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EXECUTIVE SUMMARY

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many
megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid
dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines and captures the
rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale
class, multi-turbine wind farm simulations will require exascale-class resources.

The primary physics codes in the ExaWind project are Nalu-Wind, which is an unstructured-grid solver for
the acoustically incompressible Navier-Stokes equations, and OpenFAST, which is a whole-turbine simulation
code. The Nalu-Wind model consists of the mass-continuity Poisson-type equation for pressure and a
momentum equation for the velocity. For such modeling approaches, simulation times are dominated by
linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge
problem, the moving meshes greatly affect overall solver costs as reinitialization of matrices and recomputation
of preconditioners is required at every time step.

In this report we evaluated GPU-performance baselines for the linear solvers in the Trilinos and hypre
solver stacks using two representative Nalu-Wind simulations: an atmospheric boundary layer precursor
simulation on a structured mesh, and a fixed-wing simulation using unstructured overset meshes. Both
strong-scaling and weak-scaling experiments were conducted on the OLCF supercomputer Summit and similar
proxy clusters. We focused on the performance of multi-threaded Gauss-Seidel and two-stage Gauss-Seidel
that are extensions of classical Gauss-Seidel; of one-reduce GMRES, a communication-reducing variant of the
Krylov GMRES; and algebraic multigrid methods that incorporate the afore-mentioned methods. The team
has established that AMG methods are capable of solving linear systems arising from the fixed-wing overset
meshes on CPU, a critical intermediate result for ExaWind FY20 Q3 and Q4 milestones. For the fixed-wing
strong-scaling study (model with 3M grid-points), the team identified that Nalu-Wind simulations with the
new Trilinos and hypre solvers scale to modest GPU counts, maintaining above 70% efficiency up to 6 GPUs.
However, there still remain significant bottlenecks to performance: matrix assembly (hypre), AMG setup
(hypre and Trilinos) In the weak-scaling experiments (going from 0.4M to 211M gridpoints), it’s shown that
the solver apply phases are faster on GPUs, but that Nalu-Wind simulation times grow, primarily due to the
multigrid-setup process.

Finally, based on the report outcomes, we propose a linear solver path-forward for the remainder of the
ExaWind project. Near term, the NREL team will continue their work on GPU-based linear-system assembly.
They will also investigate how the use of alternatives to the NVIDIA UVM (unified virtual memory) paradigm
affects performance. Longer term, the NREL team will evaluate algorithmic performance on other types of
accelerators and merge their improvements back to the main hypre repository branch. Near term, the Trilinos
team will address performance bottlenecks identified in this milestone, such as implementing a GPU-based
segregated momentum solve and reusing matrix graphs across linear-system assembly phases. Longer term,
the Trilinos team will do detailed analysis and optimization of multigrid setup.
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1. INTRODUCTION

The ultimate goal of the ExaWind project is to enable scientific discovery through predictive simulations of
wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations
will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry
of the turbines (blade resolved) and captures the rotation and large deflections of blades. Whereas such
simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require
exascale-class resources [15] accelerated with graphics processing units (GPUs).

The primary solvers in the open-source ExaWind software stack [14] are Nalu-Wind!, AMR-Wind?, and
OpenFAST?. Nalu-Wind is an unstructured-grid high-fidelity computational fluid dynamics (CFD) flow
solver for wind turbine and wind farm applications. It solves the acoustically incompressible Navier-Stokes
equations and is equipped with both Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation
(LES) models for turbulence closure. Additional transport equations, e.g., enthalpy, turbulent kinetic energy,
etc., are available depending upon the problem. The Nalu-Wind code is closely tied to the Trilinos libraries,
leveraging greatly the Sierra Toolkit (STK), the Kokkos abstraction layer for parallel-performance portability,
and the linear-system solver libraries (MueLu, Belos, Tpetra). Through ExaWind, Nalu-Wind is also linked
to the hypre?* linear-system solver stack and to the Topology Independent Overset Grid Assembler® (TIOGA)
for overset meshes. A detailed description of the Nalu-Wind numerical discretization scheme and the solution
procedure has been given in the ECP ExaWind FY19-Q2 report with an overview given in [14]. AMR-Wind
is a wind-focused structured-grid, acoustically incompressible CFD solver built on AMReX", a software
framework for block-structured adaptive mesh refinement (AMR), and is a new addition to the ExaWind
software stack. OpenFAST is a whole-turbine simulation code developed at the National Renewable Energy
Laboratory (NREL) that includes models for nonlinear deflections of blades, the control system, and the
tower.

The fluid-modeling pathway for ExaWind is for the near-turbine fluid to be modeled with an unstructured
grid in Nalu-Wind, which enables body-conforming meshes well suited for resolving boundary layers. The far-
field fluid can be modeled with either unstructured meshes in Nalu-Wind or structured meshes in AMR-Wind.
In either case, the meshes are coupled through the overset method via TIOGA. Nalu-Wind and AMR-Wind
rely on pressure projection to maintain continuity, which entails solving a Poisson-type equation at least
once every time step, as well as solving Helmholtz-type momentum equations for velocity and other physical
and model quantities. Nalu-Wind is equipped to solve these equations with the linear-system solvers and
preconditioners from the hypre and/or Trilinos packages. AMR-Wind solves its systems with a multi-level
multigrid solver. For the simulations where Nalu-Wind is coupled to AMR-Wind, global linear systems
are solved in a decomposed manner where the preferred solver of each package is employed and coupling is
accomplished via additive Schwarz. Performance analysis and optimization of this coupling approach is the
subject of current [13] and future work.

This milestone is focused on the linear solvers and preconditioners used by Nalu-Wind, Trilinos and hypre,
with particular emphasis on performance on GPU-accelerated systems. The objectives are to

1. understand and document the performance of the hypre and Trilinos solvers in their current form on a
GPU-accelerated system (after many ECP-supported improvements including those in Exawind),

2. document a plan for maximizing the amount of the software stack that can be executed on the GPUs
and optimizing performance.

Our testbed for this milestone is the Summit system at the Oak Ridge Leadership Computing Facility (OLCF).
We have conducted a comprehensive suite of performance analyses that include weak and strong scaling
studies.

Thttps://github.com/exawind/nalu-wind
?https://github. com/exawind/amr-wind
Shttps://github.com/openfast/openfast
4nttps://github.com/hypre-space/hypre
Shttps://github.com/jsitaraman/tioga
Shttps://github.com/AMReX-Codes/amrex
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2. MILESTONE DESCRIPTION

In this section, we provide the approved milestone description and execution plan followed by a brief description
of how the milestone was completed. Details regarding completion are included in the following sections.

2.1 DESCRIPTION

For incompressible-flow computational fluid dynamics simulations, the vast majority of simulation time is
spent setting up and solving the underlying linear systems. These costs are exacerbated in blade-resolved
turbine simulations, for which moving meshes require that linear systems and preconditioners be re-established
at every time step. With the importance of the linear-system solver stack, the ExaWind project has supported
evaluation and development of two solver-stack pathways: Trilinos (Belos/Tpetra/MueLu) and hypre . In this
milestone we will report on ExaWind-supported advances under these two software stacks with particular focus
on strong-scaling performance on CPU and GPU configurations for both the momentum and pressure-Poisson
systems. The test problems will include wind-relevant problems established in previous milestones. Based on
results, we will describe recommended paths forward for accomplishing predictive simulations on an exascale
class system in the second phase of the ExaWind project.

2.2 EXECUTION PLAN

1. Optimize solver stacks for the wind energy problem with emphasis on next-generation platforms and
improving the strong scaling limit on GPUs over current GPU capabilities.

2. Compare performance of the two solver stacks on wind relevant problems including performance on a
next-generation platform such as GPU.

3. Provide a plan for linear-solver software stack development for post FY20 with a clear pathway to
support predictive wind farm simulation on an exascale system.

Completion Criteria: Technical report describing the milestone accomplishment and a highlight slide summa-
rizing those accomplishments.

2.3 OVERVIEW OF MILESTONE COMPLETION

The following is a concise description of how each of the items in Section 2.2 was satisfied for milestone
completion.

1. Linear-system solvers:

(a) A new two-stage Gauss-Seidel smoother was implemented in hypre and Trilinos, specifically targeted
at achieving optimal GPU performance and improved solver scaling.

(b) Trilinos: the entire setup of the multigrid solver has been re-implemented using kokkos for
portability to GPU (with the exception of sparse direct solvers). Multiple improvements to
the multi-threaded Gauss-Seidel algorithm have been made to improve numerical convergence
(clustering algorithm) and performance (parallel triangular solve). The solve phase was on the
GPUs before this work. Thus, the entire multigrid code is now GPU-ready, with the possible
exception of coarse sparse direct solvers.

(c¢) hypre : The solve parts of C-AMG V-cycle was implemented on GPU, including the non-square
matrix-vector products for prolongation and restriction with asynchronous MPI. A reproducible
sparse matrix assembly was implemented for the GPU but has not been interfaced to Nalu-Wind
at the time of writing. The assembly procedure also conforms to the CASC-LLNL IJMatrixAd-
dToValues API. The setup of C-AMG has to be GPU-enabled in the future.

2. Linear-system solver performance was examined with simulations performed on the OLCF Summit
supercomputer for an atmospheric boundary layer (ABL) simulation that is a key component in any
wind turbine simulation and a fixed-wing simulation, which was used as a proxy for a wind turbine
blade. Strong and weak scaling studies were performed and documented. See §7 for details.

Exascale Computing Project (ECP) 2 ECP-Q2-FY20



3. A development path forward for both Trilinos and hypre is provided in §8. Extensive studies and
results from Summit simulations have revealed that the pressure continuity solvers in Trilinos and
hypre are scaling sub-linearly and the time per iteration is growing at higher numbers of MPI ranks or
equivalently for larger numbers of total pressure degrees of freedom. To improve throughput and reduce
momentum solver time further, short-recurrence MINRES and block Krylov methods should be explored
and implemented. The overall solver scalability for our target wind-turbine simulations in 2021-2023
should be further addressed. Additive Schwarz algorithms currently implemented in Nalu-Wind have
the potential to mitigate these effects, but their strong-scaling properties for our proposed large-scale
simulations have yet to be determined and would be a focus of our path forward work. In addition, the
MPI communication on Summit may be affected by CPU-GPU memory transfers and synchronization.
The CPU-GPU memory model (UVM versus mirror) and performance portability for Aurora and
Frontier should be further explored in the hypre stack. Certainly a priority is to understand and address
the sub-linear scaling of the pressure continuity equation solvers.

3. DESCRIPTION OF SIMULATIONS

As described in the Introduction, this milestone is focused on the Nalu-Wind CFD solver and its underlying
linear solvers and preconditioners in hypre and Trilinos. Nalu-Wind equations are integrated in time using an
implicit, second-order accurate Backward-Difference Formula (BDF2) time-stepping scheme. The resulting
set of equations for a given time step are discretized in space, resulting in a large system of coupled nonlinear
equations. This system of equations is decoupled, linearized and solved using a pressure projection scheme
with a Picard fixed-point iteration. At the core of the Picard iterative process each of the physical equations
mentioned in the previous paragraph results in a set of linear equations over the mesh points. Efficient GPU
computation of solutions for these linear equations is the focus of this report and will be assessed using the
two simulations presented below.

In order to evaluate the performance of the linear solvers employed within Nalu-Wind, we consider two
specific wind-energy-relevant simulations: (a) large-eddy simulations (LES) of an atmospheric boundary layer
(ABL) precursor, and (b) unsteady RANS simulation of the McAlister-Takahashi wind-tunnel experiment of
a NACAO0015 fixed wing. Detailed descriptions of the ABL precursor and the McAlister wing simulations, as
well as the rationale for choosing these as candidate problems for this milestone, are presented below.

3.1 ABL PRECURSOR SIMULATIONS

LES simulations of wind farms require specification of time-varying, turbulent inflow and temperature profiles
at the various boundaries of the computational domain. A common process for generating these boundary
conditions are the so called ABL precursor simulations. Precursor simulations generally use a structured,
Cartesian grid with cells of uniform resolution that encloses the desired volume of interest. Periodic boundary
conditions are imposed on the four sides (x and y faces) and wall functions are imposed on the lower surface.
The top boundary is modeled as follows: a symmetry (zero-gradient) boundary condition is applied to velocity
field and a constant temperature gradient is enforced to simulate conditions above the capping inversion layer.
The flow field is initialized with sinusoidal perturbations in the velocity field to trigger turbulence generation.
The one equation k-SGS turbulence model is applied for LES closure. For ABL neutral boundary layer
simulations, i.e., no net surface heat flux into or from the flow at the ground, the simulations are typically
run for about 20,000 seconds before reaching equilibrium.

From mesh-generation and simulation perspective this is a simple problem but has several key algorithmic
ingredients fundamental to modeling a wind farm and, therefore, presents an ideal setup to explore strong
and weak scaling behavior of the linear solvers. For this milestone, the neutral ABL precursor simulation is
performed for a 5km x 5km X 1km domain at four different grid resolutions — see Table 1. The 20 m resolution
mesh (= 3.26 million pressure DOFs) was chosen as a candidate for strong scaling studies.

3.2 MCALISTER WING SIMULATIONS

Unsteady RANS simulation of a fixed-wing, with a NACAQ015 cross section, operating in uniform inflow
was chosen as the second problem to evaluate the performance of linear solvers. Unlike the ABL precursor
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Az [m] grid points At [s] max CFL time steps
40 412,776 24 0.51 10
20 3,268,805 1.2 0.51 10
10 26,248,250 0.6 0.51 10
5 210,546,279 0.3 0.51 10

Table 1: Details of the computational meshes used for weak scaling studies of
the neutral ABL precursor simulations.

problem, resolving the high-Reynolds number boundary layer over the wing surface requires resolutions of
O(107°) normal to the surface resulting in cell aspect ratios of O(40,000). These high aspect ratios, coupled
with the loss of diagonal dominance in the momentum system, present a significant challenge for the iterative
solvers. Overset meshes were employed to generate body-fitted meshes for the wing and the wind tunnel
geometry, this presents additional complications for the linear solver in form of overset constraint rows.
The simulations were performed for a wing at 12° angle of attack, a 1 m chord length, denoted ¢, 3.3 aspect
ratio, i.e., s = 3.3¢, and a square wing tip. The inflow velocity is us, = 46 m/s, the density is po, = 1.225
kg/m?, and the dynamic viscosity is 1 = 3.756 x 1075 kg/(m s), leading to a Reynolds number, Re = 1.5 x 10°.
The computational mesh was generated with commercial mesh generation software, point-wise, and models
the half-wing as well as the wind tunnel walls. Wall normal resolutions were chosen to adequately represent
the boundary layers on both the wing and tunnel walls. The &k —w SST RANS turbulence model was employed
for the simulations. Due to the complexity of mesh generation, only one mesh with approximately 3 million
grid points was generated. Only strong scaling studies were performed for the McAlister wing problem.

3.3 MOMENTUM SOLUTION PROCEDURE FOR TRILINOS AND HYPRE STACKS

Currently one significant difference in how these equations are solved in the hypre and Trilinos solver stacks is
segregation of the momentum equations. The segregated solver makes the hypothesis that the block diagonal
terms in the momentum equation are dominant and close to each other which allows the solver to use a single
diagonal block to solve for each component of the velocity field as seen in equation (1). This approach is
currently not implemented in the Trilinos solver stack for GPUs (an algorithm exists for CPUs) which means
that the momentum equation solved by the Trilinos stack is three times larger than that solved by the hypre
stack.

Mz, Macy M, Vg fa
My, My, My | |vy| = |fy| = My [vz Uy vz]:[fm fy fz] (1)
MZ"L’ sz MZZ vz fZ

4. OVERSET MESHES

ExaWind simulation environment makes extensive use of overset-mesh methodology to support modeling
arbitrary motion and deformations such as blade rotation, nacelle yaw, as well as blade bending and twisting
due to structural dynamics. Overset-meshes employ body-fitted, near-body meshes embedded within a
background mesh. Flow information is exchanged between the overlapping meshes using field interpolation
from the donor cell to the receptor node on the receiver mesh. Overset domain connectivity is the process that
determines where the flow equations are solved and how information is exchanged between the overlapping
grids when they overlap in a given point in space. The process tags each node in the collection of computational
meshes as field, fringe, or hole nodes. Field nodes are nodes on the mesh where the flow equations are solved,
fringe nodes are receptors that receive data from a donor cell located in another mesh that solves the flow
equations at that point in space, and hole nodes are nodes that either lie within a solid body (and, therefore,
cannot have a valid solution) or are entirely bounded by fringe nodes (and, therefore, need not be solved for
at a given time-step). Within the ExaWind simulation environment, domain connectivity is performed using
the third-party library TIOGA.
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4.1 CONSTRAINT ROWS AND IMPLICATIONS FOR AMG PRECONDITIONERS

From a linear system perspective, this results in introduction of a set of constraint equations within the
system, i.e., the rows corresponding to the fringe nodes are modified such that instead of the terms originating
from the discrete operators of the terms in the PDE, it contains the interpolation stencil for the solution at
the fringe node from the donor cell. These constraints can be written as

-
Ap" = Y wiAg)

k=1

Qs

o
_o, Sug=1, 2)
k=1

where Ag;" is the solution update to the fringe node on mesh m for a field ¢, A¢} is the solution update
(determined by the linear system) at nodes (k = {1,..., N°}) of the donor element e on mesh n, and wf, is
the interpolation weight determined by the shape functions of the donor element, and a; is a row-scaling
coeflicient whose value is determined based on a procedure described next. The solution is fully coupled and
does not require a solution-exchange step after the linear solve. However, introduction of constraint rows
within an elliptic system poses a challenge to the efficient operation of algebraic multigrid preconditioners and
often results in poor convergence during the iterative solution process. As mentioned in FY19-Q2 report, the
team is considering potential mitigation approaches. First, decoupling the linear system using an alternating
Schwarz approach. This is the focus of the FY20-Q3 milestone. The second option is a constraint-elimination
step for which the constraint equations are recast as a restriction operator that is used to generate a new
linear system consisting of only the field degrees-of-freedom.

While alternate approaches were being considered, ad hoc testing revealed that the convergence of the
linear systems improved if the scaling parameter, o, was chosen such that the diagonal value of the constraint
row was close to its neighbors. To determine a suitable value for ag, we consider the discretized system of
equations solved at each Picard nonlinear iteration step (see [14]):

ApATET + A At = — vph Momentum  (3)
—rLAp*tl = V. (pﬂkﬂ) +7Lp* — DTGp”, Continuity  (4)
ubtl = ghtl _ <Z> v (Apk'H) , Projection  (5)

p

where Ap = — Z Anp + Z—ltpAVp; T = diag(A)™; AgFtl = getl _ gk

A, represents the diagonal term of the A matrix, A,; are the coefficients of the off-diagonal columns, and
r* is the residual of the momentum equation system. The last two terms on the right-hand side (RHS) of
Eq. 4 play the role of Rhie-Chow interpolation. For transport equations (e.g., momentum, enthalpy, turbulent
kinetic energy), the leading diagonal term is of the order O(y1 AV, /At). Therefore, we choose ay = 11 AV, /At
for the transport equations. On the other hand, for elliptic pressure Poisson equation, the diagonal term is of
the form AV, /Axz?. Therefore, for the pressure continuity system, we approximate as = {¢/AV,.

It must be emphasized that the current choice of oy is arbitrary and its implications on the performance
of AMG preconditioners and convergence of the iterative solution process have not been thoroughly examined.
The scaling parameter is described here for completeness, as it is being currently used in production runs
using the ExaWind simulation environment. Further study of the implications of the choice of a on the
performance of AMG preconditioners and the convergence characteristics of the iterative solvers is warranted,
and is anticipated to be a focus of future milestones.

4.2 MESHES, DYNAMIC RANGE AND CONDITION NUMBER ESTIMATION

The matrices for the momentum and continuity equations in Nalu-Wind are large and quite sparse with on
the order of twenty non-zeros per row. The dimension of these matrices is O(10) billion for the problems of
interest. The convergence of iterative solvers is determined to a large extent by the condition number of the
matrices. The condition number is also a measure of the sensitivity of the problem Ax = b to perturbations
of the form (A 4+ AA)x = (b+ Ab) that can occur from floating point errors arising in matrix assembly.
The condition number is formally defined as the ratio of the largest to smallest singular values of the
matrix A as given by k(A) = Omax/Omin- The singular values of a large sparse matrix are difficult and
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expensive to compute in practice. Typically, a sparse eigenvalue package such as ARPACK could be employed.
However, an alternative estimate would be desirable in the design and evaluation of solver algorithms. One
possible surrogate is based on the dynamic range of the simulation as determined by the ratio of the largest
to smallest mesh grid cell volumes.

K:(A) ~ Avaax/Avain

When k(A) > le+ 16, or the inverse of the machine round-off error ¢, then the problem may not be tractable.
Equilibration and re-ordering can mitigate these effects but at additional costs. For the momentum matrix,
diagonal dominance is assumed and results when upwind discretisations are employed. When this is not the
case, ILUTP type preconditioners may be needed and these are difficult to implement on the GPU, although
recent work by Anzt and Chow (2020) may result in ILU algorithms amenable to GPU implementation.
These will not be described here but are possibly of interest in our ongoing efforts.

5. LINEAR SOLVER ALGORITHMS

In this section, we discuss the key linear solvers that are used in this report. We begin with a brief background
on the two AMG methods that Nalu-Wind uses. We then discuss linear solver algorithms employed by Nalu-
Wind on GPU architectures: a one-step communication GMRES Krylov algorithm; a two-stage Gauss-Seidel
smoother with an inexact iterative lower triangular solve; and a multi-threaded Gauss-Seidel relaxation
smoother.

5.1 ALGEBRAIC MULTIGRID

Algebraic multigrid (AMG) methods are effective scalable solvers that are well suited for high-performance

computer architectures [18, 9, 10]. When employed as a stand-alone solver or as a preconditioner for a Krylov

iteration such as GMRES [12], AMG can in theory solve a linear system with n unknowns in O(n) operations.
An AMG method accelerates the solution of a linear system

Ax =b (6)

through error reduction by using a sequence of coarser matrices called a hierarchy. We will refer to the
sequence of matrices as Ay, where &k = 0...m, and Ay is the matrix from (6). Each Ay has dimensions
my, X my where my, > my4q for k£ < m. For the purposes of this paper, we will assume that

Ay = PF Ay 1Py, (7)

for k > 0, where Py is a rectangular matrix with dimensions my_1 X my. Py is referred to as a prolongation
matriz or prolongator. Ry is the restriction matriz and Ry = Pg in the Galerkin formulation of AMG.
Associated with each Ay, k < m, is a solver called a smoother, which is usually an inexpensive iterative
method, e.g., Gauss-Seidel, polynomial, or incomplete factorization. The coarse solver associated with A,, is
often a direct solver, although it may be an iterative method if A,, is singular.

The setup phase of AMG is nontrivial for several reasons. Each prolongator P, is developed algebraically
from Aj_; (hence the name of the method). Once the transfer matrices are determined, the coarse-matrix
representations are recursively computed from A through sparse matrix-matrix multiplication.

In the AMG solve phase, a few steps of a smoother are applied to the finest-level linear system with a
zero initial guess. This is referred to as pre-smoothing. A residual is calculated and restricted to the next
coarser level, for which it becomes the right-hand side for the next-coarser linear system. This process repeats
recursively until the coarsest level is reached. The coarsest-level system is usually solved with a direct method.
The solution of the coarsest-system solve is then interpolated to the next finer level, where it becomes a
correction for that level’s previous approximate solution. A few steps of post-smoothing are applied after this
correction. This process is repeated until the finest level is reached. This describes a V-cycle, the simplest
complete AMG cycle. See Algorithm 1 for the complete description. AMG methods achieve optimality
(constant work per degree of freedom in Ag) through complementary error reductions by the smoother and
solution corrections propagated from coarser levels.

The two main AMG methods employed by Nalu-Wind are Ruge-Stiitben AMG (also called classical AMG
or C-AMG) and smoothed aggregation AMG (SA-AMG). As mentioned previously, the main focus of both
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Algorithm 1 AMG single-cycle algorithm (v = 1 yields V-cycle) for solving Az = b for m + 1 level hierarchy.
//Solve Az =b.
Set z = 0.
Set v =1 for V-cycle.
call Multilevel(A, b, x,0,v).

function MULTILEVEL(Ag, b, z, k, v)
// Solve Az = b (k is current grid level)
// Pre smoothing step
z = S}(Ax, b, )
if (k # m) then
// Py is the prolongator of Ay
// Ry is the restrictor of Ay
Tk4+1 = Rk(b — Akx)
Ag1 = RpAp Py,
v=20
fort=1...pdo
MULTILEVEL(Ag+1, Tk+1, v, k+ 1, v)
end for
T =x+ Py
// Post smoothing step
z = S (A, b, )
else
%= A,;l b
end if
end function

methods is determining an effective grid transfer operator, which governs how data is interpolated between
multigrid levels, and a complementary smoother. In C-AMG, the unknowns (C-points) of the coarse grid
system are a proper subset of the fine grid (F-points) unknowns. There are a number of different algorithms
for selecting the C-points, which F-points they interpolate to, and the weights of the interpolation. In
SA-AMG, the coarse level unknowns are formed by grouping fine level unknowns together into aggregates. As
with C-AMG, there are different algorithms for selecting the aggregates. Once the aggregates are formed,
interpolation weights are calculated via local ortho-normalization. The aggregation algorithm is performed
local to an MPI rank or sub-domain.

5.2 ONE-REDUCE GMRES SOLVERS

Solving large sparse linear systems of the form Ax = b is a basic and fundamental component of DOE physics
based modeling and simulation software. Within the Trilinos (SNL) and hypre (LLNL) solver stacks a critical
step is Gram-Schmidt orthogonalization algorithms, where synchronization in the form of global reductions is
a considerable barrier to scalability and performance — especially strong scaling and sustained performance
on accelerated architectures such as GPUs. Strong scaling challenges arise in many applications where the
need to simulate long time horizons favors relatively fewer degrees of freedom per computational unit.

Recent work by Swirydowicz and Thomas to reduce the synchronization requirements for Krylov iterative
solvers, such as the generalized minimum residual method (GMRES) [12], has resulted in low-sync one-reduce
Gram-Schmidt orthogonalization algorithms, where the 100-year old [8] Gram-Schmidt orthogonalization
algorithms applied to the Arnoldi-QR factorization have been reformulated and now only require one global
MPI reduction (global communication and synchronization) per matrix column or iteration, compared to
a quadratically increasing number of inner-products. Results for comparing standard GMRES and the
algorithm are described in more detail in [5].

Exascale Computing Project (ECP) 7 ECP-Q2-FY20



5.3 TWO-STAGE GAUSS-SEIDEL PRECONDITIONER AND SMOOTHER

Given a large sparse linear system Ax = b, the traditional form of a Gauss-Seidel iteration is based on the
matrix splitting A = D + L + U, where D is diagonal, L is strictly lower and U is strictly upper triangular.
The standard Gauss-Seidel iteration can be written as

.Tk_,_l:l‘k—l-(D—i—L)ﬁl(b—Amk) (8)

where zg = 0 is the initial solution iterate. To avoid computing an inverse, a sparse triangular solver is
usually employed.
The lower triangular solver algorithm is a recurrence and lacks sufficient fine-grained parallelism to achieve
a high execution rate on SIMT type architectures such as the NVIDIA Volta GPU. An alternative approach
is to replace the lower triangular solve in the above iteration with an inner Jacobi-Richardson type iteration
of the form
Yir1 =y + D7 [re = (D+L)y;] (9)

where r, = b — Az, and yp = 0. The application of Jacobi iterations to solve large sparse triangular linear
systems for ILU preconditioners, rather than direct methods based on forward and backward recurrence
relations, was recently proposed by Chow et. al. [2].

The preconditioner for a Krylov subspace iteration such as GMRES then takes the form

Th4+1 = Tk + Yt+1 (10)

where t is the number of inner Jacobi-Richardson iterations performed. For one iteration of the Jacobi
iteration, consider substitution of the expression for y; from equation (9) into (10) in order to obtain

Tpr1 = Tp+yp+D [y —(D+L)y] (11)
= 2, +D Yy +D[ry—(D+L)D 'ry] (12)

The above expression represents a two-stage Gauss-Seidel iteration. More generally, two-stage nested iteration
has been studied in a series of papers by Frommer and Szyld, [7], [16], [3], [4].

In practice, we find that one inner Jacobi iteration is sufficient to reproduce the convergence rate of the
standard GMRES-SGS (symmetric Gauss-Seidel) solver. A clear advantage of our approach is that the sparse
lower triangular solver has been replaced with several sparse matrix-vector multiplications. These kernels are
roughly 20x faster than the lower triangular solver on a GPU.

Numerical results using Nalu-Wind will be presented in §7 that show the performance of two-stage
(symmetric) Gauss-Seidel both as a smoother in C-AMG and as a preconditioner to a Krylov method.

5.4 MULTI-THREADED SPARSE TRIANGULAR SOLVE

Sparse triangular solution is a major bottleneck in iterative and direct solvers for large sparse linear systems.
The traditional parallel algorithm is based on level-set scheduling of the elimination tree, followed by
substitutions determined by these data dependencies. Independent computations proceed within each level of
the tree. However, each level in the tree must be completed before moving on to the next, Saad (2003). This
allows for limited parallel computations within a given level of the tree and results in a serial bottleneck.
Kelly and Rajamanickam [6], have implemented multi-threaded triangular solvers for the GPU using Kokkos
and based on multi-coloring and clustering. The former is known to increase the iteration count for GMRES
solvers in certain problems, whereas clustering is a robust algorithm which maintains convergence rates.

Numerical results using Nalu-Wind will be presented in §7 that show the algorithmic scalability of a
Multithreaded Gauss-Seidel as a preconditioner to a Krylov method.

6. PERFORMANCE PORTABILITY

Each of the past three announcements for DOE systems have included a very different node level architecture.
Aurora will use Intel’s Xe GPUs, Frontier and El Capitan will use AMD GPUs, whereas Perlmutter will
use NVIDIA GPUs. This makes portability an important aspect of our plans for the upcoming milestones.
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There are three different alternatives for performance portability - (1) A directive-based approach such as
OpenMP directives (2) use of a portable programming model such as Kokkos or RAJA. (3) Implement the
code in the native GPU programming model. There are distinct advantages and disadvantages with each
option. While a directive-based approach relies on a standard, the time lag in the OpenMP standard and its
current design based on CPU threading makes it difficult to rely on for our immediate milestones. Using
libraries such as Kokkos or RAJA bring in an external dependency that is not standardized, but it allows us
to focus on solver algorithms while Kokkos and Kokkos Kernels developers work with vendors for portable
options. Direct implementation in the native programming model provides the flexibility of optimizing for
each architecture at the risk of code duplication and the effort to maintain the code base on all architectures.
In the solver effort, we have chosen two different paths. The Trilinos stack is implemented with Kokkos as the
programming model. The hypre stack uses the native CUDA programming model. This results in interesting
choices in data structures and implementation. For example, Trilinos relies on the standard CRS matrix
data structure for all the architectures. hypre uses custom data structures to split the on-rank diagonal and
off-rank portions. The implications of such data structure conversions as the matrix changes every time-step
is yet to be understood. The Trilinos CRS data structure could remain the same as long as the non-zero
structure of the matrix remains the same. The data structure has to be created again otherwise. hypre data
structures need to be ordered and sorted in order to use standard CSR functions in libraries such as cuSparse.
These changes might impact the cost of assembly and that will factor more into the overall performance as
the non-zero structure changes.

6.1 TRILINOS IMPLEMENTATION DETAILS

The Trilinos solvers and matrix assembly described in this report rely on the Kokkos ecosystem, which consists
of the Kokkos Core programming model, Kokkos Kernels sparse linear algebra library, and Kokkos Tools.
The Kokkos team works with all the hardware architecture vendors - AMD, ARM, IBM, Intel, and NVIDIA -
before the hardware is even fully designed. Kokkos provides a back-end for each of the accelerator architecture
in its native programming model. The Kokkos team is also developing a OpenMP target back-end. This
portability allows the Kokkos based assembly and solver path to run on exascale hardware as soon as they
are released. The Exawind team also has Kokkos Kernels developers in it (Rajamanickam, Yamazaki) who
ensure the kernels needed for the assembly and solvers are well optimized on new architectures. For example,
the Kokkos team just release a HIP back-end in collaboration with the AMD developers. A SYCL backend is
being developed for GPUs on Aurora. Once the back-ends are developed, Kokkos Kernels implementations of
the smoothers described here will be exercised in performance tests. When the Kokkos ecosystem is integrated
into Trilinos, the continuity solver can be immediately exercised on the corresponding architecture. We will
use Kokkos Tools to fine tune the performance on each of the architectures. This will allow us to focus on
future architectures for algorithm development and fine tuning.

For the memory model, Trilinos and hypre from the CASC-LLNL team rely on UVM. Alternative memory
models are being considered for future exascale architectures.

6.2 HYPRE IMPLEMENTATION DETAILS

The matrix-vector multiplies (SpMv) for the one-reduce GMRES in hypre have been custom written for
performance and data re-use. In this report, we focus on the specific components of the AMG V-cycle
presented earlier in Algorithm 1. In particular, the entire V-cycle now executes on the GPU with prolongation
and restriction non-square matrix vector multiplies at each level of the V-cycle computed on the GPU. Indeed,
two separate matrix-vector multiplies are implemented, the second being for a transposed matrix optionally
stored by hypre for added performance. The V-cycle P/R SpMv matvecs are asynchronous and implemented
with MPI_Irecv, MPI_Isend and MPI WaitAll, with different MPI tags per each level.

The momentum solver preconditioner and the AMG smoothers are based on the two-stage Gauss-Seidel
algorithms described previously. These also rely on SpMv matrix-vector products. In hypre the matvecs are
merged into a single CUDA kernel launch in order to reduce latency and minimize the memory footprint. By
far one of the largest costs in the solver GPU implementation is associated with the GPU memory CUDA
alloc and free across solver iterations, in particular for the smoother. Every effort has been made to further
reduce the number of temporary vectors in GMRES solvers and these are merged with hypre matrix data
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structures. Currently, there are no plans to use a memory pool or equivalent to alleviate these overheads.
However, this could be considered in our future plans.

In previous milestone reports, we have focused on the strong scaling characteristics of the GMRES Krylov
iterative solvers and in particular achieving flat execution times for the Gram-Schmidt orthogonalization
kernels on CPU and GPU. For the hypre solver stack we have adopted a mirror-memory model which
maintains both CPU and GPU CUDA pointers. With some duplication and movement of data as needed by
the solver algorithms. This contrasts with the CASC-LLNL team who currently employ the shared unified
virtual memory (UVM) model that relies on migration of memory pages from the main memory to the GPU
global memory, rather than direct programmer management of the data.

Memory pre-fetching from UVM to the GPU device memory may result in a speed-up and higher memory
bandwidth utilization, however, this approach has not been employed in our current hypre code development
and performance studies to date. For our path forward with CASC-LLNL, such a comparison is certainly
merited. The current version of hypre master v2.18.0 as of mid-March has prefetch commands in key areas
like the SpMV.

7. NUMERICAL RESULTS

In this section, we present numerical results for the simulations described in §3. The experiments in this
section use the Trilinos and hypre solver stack described in §5. All experiments were run on the Summit
supercomputer at Oak Ridge National Laboratory. Summit has 4608 compute nodes, each with two IBM
Power9 CPUs and six NVIDIA Volta V100 GPUs [11]. Each Power9 CPU has 22 cores, and there are 512
GB of DDR4 memory available to the CPUs.

In the following discussion, strong- and weak-scaling results are presented. In strong scaling, the global
problem size is fixed, and timing results are presented over a range of MPI process counts. In weak scaling, the
problem size is held constant on each MPI rank, and timing results over a range of MPI ranks are presented.
Unless otherwise noted, all results were generated from restart files and run for an additional ten time steps.

The codes used to obtain the results presented in the rest of this report are publicly available online, and
the precise location and versions are reported in Table 2.

Name Location Branch SHA1
Nalu-Wind | https://github.com/exawind /nalu-wind/ master a3fd9cc
Trilinos https://github.com/trilinos/Trilinos/ master ac87b08
hypre https://github.com/Exawind /hypre Feb2020Branch | ¢486551
LLNL hypre | https://github.com/hypre-space/hypre v2.18.2 fbe2530

Table 2: Location and versions of the code used to perform the simulations re-
ported in this section. These allow for full reproducibility of the results presented.

7.1 METHODOLOGY
7.1.1 hypre and Trilinos Solver Settings

For the ABL and McAlister simulations on GPU described herein, hypre is configured with the host to GPU
CUDA mirror-memory model, together with the one-reduce GMRES Krylov solver for both momentum
and continuity. The momentum preconditioner is the two-stage Gauss-Seidel iteration on the GPU with
merged sparse matrix-vector products (SpMv) in a single kernel launch per smoother call. The pressure
preconditioner is the AMG V—cycle with matrix-vector multiplies for the P/R prolongation and restriction
operators on GPU. One sweep of the two-stage Gauss-Seidel is employed as the C-AMG smoother and also
as the momentum preconditioner. HMIS coarsening was found to be more effective for the ABL problem and
leads to lower times.

In order to perform IBM Power9 CPU comparison runs, the current hypre release from CASC-LLNL
is employed. The standard GMRES algorithm is applied and the C-AMG smoother and momentum
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preconditioner are two sweeps of the symmetric Gauss-Seidel algorithm. PMIS coarsening is employed in the
McAlister strong scaling runs. Otherwise the choice of CPU and GPU hypre algorithms remain the same.

For the experiments in this section, unless otherwise specified, the MueLu AMG solvers used for the
continuity solve employ a degree-2 Chebyshev smoothing and a serial direct solver. The linear solvers for other
physics are GMRES preconditioned by standard Gauss-Seidel, multi-threaded Gauss-Seidel, or two-stage
Gauss-Seidel. Where appropriate, relevant solver details are given with individual results.

7.1.2 Comparing CPU to GPU performance

A single Summit node has 42 total CPU cores (two 21-core CPUs) and 6 GPUs. When doing performance
comparisons, the Trilinos experiments compare performance of all a node’s GPU devices to all of the node’s
CPU cores. When this isn’t feasible, e.g., a problem is not large enough to occupy all GPUs or cores, we fall
back to using the comparison ratio of a single GPU to approximately 7 CPU cores.

For the McAlister CPU strong scaling comparison runs reported herein, a single Summit node was
employed for the hypre stack runs up to twenty MPI ranks. These runs also only employed the symmetric
Gauss-Seidel smoother for continuity C-AMG and the momentum preconditioner. In the case of the 20 MPI
rank runs with CPU assembly 4+ GPU solvers, the simulations employed two and four GPU’s per node in
order to determine the effects of MPI communication across multiple nodes on the model scaling. Here, the
two-stage Gauss-Seidel smoother for the GPU was applied.

7.2 SINGLE NODE PERFORMANCE OF TWO-STAGE GAUSS-SEIDEL

Before evaluating performance of the entire solver stack, we first consider performance of just single-level
iterative preconditioners that will be used in all physics except continuity. This performance study compares
the single GPU execution time of the Trilinos-Belos GMRES solver when using two-stage Gauss-Seidel
described in §5.3 against the triangular-solver recurrence implementations of sequential SGS and MTSGS.
The execution time for one Trilinos-Belos GMRES solve applied to the ABL precursor 40 m mesh momentum
matrix is displayed in Figure 1. This plot illustrates the rather dramatic decrease in GPU compute time
for the two-stage smoother compared to the sequential and multi-color order triangular solve symmetric
Gauss—Seidel algorithms.
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Figure 1: Total Trilinos GMRES solve time (GPU) for ten time steps of Nalu-
Wind ABL 40 m simulation. Three preconditioners are compared: sequential
Gauss-Seidel, multi-threaded Gauss-Seidel, and two-stage Gauss-Seidel. SGS was
used both for the preconditioner (one sweep) and for the multigrid smoother
(three sweeps). Two-stage SGS used just one Jacobi sweep for the inner iteration.
Of the three preconditioners, two-stage SGS is the fastest and thus preferred.

All of these smoothers are available in Trilinos release (see Table 2) for both CPU and GPUs. Nalu-Wind

with Trilinos may now employ any of these algorithms in any of the physics linear solvers, and further strong
scaling results comparing these are presented below in the sequel.
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hypre release has standard Gauss-Seidel. The NREL branch described in Table 2 has a GPU implementation
of the two-stage smoother, and a CPU version is being developed.

7.3 STRONG SCALING

In this section, we examine the Nalu-Wind strong-scaling behavior using hypre and Trilinos. We focus on two
meshes, the ABL 20 m simulation with 3.3 million pressure DOFs and the McAlister mesh, also with roughly
3.2 million pressure DOFs.
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Figure 2: Total simulation time, ABL 20 m strong scaling study, Trilinos and

hypre. Large time offset for hypre due to sparse matrix assembly on the CPU.
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7.3.1 hypre ABL Strong Scaling

Total simulation plot time for Nalu-Wind using the hypre solver stack is given in Figure 2. Several key aspects
of the hypre solver stack should be noted. From the results presented in our weak scaling studies, based on
the 20 m mesh, it was observed that the hypre one-reduce GMRES with C-AMG preconditioner requires a
larger number of iterations to solve the pressure continuity problem, when compared to SA-AMG in Trilinos.
In particular, we observe that the absolute wall-clock solve time for hypre , using a given number of GPUs, is
larger than the Trilinos-Belos GMRES with SA-AMG preconditioner. However, the cost per iteration of the
hypre one-reduce GMRES solvers is lower than the Trilinos-Belos MueLu solver. These results are plotted in
Figure 3. Furthermore, the hypre continuity and the momentum solvers exhibit near perfect linear strong
scaling. The hypre solvers continue to scale well beyond sixteen (16) GPUs.

We also note that the C-AMG set-up cost is not scaling and the RAP products are not yet on GPU in
our implementation. However, these are now available in the UVM v2.18.0 from CASC-LLNL. Although the
set-up has in general not scaled well even on parallel CPUs.

7.3.2 Trilinos ABL Strong Scaling

We now consider the strong-scaling behavior of Nalu-Wind using Trilinos solvers on the same ABL 20 m mesh.
The solver for the continuity system is GMRES preconditioned with SA-AMG and a Chebyshev smoother.
Similar to the two-level Gauss-Seidel approach, the Chebyshev smoother is based on a matrix-vector product
kernel, which is fast and parallelizes well on the GPU. The three remaining equations (Momentum, TKE and
Enthalpy) are solved via GMRES solver preconditioned by two-stage Gauss-Seidel.

Figure 2 plots the total Nalu-Wind runtime as a function of number of GPUs. The black dotted line is
ideal strong scaling. We observe that strong-scaling begins to fall off at 8 GPUs. Figure 4 illustrates the
strong scaling characteristics of just the Trilinos linear solve for the different physics equations. Two-stage
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Gauss-Seidel exhibits good strong scaling for both the preconditioner setup and apply phases, up to six (6)
GPUs, and is close to linear at setup time. However, with the lighter workload, the GMRES symmetric
Gauss-Seidel solver is less scalable (GPU time increases) for enthalpy and turbulent kinetic energy (TKE),
and clearly exhibits a dependency on the number of compute nodes employed for computation. This is
observed as the number of GPUs increases from 6 to 8 and from 12 to 14. The sub-linear scaling is less
apparent for the momentum equations, but is still observable at the 12 to 14 GPU transition. The GMRES
SA-AMG solver employed to solve the continuity system does not scale at setup and behaves similarly to the
GMRES symmetric Gauss-Seidel momentum solver during the apply phase after six (6) GPUs.

7.3.3 hypre McAlister Strong Scaling

For the set of strong scaling GPU runs, the hypre stack is configured with the one-reduce GMRES solver and
two-stage Gauss-Seidel momentum preconditioner and pressure continuity C-AMG smoother. The Nalu-Wind
model was run on up to twenty (20) GPUs. Each MPI rank is associated with a single GPU. The assembly
step is still performed on the CPU and the resulting matrices are copied to the GPU for the GMRES solvers.

The timing results are plotted in Figures 5a and 5b, respectively. The former represents the relative work
time per iteration, or cost per unit of work given by (time/(timesteps x Picard x iterations)), whereas the
latter is the absolute total run time. Timer details are summarized in Table 6. We observe that the assembly
time on CPU decreases linearly with MPI ranks as expected.

For these runs, to determine if linear strong scaling has been achieved, the above times are normalized by
the number of time steps, nonlinear Picard iterations per time step and the number of GMRES iterations in
order to obtain the GPU time per solver iteration. These times are given separately for the continuity in
Table 7 and momentum Table 8 equations and also plotted in Figure 5a. We observe that the momentum
times exhibit almost perfect linear scaling, however, the continuity times decrease at a lower sub-linear rate.
We attribute this to the workload and MPI communication overhead associated with the AMG V-cycle,
although this clearly merits further investigation in our path forward.

7.3.4 Trilinos McAlister Strong Scaling

In this section we analyze the algorithmic strong scalability of the Trilinos solver stack for the McAlister
simulation described in §3. At the time of writing this report, not all Nalu-Wind boundary conditions have
been converted to run on GPUs. Hence, we primarily consider solver scalability in terms of the GMRES
solver iteration counts. The goal is to assess the suitability of various Trilinos solver choices for the McAlister
simulation, prior to being able to run the simulation on GPUs. Additionally, we are unable to assess GPU
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performance, choices made for the CPU may not be performant on the GPU. These tests were run on a single
node of a small Sandia testbed with identical hardware (IBM Power9/NVIDIA V100) to that of Summit,
with the exception that each node has only four GPUs.

The continuity solve is GMRES preconditioned by either unsmoothed aggregation algebraic multigrid (PA-
AMG) or smoothed aggregation algebraic multigrid (SA-AMG). Both AMG preconditioners use second degree
Chebyshev polynomial smoothers and a coarse grid direct solve. Coarsening uses a classic drop threshold
of 0.02. For the momentum, turbulent kinetic energy (TKE), and specific dissipation rate (SDR) transport
equations, the solver is GMRES preconditioned with one of three different preconditioners: symmetric
Gauss-Seidel (SGS), multithreaded symmetric Gauss-Seidel (MTSGS), and two-stage Gauss-Seidel (SGS2).
The latter two algorithms are discussed in §5.3-5.4. The simulations were run on one MPI rank and even
numbers of MPI ranks up to 20. In each run, the same preconditioner (SGS, MTSGS, or SGS2) was used for
momentum, TKE, and SDR.

Overall simulation scaling times on CPU are given in Figure 6. The momentum, TKE, and SDR linear
solves are GMRES/SGS2. The continuity solve is GMRES with either PA-AMG (blue line) or SA-AMG
(green line). The momentum, TKE, and SDR linear solvers all demonstrate algorithmic scalability. As the
processor count increases, there is flat or negligible growth in the iteration count. The continuity GMRES
PA-AMG solver exhibits very mild variation in iterations. The continuity GMRES SA-AMG iterations have
a pronounced spike for 10 and 12 MPI ranks, as a result of the solver reaching the maximum iteration limit.
This accounts for the "hump” in the green curve in Figure 6. Finally, SA-AMG has modestly better iteration
counts than PA-AMG. However, SA-AMG has an operator complexity of 1.94-2.10, whereas PA-AMG has a
complexity of 1.27-1.28. Operator complexity is a measure of the flops required in a single AMG V-cycle,
and values closer to one are generally faster (all other factors being equal). This accounts for the steeper
slope in the PA-AMG (blue) plot.

Detailed results can be found in §10 in Table 9. For each physics solver, there are three main columns
labeled “SGS”, “MTSGS”, and “SGS2”. These reflect the preconditioners used for momentum, TKE, and
SDR. For continuity, there are two columns corresponding to whether PA-AMG or SA-AMG was used.

7.4 WEAK SCALING

Both the Trilinos and hypre solver stack teams have performed weak scaling studies, based on the ABL
precursor simulation described in § 3.1. The mesh resolutions are 5 m, 10 m, 20 m and 40 m. Therefore, for
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Figure 5: Time per solver iteration and total run time, McAlister strong scaling
study (assembly on CPU and solvers on GPU), hypre.

each mesh the number of MPI ranks must increase by a factor of 8x in order to determine if the execution
time remains flat or grows slightly while maintaining a constant problem size per MPI rank. We have allowed
both the Trilinos and hypre solver stack teams some discretion in the selection of the number of MPI ranks
to achieve the optimal performance, as the two solver stacks may differ in the optimal thread occupancy and
sustained bandwidth utilization of the devices.

The total run time for Nalu-Wind coupled to the Trilinos and hypre solver stacks is plotted in Figure 7.
The hypre assembly is not performed on GPU and leads to a large time offset. The deviation from linear
scaling occurs earlier for Trilinos compared to hypre when the single node boundary of six (6) GPUs in
surpassed on Summit.

7.4.1 hypre ABL Weak Scaling

The weak scaling study timings for Nalu-Wind and hypre-BoomerAMG are reported in Table 10 for the 40
m mesh on four (4) MPI ranks. These Nalu-Wind execution times indicate that the time per time step is
currently close to 10 seconds for the ABL precursor simulation. To determine if the time per computational
unit of work remains relatively constant, we have determined the total number of momentum and continuity
solver iterations for the above simulations. Then the average time per GMRES solver iteration was computed
is displayed in Tables 11 and 12.

A second set of weak scaling timings for Nalu and hypre-BoomerAMG are reported in Table 13 for
the 40 m mesh starting from two (2) MPI ranks and increasing up to 1024 ranks. The average time per
GMRES iteration and time per time step versus number of MPI ranks is plotted in Figure 8 for the ABL
precursor sequence of meshes, to illustrate the weak scaling characteristics of the Nalu-Wind model for this
problem. The average time per iteration remains fairly flat, indicating good weak scaling of the GMRES-AMG
implementation. However, the time per time step grows slightly as the number of solver iterations gradually
increases with the number of MPI ranks employed in the simulations.

In order to further reduce the hypre solver stack times for the ABL precursor simulation, the hypre-
BoomerAMG PMIS coarsening algorithm was replaced with HMIS. All of the ABL simulations in this report
with hypre employ HMIS coarsening. The number of pressure continuity iterations is reduced to 15 with the
solve times dropping as a result. The number of C-AMG V-cycle levels is also set to six (6) in these runs.
We note that the hypre stack continuity solve time at 512 GPUs is 24 seconds, and is less than the Trilinos
time of 27 seconds.
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7.4.2 Trilinos ABL Weak Scaling

The solver employed for the continuity system is GMRES preconditioned with SA-AMG and a Chebyshev
smoother. Similar to the two-level Gauss-Seidel approach, the Chebyshev smoother is based on a matrix-vector
product kernel, which is fast and parallelizes well on the GPU. The same approach is employed to solve the
three remaining equations (Momentum, TKE and Enthalpy), and consists of a GMRES solver preconditioned
by the two-stage Gauss-Seidel iteration presented in section 5.3. Based on the strong scaling study performed
in section 7.3, a single GPU achieves good performance and load balance for the coarsest 40 m mesh resolution.

It can be observed in Table 15, that the GMRES solver, with two-stage Gauss-Seidel preconditioner,
provides a mathematically scalable approach to solve the transport equations. The maximum number of
iterations required to solve these linear systems is low and remains constant across all mesh resolutions tested.
Algorithmically, however, the solver is not scaling as well as would be desired with the solve time roughly
doubling from mesh to mesh. The GMRES and SA-AMG solver employed to solve the continuity system is
exhibiting similar scaling properties to the GMRES and two-stage Gauss-Seidel. Further investigation of
the kernels used in the solvers will be needed to assess what causes the time growth within the solver. The
assembly, however, is both fast and scalable.

7.5 CPU VERSUS GPU

For comparison with the Trilinos based Nalu-Wind simulations and the hypre GPU runs described above,
the stock hypre branch was coupled to Nalu-Wind for IBM Power9 CPU based simulation runs. In these
hypre runs, the symmetric Gauss-Seidel (SGS) smoother was specified as the momentum preconditioner and
pressure C-AMG smoother. The standard GMRES iterative solver is applied with higher orthogonalization
costs, although these were not specifically measured. For the low number of MPI ranks these additional costs
are not expected to be a significant factor. A breakdown of the Nalu-Wind hypre stack run times is given in
Table 16. A plot of the total run times comparing the runs above with CPU assembly and solvers runs on
the GPU with the CPU only runs was given in Figure 5.

Although the total simulation time for the Nalu-Wind hypre configuration is faster on 20 CPU cores than
4 GPUs (in part due to matrix assembly being performed on CPUs), the GPU pressure solve phase alone is
38% faster than the IBM Power9 CPU pressure solve phase on Summit.
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7.5.1 Trilinos Comparison on ABL Precursor

In order to assess the performance of the re-factored GPU implementation, the Trilinos solver stack was
employed to perform weak scaling studies using the ABL precursor simulations on both CPUs and GPUs. To
enable a straightforward comparison based on Summit hardware, it was decided to compare 7 CPUs per
GPU for these runs because a Summit node contains 6 GPUs and 42 CPUs. In section 7.4.2: 1, 8, 64 and
512 GPUs or 7, 56, 448 and 3584 CPUs were employed for 40 m, 20 m, 10 m and 5 m mesh resolutions,
respectively. Figure 9 displays both the time spent in the linear solvers (left panel) and the efficiency of the
linear solvers (right panel) with respect to the number of degrees of freedom in the meshes (vs nodes). To
avoid a complex analysis of the 40 m resolution which runs on a single GPU, the efficiency plot employs the
20 m mesh as a reference point, hence the efficiency measured is 1.0 for the 20 m mesh.

The more expensive linear solvers are associated with the momentum and continuity equations. It is
observed that their GPU implementations result in substantial gains for both solvers. The momentum solve
is approximately 2.0 times faster on GPUs, but the continuity solver is increasingly less efficient on larger
meshes (higher number of nodes), achieving 4.0x speed-up on the 10 m resolution mesh and 1.5x speed-up
on the 5 m resolution mesh.

8. PATH FORWARD

8.1 HYPRE PATH FORWARD

In order to meet our performance objectives, several critical components of the hypre linear-solver software
stack will be addressed in Q3. These include but are not limited to sparse matrix assembly on device and a
comparison between the UVM and mirror memory approach for hypre solver execution. The results of this
comparison task will be shared with the hypre team and a decision on the memory model will be finalized
and implemented in the master branch of hypre . All algorithmic developments such as the communication
optimal GMRES and the GPU-accelerated smoothers will be brought forward per our discussions with
the hypre team. Furthermore, our performance studies reveal some surprising results when running small
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Figure 8: Weak-scaling study 40 m, 20 m, 10 m, and 5 m ABL meshes on GPU.
hypre. Left: Time per iteration. Right: Time per time step.

problems on a low number of GPUs. In particular, the performance of the continuity solver for the 40 m mesh
for a small number of GPUs is unexpected (see Tables 13 and 15 for the hypre and Trilinos results). One
potential explanation is that the parameter choices for the hypre solver lead to suboptimal communication
patterns on these small problems. A fully implemented and unified hypre solver stack including assembly
and an optimal memory design will likely shed light on this issue. Moreover, improvements to fundamental
performance-limiting algorithms such as the AMG set-up of the V-cycle and RAP products, will be explored
in conjunction with the hypre team. As time permits, we will also investigate tools to move the hypre GPU
solver stack code beyond NVIDIA-based architectures. This includes potentially porting more algorithmic
components to Kokkos and/or using HIP to execute CUDA-centric developments on AMD architectures.

8.1.1 hypre GPU linear-system assembly

We have developed algorithms that allow us to assemble linear systems on the GPU for use in the hypre package
(though not ready for deployment for this milestone). Ultimately, this will allow us to use GPU-accelerated
versions of Trilinos and hypre in the same Nalu-Wind simulation where each back end is targeted to solve
particular equations in the model. This implementation differs in some respects from the corresponding
assembly methods used for Trilinos linear systems. In particular it was necessary to conform to existing APIs
for both Nalu-Wind and hypre . This requirement forced us to write a novel algorithm that obeyed these API
constraints and that can eliminate errors from non-reproducibility while providing significant acceleration
over the existing CPU implementation.

We can show that our implementation assembles the matrix correctly for all equation systems in the ABL
precursor simulation. The current implementation shows 7 — 10x acceleration over a single CPU core when
running on a single GPU. Moreover, we have a prototype multi-GPU implementation working for up to 16
GPUs. The performance results are promising. We are confident that additional performance gains can be
achieved as the implementation is optimized.

The algorithm is structured with an initialization phase, and then 3 main computational stages. The
initialization phase is run only when the mesh is (re)initialized. For stationary -mesh simulations, this occurs
only once. The computational stages occur with every linear system assembly, i.e., every time the physics
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equations require updating. The 3 stages are:
Stage 1: Device Coefficient Application
Stage 2: Assemble Compressed Sparse Row (CSR) matrix and RHS Vectors

Stage 3: Assemble hypre Linear System

Stage 1: Device Coefficient Application

In the first stage, device coefficient application, our algorithm walks over the unstructured grid entities, i.e.,
edges, faces, nodes, and populates a large COO (coordinate list) data structure. In this stage we are required
to conform to the Nalu-Wind API, which uses the Kokkos programming model, to fill the coordinate list in
device memory. This code runs on the GPU or CPU depending on which back end processor is targeted
during compilation. It receives as input, data from other physics equations updates, as well previous versions
of the current equation being solved. These data reside in the memory of the target device and they are
assembled /populated into the target memory data structure, the coordinate list. During the initialization
phase, the size of the coordinate list can be estimated to ensure sufficient space is allocated for this stage.

Stage 2: Device Linear System Assembly

In the second stage, the coordinate list data are then reordered and reduced into matrix/RHS elements via
device algorithms. The algorithms developed for this stage were written in the CUDA programming language.
The primary workhorse of this stage is the stable sort_by _key algorithm. We use stable sort_by_key to reorder
the coordinates lists into bins that can then be reduced to matrix/RHS elements. The stable sort_by_key
algorithm can be utilized in a manner that allows us to compute matrix/RHS elements by summing from
smallest (in magnitude) elements to the biggest via compensated summation. This approach minimizes
round-off error. A faster version of the sort, where only row/column coordinates are considered, is also
available. Once the sort is completed, several custom kernels scan the sorted data structure and assemble the
matrix/RHS elements. At the end of this stage, the assembled matrix/RHS is split into an owned component
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’ Momentum ’ Continuity | Enthalpy | Turbulent Kinetic Energy

CPU Assembly 38.2s 22.8s 27.0s 36.5s
GPU Assembly 5.24s 2.41s 2.84s 2.70s
Acceleration 7.3% 9.5x 9.5% 13.5x

Table 3: Single CPU vs Single GPU assembly on the NREL Eagle HPC System.
Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz vs NVIDIA Tesla V100. ABL
precursor simulation 40 m mesh. hypre solvers

that has rows on this MPI rank and a shared component, which has rows needed on other MPI ranks. This
splitting is also executed on device.

Stage 3: Hypre Linear System Assembly

In the final stage, the assembled CSR matrix, built in stage 2, is then used to build the hypre linear system.
We use the hypre API methods

HYPRE_IJMatrixSet Values
HYPRE_1JMatrixAddToValues
HYPRE_IJVectorSet Values
HYPRE_1JVectorAddToValues

to build the matrix/RHS in 2 steps. First we apply HYPRE_IJMatrixSetValues, HYPRE_1JVectorSetValues
to set the matrix/RHS of the owned rows on the calling MPI rank. In order to set the off-rank matrix/RHS
elements, we then call HYPRE IJMatrixAddToValues, HYPRE_1JVectorAddToValues using the shared
matrix/RHS elements as input. The beauty of this implementation is that it completes the assembly in
4 hypre API calls. It then leverages the internal-messaging structure of hypre to properly build the full
matrix/RHS.

In the development branch of Nalu-Wind, where this is being implemented, we have not yet integrated a
GPU accelerated version of hypre . Therefore, we copy the matrix/RHS built in stage 2 back to the host.
Then we call host versions of the hypre APIs shown above. It is important to note that because we are using
a non-GPU hypre branch in this development, the solves also run on the CPU. In the subsequent performance
studies, we report only assembly times rather than per time step. We expect substantial speed gains to be
achieved once this stage is moved to a pure device implementation in the assembly and solve. Current timings
show that the CPU versions of the hypre APIs consume upwards of 30% of the total assembly time.

Performance

For production Nalu-Wind simulations, we wish to enable the use of both Trilinos and hypre solves concurrently
(e.g., Trilinos for momentum and hypre for continuity). However, in order to test the performance of this
initial implementation, we ran the ABL precursor simulation where all linear systems were solved via the
hypre packages. The results for 1 CPU Assembly vs 1 GPU Assembly are shown in Table 3. The ABL
precursor simulation was run for 10 time steps, four (4) Picard iterations per time step. The time reported in
Table 3 is the total time spent in assembly for all 40 assemblies (including initialization). The initial results
show a good initial acceleration versus 1 CPU core.

Fine-grained performance analysis of the GPU assembly for 1 device (Table 4) indicates the most likely
places to achieve performance gains. While the bulk the of the time is spent in stage 2, and the majority of
this time is spent sorting the COOQO lists, significant fractions are spent copying the data back to the host
and then applying the CPU hypre APIs for matrix assembly. GPU accelerated versions of the hypre APIs
listed above could provide immediate benefits. These ratios are consistent for 2 and 4 GPU simulations thus
suggesting that performance gains will extend to large multi-device simulations.

In Table 5, we show the performance of the hypre GPU assembly for the Continuity Equation on the 20 m
mesh. We compare the results of 1 GPU to 8 CPU cores, 2 GPUs to 16 CPU cores, and 4 GPUs to 32 CPU
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Stage 1 40 17 24 26
Stage 2 38 47 44 43
Stage 3 22 36 32 31

Table 4: Percentage of GPU Assembly time spent in each stage for the ABL
precursor simulation 40 m mesh.

CPU Cores/GPUs | 8/1 | 16/2 | 32/4 | #/8 | #/16
CPU Assembly 45.2s | 22.9s | 11.4s
GPU Assembly 41.1s | 11.2s | 6.12s

3.38s | 1.88s

Table 5: hypre GPU and CPU assembly total assembly time on the ABL
precursor simulation 20 m mesh for the continuity equation.

cores. The CPU results are pulled from Tables 14, 13 and 10 where we add the assembly and load times
together. We also show the assembly time for 8 and 16 GPUs though we do not have a corresponding CPU
comparison. Overall, the results are encouraging though the results for 1 device are curious. In this case,
we suspect that the device memory is nearly full from all the systems being solved on one device. Device
kernels that use a large number of registers can “spill” into L2 caches and global memory. This prevents core
algorithms from running at full occupancy. However, the results for 2 and 4 GPUs, which are 2x faster than
16 and 32 cores respectively, are highly encouraging and we expect continued performances gains as more
devices are leveraged.

Next Steps

We have successfully run our implementation on the 20 m ABL precursor simulation on up to 16 GPUs on
the NREL Eagle HPC System. For this simulation, only the continuity equation was assembled and solved
(via CPU) in hypre. The remaining physics equations were assembled /solved via Trilinos on the GPU. The
results for total assembly time show reveal that 1 GPU is roughly equivalent to 16 CPU cores (for 2 or more
GPUs). At this point, the bottleneck in the simulation for this development branch is now the CPU solve.
Integrating the GPU accelerated hypre will lead to a major gain in the overall simulation times.

The most important next step is to show that our implementation runs successfully on more than 16 GPUs.
This is a straightforward task that will implemented in the immediate future. In addition, performance
profiling via the NVVP (NVIDIA Visual Profiling) tool reveals key areas where memory can be saved and
speed gains can be attained in the device kernels in Stage 2. Finally, we need to resolve any issues that
may arise when running our implementation at exascale. Once this work is completed, we will merge this
development branch into the Nalu-Wind master branch for production runs. Simultaneously, we will integrate
a GPU build of hypre and perform the final assemblies/solves on the GPU. We will then be able to test
whether or not we can meet our performance objectives on large simulations.

The code development outline above will also enable us to do some important numerical studies. Our
efforts to implement the sparse matrix assembly algorithms for the Hypre stack on GPU have revealed
interesting numerical sensitivity. The PIs (Mullowney) have created a solution concordance tool that can
track the agreement between CPU and GPU solutions. In addition, this tool can find differences in the
assembled matrices and right-hand sides. For example, we have compared atomic summations versus sorted
COO and reductions for the matrix assembly and found sensitivity to perturbations in the right-hand side
vector that led to large relative residual errors (> le — 5) in the GMRES solutions. With a fully integrated
GPU-based software stack, our team will be in a position to verify that the level of error is reduced below the
GMRES relative residual solver tolerances. The sensitivity is related to the condition number of the matrices
as described earlier in Section 5.

8.1.2 Memory Model Comparison: UVM vs Mirror

The hypre GPU scaling studies were executed on a branch of hypre that uses a mirror model for the GPU
memory. That is, the GPU data structures for the matrix, RHS, solutions, and other key quantities in the
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iteration have a corresponding version in host memory. In contrast, the current version of hypre master
branch utilizes the unified virtual memory (UVM) model. Both the host and device can access data in the
UVM memory space. Specific prefetch commands can be issued to suggest to the CUDA runtime to move
the data to specific devices prior to execution. There are strengths and weaknesses to each approach. The
UVM programming model lends itself to simpler code that is easier to manage. The mirror model allows the
programmer to explicitly dictate when and where data moves between host and device memory spaces for
initialization and inter-GPU communication.

The mirror memory approach relies on the theory that explicit control leads to better performance.
Proponents of UVM suggest that the performance gains are minimal and do not warrant the additional code
complexity. We intend to test these two paradigms by performing strong and weak scaling studies using a
branch of hypre that supports both of these memory models. Work is already well underway to merge these
two paradigms into a single branch off of the hypre master branch. Once this is completed, we will be in
a position to perform these studies. The results of this analysis will be presented to the hypre team and a
decision on the forward path will be discussed. We expect to complete this work in FY20 Q4.

8.1.3 New algorithms

The hypre C-AMG set-up of the V-cycle and RAP products to construct coarse level matrices remained
on the CPU. These triple-products are costly and therefore we should adopt the hypre version of these for
GPU or implement our own, possibly based on the NVIDIA cuSparse library. Further improvements to the
AMG smoothers are possible through asynchronous iterations for the two-stage smoother. Clearly, our results
suggest that the two-stage preconditioner and smoother are very efficient. More investigation is warranted
along with new and more efficient algorithms for triangular solvers.

Because the two-stage preconditioner is a form of polynomial preconditioner, the short recurrence Lanczos
type MINRES iteration may be applicable as a replacement for GMRES as the momentum solver. The
resulting iterations require fewer floating-point operations and have the potential to further reduce the
Nalu-Wind execution times.

8.1.4 Device portability and beyond

For the Trilinos solver stack, the Kokkos abstraction layer also relies on GPU unified-memory for the NVIDIA
Volta V100 GPU architecture. Key computational kernels may also be based on cuBLAS and cuSparse library
implementations from NVIDIA along with Kokkos-Kernels. Moving forward to Intel (Aurora) and AMD
(Frontier) GPUs, Aurora will have unified memory and rely on C++/SYCL compiler language support to
generate GPU kernel code and may support the OpenCL standard for GPU kernels. Whereas AMD will
support abstraction layers such as Kokkos and Raja, along with the HIP interface for GPU kernels, which
is similar to CUDA and includes hipBLAS and hipSparse libraries. In all cases, the CPU to GPU memory
transfers must be considered for performance and portability.

8.2 TRILINOS PATH FORWARD

The work performed for this milestone allowed us to test the software stack on a GPU architecture and to
establish a performance baseline for the linear solver components. This baseline will help us guide some of
the future work centered on the performance of the Trilinos stack on GPUs, while other clear algorithmic
improvement will be tackled simultaneously.

8.2.1 Fine grained performance analysis

The first task required after the finalization of this milestone will be to understand why the solvers in the
Trilinos stack have limited strong scaling abilities, especially the multigrid solver setup, but also the solver
apply phase in general as seen in Figure 4.

Multiple technical issue may be the cause of this behavior:

e slow MPI communication,

e unintended memory movement between device and host,
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e under-performant use of temporary allocations in kernels,
e poor occupancy/efficiency of device kernels,
e kernel launch overhead costs.

Differentiating between the multiple causes listed above will likely require the development of multiple
performance test case and metrics and to isolate individual components of the code. A side effect of this
effort should be an enhanced understanding and testing of existing pathways in our software.

8.2.2 Integration and testing on GPU

In general the work performed on this milestone uncovered difficulties in the integration and testing of various
components of the software. New physics kernels developed on GPU to compute Jacobians, forcing terms
and boundary conditions have allowed us to complete the ABL simulations on Summit’s GPUs but have
also required substantial amount of attention from the linear solver team to assess and correct for proper
simulation results. A strategy that allows both new physics and kernels to be implemented while avoiding
regression on GPU will be key to effectively deliver on future milestones.

8.2.3 Linear system and preconditioner setup optimization

Some additional improvements will be developed to setup the Trilinos linear systems more efficiently. First
work is already underway to use a single graph for the scalar equations and a second one for the momentum
equation. This will largely reduce the setup cost which becomes more important with moving meshes and
more complex geometries that cannot allow us to reuse the linear system and preconditioner from time-step
to time-step. Part of this work has already been implemented but still requires significant improvement to
become practical for production runs. Second the Trilinos stack will move to a segregated momentum system
on GPU as is already the case on CPU. This will again improve the linear system setup time and reduce the
overall memory footprint of our simulations.

Finally more exploratory work might take place to allow the multigrid preconditioner to reuse part of its
symbolic computation between non-linear iterations and potentially between time-steps.

8.2.4 New architecture performance assessment

As presented in section 6.1 the Trilinos stack relies heavily on Kokkos and Kokkos-kernels to mitigate some
of the challenges associated with the rapidly changing hardware environment within the DOE computing
infrastructure. However there will still be a need to test and integrate new features exposed through Kokkos
(tasks, CUDA graph, streams, etc..) as well as new algorithms in Kokkos-Kernels. Finally some native
algorithms are implemented directly in various packages of the Trilinos stack, for instance the aggregation
routines in algebraic multigrid. These algorithms, while portable because they are written with Kokkos, will
need at least some tuning for performance on upcoming accelerators.

8.2.5 Iterative solver and local kernels improvement

Some work will be performed around the linear solver performance, at least three directions will be assessed
before an execution plan can be drafted more precisely:

e potential gains can be achieved substituting MINRES for GMRES,

e some optimization can be performed in the iterative solver for multiple right hand sides used in the
segregated momentum linear system,

e work done on mixed precision arithmetic for the orthogonalization process in Belos will be assessed for
performance in Nalu-Wind.

Additionally, further testing of the damping parameter and number of inner iterations with the two stage
Gauss-Seidel preconditioner will be conducted to improve performance. Further gains with the two-stage
Gauss-Seidel preconditioner will be attempted by tuning the communication implementation in the global
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SpMV kernels while the new interface to cuSparse in the local SpMV kernel will be assessed for performance.
Finally a domain decomposition approach based on the FROSch method recently implemented in Trilinos’
Ifpack2 package will be tested and tuned as a preconditioner for the momentum solver.

8.3 MIXED-PRECISION GMRES AND PRECONDITIONERS

With a view towards even higher sustained GPU performance (NVIDIA Ampere 300 TeraFlops), the use of
mixed-precision FP-16 (TensorCore), FP-32 and FP-64 floating point units on the GPU should be considered.
The PI’'s (Thomas, Swirydowicz, Yamazaki) have developed, in collaboration with Erin Carson at Charles
University in Prague, a new mixed-precision GMRES solver that performs all inner-products in single precision
and yet retains double precision accuracy. The same approach may also apply to Trilinos and hypre AMG
preconditioners and these are all being explored within the ECP xSDK multi-precision efforts. A publication
in IJHPCA detailing these advances is forthcoming from the xXSDK team. We plan to explore mixed-precision
arithmetic in solvers in the time-frame 2021-23.

8.4 PATH SUMMARY

The future plans for the hypre solver stack include the following. First, complete the interface of Nalu-Wind
to the new reproducible hypre sparse matrix assembly GPU code. Then evaluate the GPU performance of
the full model based on this code. Then with the hypre LLNL team, integrate these developments into the
main hypre branch, including the memory model. These are FY20 Q4 activities which will also include an
investigation of the growth in solver iterations at higher MPI ranks and testing of the Schwarz algorithms for
decoupled solves.

With the new Aurora and Frontier machines becoming available in 2021, we will explore the performance
of Nalu-Wind on the Intel Xe and AMD GPUs. In the same FY21 Q4 time frame we will report on the
use of mixed precision solvers developed in collaboration with the xSDK team. We will also explore solver
core algorithm improvements to improve GPU performance on the new GPU architectures. These may also
include new preconditioners, and techniques to improve nonlinear convergence. Finally, we will continue to
explore and improve GPU performance with a view towards multi-turbine simulations in FY22 and report on
progress for FY22 Q4.

The hypre development objectives for FY20-FY22 are described below:

e FY20 Q4: We will complete the interfacing of on-GPU assembly to the Nalu-Wind hypre solver stack
and test. The linear-system solvers and preconditioner setup will be evaluated in the model and
performance documented as compared to the current FY20 Q2 results. We will investigate the solver
scaling and iteration count increases with the objective of mitigating iteration count growth. The
existing hypre code branch will be merged with the main development branch from CASC-LLNL. In
particular, the C-AMG set-up with RAP triple matrix products will be included.

e FY21 Q4: We will begin to explore and evaluate the performance of Intel Xe and AMD GPUs for
Nalu-Wind. The Schwarz based decoupled solvers will be compared with the current FY20 Q2 solver
scaling. Work will continue to improve the existing GPU core solver algorithms. A further goal is
to explore mixed precision GMRES with the SNL and LLNL mathematics and xSDK teams. A key
question to address is level of effort required to bring high performance, mixed-precision solvers into
production Nalu-Wind simulations.

o FY22 Q4: We will further expand mixed precision investigations to preconditioners with xSDK. We will
evaluate AMD GPU programming models and performance along with GPU performance portability.

The Trilinos development objectives for FY20-FY22 are described below:

e FY20 Q4: The segregated momentum system will be implemented for the GPU code path in Nalu-Wind.
It will subsequently be compared to the results obtained for this milestone. Additional work will be
conducted to use a single CrsGraph share by all matrices in the simulation to reduce the amount
of communication during the linear system setup. Initial performance investigation will be made to
improve the strong scaling of SpMV based preconditioner on GPU.
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e FY21 Q4: The work on iterative solvers using MINRES, mixed precision GMRES and multiple right
hand sides will be conducted. The multigrid setup performance on accelerators will be investigated
especially with respect to strong scaling. The FROSch domain decomposition method will be explored
as a potential alternative preconditioner for the momentum solver. Initial tests with of the HIP and
SYCL backends from Kokkos and Kokkos-Kernels will be performed to ensure portability of the stack
to Frontier and Aurora machines.

e FY22 Q4: Further portability studies will be conducted to assess the need for new algorithmic tuning.

9. CONCLUDING REMARKS AND NEXT STEPS

Nalu-Wind solves the acoustically incompressible Navier-Stoke equations, where mass continuity is maintained
by an approximate pressure projection scheme. The governing equations for momentum, pressure, and scalar
quantities are discretized in time, where an outer Picard fixed-point iteration is employed to reduce the
nonlinear-system residual at each time step. In this milestone report we focused on two representative fluid
dynamics problems related to wind energy, namely a atmospheric boundary layer (ABL) precursor simulation,
and a fixed-wing simulation. These two problems were employed in both weak and strong scaling studies of
Nalu-Wind performance on the ORNL Summit supercomputer. Both the Trilinos and hypre solver stacks
were evaluated. Considerable new knowledge has been gained concerning the choice of numerical algorithms
and the achievable performance on Summit. Our focus was on the NVIDIA Volta V100 GPU, however,
comparisons with IBM Power9 based CPU runs were also performed.

The Nalu-wind simulation time is dominated by the time needed to setup and solve the linear equations
associated with the linearized governing physics (e.g., momentum and pressure equations) at each time step.
Set-up time for hypre C-AMG and MueLLu SA-AMG have a large component associated with RAP sparse
matrix triple products to create the V-cycle hierarchy. A Krylov method, like the Generalized Minimal
Residual (GMRES) [12] iteration, is used to solve the linear systems, through either the Trilinos or hypre
solver software stack. For solving the momentum systems, one typically employs Gauss-Seidel (GS) or
symmetric Gauss-Seidel (SGS) as a preconditioner to accelerate the convergence of the Krylov solver. The
pressure systems are solved using an algebraic multigrid (AMG) preconditioner, and GS is often applied as a
smoother to relax or remove oscillatory components of the solution error (e.g., those associated with the large
eigenvalues of the system), which the coarse-grid solver fails to eliminate. A scalable solver would maintain
a roughly constant number of iterations to solve the linear systems. Equivalently, the solver time should
remain constant as the number of MPI ranks increases while weak scaling to a higher total number of nodes.
The absolute continuity solver times, although improved with HMIS coarsening for hypre , are slightly larger
than Trilinos for low MPI ranks (see 15 and Figure 9). The relative solver times as measured by time per
iteration are quite close for both stacks. It can be observed in our ABL weak scaling timing data on Summit
that the continuity GPU solve time increases from 2 seconds to 27 seconds for Trilinos, whereas the hypre
continuity solver time increases more gradually from 10.5 seconds on 8 GPUs to 24 seconds on 512 GPUs (for
details see Figure 8 and Figure 9, as well as Table 14 and Table 15). This latter result can be attributed
to the increasing number of GMRES iterations for hypre . Similarly, an important result of our studies is
that both the Trilinos and hypre solvers exhibited an increasing number of iterations at higher numbers of
MPI ranks on GPUs. This merits further investigation for scaling to the node counts necessary to meet the
Nalu-Wind simulation time targets on Exascale class machines.

On a distributed-memory computer, both Trilinos and hypre implement a hybrid variant [1] of GS where
the boundary information is exchanged to compute the residual vector, but then each MPI process performs a
fixed number of the local GS steps (typically one step), independently. This hybrid GS is shown to be effective,
and scalable, on many problems (e.g., the iteration counts roughly stay constant with the increasing process
count). However, to perform the local GS, each process still requires a local sparse-triangular solve, which is
inherently challenging to parallelize on GPU architecture. Although several techniques have been proposed
to improve the parallel performance, the local sparse-triangular solve could still be the bottleneck for the
parallel scalability of the solver, and in turn, of the simulation. In this report, we examined the performance
of an iterative two-stage Gauss-Seidel algorithm as a replacement for the triangular solve. We found that the
two-stage algorithm was much faster on the GPU and improves the overall scalability of Nalu-Wind, resulting
in lower run-times as well. For the continuity equation solver in Trilinos-MueLU with SA-AMG, a Chebyshev
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smoother is applied, which relies on matrix-vector products. The two-stage Gauss-Seidel smoother can also
be applied and we plan to evaluate the performance of this combination.

For end-to-end simulation times, the Trilinos stack leads to lower times for ABL at lower numbers of
GPUs. Although this comparison is based on CPU assembly for the hypre stack. The times for McAlister
will be obtained once code updates related to boundary conditions are available. Both the Trilinos and hypre
solvers achieve comparable compute times per solver iteration on the NVIDIA Volta V100 GPU. However,
we observed that the hypre solvers continue to strong scale to higher numbers of MPI ranks when compared
to the Trilinos solvers. This certainly merits further investigation and may be due to several factors such
as the MPI libraries on Summit combined with the need for a coarse grid solver for the elliptic pressure
problems. We have demonstrated close to ideal linear strong scaling characteristics of the hypre stack using a
combination of the IBM Power9 CPU for sparse matrix assembly and the GPU for the solver components
(momentum, pressure, TKE, enthalpy and specific dissipation rate). Our next step forward is to complete the
interface of our reproducible and high-accuracy hypre matrix assembly on GPU to the current Nalu-Wind
code base. Once completed, we plan to report strong-scaling results on Summit with the entire Nalu-Wind
hypre stack on GPU for the 2020 Q3 milestone report.

Our weak scaling studies have provided initial estimates of the sustained model integration rates on
high processor counts (up to 2048 GPUs on Summit). An integration rate of 40,000 time steps of the ABL
precursor simulation, completed within a two-hour time window, is likely achievable and within reach at the
target mesh resolutions of 10m or less. However, it is clear that O(100 — 1000) GPUs will be required for such
an integration. Most notably, our studies revealed that the GPU to CPU mirror-memory management model
combined with CUDA allowed us to achieve very high performance levels on Summit and for the McAlister
blade problem, run on up to 128 GPUs, we observe good strong scaling characteristics for momentum and
other transport equations, but not for continuity. Because the CASC-LLNL team are currently employing
the unified virtual memory (UVM) model, possibly with pre-fetching, these two approaches should be further
investigated to determine the best path forward for performance without sacrificing portability on the new
Intel (Aurora) and AMD (Frontier) exascale architectures. The strong scaling characteristics of Nalu-Wind
and Trilinos, when using Kokkos and the UVM model, should be further investigated.

For future solver development, the segregated momentum solver needs to be implemented for GPU and
tested in Trilinos on ABL and McAlister problems. In addition, a block-Krylov method is applicable for this
problem and will be implemented and tested. For polynomial-type preconditioners such as the two-stage
Gauss-Seidel algorithm, the short-recurrence MINRES Krylov iteration exhibits excellent convergence rates.
Further work on MINRES is justified and warranted in order to reduce the cost of the momentum equation
solvers and thereby also reduce the end-to-end solution time of Nalu-Wind. The hypre C-AMG set-up phase
with RAP sparse matrix triple products should be incorporated into our Nalu-Wind code base. For the
integration-rate targets required to meet the criteria for wind-turbine simulations consisting of multiple
turbines in the 2020-23 time frame, the strong scaling characteristics of the current Nalu-Wind solvers
must be improved. We note that the deviation from linear scaling in Figure 5 occurs earlier for the GPU
implementation of the momentum and continuity solvers. Clearly, the pressure continuity solver for hypre , and
to a greater extent Trilinos, are scaling sub-linear. Indeed, the CPU-based simulations reported in our earlier
milestone reports and our recent paper, Thomas et al. [17], exhibit far better strong scaling characteristics.
The strong scaling of the Trilinos stack should be examined in the near future for the McAlister problems.
The proposed Schwarz subdomain approach may reduce the number of nodes per GMRES solve, however,
the strong scaling characteristics of this algorithm have yet to be established for Nalu-Wind and requires
further investigation by the PI’s.
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10. APPENDIX

continuity momentum
GPUs | init assm  load solve iters | init assm  load solve iters
2 0.32 283.06 4.20 5947 3185 | 0.35 423.84 10.86 36.46 8.22
4 0.18 134.57 1248 46.63 31.98 | 0.19 208.06 7.77 20.14 8.22
6 0.13 87.56 8.15 38.09 31.10 | 0.13 136.04 8.46 1549 8.22
8 0.10 65.03 7.93 3536 3193 | 0.10 100.63 6.17 13.09 8.22
12 0.08 42.59 6.69 33.39 32.93 | 0.08 65.28 5.71 9.88  8.22
16 0.06 32.18 5.78 30.29 31.22 | 0.07 48.64 4.93 7.75  8.22
18 0.07  28.55 5.28 3233 31.02 | 0.08 42.66 5.06 797  8.62
20 0.056  25.32 5.01  27.79 30.27 | 0.08 38.47 4.81 7.04  8.22
24 0.04 21.02 4.22  28.34 32.15 | 0.05 31.81 3.83 6.25 8.22
32 0.04 15.88 4.09 2848 33.59 | 0.04 23.70 4.92 542  8.63
64 0.03 7.79 2.57  25.60 32.05 | 0.03 11.59 3.74 5.03 8.63
128 0.03 3.89 2.07 21.32 34.02 | 0.02 5.69 2.50 3.97 8383
Turbulent Kinetic Energy Specific Dissipation Rate

GPUs | init  assm load solve iters | init  assm load solve iters | Total Time
2 0.32 256.69 10.52 14.05 4.1 0.32 256.25 15.55 15.37 4.1 2064.88
4 0.18 128.42 8.82 7.64 4.2 0.18 126.85 11.80 8.65 4.1 1098.28
6 0.13 82.92 6.82 5.64 - 0.13 83.89 6.61 6.39 - 775.71
8 0.10 60.44 8.17 4.35 4.5 0.10  60.99 9.25 4.97 4.2 613.84
12 0.08 40.08 5.64 3.46 - 0.08 40.48 5.75 4.18 - 431.28
16 0.06 29.76 4.85 2.79 4.7 0.09 30.14 5.01 3.25 4.8 344.22
18 0.06 26.54 3.95 2.77 = 0.06  26.55 4.24 3.29 - 324.04
20 0.05 23.94 3.55 2.30 4.7 0.05  24.10 3.93 2.75 4.3 290.71
24 0.04 19.59 3.29 2.04 - 0.07  19.59 3.52 2.49 - 254.23
32 0.03 14.77 4.40 1.69 > 0.04 14.64 4.67 2.07 - 219.48
64 0.02 6.90 2.50 1.30 — 0.02 6.97 2.52 1.84 - 145.78
128 0.02 3.35 1.99 0.91 - 0.02 3.39 2.01 1.29 — 101.84

Table 6: McAlister strong-scaling execution time breakdown for Nalu-Wind with

hypre solver stack. Init, assembly, load complete times (on CPU). Solve times

and iterations (on GPU), for momentum and continuity equations. Turbulent

kinetic energy and enthalpy, assembly on CPU and solve time on (GPU)
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Ranks | Av. iter Min iter Max iter Total iter Total time Av time per iter
2 31.85 30 36 1306 59.4680 0.0455
4 31.98 31 35 1311 46.6282 0.0356
6 31.10 31 35 1275 38.0866 0.0299
8 31.93 30 37 1309 37.5335 0.0287
12 32.93 31 37 1350 34.1913 0.0283
20 30.27 30 37 1241 28.4876 0.0230

Table 7: McAlister continuity GPU times for hypre stack. Time per solver

iteration.
Ranks | Av. iter Min iter Max iter Total iter Total time Av time per iter
2 8.22 4 12 1644 36.4600 0.0222
4 8.22 4 12 1644 20.1353 0.0122
6 8.22 4 12 1644 15.4857 0.0094
8 8.22 4 12 1644 13.1663 0.0080
12 8.22 4 12 1644 11.2095 0.0068
20 8.22 4 12 1644 7.2457 0.0044

Table 8: McAlister momentum GPU times for hypre stack. Time per solver
iteration.
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MPI Continuity Momentum

ranks SGS MTSGS SGS2 SGS MTSGS SGS2
378 391 378 390 378 389 |49 49 71 71 54 54
39.0 41.0 39.0 407 389 407 |50 50 72 72 54 54
39.8 394 398 393 398 395 |53 53 70 70 56 56
41.9 458 41.8 456 41.8 457 | 6.1 6.1 73 73 6.2 6.2
8 44.6 387 446 390 446 39.1 |53 53 71 71 57 57
10 41.5 119.2 415 1187 41.5 119.0 |56 56 7.1 7.1 59 59
12 42,2 121.6 422 121.6 422 121560 6.0 7.1 7.1 6.1 6.1
14 42.6 333 426 325 426 323 |57 57 72 72 6.0 6.0
16 43.0 36.1 43.0 36.0 430 36.1 |62 62 73 73 6.3 6.3
18 40.8 43.8 40.8 43.8 40.8 438 |58 58 72 72 6.0 6.0
20 419 578 419 40.1 419 449 |59 75 72 73 6.2 6.3

D N =

MPI Turbulent Kinetic Energy Specific Dissipation Rate
ranks SGS MTSGS SGS2 SGS MTSGS SGS2
1 3.3 3.3 5.7 5.7 4.4 44 |36 36 74 74 53 53
2 3.4 3.4 5.7 5.7 4.4 44 |36 36 74 74 53 53
4 3.4 3.4 5.7 5.7 4.4 44 |36 36 T4 74 53 53
6 3.4 3.4 5.7 5.7 4.4 44 |36 36 74 74 53 53
8 3.5 3.5 5.7 5.7 44 44 |36 36 74 74 53 53
10 3.4 3.4 5l 5.7 4.4 44 |36 36 74 74 53 53
12 3.4 3.4 5.7 5.7 4.4 44 |36 36 74 74 53 53
14 3.6 3.6 5.7 5.7 4.5 45 |39 39 74 74 54 54
16 3.5 3.5 5.7 5.7 44 44 |36 36 74 74 53 53
18 4.2 4.2 5.7 5.7 4.5 45 |40 40 74 74 53 53
20 3.7 3.8 5.7 5.7 44 44 |39 38 74 73 53 53

Table 9: McAlister strong-scaling (CPU) GMRES iteration counts using Trilinos
preconditioners, by physics phase. The main columns indicate that symmetric
Gauss-Seidel (SGS), multithreaded symmetric Gauss-Seidel (MTSGS), or two-
stage symmetric Gauss-Seidel (SGS2) was used for physics other than continuity.
Each main column has two subcolumns. The left subcolumn corresponds to a
run using PA-AMG for the continuity solve, the right subcolumn SA-AMG.

continuity momentum
GPUs Az init assm load solve iters | init assm load solve iters
4 40m | 0.03 10.1 056 7.2 18 | 0.03 21.3 0.76 4.0 4
32 20m | 0.04 10.2 1.2 9.2 17 | 0.04 20.1 215 5.2 6

256 10m | 0.04 102 14 13.1 23 1006 196 23 8.9 8
2048 5m | 0.09 103 22 179 24 1008 198 34 141 18

Turbulent Kinetic Energy Enthalpy
GPUs Az init assm load solve iters | init assm load solve iters | Total Time
4 40m | 0.44 4.7 0.10 29 4.1 1047 42 012 2.9 4.1 83
32 20m | 048 48 031 3.7 51 1070 42 032 4.2 5.7 105
256 10m | 054 48 064 5.0 51 1194 42 097 5.9 5.9 131
2048 5m | 0.62 4.7 1.1 8.2 8.2 1.59 3.9 1.1 10.5 10.5 188

Table 10: ABL weak-scaling execution time breakdown for Nalu-Wind with
hypre solver stack. Init, assembly, load complete (on CPU). Solve and iterations
(on GPU), for momentum, continuity, TKE and enthalpy.
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Av. iter Min iter Max iter Total iter Total time Av time per iter
40 m 18.00 18 18 720 11.6666 0.0162
20 m 20.85 19 24 834 13.0149 0.0156
10 m 25.00 22 29 1000 17.4860 0.0175
05 m 28.90 28 29 1156 31.6392 0.0274
Table 11: ABL continuity equation with hypre stack. MPI rank sequence 4, 32,
256, 2048
Av. iter Min iter Max iter Total iter Total time Av time per iter
40 m 7.34 4 9 881 6.4015 0.0073
20 m 8.33 4 13 1000 6.5317 0.0065
10 m 11.01 4 23 1321 11.4466 0.0087
05 m 19.40 18 35 2328 19.1419 0.0082
Table 12: ABL momentum equation with hypre stack. MPI rank sequence 4,
32, 256, 2048
Continuity Momentum
GPUs Az init assm load solve iters | init assm load solve iters
2 40m | 0.05 22.1 0.5 8.3 18 | 0.05 43.1 0.8 7.2 4
16 20m | 0.06 21.1 1.8 11.0 18 | 0.06 40.9 2.2 8.0 6
128 10m | 0.06 209 2.2 13.7 17 | 0.07 40.0 3.2 10.5 8
1024 5m | 0.11 21.1 4.3 19.6 23 1012 40.1 44 19.1 17
Turbulent Kinetic Energy Enthalpy
GPUs Az init assm load solve iters | init assm load solve iters | Total Time
2 40m | 044 95 0.08 5.5 41 | 05 84 017 5.6 4.1 150
16 20m | 0.60 9.7 037 6.5 5.5 1.2 84 028 7.1 5.5 174
128 10m | 093 96 073 9.2 7.1 1.7 83 080 106 8.1 201
1024 5m | 084 93 291 132 94 2.0 73 152 18.0 124 269
Table 13: ABL weak scaling execution time breakdown for Nalu-Wind with
hypre solver stack. Init, assembly, load complete times (on CPU). Solve time and
iterations (on GPU), for momentum, continuity, TKE and enthalpy.
Continuity Momentum
GPUs Az init assm load solve iters | init assm load solve iters
8 20m | 0.06 43.16 2.10 10.03 17.0 | 0.11 84.16 2.1 1288 5.0
64 10m | 0.05 4225 395 14.50 17.0 | 0.11 81.33 6.5 13.00 8.0
512 5m | 0.17 4255 5.52 24.85 22.0 | 0.14 81.17 10.7 24.72 17.0
Turbulent Kinetic Energy Enthalpy
GPUs Az init assm load solve iters | init assm load solve iters | Total Time
8 20m | 0.94 194 0.31 13.0 5.1 | 1.62 17.0 0.62 13.7 5.4 320
64 10m | 1.21 19.3 179 179 71 | 221 165 1.10 20.3 8.1 360
512 5m | 1.43 19.3 2.3 35.6 12 | 234 16.7 3.84 35.6 9.8 400
Table 14: ABL GPU weak-scaling baseline for Nalu-Wind with hypre solver
stack. C-AMG with HMIS coarsening
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Continuity Momentum
GPUs Az init assm load solve iters | init assm load solve iters
1 40m | 0.42 0.15 0.01 2.15 10 0.65 234 0.01 2.38 5
8 20m | 0.53 0.17 0.61 5.45 11 0.80 2.58 1.19 4.26 7
64 10m | 0.56 0.17 1.13 11.28 12 0.82 255 3.32 5.85 7
512 5m | 0.66 0.18 4.05 2737 15 0.88 2.51 4.12 7.02 7
Turbulent Kinetic Energy Enthalpy
GPUs Az init assm load solve iters | init assm load solve iters | Total Time
1 40m | 0.41 0.23 0.01 0.90 5 0.42 0.37 0.02 0.86 5 29.20
8 20m | 0.52 0.28 0.84 2.45 5 0.53 0.43 0.79 1.57 6 57.05
64 10m | 0.56 0.29 1.67 4.49 5 0.56 0.43 1.65 2.88 6 75.53
512 5m | 0.68 0.30 5.06 7.34 5 0.61 0.40 3.47 4.29 7 117.32
Table 15: ABL GPU weak-scaling baseline for Nalu-Wind coupled to Trilinos
solver stack.
continuity momentum

CPUs | init assm load solve iters | init assm load solve iters

2 0.29 291.2 22 530.8 21 0.29 437.2 6.73 143.8 8

4 0.16 1354 4.1 2714 21 0.16 210.7 9.03 78.3 8

8 0.08 66.8 7.3 1485 21 0.09 103.7 4.47 41.5 8

16 0.05 329 5.0 79.5 21 0.05 49.2 564 23.8 8

20 0.04 25.9 4.7 63.3 21 0.04 399 6.43 20.5 8

Turbulent Kinetic Energy Specific Dissipation Rate

CPUs | init assm load solve iters | init assm load solve iters | Total Time

2 0.29 253.5 17.0 40.3 4.1 | 029 2534 123 39.8 4.1 2699

4 0.16 124.7 10.6 21.3 42 | 016 126.2 12.8 20.8 4.1 1396

8 0.09 59.1 7.9 11.7 4.5 | 0.08 61.2 8.3 11.1 4.2 745

16 0.06 29.3 4.2 6.7 4.7 | 0.06 30.3 4.4 6.6 4.8 390

20 0.04 23.1 3.6 5.2 4.7 | 0.04 24.2 3.7 4.9 4.3 316

Table 16: McAlister strong-scaling for Nalu-Wind with hypre solver stack.
Execution time breakdown (CPU).
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