample to the nearest non-predicted and

the predicted classes is used as the trust score

Semi-supervised [22]
Probably Approximately Correct (PAC)

algorithm is proposed to guarantee a
user-specified anomaly detection rate

Semi-supervised [23]
Likelihood ratio-based method is

used to differentiate between
in-distribution and OOD examples

Semi-supervised [24]

A two-head CNN consisting of a
common feature extractor and two

classifiers with different decision boundaries
is trained to detect OOD examples

Unsupervised [25]
Predicted softmax probability is
used to detect OOD examples

Unsupervised [26]
Temperature scaling and by adding small
perturbations to the input is used to better

separate the softmax score for OOD detection

Unsupervised [27]
GAN based architecture is used to

compare the bottleneck features of the
generated image with that of the test image

Unsupervised [28]
Degenerated prior network with

concentration perturbation algorithm
is used to get better uncertainty measure

Unsupervised [29]
Learning to discriminate between geometric
transformations is used for learning unique
features that are useful in OOD detection

Unsupervised [30]
Mahalanobis distance is applied in the latent

space of the autoencoder to detect OOD examples

Unsupervised [31]
Resampling uncertainty estimation approach

is proposed as an approximation to the bootstrap

detection [15, 16, 17] which aims at detecting previously un-
observed (emergent, novel) patterns in the data. It should be
noted that solutions for novelty detection related problems are
often used for OOD detection and vice-versa, and hence we
use these terms interchangeably in this survey. Based on the
availability of labels for OOD data, techniques are classified
as supervised, semi-supervised, and unsupervised which are
discussed next and summarized in Table 1.

2.1. Supervised Approaches

In this section, we review the anomaly detection approaches
when the labels of both the in-distribution and the OOD ex-
amples are available to enable differentiation between them as
the supervised anomaly detection problem. Any unseen test
data sample is compared with the detector to determine which
class (in-distribution vs. OOD) it belongs to.

In [18], an approach to measure uncertainty of a neural
network based on gradient information of the negative log-
likelihood at the predicted class label is presented. The gra-
dient metrics are computed from all the layers in this method
and scalarized using norm or min/max operations. A large

value of the gradient metrics indicates incorrect classification
or OOD example. A convolutional neural network (CNN) is
used as the classifier trained on Extended MNIST digits [32].
EMNIST letters, CIFAR10 [33] images as well as different
types of noise are used as OOD data. The authors found that
such an unsupervised scheme does not work well on all types
of OOD data. Therefore, a supervised variant of this scheme
where one allows an anomaly detector to be trained on un-
certainty metrics of some OOD samples is proposed. It was
shown that the performance is improved considerably by uti-
lizing the labeled OOD data.

In [19], the high-level idea is to measure the probability
density of test sample on DNN feature spaces. Specifically,
the authors fit class-conditional Gaussian distributions to pre-
trained features. This is possible since the posterior distri-
bution can be shown to be equivalent to the softmax classi-
fier under Gaussian discriminant analysis. Next, a confidence
score using the Mahalanobis distance with respect to the clos-
est class conditional distribution is defined. Its parameters are
chosen to be empirical class means and tied empirical covari-
ance of training samples. To further improve the performance,
confidence scores from different layers of DNN is combined
using weighted averaging. Weight of each layer is learned
by training a logistic regression detector using labeled vali-
dation samples comprising of both in-distribution and OOD
data. The method is shown to be robust to OOD examples.

In [20], a detector was trained on representations derived
from a set of classifier responses generated from applying dif-
ferent natural transformation to a given image. Analyzing the
invariance of classifier’s decision under various transforma-
tions establishes a measure of confidence in its decision. In
other words, the softmax values of the OOD input should
fluctuate across transformed versions, while those of the in-
distribution image should be relatively stable. The authors
trained a binary OOD detector on confidence scores under
various transformations for in-distribution vs. OOD train-
ing data. ResNet based architecture is used as the classifier
and the Self-Taught Learning (STL-10) dataset [34] is used as
the in-distribution data and the Street View House Numbers
(SVHN) dataset [35] is used as the OOD data. The approach
is shown to outperform other baselines.

In [21], a trust score is proposed to know whether the pre-
diction of a test example by a classifier can be trusted. This
score is defined as the ratio of the Hausdorff distances be-
tween the distance from the testing sample to the nearest class
different from the predicted class (e.g., OOD class) and the
distance to the predicted class. To compute the trust score,
the training data is pre-processed to find a high density set of
each class to filter outliers. The trust score is estimated based
on this high density set. The idea behind the approach is that if
the classifier predicts a label that is considerably farther than
the closest label, then it may be an OOD or unreliable exam-
ple. For the task of identifying correctly/incorrectly classified
examples, it was shown that the trust score performs well in



low to medium dimensions. However, it performs similar to
classifiers’ own reported confidence (i.e., probabilities from
the softmax layer) in high dimensions.

2.2. Semi-supervised Approaches

We refer to the anomaly detection techniques as semi-
supervised if they utilize unlabeled contaminated data (or
information) in addition to labeled instances of in-distribution
class. Since, these techniques do not require to know whether
unlabeled instance is in-distribution or OOD, they are more
widely applicable than supervised techniques.

In [22], the algorithm uses the knowledge of the upper
bound on the number of anomaly examples in the training
dataset to provide Probably Approximately Correct (PAC)
guarantees for achieving a desired anomaly detection rate.
The algorithm uses cumulative distribution functions (CDFs)
over anomaly scores for the clean and contaminated train-
ing datasets to derive an anomaly threshold. An anomaly
detector assigns score for all the test examples and orders
them according to how anomalous the examples are with re-
spect to the in-distribution data. This ordered score vector is
then compared to the threshold to detect the OOD examples.
The threshold is computed such that it guarantees a specific
anomaly detection rate. Empirical results on synthetic and
standard datasets show that the algorithm achieves guaranteed
performance on OOD detection task given enough data.

In [23], a likelihood ratio-based method using deep
generative models is presented to differentiate between in-
distribution and OOD examples. The authors assumed that
the in-distribution data is comprised of both semantic and
background parts. The authors found that the likelihood can
be confounded by the background (e.g. OOD input with the
same background but different semantic component). Us-
ing this information about OOD data, they propose to use
a background model to correct for the background statistics
and enhance the in-distribution specific features for OOD de-
tection. Specifically, background model is trained by adding
the right amount of perturbations to inputs to corrupt the
semantic structure in the data. Hence, the model trained on
perturbed inputs captures only the population level back-
ground statistics. This likelihood ratio is computed from the
in-distribution data and the background statistics. If the likeli-
hood ratio is larger than a pre-specified threshold, it is highly
likely that the test example is OOD. The National Center
for Biotechnology Information microbial genome dataset is
utilized in [23] in the following manner. Various bacteria are
grouped into classes which were discovered over the years.
Specifically, the classes discovered before a given cutoff year
are considered as in-distribution classes and those discovered
after the cutoff year are considered OOD classes. The pro-
posed test improves the accuracy of OOD detection compared
to the accuracy of the state-of-the-art detection results.

In [24], a semi-supervised OOD detection technique

based on two-head CNN was proposed. The idea is to train
a two-head CNN consisting of one common feature extractor
and two classifiers which have different decision boundaries
but can classify in-distribution samples correctly. Further,
unlabeled contaminated data is used to maximize the discrep-
ancy between two classifiers to push OOD samples outside
in-distribution manifold. This enables the detection of OOD
samples that are far from the support of the in-distribution
samples.

2.3. Unsupervised Approaches

We refer to the detection techniques as unsupervised if they
only utilize in-distribution data for OOD detection.

In [25], as the statistics derived from the softmax distri-
butions are helpful, a baseline method based on softmax to
determine whether or not a test example is OOD is proposed.
The idea is that a well trained network tends to assign higher
predicted probability to in-distribution examples than to OOD
examples. Hence, the OOD example can be detected by com-
paring the predicted softmax class probabilities of the exam-
ples to a threshold. Specifically, the authors generated the
training data by separating correctly and incorrectly classi-
fied test set examples and, for each example, computing the
softmax probability of the predicted class which was used to
compute the threshold. The performance of this approach was
evaluated on computer vision, natural language processing
and speech recognition tasks. The technique fails if the clas-
sifier does not separate the maximum values of the predictive
distribution well enough with respect to in-distribution and
OOD examples. Therefore, the authors in [26] proposed a
method based on the observation that using temperature scal-
ing and adding small perturbations to the input can better sep-
arate the softmax score distributions between in- and out-of-
distribution images. Wide ResNet [36] and DenseNet [37]
architectures were used and trained using the CIFAR-10 and
CIFAR-100 [33] as in-distribution datasets. The OOD de-
tector was tested on several different natural image datasets
and synthetic noise datasets. It was shown that the approach
significantly improves the detection performance and outper-
forms the baseline in [25].

In [27], a generative adversarial network (GAN) [38]
based architecture is used in reconstruction error based OOD
detection method. The motivation is that the GAN will per-
form better when generating images from previously seen
objects (i.e., in-distribution data) than it will when generating
images of objects it has never seen before (i.e., OOD data).
In this approach, the test image is first passed through the
generator of the GAN, which produces bottleneck features
and a reconstructed image. Next, the reconstructed image
is passed through the encoder producing another set of bot-
tleneck features. The Euclidean distance between these two
feature sets represents a measure of how much the generated
image deviates from the original image and is used as an



anomaly score.
In [28], the authors propose a degenerated prior network

architecture, which can efficiently separate model-level un-
certainty from data-level uncertainty via prior entropy. To bet-
ter separate in-distribution and OOD images, they propose a
concentration perturbation algorithm, which adaptively adds
noise to concentration parameters of prior network. Through
comprehensive experiments, it was shown that this method
achieves state-of-the-art performance especially on the large-
scale dataset. However, this method is found to be sensitive
to different neural network architectures, which could some-
times lead to inferior performance.

In [29], the intuition is that learning to discriminate be-
tween geometric transformations applied to images help in
learning of unique features of each class that are useful in
anomaly detection. The authors train a multi-class classifier
over a self-labeled dataset created by applying various geo-
metric transformations to in-distribution images. At test time,
transformed images are passed through this classifier, and an
anomaly score derived from the distribution of softmax val-
ues of the in-distribution training images is used for detect-
ing OOD data. The classifier used is the Wide Residual Net-
work model [36] trained on CIFAR dataset. The CatsvsDogs
dataset [39], that contains 12,500 images of cats and dogs
each, is treated as the OOD data. The method performs bet-
ter compared to the baseline approaches in [25] for the larger-
sized images and is robust to the OOD examples. The method
is able to distinguish between the normal and OOD examples
with a significant margin compared to the baseline methods.

The approach in [30] (and references therein) consider the
problem of detecting OOD samples based on the reconstruc-
tion error. These methods assume that OOD data is composed
of different factors than in-distribution data. Therefore, it
is difficult to compress and reconstruct OOD data based on
a reconstruction scheme optimized for in-distribution data.
Specifically, [30] proposes to incorporate the Mahalanobis
distance in latent space to better capture these OOD sam-
ples. They combined the Mahalanobis distance between the
encoded test sample and the mean vector of the encoded train-
ing set with the reconstruction loss of the test sample to con-
struct an anomaly score. Single digit class from MNIST [40]
is used as in-distribution and the other classes of MNIST are
treated as OOD samples. The authors illustrate that by in-
cluding the latent distance helps in improving the detection of
in-distribution and OOD examples.

In [31], the predictions of a pre-trained DNN are audited
to determine their reliability. Resampling uncertainty estima-
tion (RUE) approach is proposed as an approximation to the
bootstrap procedure. Intuitively, RUE estimates the amount
that a prediction would change if different training data was
used from the same distribution. It quantifies uncertainty us-
ing the gradients and Hessian of the model’s loss on training
data and bootstrap samples to produce an ensemble of pre-
dictions for a test input. This uncertainty score is compared

to a threshold for detecting correct and incorrect predictions.
A single hidden layer feedforward neural network architec-
ture is trained using eight common benchmark regression
datasets [41] from the UCI dataset repository. The authors
show that the uncertainty score detects inaccurate predictions
for auditing reliability compared to existing techniques more
effectively. This approach can also be used to detect OOD
samples.

Note that the unsupervised methods discussed above
require comparing proposed anomaly scores with a thresh-
old. Although thresholds are computed solely based on
in-distribution data, one can further improve the performance
by optimally choosing thresholds based on OOD validation
samples (if available).

2.4. Other Miscellaneous Techniques

In this section, we discuss various approaches that are dif-
ferent from the post-hoc anomaly detection techniques, e.g.,
training-based, architecture design, etc.

In [42], a new form of support vector machine (SVM) is
presented that combines multi-class classification and OOD
detection into a single step. Specifically, the authors aug-
mented original SVM with an auxiliary zeroth class as the
anomaly class for labeling OOD examples. The UCI datasets
are used as the training examples. The authors demonstrate
the trade-off between the ability to detect anomalies and the
incorrect labeling of normal examples as anomalies.

A hybrid model for fake news detection in [43] consists of
three steps which capture the temporal pattern of user activ-
ity on a given article using a recurrent neural network (RNN),
checking the credibility of the media source, and classifying
the article as fake or not. In [44], an RNN network is used to
detect anomalous data where the Numenta Anomaly Bench-
mark metric is used for early detection of anomalies.

The method presented in [45] proposed to modify the
output layer of DNNs. Specifically, instead of using logit
scores for computing class probabilities, the cosine of the
angle between the weights of a class and the features of the
class are used. In other words, the class probabilities are
obtained using the softmax of scaled cosine similarity. The
detection of OOD samples is done by comparing the max-
imum of cosine values across classes to a threshold. The
method is hyperparameter-free and has high OOD detection
performance. However, the trade-off is the degradation of
the classification accuracy. The Wide Residual Network [36]
is used as the classifier trained using the CIFAR dataset,
and tiny ImageNet and SVHN datasets are considered OOD
data. The approach achieves competitive detection perfor-
mance even without the tuning of the hyperparameters and
the method requires only a single forward pass without the
need for backpropagation for each input.

In [46], a deep autoencoder is combined with CNN to per-
form supervised OOD detection. Autoencoder is used as a



pre-training method for supervised CNN training. The idea
is to reconstruct high-dimensional features using the deep au-
toencoder and detect anomalies using CNNs. It was shown
that this combination can improve the accuracy and efficiency
of large-scale Android malware detection.

A novel training method is presented in [47] where two
additional terms are added in the cross entropy loss that mini-
mize the Kullback-Leibler (KL) distance between the predic-
tive distribution on OOD examples and the uniform distribu-
tion to assign less confident predictions to the OOD exam-
ples. Then, in-distribution and OOD samples are expected to
be more separable. However, the loss function for optimiza-
tion requires OOD examples for training which are generated
by using a GAN architecture. Hence, the training involves
minimizing the classifier’s loss and the GAN loss alternately.

In [48], the algorithm comprises of an ensemble of leave-
out-classifiers. Each classifier is trained using in-distribution
examples as well as OOD examples. Here, the OOD exam-
ples are obtained by designating a random subset from the
training dataset as OOD and the rest are in-distribution. A
novel margin-based loss function is presented that maintains
a margin m between the average entropy of the OOD and
in-distribution samples. Hence, the loss function is the cross-
entropy loss along with the margin-based loss. The loss func-
tion is minimized to train the ensemble of classifiers. The
OOD detection score is obtained by combining the softmax
prediction score and the entropy with temperature scaling.
The score is shown to be high for in-distribution examples
and low for OOD examples.

Furthermore, [49] proposes leveraging alternative data
sources to improve OOD detection by training anomaly de-
tectors against an auxiliary dataset of outliers, an approach
they call Outlier Exposure. The motivation is that while it is
difficult to model every variant of anomaly distribution, one
can learn effective heuristics for detecting OOD samples by
exposing the model to diverse OOD datasets. Thus, learning a
more conservative concept of the in-distribution and enabling
anomaly detectors to generalize and detect unseen anomalies.

The key idea in [50] is that the likelihood models as-
sign higher density values to the OOD examples than the
in-distribution examples. The authors propose generative
ensembles to detect OOD examples by combining a den-
sity evaluation model with predictive uncertainty estimation
on the density model via ensemble variance. Specifically,
they use uncertainty estimation on randomly sampled GAN
discriminators to de-correlate the OOD classification errors
made by a single discriminator.

The authors in [51] proposed a permutation test statistics
to detect OOD samples using deep generative models trained
with batch normalization. They show that the training objec-
tive of generative models with batch normalization can be in-
terpreted as maximum pseudo-likelihood over a different joint
distribution. Over this joint distribution, the estimated likeli-
hood of a batch of OOD samples is shown to be much lower

than that of in-distribution samples.
In [52], benchmarking of some of the existing posthoc cal-

ibration based OOD detection techniques is performed. The
effect of OOD examples on the accuracy and calibration for
the classification tasks is investigated. The authors evaluate
uncertainty not only for in-distribution examples but also for
OOD examples. They utilize metrics such as negative log-
likelihood and Brier scores to evaluate the model uncertainty
or accuracy of computed predicted probabilities. Using large-
scale experiments, the authors show that the calibration error
increases with increasing distribution shift and post-hoc cali-
bration does indeed fall short in detecting OOD examples.

3. INTENTIONAL ANOMALY DETECTION

In this section, we discuss the detection techniques for detect-
ing intentionally designed adversarial test examples given a
pre-trained neural network. It is well known that DNNs are
highly susceptible to test time adversarial examples – human-
imperceptible perturbations that, when added to any image,
causes it to be misclassified with high probability [53, 54].
The imperceptibility constraint ensures that the test example
belongs to the data manifold yet gets misclassified. Hence,
we need techniques to improve the reliability of the predic-
tions or determine whether the test example is adversarial or
normal. Here, we focus on the latter with the availability of a
pre-trained DNN followed by a detector. Based on the avail-
ability of labels, the techniques are classified as supervised,
semi-supervised, and unsupervised which are elaborated as
follows and summarized in Table 2.

3.1. Supervised Approaches

In this section, we discuss the detection techniques that re-
quire the labels of both in-distribution and adversarial exam-
ples and referred to them as supervised anomaly detection
techniques. The test examples are compared against the de-
tector to determine whether they are normal or adversarial.

In [55], a binary adversarial example detector is proposed.
The detector is trained on intermediate feature representations
of a pre-trained classifier on the original data set and adver-
sarial examples. Although it may seem very difficult to train
such a detector, their results on CIFAR10 and a 10-class sub-
set of ImageNet datasets show that training such a detector is
indeed possible. In fact, the detector achieves high accuracy
in the detection of adversarial examples. Moreover, while the
detector is trained on adversarial examples generated using a
specific attack method, it is found that the detector general-
izes to similar and weaker attack methods. Similar strategy
was employed in [68] where ML model was augmented with
an additional class in which the model is trained to classify
all adversarial inputs using labeled data.

The authors in [56] proposed three methods to detect ad-
versarial examples. First, method which is based on the den-



Table 2: Adversarial example detection related papers.

Classification Type Reference Contributions

Supervised [55]
Binary detector trained on

intermediate feature representations is
proposed to detect adversarial examples

Supervised [56]
Logistic regression based detector trained

with two features: the uncertainty
and the density estimate is used

Supervised [57]
LSTM based binary detector is trained

to analyze the sequence of deep features
embedded in a distance space

Supervised [58]
Local Intrinsic Dimensionality is used to
characterize the dimensional properties of

the regions where the adversarial examples lie

Supervised [59]
Three layer regression NN used as

the detector to predict confidence score

Unsupervised [60]
Rank based statistics with generative models

is used for detecting adversarial examples

Unsupervised [61]
KL distance based metric is applied

on the posterior distributions to
detect the adversarial examples

Unsupervised [62]
Nearest neighbor classification score
based on deep features is used as to

detect adversarial examples

Unsupervised [63]
Adversarial examples are detected by

modeling output distribution of hidden
layers of the DNN given normal examples

Unsupervised [64]
Provenance and activation invariance
is used to detect adversarial examples

Unsupervised [65]
Mutual Information is used to detect
adversarial examples by minimizing

uncertainty over sampling probabilities

Unsupervised [66]
Detection by nearest neighbor search

based projections of adversarial examples
onto in-distribution image manifold is used

Unsupervised [67]
Detection by gradient search based

projections of adversarial examples onto
in-distribution image manifold is used

sity estimation uses estimates from the kernel density estima-
tion of the training set in the feature space of the last hidden
layer to detect adversarial examples. This method is meant
to detect points that lie far from the data manifold. However,
this strategy may not work well when adversarial example
is very near the benign submanifold. Therefore, the authors
proposed second approach which uses Bayesian uncertainty
estimates from the dropout neural networks when points lie
in low-confidence regions of the input space. They show that
dropout based method can detect adversarial samples in situa-
tions where density estimates cannot. Finally, they also build
a combined detector which is a simple logistic regression clas-
sifier with two features as input: the uncertainty and the den-
sity estimate. The combined detector is trained on a labeled
training set which comprises of uncertainty values and density
estimates for both benign and adversarial examples generated
using different adversarial attack methods. The authors report
that the performance of the combined detector (detection ac-
curacy of 85-93%) is better than detectors trained either on
uncertainty or on density values, demonstrating that each fea-
ture is able to detect different qualities of adversarial features.

In [57], the idea is that the trajectory of the internal rep-
resentations in the forward pass for the adversarial examples

are different from that of the in-distribution examples. The
internal representations of an input is embedded into the fea-
ture distance spaces which capture the relative positions of
an example with respect to a given in-distribution example in
the feature space. The embedding enables compact encoding
of the evolution of the activations through the forward pass
of the network. Hence, facilitating the search for differences
between the trajectories of in-distribution and adversarial in-
puts. An LSTM based binary detector is trained to analyze the
sequence of deep features embedded in a distance space and
detect adversarial examples. The experimental results show
that the detection scheme is able to detect a variety of adver-
sarial examples targeting the ResNet-50 classifier pre-trained
on the ImageNet dataset.

In [58], an expansion-based measure of intrinsic dimen-
sionality is used as an alternative to density measure to detect
adversarial example. The expansion model of dimensional-
ity assesses the local dimensional structure of the data and
characterizes the intrinsic dimensionality as a property of the
datasets. The Local Intrinsic Dimensionality (LID) general-
izes this concept to the local distance distribution from a ref-
erence point to its neighbors – the dimensionality of the local
data submanifold in the vicinity of the reference point is re-
vealed by the growth characteristics of the cumulative distri-
bution function. The authors use LID to characterize the in-
trinsic dimensionality of regions where adversarial examples
lie, and use estimates of LID to detect adversarial examples.
Note that LID is a function of the nearest neighbor distances
and it found to be significantly higher for the adversarial ex-
amples than the benign examples. A binary adversarial exam-
ple detector is trained by using the training data to construct
features for each sample, based on its LID across different
layers, where the class label is assigned positive for adversar-
ial examples and assigned negative for in-distribution exam-
ples. Experiments on several attack strategies show that LID
based detector outperforms several state-of-the-art detection
measures by large margins.

In [59], a three layer regression NN is used as a detector
that takes logits of in-distribution and adversarial examples
from a pre-trained DNN as the input and predicts the confi-
dence value, i.e., whether the classification is normal or ad-
versarial. The classifier used is a pre-trained CNN trained
using in-distribution datasets (MNIST and CIFAR) and the
detector is trained on logits of both in-distribution and adver-
sarial examples generated using different methods. This work
show that logits of a pre-trained network provide relevant in-
formation to detect adversarial examples.

3.2. Semi-supervised Approaches

Semi-supervised anomaly detection techniques utilize unla-
beled contaminated data (or information) in addition to la-
beled instances of in-distribution class. Since, these tech-
niques do not require to know whether unlabeled instance is



in-distribution or adversarial examples, they are more widely
applicable than supervised techniques. However, we could
not find any existing semi-supervised adversarial example de-
tection approach in the literature. Note that this may be a
worthwhile direction to pursue in future research.

3.3. Unsupervised Approaches

We refer to the detection techniques as unsupervised if they
only utilize in-distribution data for adversarial detection.

In [60], the probabilities of all the training images under
the generative model (such as, PixelCNN) is computed. Then,
for a test example, the probability density at the input is com-
puted and its rank among the density values of all the training
examples is evaluated. This rank can be used as a test statis-
tic which gives a p-value for whether the example is normal
or adversarial. The method improves resilience of the state-
of-the-art methods against attacks and increases the detection
accuracy by a significant margin. Further, the authors suggest
purifying adversarial examples by searching for more prob-
able images within a small distance of the original training
ones. By utilizing L∞ distance, the true labels of the puri-
fied images remains unchanged. The resulting purified im-
ages have higher probability under in-distribution so that the
classifier trained on normal images will have more reliable
predictions on these purified images. This intuition is used to
build a more effective defense against adversarial attacks.

The motivation for the method in [61] is that adversarial
examples should be both (a) “too atypical” (i.e., have atypi-
cally low likelihood) under the density model for the DNN-
predicted class, and (b) “too typical” (i.e., have too high a
likelihood) under some class other than the DNN-predicted
class. While it may seem that one requires to use two detec-
tion thresholds, they instead propose a single decision statistic
that captures both requirements. Specifically, they define (a)
a two-class posterior evaluated with respect to the (density-
based) null model, and (b) corresponding two-class poste-
rior evaluated via the DNN. Both deviations (“too atypical”
and “too typical”) are captured by the Kullback-Leibler di-
vergence decision statistic. A sample is declared adversarial
if this statistic exceeds a preset threshold value.

The approach in [62] performs a kNN similarity search
among the deep features obtained from the training images
to a given test image classified by the DNN. They then use
the score assigned by a kNN classifier to the class predicted
by the DNN as a measure of confidence of the classification.
Note that this approach does not rely on the classification pro-
duced by the kNN classifier, but only use the score assigned
to the DNN prediction as a measure of confidence. The in-
tuition behind this approach is that while it is unlikely that
a class correctly predicted by the DNN has the highest kNN
score among the scores of all the classes, it is implausible that
a correct classification has a very low score. Results on the
ImageNet dataset show that hidden layers activations can be

used to detect misclassifications caused by various attacks.
In [63], intrinsic properties of the pre-trained DNN, i.e.,

output distributions of the hidden neurons, are used to detect
adversarial examples. Their motivation is that when the DNN
incorrectly assigns an adversarial example to a specific class
label, the distribution of its hidden states are very different as
compared to those obtained by the normal data of the same
class. They use Gaussian Mixture Model (GMM) to approx-
imate the hidden state distribution of each class using benign
training data. Likelihoods are then compared to the respective
class thresholds to detect whether an example is adversarial
or not. Experimental results on standard datasets (MNIST,
F-MNIST, CIFAR-10) against several attack methods show
that this approach can achieve state-of-the-art robustness in
defending black-box and gray-box attacks.

The authors in [64] found that adversarial examples
mainly exploit two attack channels: the provenance channel
and the activation value distribution channel. The provenance
channel imply instability of DNN output to small changes in
activation values, which eventually leads to misclassification.
On the other hand, the activation channel imply that while the
provenance changes slightly, the activation values of a layer
may be substantially different from those in the presence of
benign inputs. Exploiting these observations they propose
a method that extracts two kinds of invariants (or probabil-
ity distributions denoted by models), the value invariants to
guard the value channel and the provenance invariants to
guard the provenance channel. This is achieved by training
a set of models for individual layers to describe the activa-
tion and provenance distributions only using in-distribution
inputs. In other words, invariant models are trained as a
One-Class Classification (OCC) problem where all training
samples are positive (i.e., in-distribution inputs in this con-
text). At test time, an input is passed through all the invariant
models which provide independent predictions about whether
the input induces states that violate the invariant distributions.
The final result is a joint decision based on all these predic-
tions. Extensive experiments on various attacks, datasets and
models suggest that this method can achieve consistently high
detection accuracy on all different types of attacks, while the
performance of baseline detectors is not consistent.

In [65], the idea is that inherent distance of adversarial
perturbation from the training data manifold will cause the
overall network uncertainty to exceed that of the normal ex-
ample. To this end, random sampling of hidden units of each
layer of a pre-trained network is used to introduce random-
ness and the overall uncertainty of a test image is quantified
in terms of the hidden layer components. A mutual infor-
mation based thresholding test is used to detect adversarial
examples. The performance is further improved by optimiz-
ing over the sampling probabilities to minimize uncertainty.
Experiments on the CIFAR10 and the cats-and-dogs datasets
on deep state-of-the-art CNNs demonstrated the importance
sampling parameter optimization, which readily translate to



improved attack detection.
Approaches such as [66] and [67] rely on projecting the

test image to benign dataset manifold to detect adversarial ex-
amples. The underlying assumption in these approaches is
that adversarial perturbations move the test image away from
the benign image manifold and the effect of adversary can be
nullified by projecting the images back onto the benign man-
ifold before classifying them. As the true image manifold is
unknown, various estimation techniques are used. For exam-
ple, [66] use a sample approximation comprising a database
of billions of natural images. On the other hand, [67] use
a generative model trained on benign images to estimate the
manifold. Given the estimated benign manifold, the projec-
tion is done by nearest neighbor search in [66] and gradient-
based search in [67]. These methods are founds to be robust
against gray-box and black-box attacks where the adversary
is unaware of the defense strategy.

3.4. Other Miscellaneous Techniques

Here we discuss some other techniques that are used for ad-
versarial example detection which do not fall in the aforemen-
tioned categorizations of the post-hoc processing.

In [69], various uncertainty measures, e.g., entropy, mu-
tual information, softmax variance, for adversarial example
detection are examined. Each of these measures capture dis-
tinct types of uncertainty and are analyzed from the perspec-
tive of adversarial example detection. The authors showed
that only the mutual information gets useful detection per-
formance on adversarial examples. In fact, most other mea-
sures of uncertainty seem to be worse than random guessing
on MNIST and Kaggle dogs vs. cats classification datasets.

The approach in [70] is motivated by the observation that
the DNN feature spaces are often unnecessarily large, and this
provides extensive degrees of freedom for an attacker to con-
struct adversarial examples. The authors propose to reduce
the degrees of freedom for constructing adversarial examples
by “squeezing” out unnecessary input features. Specifically,
they compare the model’s prediction of the original test ex-
ample with its prediction of the test example after squeezing,
i.e., reducing the color depth of images, and using smooth-
ing to reduce the variation among pixels. If the original and
the squeezed inputs produce substantially different predic-
tions then the example is declared adversarial.

In [71] SafetyNet is proposed which consists of the orig-
inal classifier, and an adversary detector which looks at the
internal state of the later layers in the original classifier. Here,
the output from the ReLU is quantized to generate a discrete
code based on some set of thresholds. They claimed that dif-
ferent code patterns appear for natural examples and adver-
sarial examples. An adversarial example detector (i.e., RBF-
SVM) is used that compares a code produced at test time with
a collection of examples, i.e., an attacker must make the net-
work produce a code that is acceptable to the detector which

is shown to be hard.
In [72], the method improves the naive Bayes used in

many generative classifiers by combining it with variational
auto-encoder. They propose three adversarial example detec-
tion methods. The first two use the learned generative model
as a proxy of the data manifold, and reject inputs that are
far away from it. The third computes statistics for the clas-
sifier’s output probability vector, and rejects inputs that lead
to under-confident predictions. Experimental results suggest
that deep Bayes classifiers are more robust than deep discrim-
inative classifiers, and that the detection methods based on
deep Bayes are effective against various attacks.

In [73], the authors propose to model the outputs of the
various layers (deep features) with parametric probability
distributions (Gaussian and Gaussian Mixture Models). At
test time, the log-likelihood scores of the features of a test
sample are calculated with respect to these distributions and
used as anomaly score to discriminate in-distribution sam-
ples (which should have high likelihood) from adversarial
examples (which should have low likelihood).

The main idea in [74] is to combine kNN based distance
measure [75] with influence function which is a measure of
how much a test sample classification is affected by each
training sample. The motivation behind this approach is that
for an in-distribution input, its kNN training samples (near-
est neighbors in the embedding space) and the most helpful
training samples (found using the influence function) should
correlate. However, this correlation is much weaker for ad-
versarial examples, and serves as an indication of the attack.

The motivation in [76] is the observation that different
neural networks presented with the same adversarial exam-
ple will make different mistakes. The authors propose to use
such mistake patterns for adversarial example detection. Ex-
periments on the MNIST and CIFAR10 datasets show that
such detection approach generalizes well across different ad-
versarial example generation methods.

In [77] robust feature alignment is used to detect adversar-
ial examples. By using an object detector, the authors first ex-
tract higher-level robust features contained in images. Next,
the approach quantifies the similarity between the image’s
extracted features with the expected features of its predicted
class. A similarity threshold is finally used to classify a test
sample as benign or adversarial.

In [78], anomaly detection is performed by introduc-
ing random feature nullification in both training and testing
phases that ensures the non-deterministic nature of the DNN.
Here, the randomization introduced at the test time ensures
that the model’s processing of the input decreases the effec-
tiveness of the adversarial examples even if the attacker learns
critical features.

In [79], three strategies are presented. First, regularized
feature vectors are used to retrain the last layer of the CNN.
This can be used to detect whether the input is adversarial.
Second, histograms are created from the absolute values of



the hidden layer outputs and are combined to form a vector
which is used by the SVM to classify. Third, the input is
perturbed to reinforce the parts of the input example that are
ignored by the DNN which can then be used for adversarial
example detection. Finally, the authors combine the best as-
pects of these methods to develop a more robust approach.

In [80], a framework is presented for enhancing the ro-
bustness of DNN against adversarial examples. The idea is to
use locality-preserving hash functions to transform examples
to enhance the robustness. The hash representations of the ex-
amples are reconstructed by using a denoising auto-encoder
(DAE) that enables the DNN classifier to attain the locality
information in the latent space. Moreover, the DAE can de-
tect the adversarial examples that are far from the support of
the underlying training distribution.

4. RELATIVE STRENGTHS AND WEAKNESS

The supervised techniques usually have higher performance
compared to other methods as they use the labeled examples
from both normal and anomaly classes. They are able to learn
the boundary from the labeled training examples and then
more easily classify the unseen test examples into normal or
anomaly classes. However, when training data for anomalies
(the known unknowns) may not represent the full spectrum
of anomalies, supervised approaches may overfit and perform
poorly on unseen anomalous data (the unknown unknowns).
Furthermore, due to the lack of availability of labeled anoma-
lous examples, supervised techniques are not as popular as
the semi-supervised or unsupervised techniques.

Unsupervised techniques are quite flexible and broadly
applicable as they do not rely on the availability of the anoma-
lous data and corresponding labels. The techniques learn
inherent characteristics or unique features solely from in-
distribution data that are useful in separating normal from
anomalous examples. Unfortunately, this flexibility comes
at the cost of robustness – the unsupervised techniques are
very sensitive to noise, and data corruptions and are often less
accurate than supervised or semi-supervised techniques.

Semi-supervised techniques exploit unlabeled data in ad-
dition to labeled in-distribution data to improve the perfor-
mance of unsupervised techniques. Though, whether unla-
beled data is in-distribution or anomaly is not known, it is
observed that unlabeled data is helpful in improving the per-
formance of anomaly detection. Note that unlabeled data can
be obtained easily in real-world applications making semi-
supervised techniques amenable in practice. These methods
also suffer from the overfitting problem on unseen anomalies.

Distance-based methods, e.g., kNN approaches, require
appropriate distance measure to be defined a priori. Most
distance measures are not effective in high-dimension. Fur-
ther, such methods are typically heuristic and require manual
selection of parameters. Projection-based methods, e.g.,
GAN approaches, are very flexible and address the high-

dimensionality challenge. However, their performance is
heavily dependent on the quality of the image manifold esti-
mate. In certain applications, it may not be easy to estimate
the image manifold with sample approximation or generative
modeling. Probabilistic methods, e.g., density estimation
approaches, make use of the distribution of the training data
or features to determine the location of the anomaly bound-
ary. The performance of such methods is very poor in the
small data regime as reliable estimates cannot be obtained.
Uncertainty-based methods, e.g., entropy approaches, re-
quire a metric that is sensitive enough to detect the effects of
anomalies in the dataset. Although these methods are easy
to implement in practice, the performance of such methods
is highly dependent on the the quality of uncertainties. Un-
certainty quantification in DL is an ongoing research topic
and high quality uncertainty estimates will surely improve
the performance of uncertainty-based methods.

The computational complexity of these methods is an-
other important aspect to consider. In general, probabilistic
and uncertainty-based methods have computationally expen-
sive training phases, however efficient testing. On the other
hand, distance-based and projection-based methods, in gen-
eral, are computationally expensive in the test phase. Depend-
ing on the application requirements, a user should choose the
most appropriate anomaly detection method.

5. APPLICATION DOMAINS

In this section, we briefly discuss several applications of OOD
and adversarial example detection. We also suggest future
research that is needed for these application domains.

Intrusion Detection - An Intrusion Detection System is
a system that monitors network traffic for suspicious activity
and issues alerts when such activity is discovered. A key chal-
lenge for intrusion detection is the huge volume of data and
sophisticated malicious patterns. Therefore, DL techniques
are quite promising in the intrusion detection application.

In [81], a neural network based intrusion detector is
trained to identify intruders. In [82], a deep hierarchical
model is proposed for intrusion detection. The model is
a combination of a restricted Boltzmann machine (RBM)
for unsupervised feature learning and a supervised learning
network called as Backpropagation network. In [83], a net-
work intrusion model is proposed where feature learning is
performed by stacking dilated convolutional autoencoders.
These feature are then used to train a softmax classifier to
perform supervised intrusion detection. In [84], an autoen-
coder based model in combination with a stochastic anomaly
threshold determination method is proposed for intrusion
detection. The algorithm computes the threshold using the
empirical mean and standard deviation which are found from
training set via the trained autoencoder.

As mentioned earlier, these DL based systems are equally
susceptible to both OOD and adversarial examples [85, 86,



87]. In [85], the authors analyze the performances of the state-
of-the-art attack algorithms against DL-based intrusion detec-
tion. The susceptibility of DNNs used in the intrusion detec-
tion system is validated by experiments and the role of indi-
vidual features is also explored. The authors in [86] demon-
strated that an adversary can generate effective adversarial
examples against DL based intrusion detection systems even
when the internal information of the target model is not avail-
able to the adversary. Note that in intrusion detection appli-
cations, a large amount of labeled data corresponding to nor-
mal behavior is usually available, while labels for intrusions
are not. Therefore, semi-supervised and unsupervised OOD
and adversarial example detection techniques discussed in the
previous sections are worthwhile directions to pursue.

Fraud Detection - Fraud detection refers to detection of
fraudulent activities occurring in many e-commerce domains,
such as, banking, insurance, law enforcement, etc. A good
fraud detection system should be able to identify the fraud-
ulent transactions accurately and should make the detection
possible in real-time. There is an increase in interest in ap-
plying DL techniques in fraud detection systems. In [88],
fraud detection is modeled as a sequence classification task.
An LSTM is used to generate transaction sequences and in-
corporate aggregation functions like mean, absolute value to
aggregate the learned features for fraud detection. Further-
more, in [89], feature sequencing is performed using CNNs
for detecting transaction fraud. Recently, the authors in [90]
analyzed the vulnerability of deep fraud detector to adversar-
ial examples, i.e., slight perturbations in input transactions
designed to fool the fraud detector. They show that the de-
ployed deep fraud detector is highly vulnerable to attacks as
the average precision is decreased from 90% to as low as 20%.

This motivates the study of the effect of unintentional and
intentional anomalies in deep fraud detection systems. Tech-
niques discussed in the previous sections will be applicable
for such a problem and are potential viable solutions for de-
signing robust deep fraud detection systems.

Anomaly Detection in Healthcare and Industrial Do-
mains - Anomaly detection in the healthcare domain try to
detect abnormal patient conditions or instrumentation errors.
Anomaly detection is a very critical problem in this domain
and requires high degree of accuracy. Similarly, in industrial
systems like wind turbines, power plants, and storage devices
which are exposed to large amounts of stress on a daily basis,
it is critical to detect any damages as quickly as possible. The
medical abnormalities and industrial damage are rare events
and detecting them can be modeled as an anomaly detection
problem. Therefore, there is a surge of interest in applying DL
in both medical [91] and industrial application domains [92].

Unfortunately, similar to other DL applications, these
systems are equally susceptible to OOD and adversarial
examples. For example, the authors in [93] demonstrated
that adversarial examples are capable of manipulating DL

systems across three clinical domains: diabetic retinopathy
from retinal fundoscopy, pneumothorax from chest-Xray, and
melanoma from dermoscopic photographs.

This motivates the study of the effect of anomalies in
DL based healthcare and industrial systems. Techniques dis-
cussed in the previous sections can be used for designing
robust healthcare and damage detection systems.

Malware Detection - Malware detection focuses on de-
tecting malware software by monitoring the activity of the
computer systems and classifying it as normal or anoma-
lous. The velocity, volume, and the complexity of mal-
ware are posing new challenges to the anti-malware commu-
nity. Current state-of-the-art research shows that recently,
researchers started applying machine learning and DL meth-
ods for malware analysis and detection [94]. In [78], malware
detection is performed by introducing random feature nulli-
fication in both training and testing phases that ensures the
non-deterministic nature of the DNNs. Intuitively, the non-
deterministic nature ensures that the model’s processing of
the input decreases the effectiveness of the adversarial exam-
ples even if the attacker learns critical features. Furthermore,
in [95], a stacked autoencoders model is used for malware
detection. The model employs a greedy layerwise training
operation for unsupervised feature learning and supervised
parameter tuning. Furthermore, in [96], fake malware is gen-
erated and is learned to distinguish from the real data using a
novel GAN architecture.

Authors in [97, 98] expanded on existing adversarial ex-
ample crafting algorithms to construct a highly-effective at-
tack against malware detection models. Using the augmented
adversarial crafting algorithm, authors managed to mislead
the malware detection classifier for 63% of all malware sam-
ples. In [80], the authors analyzed the effect of several attacks
on the Android malware classification task.

Given the susceptibility of the state-of-the-art malware
detection classifiers to adversarial examples, it will be useful
to utilize OOD and adversarial example detection techniques
in deep malware detection systems.

Time Series and Video Surveillance Anomaly Detec-
tion - The task of detecting anomalies in multivariate time
series data is quite challenging. Hence, efficient detection
of multivariate time series anomalies is critical for fault di-
agnostics. RNN and LSTM based methods perform well in
detecting anomalies in multivariate time series data. In [99],
a generic framework based on DL for detecting anomalies
in multivariate time series data is presented. Deep attention
based models are used in [100] for anomaly detection for ef-
fective detection of anomalies. Many works have applied the
deep learning models for video surveillance anomaly detec-
tion in [101, 102, 103].

Unfortunately, some recent papers [104, 105] have shown
that one can design adversarial examples on time-series clas-
sifiers as well. Thus, in our opinion, future researchers should



incorporate OOD and adversarial example detectors in their
time series classification systems to improve the resilience
and consider model robustness as an evaluative metric.

6. CONCLUSION AND OPEN QUESTIONS

In this survey, we discussed various techniques for detecting
OOD and adversarial examples given a pre-trained DNN. For
each category of anomaly detection techniques, we discussed
the strengths and weaknesses of these techniques. Finally,
we discussed various application domains where the post-hoc
processing, as well as, training based anomaly detection tech-
niques are applicable.

There are several open issues and worthwhile future di-
rections for further research. Several of these are identified by
analyzing and comparing existing literature and the research
considered in this survey.
Methods: We classified anomaly detection algorithms based
on the availability of the labels of anomalous examples and
the type of metrics used. Based on the availability of the
labels, the techniques are classified as supervised, semi-
supervised, and unsupervised. Based on the type of metric,
the techniques are classified as probability-based, distance-
based, projection-based, and uncertainty-based. Each cate-
gory of methods have their own strengths and weaknesses,
and faces different challenges as discussed in Section 4. We
conjecture that exploration of ensemble detection approaches
can be a worthwhile future direction. The ensemble approach
combines outputs of multiple detectors offering complemen-
tary strengths into a single one, thus yielding better perfor-
mance compared to using individual detectors.
Defining Anomalies: Majority of the research on detecting
OOD and adversarial examples in DL focuses on detecting
independent anomalies (e.g., adversarial examples generated
independently from one another). However, anomalous be-
haviors can be much more complex requiring more sophisti-
cated detection approaches than currently available. An ex-
ample of this is discussed in [106] where a simple correlated
anomaly generation approach was discussed. It was shown
that current defenses are not capable of defending against this
simple scheme. Further, defining collective and contextual
anomalies [107] in the context of OOD and adversarial ex-
amples in DL can be very interesting and detecting them will
certainly require the development of a new class of detectors.
Also, we want to emphasize that it is important for future re-
search on anomaly detection to be cognizant of the fact that
anomalies may not adhere to our definitions and assumptions
and can have extremely complex unknown behavior. This
is similar to the concept of unknown-unknowns [108]. We
believe that the research on domain generalization [109] and
meta learning [110] can be used to solve some of these issues.
Going beyond image classification: Most of the papers dis-
cussed in this survey (and in the literature) focus on the de-
tection of anomalous examples in DNN based image classi-

fication problems. However, in recent years there has been a
surge of interest in applying DL on other data types, e.g. text,
graphs, trees, manifolds etc. These data types are ubiquitous
in several high-impact applications including bioinformatics,
neuroscience, social sciences, and molecular chemistry. Un-
fortunately, DL approaches in these data types also suffer
from the existence of OOD and adversarial examples [111].
Post-hoc detection of such anomalies has not received much
attention. Furthermore, going beyond classification problems
and exploring the design and the detection of anomalies in DL
based object detection, control, and planning problems can be
a high-impact future research direction.
Performance Evaluation: Reliably evaluating the perfor-
mance of OOD and adversarial example detection methods
has proven to be extremely difficult. Previous evaluation
methods are found to be ineffective and performing incorrect
or incomplete evaluations [112, 113]. Absence of a standard
definition for anomalies makes this problem very challeng-
ing. Furthermore, as anomalies become more sophisticated,
it may become even harder to reliably evaluate the detection
performance. Majority of current approaches evaluate the
performance of anomaly detectors on OOD and adversarial
examples. Assuming that training data may not represent the
full spectrum of anomalies, this evaluation approach raises
the risk of overfitting. Ideally, one should adopt an evaluation
method that can assess the detection performance on adap-
tive and unseen anomalies (the unknown unknowns) over
methods that only can assess the detection performance on
previously seen anomalies (the known unknowns). Due to
these reasons, there is an immediate need for designing prin-
cipled benchmarks to reliably evaluate the anomaly detection
performance [113, 114].
Theoretical analysis and Fundamental Limits: Finally, we
need to make efforts on the theoretical front to understand the
nature of the anomaly detection problem in DL-based sys-
tems. In the recent past, a pattern has emerged in which the
majority of heuristics based defenses (both posthoc detection
and training based) are easily broken by new attacks [115,
112]. Therefore, the development of a coherent theory and
methodology that guides practical design for anomaly detec-
tion in DL-based systems [116], and fundamental character-
izations of the existence of adversarial examples [117] is of
utmost importance. How to leverage special learning proper-
ties such as the spatial and temporal consistencies to identify
OOD examples [118, 119] also worth further exploration.

To summarize, OOD and adversarial example detection in
DL-based systems is an open problem. We highlighted sev-
eral aspects of the problem to be understood on both theoreti-
cal and algorithmic front to improve the effectiveness and fea-
sibility of anomaly detection. We hope that this survey will
provide a comprehensive understanding of the different ap-
proaches, show the bigger picture of the problem, and suggest
few promising directions for researchers to pursue in further
investigations on the anomaly detection in DL-based systems.
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