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A fast and exact algorithm to calculate the powder pair distribution function

(PDF) for the case of periodic structures is presented. The new algorithm
Edited by K. Chapman, Stony Brook University, calculates the PDF by a detour via reciprocal space. The calculated normalized
usA total powder diffraction pattern is transferred into the PDF via the sine Fourier
transform. The calculation of the PDF via the powder pattern avoids the
conventional simplification of X-ray and electron atomic form factors. It is thus
exact for these types of radiation, as is the conventional calculation for the case
of neutron diffraction. The new algorithm further improves the calculation
speed. Additional advantages are the improved detection of errors in the
primary data, the handling of preferred orientation, the ease of treatment of
magnetic scattering and a large improvement to accommodate more complex
instrumental resolution functions.
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1. Introduction

The powder pair distribution function (PDF) is commonly
used to characterize the local structure of a wide range of
materials like disordered crystalline matter, nanoparticles, and
amorphous materials including glasses and liquids (Egami &
Billinge, 2012; Young & Goodwin, 2011; Playford et al., 2014;
Mancini & Malavasi, 2015). Originally developed for the
analysis of disordered bulk materials, the method is nowadays
very widely used for the analysis of nanoparticles as well, with
numerous publications. For an early application see
Korsunskiy & Neder (2005) and Neder & Korsunsky (2005).
While predominantly used with neutron and X-ray diffraction
experiments, more recently it has also been used with electron
diffraction (Abeykoon et al., 2019, 2015; Gorelik et al., 2019).
Other technical developments include the application to
magnetic short-range order (Frandsen et al., 2014) and thin
films (Jensen et al., 2015; Shi et al., 2017; Dippel et al., 2019).
The main application is still in the field of static structural
characterization; for the field of dynamic structure character-
ization see Egami & Billinge (2012).

The PDF is obtained from a powder diffraction experiment
after suitable normalization, division by the average atomic
form factor, and correction for background and further
experimental aspects. This correction converts the powder
diffraction intensity to the normalized total scattering function
" = = T S(Q), with Q = 4wsin(0)/A, where 6 is half the scattering angle
Distance [4] and A is the wavelength of the incident radiation. The widely

a used reduced PDF G(r) is obtained from S(Q) via a sine
a OPEN ACCESS Fourier transformation:

G(r) [A77]
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Various other definitions of the PDF exist [see Keen (2001) for
a review]. In this article we will always refer to the reduced
PDF G(r).

The sine Fourier transform that is used in equation (1)
converts the normalized intensity into direct space. The PDF is
thus an extension of the Patterson function, which is also a
Fourier transform of the observed intensities. As the classical
Patterson function uses integrated Bragg intensities only, its
calculation reduces to a Fourier series rather than the Fourier
integral of equation (1) and the Patterson function is inher-
ently periodic in 3D space. Since the Fourier integral in
equation (1) includes all contributions in reciprocal space,
Bragg data and the diffuse scattering, the PDF is no longer a
periodic function in direct space. Still, the PDF as obtained via
equation (1) is essentially a histogram of the interatomic
distances weighted by the scattering power of the pair of
atoms. Thus, the use of different types of radiation like
neutrons, X-rays or electrons yields a PDF in which the rela-
tive contributions of light and heavy elements or different
isotopes will differ according to the strength of the interaction
between the radiation and the atom types present in the
sample.

Conventionally, the model PDF is determined from a
structural model by summing all interatomic distances. This
algorithm is used in common analysis programs such as
DISCUS (Proffen & Neder, 1997; Neder & Proffen, 2008),
PDFgui (Farrow et al.,2007), RMCprofile (Tucker et al., 2007)
and TOPAS (Bruker, 2015; Coelho, 2018). As detailed in the
next section, this algorithm is only exact in the case of neutron
diffraction. Since this algorithm approximates the influence of
the O-dependent atomic form factor in the case of X-ray and
electron diffraction by a constant number, it represents a
simplification that has been known for a long time (Warren et
al., 1936). To our knowledge, all currently available software
uses this Warren—Krutter-Morningstar approximation. A
common refinement of data in direct and reciprocal space will
lessen the approximation, a notable recommendation
mentioned in the RMCprofile manual. Few attempts have
been made to take this Q dependence into consideration
(Korsunskiy & Neder, 2005; Masson & Thomas, 2013). In the
latter paper an exact expression for the calculation of the PDF
in direct space is derived by splitting the PDF into a linear
combination of modified partial PDFs.

In this article, a new algorithm to calculate the PDF is
introduced. This algorithm no longer relies on the approx-
imation of the atomic form factor. Instead, the PDF is calcu-
lated by a detour via a calculation of the powder pattern. As
this calculation correctly takes the Q dependence of the
atomic form factors into account, it is thus an exact calculation

of the powder PDF for neutron, X-ray and electron diffrac-
tion. Within the article we focus on the calculation of the PDF
for a bulk sample. This mostly corresponds to the capabilities
included in the PDFgui software. The calculation of the PDF
via the powder pattern requires a detailed calculation of the
powder pattern in the case of disordered structures. Two
different approaches are outlined here. The application of the
algorithm and modifications of it with respect to arbitrarily
shaped finite-sized nanoparticles will be presented in a
forthcoming publication.

2. Traditional calculation of the PDF from a model
structure

For the case of a PDF obtained from a neutron diffraction
experiment on bulk samples, the model PDF is readily calcu-
lated for a structure model by summing over all pairwise
interatomic distances:

1 N N blb]
G(r) = . Z Z[(b)z 8(r— rl-j)i| — 4mrp,. 2)
i

Here the sum runs over all atoms i, j in the model structure,
separated by a distance r;. The terms b; and b; are the
coherent neutron scattering lengths of the atoms i and j,
respectively, and (b)? is the squared average coherent neutron
scattering length. Finally, p, is the average number density in
atoms per unit volume. The thermal motion of atoms can be
modelled by convolving the histogram with a distribution
function taken as a Gaussian distribution. Its width is deter-
mined by the combined atomic displacement parameters of
the two atom types involved.

As it stands, equation (2) is correct for the case of neutron
diffraction and a perfect instrument, whose resolution func-
tion is a delta distribution across all scattering angles and data
collected up to Q. = 00. The effect of a finite Q. value is
incorporated into the PDF calculation by convolving the ideal
PDF with the Fourier transform of the box function:

sinc(r) = Sin(Qax) . (3)

Qmaxr

The effect of a finite resolution function is commonly
approximated in the available computer programs by two
instrument-dependent parameters, a damping term and a
broadening term. The damping term is a multiplicative term
exp(—Qf,mp” /2), while the broadening term adds a distance-
dependent component to the width of interatomic distance
distributions. The calculations in DISCUS use the equation

o= (012/ - Clin/r - Cquad/r2 + Q%road rZ) (4)

Here o is the width of the distribution that results from the
independent thermal motion of atoms i and j, respectively. The
terms Cy,/r and Cquad/r2 allow for correction of the width of
peaks in the PDF at short interatomic distances r. These terms
approximate the correlated thermal motion of atoms at close
distance, as present in an acoustic phonon. The last resolution-
related term QF .7 results in an approximately linear

1/2
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increase in the width of the interatomic distance distributions.
The program PDFgui uses a slightly different equation,

1/2
Cquad/r2 + Q%)mad ,2) . (5)

The two instrumental terms Qgump and Qyproaq are obtained
by refining the model function with respect to the experi-
mental PDF of a highly crystalline material like CeO,, Si, Ni
or LaBg. In the PDFgui notation the displacement parameters
of the atoms multiply all terms in the root, resulting in
different numerical values for Qy,o.q compared with DISCUS.
Further differences in numerical values will result if data for a
series of different temperatures are compared. The instru-
mental parameter Qy;0.q has usually been determined by a
refinement with respect to a standard sample at room
temperature. If this fixed value is subsequently used in equa-
tions (4) or (5) for data measured at different temperatures,
the numerical values for the sample atomic displacement
parameters and their temperature dependence will differ.

o= Uij(l = Gn/r—

3. Shortcomings of the traditional PDF calculations

As mentioned in the previous section, the PDF calculation
according to equation (2) is only exact for the case of neutron
diffraction. For X-ray or electron scattering the scattering
lengths are replaced by the atomic form factors evaluated at a
fixed Q = QOy:

Z Z f(Qt)f(Qf) 8(r — i) —d4nrp,.  (6)
()

In many calculations the fixed value of Q is taken as Q; =
0A~", resulting in the ordinal number for a neutral atom.
Alternatively, a value of Q¢ = Qnax/2 is recommended. The
justification behind this simplification to use a fixed Q value is
the assumption that the value of the quotient f(Q) f;,(Q)/

(f(Q))? is reasonably constant across the entire Q range. This
0
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Figure 1

The Q dependence of f;f;/ (H? for different ZnX compounds. With the
exception of ZnSe, these curves are not negligibly flat.

approximation is known as the Warren-Krutter—-Morningstar
approximation (Warren et al., 1936). In their original paper
Warren and co-workers used an effective number of electrons
per atom as the approximation to the quotient of the indivi-
dual atomic form factor divided by an average atomic form
factor.

Fig 1 shows the O dependence of this quotient for the series
7ZnO, ZnS, ZnSe, ZnTe. With the exception of ZnSe, the Q
dependence of all quotients is by no means constant. This has
the effect that the integral heights of peaks in a PDF calcu-
lated by equation (6) will vary systematically if different O
values are chosen. As Fig. 2 further illustrates, the O depen-
dence of the different partial pair contributions to the PDF
differs as well. Thus, if the PDF is calculated using different Q
values for the atomic form factors in equation (6), the relative
integral peak heights of these pair—pair correlations will
change. This is demonstrated in Fig. 3 for a model of crystal-
line ZnO. The main graph shows PDFs calculated according to
equation (6) using Q =0 A~ for all atomic form factors (blue)
andfor Q=7 A™! (red). The difference curve below shows the
difference between the calculations using Q = 0 A" and 0=
7AL Very significant differences between these two PDFs
are obvious at all peak positions. The agreement between
PDF(Q =0 A‘l) and PDF(Q =7 A_l) is not very good, at an
unweighted R value of 10%. As current model calculations
aim to achieve a difference between model and calculated
PDF that is much less than the difference shown in Fig. 3, this
effect can no longer be neglected.

A second disadvantage of the PDF calculation according to
either equation (2) or (6) is the dependence of the computa-
tional time on the distance range to be calculated. Due to the
double sum over all atom pairs, the computational time is
proportional to the square of 7,y.

A further disadvantage lies in the fairly simple treatment
of the instrumental resolution function. Only the two para-
meters Qgamp and Oproaq are used to model the effect of a
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Figure 2

The Q dependence off,-f,-/()‘)2 for the partial contributions Zn—Zn, Zn—
O and O—O for ZnO. The Q dependence differs for the three partial
contributions.

J. Appl. Cryst. (2020). 53

3 of 12

Neder and Proffen + Exact and fast calculation of the PDF



research papers

Q-dependent resolution function. Even though most PDF
beamlines operate at settings that result in a rather broad
resolution function, these two parameters are not really
sufficient to describe these effects, especially in cases of
complex resolution functions like the ones found in neutron
time-of-flight diffractometers (Olds et al., 2018). To deal with
complex resolution functions, Tucker et al. (2001) modified the
inverse transformation method originally developed by
Pusztai & McGreevy (1997). In this approach, G(r) is
corrected for resolution effects by adapting resolution para-
meters in direct space. The resolution parameters are
constrained by requiring a good match between the experi-
mental diffraction pattern and the Fourier transform of the
PDF back into diffraction space. Still, however, this approach
calculates the PDF as a summation in direct space.

4. Improved PDF algorithm

As the PDF obtained from the experimental scattering data is
the sine Fourier transform of the reduced normalized scat-
tering function, an improvement on all three points raised in
the previous section is surprisingly simple. The calculation of
the powder diffraction pattern is straightforward, as demon-
strated in any Rietveld program. As the calculated intensity in
a powder diffraction pattern consists of the purely elastic
contribution and is free from any artefacts that are encoun-
tered in the experiment, it is also straightforward to convert
the calculated intensity of a powder diffraction pattern into
the normalized total scattering function S(Q) (Egami & Bill-
inge, 2012). S(Q) is defined as

Q) _ 1 [dG(Q)
@y @’ 49

Here I(Q) is the coherent total elastic intensity and needs to
include a term for the thermal diffuse scattering. S(Q) thus
takes the form

S(Q) = + (b)’ — (bz)}- ™)

)
(b’

1,(Q)
(b)?

where I,(Q) is the purely elastic powder pattern intensity,
normalized by the number of atoms in the model, and (u?) is
the average squared atomic displacement. For a periodic
structure model, 7,(Q) is readily calculated as the sum over all
Bragg reflections, including the standard terms on multiplicity
and the Debye—Waller terms. The model PDF is readily
calculated from equation (8) by the sine Fourier transform of
equation (1), which can be implemented as a fast Fourier
transform algorithm. As the calculation according to equation
(8) is carried out in reciprocal space, the neutron scattering
lengths b included in this equation are equally well replaced
by the O-dependent atomic form factor, which is equally
included in the calculation of 7,,(Q). Equation (8) is thus exact
for neutron, X-ray and electron diffraction, at least within the
kinematic approximation. Thus, the PDF calculated from a
perfectly periodic model structure via the sine Fourier trans-
form of equation (8) is equally exact for all three cases. This is

S(Q) = p (=W’ ®)
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Figure 3

(a) The effect of Q choice for X-ray atomic form factors on the calculated
PDF. The red PDF (background) was calculated for ZnO using Q =7 A
and the blue PDF for O = 0 A", The black dlfference curve reflects the
difference PDF(Q = 0 A™") — PDF(Q = 7 A™"), offset for clarity. (b)
Detail of the graph in panel (a) in the distance range 0-15 A.

the main advantage of this new algorithm, as implemented in
our program DISCUS as of Version 6.0 and later.

The calculation of the purely elastic powder pattern inten-
sity I,(Q) allows for several further advantages compared with
the traditional PDF algorithm:

(i) Exact result. As detailed in the initial paragraph of this
section, the calculation of the powder diffraction intensity in
reciprocal space is, within the limits of the kinematic diffrac-
tion theory, exact for neutron, X-ray and electron diffraction.
For X-ray diffraction this is the main advantage of our new
algorithm. Even for electron diffraction, where the use of the
kinematic diffraction theory is a severe approximation, the
new algorithm will be more reliable.

(ii) Instrumental error check. As our new algorithm initially
calculates the diffraction pattern, any errors on the initial /(Q)
data can be checked more reliably. This includes a zero-point
offset and wavelength and distance calibration, as detailed by
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the first example. Identical information would obviously be
obtained from a simultaneous Rietveld refinement of the
powder data along with the PDF data, which is rarely carried
out.

(iii) Computational speed. The calculation of the Bragg
intensities is a well established algorithm that allows a fast
calculation, even if a high value of Q,,.x has been used in the
experiment. The computational speed of the PDF calculation
becomes independent of the required distance range . in
direct space. Only for a calculation over a very short distance
range will the traditional direct-space calculation be compu-
tationally advantageous with respect to this new reciprocal-
space calculation.

(iv) Preferred orientation. Several well tested model func-
tions exist to describe the effects of preferred orientation on
the Bragg intensities. These can be used to calculate 7,(Q) and
will thus describe the effect of preferred orientation on the
PDF.

(v) Magnetic scattering. The calculation of the powder
diffraction pattern for magnetic structures is also well docu-
mented and is implemented in many Rietveld programs. While
magnetic scattering, and especially handling of the magnetic
PDF, is predominantly the domain of neutron scattering, our
new algorithm allows for an easy implementation of both
neutron and X-ray magnetic PDF calculations.

(vi) Instrumental resolution. The convolution of the Bragg
intensities with an instrumental resolution function likewise is
a well established technique, even for instruments with a
rather complex QO dependence of the instrumental resolution
function.

(vii) Sample contribution. The effects of finite size and
strain on the widths of the Bragg reflections can also be
incorporated into the profile function.

The computational advantages of the PDF calculation via
reciprocal space become significantly less if a structure model
is to include disorder and thus requires the calculation of both
Bragg intensities and diffuse scattering. Such a model requires
the simulation of a large supercell in order to represent the
disordered structure, while maintaining periodic boundary
conditions. If, for example, a supercell of size 20 x 20 x 20 is
used, the number of data points that need to be calculated in
reciprocal space increases by a factor of 20° = 8000. The
computational effort becomes manageable, however, for
models that will produce diffuse scattering in limited sections
of reciprocal space. As examples, consider materials with
stacking faults or materials with 1D disorder, as in host-guest
structures with 1D channels. In the case of stacking faults the
diffuse scattering is limited to 1D rods, while for 1D disorder
in direct space the diffuse scattering is limited to planes in
reciprocal space. In these cases the computational increase
scales linearly or quadratically, respectively, with supercell
size.

As a means of overcoming the huge computational effort in
the case of diffuse scattering that is continuously distributed in
reciprocal space, we have developed a technique to calculate
the PDF via the Debye scattering equation (Debye, 1915). The
details are presented in the Examples section below.

In the traditional PDF algorithm the width of an interatomic
distance distribution is calculated directly according to equa-
tion (4). This calculation allows a description of distance-
dependent widths, especially for the very first interatomic
distance distributions. These are often narrower than distri-
butions at longer distances, since immediate- or second-
neighbour atoms tend to vibrate like an acoustic phonon. Thus
at any given point in time the distances between the atoms in
these pairs tend to be the same, while distances at longer
separations will vary as the atoms vibrate independently.

The difference between PDFs calculated with and without
distance-dependent parameters consists of small peaks whose
intensity quickly decays with increasing distance. The shape of
these peaks reflects the difference between the broad peak for
the independent vibration model and the narrower peak for
the correlated motion model. The position of these difference
peaks depends on the actual crystal structure. Since a Fourier
transform is additive, the effect of the correlated motion on
the diffraction pattern in reciprocal space can be calculated by
a sine Fourier transform of the two PDFs back into the
reduced total scattering function F(Q) = Q[S(Q) — 1]. After
the Fourier transformation, the two F(Q) patterns need to be
subtracted. Equivalently, the difference PDF can be subjected
to the sine Fourier transform. The difference PDF, however,
consists of model-dependent peak positions. As a conse-
quence, the difference F(Q) consists of many model-
dependent Fourier components, which cannot be modelled
straightforwardly with a single parameter, or even with a few
parameters.

Our new PDF algorithm handles the correlated motion
effect with the following steps. The normalized intensity is
divided by exp (—3 (u*) Q%). The intensity is next converted
into S(Q) and the sine Fourier transform [equation (1)] is
applied to calculate a temporary PDF. The division effectively
removes the thermal motion from the model, resulting in a
sharpened PDF. The temporary PDF is finally convolved by a
Gaussian distribution whose width depends on the interatomic
distance according to

12
0= (Uij - Clin/r - Cquad/rz) . (9)

Compared with the traditional width-dependent convolution
[see equation (4)], the term —Q2 ., 7 is omitted, as instru-
mental broadening effects are handled by the convolution of
the powder pattern by the appropriate instrumental profile
function. The width of the peaks in the temporary PDF is
predominantly determined by the value of Q... The second
example, a silicon data set, will illustrate this part of the
algorithm.

5. Examples

In this section we illustrate the new algorithm with five
examples. The first two are perfectly periodic materials, CeO,
and Si, both collected on beamline 11-IDB at the Advanced
Photon Source, Argonne, USA. The third example demon-
strates the capabilities for handling preferred orientation. The
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fourth example is a purely theoretical one to illustrate how
this algorithm can be applied to extended supercells. The final
example, again a theoretical one, illustrates the capabilities of
the algorithm for extended disordered materials.

5.1. Crystalline CeO,

The first example uses a data set from CeO, collected on
beamline 11-IDB at the Advanced Photon Source, Argonne,
USA. Data were collected at room temperature in a capillary
geometry in transmission with a wavelength of 0.16 A and a
PerkinElmer area detector. The data were integrated into a
1D powder pattern and transformed into the PDF with
PDFgetx3 (Juhas et al., 2013). The refinement was carried out
with DISCUS, using a classical least-squares refinement of the
calculated PDF versus the observed PDF. Seven parameters
were refined, the ceria lattice parameter, isotropic B values for
Ce and O, the number density, a scale factor, Qgump, and
QObroad- The results are given in Table 1, and Fig. 4 illustrates
the moderate refinement quality (12% weighted R value).
Identical data were also used to refine a model using the new
algorithm. Instead of Qgamp and QOproaa, five pseudo-Voigt
profile function parameters were refined. The mixing para-
meter of the profile function was defined as n = n + n.Q. The
common FWHM for the Lorentzian and Gaussian compo-
nents was defined as FWHM = (uQ* + vQ + w)"?. Refined
values are presented in Table 1. The improved fit quality is
illustrated in Fig. 5 and is evident in the weighted R value of
10.1%. Fig. 6 illustrates the calculated F(Q).

Note that the data were not refined against F(Q). As the
refinement in the new algorithm proceeds via a calculation of
the powder diffraction pattern, it is straightforward to
generate the intermittent S(Q) or F(Q) values as well. The
difference curve in Fig. 6 indicates as the predominant error a
zero-point offset of the original F(Q) by 0.0024 A~! compared
with the data calculated on the correct Q scale. The final

5 ° MHJJ IH ll Wl “H huuhl“l,‘l ey
5 ’HIH'F .‘”! “” ”H”HU“' TN
T Rl
Distance [A]
Figure 4

The PDF of CeO, refined with the traditional algorithm. Original data are
in blue (background) and calculated data in red. The difference curve
PDF,,, — PDF,,. (black) is offset by —5 A2 for clarity.

Table 1

Refined parameters for the different models.

Columns headed ‘PDF’ refer to calculations with the original algorithm and
those headed ‘Powder’ refer to the new algorithm.

CeO, Ce0, Si Si
(PDF) (Powder) (PDF) (Powder)
wR (%) 12 6.7 6.7 6.8
a(A) 54123 (2) 5.4143 (4) 5.3839 (5) 5.3841 (4)
B(Ce/Si) (A>) 02268 (2) 0.220 (3) 0.529 (2) 0.543 (2)
B(O) (A% 1.552 (1) 0.384 (9)
Cetin (A*) 0.0209 (2) 0.0249 (3)
00 (A3 0.02429 (5) 0.048646 (5)
Scale 0.3210 (6) 0.2741 (1) 0.949 (9) 0.945 (4)
Obroad 2.62(7) 0.0 (1)
x 1072 x 107*
Quamp (A™Y) 2.075 (4) 0.05672 (8)
x 1072
N 0.097 (2) 0.16 (1)
(AT —0.006 (1)
u 5.8(3) 2.1 (4)
x 107° x 107°
v (AT —1.49 (2) —4.1(8)
x 107 x 107
w (A7) 242 (5) 1.97 (3)
x 1073 x 1072
Qero (AT —2.90 (5)
x 1073

refinement included a Q,,, shift added to the calculated F(Q)
data prior to the conversion into the PDF. This improved the
fit quality to 6.7%. With the exception of the profile para-
meters no parameters shifted significantly. As the new lattice
parameter refined to 5.4143 A instead of the NIST standard
value of 54116 A this indicates that the original distance
calibration was off by 0.05%. The sine Fourier transform of

_ i { i \/ \
= | |
30 lm h“ll“ II l““'“‘h“ullln]'ll |”A”‘v Aty
LA e
O PDFOBS - PDFcalc_with_zeroshift
| PDF s — PDF 10 no_zeroshitt
, M i _no_
0 | 2|O | 4IO | 6|O | 8IO | 100
Distance [&]
Figure 5

The PDF of CeO, refined with the improved algorithm. Original data are
in blue (background) and calculated data in red. The upper difference
curve shows PDF,,, — PDF_,. (black) for the model including a Q.o
point correction and is offset by —5 A2 for clarity. The second, lower,
difference curve shows PDF,,, — PDF.. (black) for the model
without a Qo point correction. The inset shows the distance range
from 70 to 80 A; the dashed line corresponds to the PDF calculated
without a Q,.., point correction and is systematically shifted to shorter
distances.
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F(Q) does not translate the zero-point shift in F(Q) into a
constant distance shift in the PDF. In the absence of any other
errors in F(Q), a distance-dependent peak shift results. The
PDFs in Fig. 7 were simulated for three different Q,,, shifts.
Here, the PDFs for the F(Q) data set with peaks shifted to
larger Q are all systematically shifted to a lower distance r in
the PDF. The distance shift increases with increasing inter-
atomic distance r, as the peak shift in F(Q) acts similarly to a
pure scale in O, which would result in a pure inverse scale in
the PDF. For the actual ceria sample the PDF shifts are less
systematic, as further errors are superimposed. Thus, such a

30

25
T
I

20

F(Q)

Q[&™1]

Figure 6

The PDF of CeO, refined with the traditional algorithm, comparing the
reduced scattering functlons F(Q). The experimental data (blue) are
shifted by AQ = 0.0024 A~! compared with the PDF calculated (red)
without a Q offset. The peak shapes of the difference curve indicate a
zero-point error in the experimental data.

T T T T T
38-404 78-804

1 AR 74 P

o_ \[, M“ llhl\ MIHH‘]M‘ e | W T |
Wik W‘ il A

oo »m»mmm _

0 2 60 80 100
Dlstance [&]

Figure 7

The effect of a Q,.,, shift on the PDF. The (blue) PDF marked with a +
was calculated from F(Q) shifted by A 0.005 A~" and the (black) PDF
marked with a — by A = 0.005 A~'. The difference curves are the
differences between the ideal PDF (red) and the respective shifted PDF.
The effect of a Q shift on the PDF is a distance-dependent peak shift.

zero-point error is not straightforward to detect in the PDF
alone.

5.2. Crystalline Si

The second example uses a data set from Si, also measured
on beamline 11-IDB at the Advanced Photon Source,
Argonne, USA. As silicon is a single-atom-type compound the
direct PDF calculation is of course exact as well. This example
serves to illustrate that the new algorithm can describe the
effect of correlated motion just as well as the traditional
algorithm. The first peaks in the experimental PDF were
analysed with single line fits, resulting in FWHMSs of the first
three peaks of 0.17, 0.22 and 0.24 A. Further, the Si—Si
distance peaks show the same FWHM of 0.24 A as well. Figs. 8

?:’O | nn
Wi
?%MW

Distance [&]
Figure 8
The PDF of Si refined with the traditional algorithm. The experimental
PDF is in red and the calculated PDF in blue. The inset shows the distance
range 1.5-5.5 A.

10

G(r) [877]

Distance [&]

Figure 9

The PDF of Si refined with the improved algorithm. The experimental
PDFis in red and the calculated PDF in blue. The inset shows the distance
range 1.5-5.5 A.
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and 9 illustrate that both refinements result in equally good
agreement with the observed data and that the different
widths of the first three peaks are described equally well by
both algorithms. The three structural parameters [a, B(Si) and
ciin] are identical within the uncertainties (Table 1).

5.3. Preferred orientation

The effect of preferred orientation on the intensities in a
powder diffraction pattern can be treated by multiplying the
intensities of the Bragg reflections with an hk/-dependent
function, for example the commonly used modified March
equation (Dollase, 1986),

Sinz(ahk/)}_l/z’ (10)

P(hkl) =x+(1 — x){ [a Cos(ahkl)]2+ d

where x is the fraction of the sample that is not affected by
preferred orientation, d is a damping coefficient, and « is the

angle between the preferred orientation axis and the reci-
procal-space vector represented by hkl The damping para-
meter d describes how sharply the intensity drops as function
of a. A more general description is based on the orientation
distribution function (Bunge, 1991; Bergmann et al., 2001).
Currently, no algorithm has been published that allows a direct
treatment of preferred orientation of the PDF.

As an example for our new algorithm, the powder diffrac-
tion pattern of copper was simulated without and with
preferred orientation [Fig. 10(a)] and the powder pattern
transformed into the PDF [Fig. 10(b)]. The preferred orien-
tation axis was chosen as [1, 1, 1], the fraction x = 0.6 and the
damping coefficient d = 0.5. Fig. 10(c¢) illustrates the effect of
the damping parameter d. As d decreases, the preferred
orientation becomes more pronounced. Besides peak height
changes, the most prominent change in the PDF is an
asymmetric background modulation around the peaks in the
PDF.

G(r) [R77]

L . ! '
10 20 30
Distance [&]

©)

8_A> | |
ol lﬂ “ ll IM Mlill lm lll LWLMMMM&M
S
10 Q[A_l] 20 30
(@)
8?0) .
Figure 10

The effect of preferred orientation on the PDF. (a) Calculation of S(Q) for copper without (blue) and with (red) preferred orientation. (b) Comparison
of the corresponding PDFs. (¢) Effect of the damping parameter d. A decrease in d causes an asymmetric background around the PDF peaks.
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5.4. Application to extended supercells

The first two examples illustrated the capabilities of the
algorithm for perfectly periodic materials. As the main
emphasis of the PDF technique lies in the realm of disordered
materials we will now illustrate the application of the algo-
rithm to the case of extended supercells.

For this example the initial PDF of a hypothetical perov-
skite-type structure, TaSrO; in space group Pm3m, with Ta on
0,0,0, Sron 1,1, 1 and O on 1,0, 0, has been calculated using
the algorithm described in Sect10n 4. An initial PDF was
calculated, based on a single unit cell. The structure was
further expanded to a 30 x 30 x 30 supercell, i.e. a crystal of
135 000 atoms. This crystal was shaped into a sphere of 100 A
diameter, reducing the number of atoms to 47 785. Using the
Debye scattering equation (Debye, 1915) the powder
diffraction pattern of this finite object was calculated. The
reduced normalized scattering function for this finite object
was converted to the PDF as described in Section 4. As
expected, the peak-height PDF of this finite object decreases
with increasing distance r according to the envelope shape
function for a finite object (Howell et al., 2006; Kodama et al.,
2006),

£.(rd) = [1 EL. (;)B}G(r, d), (11)

2d 2

where d is the sphere diameter and 6 is a step function of value
1 for r < d and 0 otherwise.

As a final step, the PDF of this finite object was divided by
the envelope function of the sphere with diameter 100 A. This
division creates a PDF that corresponds to the PDF calculated
from the original single unit cell with periodic boundary
conditions, either through an explicit PDF summation in direct
space or through the detour via the powder diffraction

0
—

10

ol Uy n.\ul,,}.l”
AT

G(r) [87%]

| 1"“i\
= ‘\ ““\

L?- :H“'H‘

ik
i

20 40 60 80 100
Distance [&]

—20 —15 —10
il

o

Figure 11

The calculation of a PDF with periodic boundary conditions via the
Debye scattering equation. The PDF calculated from a spherical object
(green) is divided by the envelope function to yield a PDF (red) that
matches the PDF (blue) calculated through the new algorithm up to
approximately 80% of the sphere diameter. Beyond 85% the two PDFs
differ substantially.

pattern. Fig. 11 shows the different calculated PDFs. The
difference curve corresponds to the difference between the
PDF calculated via the powder diffraction pattern from a
single unit cell (blue curve) and the PDF calculated via the
Debye scattering equation from the powder pattern of the
spherical extended object. The two PDFs are in very good
agreement up to approximately 80% of the sphere diameter.
Beyond this limit the shape-corrected PDF of the sphere starts
to diverge, as the envelope function approaches a value of
zero. At shorter distances than the limit of 80%, the differ-
ences between the two calculated PDFs are caused by the
finite size of the spherical object. Its actual surface is not a
perfect sphere but consists of small terraces. Small voids exist
between the actual particle surface and the idealized spherical
radius that was used to cut the surface. Thus as a function of
the distance r, the sphere diameter d and the actual crystal
structure, small deviations remain between the two calculated
PDFs.

This concept of creating a PDF with effectively periodic
boundary conditions could equally well be applied to any
other crystal shape whose envelope function can be calculated
analytically. The sphere has the advantage of being a very
simple and isotropic object, whose envelope function depends
on just a single parameter, the diameter.

Despite the small differences, the new algorithm can very
well be used to calculate the PDF of an extended crystal under
the assumption of spherical boundary conditions. The algo-
rithm implemented in DISCUS allows the user to calculate a
PDF that is valid up to distances that correspond to the limit of
80% of the diameter of the largest sphere that can be placed
inside the supercell. If the structure within the supercell has
been built using any kind of short-range order algorithm, one
has to keep in mind that distances longer than 50% of the
supercell edge lengths might be subject to aliasing effects.

5.5. Disordered perovskite

In the previous section we showed that our new algorithm
can be applied to generate the PDF from a supercell while
maintaining the periodic boundary conditions. Here we apply
this technique to generate the PDF of a large disordered
supercell. The PDF is then refined with a single unit-cell
model, once at short distances and then using the PDF data at
longer distances.

The supercell for this section was based on the same
hypothetical perovskite-type structure TaSrOj; as in the last
section. The modelling approach is similar to the illustration of
the domain concept by Neder & Proffen (2008). The concept
was to create a supercell that consists of domains of a tetra-
gonally distorted perovskite-type structure. Within each
domain, the octahedrally coordinated Ta atom at 0,0,0 is
shifted along one of the three base vectors of the underlying
cubic structure. No further distortions of the unit-cell dimen-
sions were applied.

To build the disordered perovskite structure, a primitive
unit cell with the perovskite lattice parameters and a single
atom at 0,0,0 was expanded to a supercell consisting of
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43 x 43 x 43 unit cells. All atoms were replaced at equal
probabilities by six dummy atom types that each represented a
perovskite unit cell with the distortion along the plus or minus
direction of one of the three base vectors. These dummy atoms
were sorted with positive pair correlations to create reason-
ably large domains that each consist of a single one of the six
atom types. The sorting achieved a final pair correlation
coefficient of 0.93. As the structure consists of six different
dummy atoms, the probability of finding an identical atom
drops below 50% at a distance of 3.5 unit cells, resulting in an
average domain size of approximately seven unit cells. Each of
the dummy atoms was then replaced by a corresponding
complete perovskite unit cell in which the Ta atom at 0, 0,0
was displaced along one of the three base vectors by a frac-
tional coordinate of 0.1. A sphere of 150 A was inscribed into
the structure and all atoms outside this sphere were removed.
The PDF with periodic boundary conditions was calculated

from this structure using the algorithm described in the
previous section.

Two different single-unit-cell models were refined against
this PDF. In the first model only the distance range up to 8.3 A
was used, while for the second model the distance range from
50 to 100 A was used.

For the short distances one can expect the structure to
reflect the structure of a single domain, since on this local level
all domains are identical except for their orientation.
Accordingly, for the single-unit-cell model the displacement of
the Ta atom and independent atomic displacement parameters
for all atoms were refined. The scale and profile parameters
were fixed to the values used for the initial model building.
Table 2 shows the refined parameters and Figs. 12(a) and 12(b)
compare the observed and calculated PDFs. As expected, the
PDF calculated using a single-unit-cell model does not
describe the PDF at a distance range beyond some 15 A with
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Fits of single-unit-cell models to a PDF simulated from a disordered 43 x 43 x 43 supercell of a perovskite-type structure, TaSrO;. (a), (b) The results of
arefinement to the short-distance range up to 8.3 A. The calculated PDF (red) matches the experimental PDF (blue) for short distances only. (c), (d) The
results of a refinement to the long-distance range 50-100 A. A good match is observed between the observed PDF (blue) and the calculated PDF (red) in
the distance range 50-100 A. The red dots in panel (c¢) show the probability of remaining within a given domain as function of distance r. The trend of the

probability scales well with the overall height of the difference PDF (black).
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Table 2

Structural parameters for the perovskite structure for the ideal structure
used in the demonstration of the periodic PDF, and the refined values for
the model based on the short- or long-range distances.

Ideal Short Long
x(Ta) 0 0.0960 (4) 0.10009 (1)
B(Ta) (A?) 0.1 0.188 (1) 0.1253 (3)
B(Sr) (A?) 0.2 0.133 (1) 0.1974 (5)
B(0) (A?) 0.3 0.264 (4) 0.355 (1)

acceptable accuracy. At a short-range distance, the fit is
perfect up to 5 A and very good for most peaks up to roughly
10 A. Those peaks that are dominated by Ta—Ta pairs quickly
start to diverge, reflecting the finite size of the domains.

For the long-distance range, the single-unit-cell model must
reflect an average of all domains. To this effect, a model
structure in space group Pm3m was refined with Ta on an
x, 0,0 split position with one-sixth occupancy. As with the
short-distance model, independent ADPs were refined while
all other parameters were fixed at the input values. Refined
values are reported in Table 2 and the calculated PDFs are
shown in Figs. 12(c) and 12(d). Fig. 12(c) shows the excellent
fit in the range 50-100 A and the lack of fit for shorter
distances, especially below 20 A, which is shown in more detail
in Fig. 12(d) for distances up to 15 A.

6. Timing results

The calculation speed of the algorithm depends on the tech-
nique that is used to calculate the initial powder diffraction
pattern. The timing results reported here were recorded on a
PC with an eight-core Intel Xeon E2136 CPU running at
3 GHz.

For the calculation of the PDF via the classical summation
in direct space there are three essential steps that affect the
CPU time required. In the first step, all partial histograms at
all interatomic distances must be established via the double
sum over all atom pairs. It scales at least with the atom number
squared and to the third power of the maximum distance. In
the second step, all partial histograms must be convolved with
the distance-dependent profiles that describe the thermal
motion and the distance-dependent broadening. This step
scales linearly with the number of different pairs and linearly
with the maximum distance. In the third step, the partial
histograms are summed, and the sum is convolved with the
Omax termination function and multiplied with the damping
function. The overall rate-determining step is the build up of
the initial histograms.

For the calculation of the PDF from the content of a single
unit cell via the powder diffraction pattern, the steps are the
calculation of the powder diffraction pattern, the convolution
of the powder pattern by the resolution function, and the
normalization and conversion of the powder diffraction
pattern into the PDF. The first step scales linearly with the
number of atoms per unit cell and to the third power of O ax,
since the number of Bragg reflections scales accordingly. For a
fixed Onax, the number of Bragg reflections scales linearly

with the unit-cell volume. As the number of atoms scales
linearly with the unit-cell volume (if we assume a constant
number density), the calculation scales with the square of the
unit-cell volume at a fixed O ax-

For the calculation of the PDF via the Debye scattering
equation, the first step is again the calculation of all partial
histograms. Each partial histogram must be transformed and
the partial contribution to the powder pattern multiplied with
the O-dependent atomic form factors. The next two steps are
again the convolution of the powder pattern by the resolution
function and the normalization and conversion of the powder
diffraction pattern into the PDF. The rate-determining steps
are the summing of the histograms and their Fourier trans-
formation.

To estimate the CPU requirements, a single unit cell was
used to calculate the PDF up to 100 A. The number of atoms
in the unit cell was modified from 12 to 580 atoms. The (cubic)
lattice parameter was scaled to maintain a constant number
density. For the standard PDF algorithm, the times required to
calculate the PDF and to store the final PDF in the internal
software memory ranged from 0.18 to 308 s and are well
described by

t=92x10"*s"'N, (12)

where N is the number of atoms per unit cell. For the new
algorithm the CPU time is essentially constant at 0.031 s for
unit cells with less than 50 atoms. For the larger structures the
times increased to 0.21 s and follow

t=0.029s+52x107"s"'N, (13)

resulting in a computational advantage of three orders of
magnitude for the larger structures.

For a comparison of the PDF calculation via the standard
summation in direct space and the detour via the Debye
scattering equation (DSE), spherical ceria particles of
diameter 10-200 A were simulated. These correspond to
objects with 45-369 007 atoms.

For the standard PDF calculation, the times increased from
0.015 to 176 s. For the DSE-type calculations the times were
0.81-184 s. Both trends are well described by

t=18x10"s' N2, (14)

except that the equation for the DSE-type calculation requires
an additional offset of approximately 1 s.

Both computations used an identical spherical object.
Several other parameters favour the computation time of one
method or the other. The constant offset of approximately 1 s
in the case of the DSE route corresponds to the overhead due
to the Fourier transformation and the convolution of the
powder pattern with the profile function. This time is
favourably affected by a smaller Q,,.x value and increases if
the convolution requires a more complex profile function. The
time is essentially independent of r,.., as a fast Fourier
algorithm is used for the sine Fourier transformation to the
PDF. For the standard algorithm, the main rate-determining
step besides the computation of the partial histograms is the
convolution by the distance-dependent Gaussian function that
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is used to describe the effect of the thermal motion and the
instrumental broadening influence expressed by Qyroaq- This is
moderately increased by larger displacement parameters and
a larger value of Qy,oaq- In contrast to the calculations with
periodic boundary conditions, the calculation is almost inde-
pendent of 7.

7. Conclusions

A fast algorithm has been developed that allows a calculation
of the PDF that is exact for any type of radiation within the
limits of the kinematic scattering theory. As the algorithm
calculates the PDF via the sine Fourier transformation of a
calculated powder diffraction pattern, any modification to the
powder diffraction pattern, such as a convolution with a
profile function or treatment of preferred orientation, will
properly propagate into the calculated PDF. No restrictions
apply to the calculation of the powder diffraction pattern, and
examples have been presented for a Rietveld-type calculation
of the powder diffraction pattern based on Bragg reflections
only, as well as examples based on the calculation via the
Debye scattering equation. The first calculation mode allows
for very fast PDF calculations and distance-dependent
refinements of single-unit-cell models, while the second mode
is open to any disordered material.
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