SAND2020-4866 National

Laboratories

SANDIA REPORT @ Sandia

Printed April 2020

Survey of Current State of the Art
Entity-Relation Extraction Tools

Katrina Ward, Jonathan Bisila, Kelsey Cairns

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

ABSTRACT

In the area of information extraction from text data, there exists a number of tools with the capability of
extracting entities, topics, and their relationships with one another from both structured and
unstructured text sources. Such information has endless uses in a number of domains, however, the
solutions to getting this information are still in early stages and has room for improvement. The topic
has been explored from a research perspective by academic institutions, as well as formal tool creation
from corporations but has not made much advancement since the early 2000’s. Overall, entity
extraction, and the related topic of entity linking, is common among these tools, though with varying
degrees of accuracy, while relationship extraction is more difficult to find and seems limited to same
sentence analysis. In this report, we take a look at the top state of the art tools currently available and
identify their capabilities, strengths, and weaknesses. We explore the common algorithms in the
successful approaches to entity extraction and their ability to efficiently handle both structured and
unstructured text data. Finally, we highlight some of the common issues among these tools and
summarize the current ability to extract relationship information.

CONTENTS

Preface
1. Introduction
2. Approach to Understanding Entity-Relationship Extraction Tools
2.0.I. Goals for Tool Considerationuiiiiiiiiiiiieinnnnnn.
2.0.2. Datasets Used for Evaluationo
3. Tool Summary
3.0 MIT Information ExtFacton (MITIE) . cuner cones canmas samnsswusns sama
3.0.2. TeXtRazOr
30 RVt susni censs 1aenng (AENS SABHRE AABES LA EEELIAEERT DN EAE 18 EE 6 526
3.0.4. Stanford CoreNLPt
Bl SPAEEIO: & ssmmns s mhs 80 H S ok AR o h KRB s K355 G B R B RABRAE AT
3.0.6. Other Toolso
4. Final Observations
4.0, Comimon Strengths of Cutrent ERX ToOIS v vscvsnsissssssnssssssnassnns
4.0.2. Common Weaknesses of Current ERX Toolsc.. ...

4.0.3. Other Aspects of ERX
5. Conclusions
References

Appendices
A. Tool Side-by-Side Comparison

11

II
I2

13
3
13
19
21
25
27

28
2.8
2.8

29
30
31
33

LIST OF FIGURES

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.

Figure 3-11.

Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.

Sample MITIE output on structured teXtoovuiniiiiiiiiiiiai.. 14
Sample MITIE output on unstructured teXtovvvvrnerenenerererenenuiuinen, 14
Sample TextRazor category output on structured teXtovvvvririninenann... 16
Sample TextRazor category output on UNSrUCtured teXt. . oo vv e e e eie e e e 16
Sample TextRazor entity eXtraction OULPUL . .. v . ceteenoeransraasocasnosssssns 17
Sample TextRazor word definition discovery output ..., 7
Example of TextRazor’s relationship extractionccooiiiiiiiin, 17
TextRazor depends on dependency trees to perform context and relationship analysis. 18
Sample ReVeth output forStructured 18X . . o c v cnvvs comanremenennmms cnsnnsasiio 21
Sample ReVerb output for structured text.ooovveieiiiiiiiiiii 21
Stanford CoreNLPannOtIorMaD « cus o usssssmmrs sonmmy omwes cmmmms mmun swans 22,
Stanford CoreNLP sample output for structured textoovviiinein.. 23
Stanford CoreNLP sample output for unstructured teXt.ooovninininen... 23
Example of code to use SpaCy within Python. ..., 25
An example of results from SpaCy entity extraction.cocovieirviiennaenen. 26

PREFACE

The purpose of this research is to explore the current state of the art tools available to perform
entity-relationship extraction from any text, both structured and unstructured, and analyze their
capabilities. While we did research many tools, we recognize we did not research them all. However,
based on the criteria we were looking for described in this document, we are of strong belief that we

found the best tools at the time of writing this.

NOMENCLATURE

Abbreviation Definition

DOE Department of Energy

ERX Entity-Relation Extraction

SVM Support Vector Machine

MITIE MIT Information Extraction Tool

CRF Conditional Random Field

NER Named Entity Recognizer

NLP Natural Language Processing

TF-IDF Term Frequency - Inverse Document Frequency

1. INTRODUCTION

In the area of information extraction from text data, there exists a number of tools with the capability of
extracting entities, topics, and their relationships with one another, known as Entity-Relationship
Extraction (ERX). Entities are important subjects in text such as people, dates, locations, and
organizations. The extraction of entities can help in finding information of interest in large text files,
news websites, social media, or a combination of all of the above. In addition to the entities themselves,
there is a demand for understanding the relationship between these entities. For example, if we see the
following sentence:

"In 2009, Barack Obama was the youngest person to serve as President of the United States.”

The entities extracted would be 2009, Barack Obama, President, and United States. These entities may
be enough information to tell whether a document contains enough relevant information to look into
further, or if the text is from social media, tell the topics that are currently being discussed based on
current events. From these entities, we could learn that Barack Obama was the President of the United
States in 2009, thus understanding the context of the sentence and the relationships between them
within it. While this may seem trivial in a single sentence, this information could be buried in millions
of lines of text coming from several sources that is read over by an analyst. The information that can be
potentially extracted could benefit multiple industries and research efforts.

Current ERX tools for entity extraction are typically grouped by the general approach of their
algorithms. Some of the most common are database, dictionary, and SVM approaches. In database
approaches, a user can specify certain terms they want the software to identify in text as entities. For
example, if a user is a veterinarian looking for emerging diseases that could affect livestock, they could
build a database looking for specific animals, feed brands, and virus or bacteria names. This approach is
very accurate for the limited scope of terms, but poor in performance with general text data. Most of the
tools we tested had the option to include custom entities and incorporated the database search with
either dictionary or SVM based algorithms. However some, such as Catalyst, used database search
almost exclusively because of the limited scope the tool was intended for.

Dictionary based algorithms collect data from common knowledgebases such as Wikipedia, DBpedia,
Wikidata, and Freebase. The algorithms for these tools scan their databases for previous knowledge of
an entity in order to classify it as a person, location, organization, date, etc. The benefits are that the
results are accurate for known terms in the dictionary and the ability to understand context and
meaning of the words is increased. However, the approach is extremely slow. It also has the weakness of
not understanding abbreviations as well. For example, a human understands that Barack Obama,
President Barack Obama, B. Obama are the same person. However, a dictionary based algorithm may
not detect that all of these are a person, much less the same person. This issue was observed with

TextRazor in our tests. Like the database approaches, it is possible to supplement other algorithms with
a dictionary search when looking for a small set of specific terms, however, this is seen less frequently.

The final large category of algorithms use support vector machines (SVM) in order to recognize
patterns in text and identify entities as certain categories. This approach is much faster than the
previous two approaches, however, requires very large training data sets in order to come close to the
accuracy of database or dictionary approaches. An example of this approach is MITIE and SpaCy.
Additional algorithm ideas have been attempted in academic research, but were never adopted due to
not performing as well in either accuracy, speed, or both.

While most of these tools perform entity extraction with varying degrees of speed and accuracy, few
actually perform relationship extraction as well. So far in previous work, the two problems are
considered separate, though attempted in many of the same tools. The two pieces of information are
heavily related and almost depend on one another to be truly useful. Using the example sentence above,
it may be useful to know that a document contains the name of the President, however, knowing the
context of the usage and how the usage relates to other entities in the text would have much more
utility. Of the tools we present here, TextRazor has the biggest claim to perform relationship extraction,
however, in our tests it does not do so very well. MITIE, CoreNLP, SpaCy, and ReVerb are also able to
perform relationship extraction after extensive training, but again, not to any high standards.

In this report, we explore the current state of the art tools and explain their capabilities and limitations.
We present a side-by-side comparison of these tools as well as dive deep into their functionality in order
to provide a view of current capabilities in Entity-Relationship Extraction.

10

2. APPROACH TO UNDERSTANDING
ENTITY-RELATIONSHIP
EXTRACTION TOOLS

In this section, we explain how we evaluated the tools including what information we looked for, what
features we looked at, what datasets we used to test the tools and how we evaluated their usefulness and
effectiveness.

2.0.1. Goals for Tool Consideration

While there are a number of tools available for entity and relationship extraction, there were some major
factors we looked for to determine which tools were the best available. We first evaluated accessibility.
We wanted to be able to access not just the tool for use, but the source code as well. This way the tool
could be tailored for multiple different uses and/or expanded upon. We also looked at the last time the
tool was maintained to see of it was kept up to date and would be reasonable to assume the tool would
be kept available. We also looked at cost, ease of installation, and ease of use.

We then looked at how well it performed entity extraction by seeing which entities were found, missed,
and if the tool correctly identified which label they belonged to. With that, we considered the
limitations of the labels that the entities were assigned. By that, we mean if the labels were given to the
model or if the model could actually learn which labels to use. We considered if the tool was also able to
extract the relationship between the entities and if the tool could perform as well on unstructured data
as it could on structured text.

Throughout the tool analysis, we make sure to note features the tools have. For example, it’s important
to be able to supplement specific entities to focus on, such as bacteria names, restricted chemicals,
specific people, and so forth, as well as an understanding of the context of the entities the tool found.
We took a deeper look into the tools and discovered which programming languages they supported for
use, if graph visualization was provided as an option, and how each tool evaluated its accuracy. Finally,
since our world is becoming more and more connected, we looked for multi-language recognition.

In our final category, we evaluated the performance of the tools. Specifically, we considered how often

we found errors, the accuracy of the tool using base models, and the ever important aspect of
scalability.

1I

2.0.2. Datasets Used for Evaluation

In order to test the tools, we used three datasets. The first was structured text about the Chernobyl
disaster found at [15]. This dataset was a small, structured test to extract working tools from those that
failed at the basic task. The second dataset is an unstructured dataset compiled of Tweets from Twitter
on various nuclear disasters, which can be found at [3]. Finally, we created a text file with the entire
story, WarandPeace, to test the scalability of the tools.

12

3. TOOL SUMMARY

In this section, we look at the individual tools and discuss our findings based on the criteria in the
previous section. The order of the tools listed is the order in which we tested them and have no
importance in terms of tool performance.

3.0.1. MIT Information Extraction (MITIE)

MITIE is a tool created by a research group at MIT CSAIL which focuses on natural language
processing. Information about the tool has been presented in [6] with additional information and
source code available at [11]. MITIE is currently maintained, which means new features and updated
code are appearing regularly, including support for multiple programming languages. It currently
supports Spanish and German in addition to English. It is available for free for all uses, both personal
and commercial.

MITIE was created with C++ in mind and leans heavily on the Dlib library. It comes with mappings for
other languages however, including R, Python, and Matlab. The source code is easily downloadable

from its repository and installs with relative ease using the extensive documentation available. In this
evaluation, we installed MITIE for R.

3.0.1.1. Technical Details

Behind the hood, MITIE performs text manipulation to extract nouns(entities) from sentences, and
then uses the C++ Dlib library to perform a SVM analysis to classify them. The software comes with
basic trainers to recognize people, locations, and organizations with everything else being labeled as
miscellaneous. It does offer easy ways to train the data to recognize other labels however, such as dates,
times, and nicknames, though additions are added as a dictionary-based search making it limited in
scope when it comes to anything not considered a noun in a setence. Relationship extraction is also
possible with MITIE with extensive training, which the tool does not come with. Even so, relationships
are limited to within the same sentence and the type of relationship is unknown. The tool considered
any two nouns within the same sentence to be related in some way.

3.0.1.2. Performance Observations

Entity extraction was completed with good accuracy, however, we noticed that the tool has no memory
of previous labeling. For example, an entity recognized as a person was sometimes also recognized later
as an organization. The tool comes with pre-trained models so that the software can be tested out of the

13

Sample output from MITIE on structured text (a) and unstructured text (b)

Sample Result

[1] "Cherncbyl f LOCATION @ (24,24)"

[1] "Ukraine / LOCATION @ (26,26)"

[1] "Soviet Union / LOCATION @ (31,32)"

[1] "Chernobyl Muclear Power Plant Accident
Clozed AreaEmergency / ORGANIZATION @
{53,59)"

[1] "Soviet / MISC @ (134,134)"

[1] "Chernobyl / LOCATION @ (161,161)"

[1] "soviet / MISC @ (185,185)"

[1] "International Atomic Energy Agency [
ORGANIZATION @ (196,199)"

[1] "Wienna / LOCATION @ (202,202)"

[1] "Austria / LOCATION @ (204,204)"

[1] "Soviet / MISC @ (257,257)"

[1] "Russian/ MISC @ (263,263)"

[1] "UNSCEAR / ORGANIZATION @ (288,288)"
[1] "Chernobyl f LOCATION @ (301,301)"

[1] "US. / LOCATION @ (374,374)"

[1] "Cherncbyl / ORGAMIZATION @ (383,383)"
[1] "Chernobyl / ORGANIZATION @ (432,432)"
[1] "Belarus / LOCATION @ (438,438)"

[1] "Russian Federation / LOCATION @
(441,442)"

[1] "Ukraine / LOCATION @ (445, 445)"

[1] "World Health Organization /
ORGANIZATION @ (456,458)"

[1] "UNSCEAR / ORGANIZATION @ (504,504)"
[1] "UNSCEAR f ORGANIZATION @ (632,652)"
[1] "Kaschcheev / PERSON @ (710,710)"

Figure 3-1. (a)

[1] "Hello lapan / LOCATION @ (2,3)"

[1] "Renewable Energy Consumption Tops
Muclear for FirstTime {link} / ORGANIZATION @
{13,20)"

[1] "Fukushima Daiichi Nuclear Power Station /
ORGANIZATION @ (49,53)"

[1] "Environment : Oxf ord Un iversity Pr
ORGANIZATION @ (77,83)"

[1] "ISBM : / MISC @ (88,89)"

[1] "Muclear Power Safety Campaign Organizer /
ORGANIZATION @ (101,105)"

[1] "Temporary / Union / ORGANIZATION @
(107,109)"

[1] "Cambridge / LOCATION @ (114,114)"

[1] "MA / LOCATION @ ({116,115)"

[1] "Vermont / LOCATION @ (130,130)"

[1] "Environment : Oxf ord Un iversity Pr/
ORGANIZATION @ (140,148)"

[1] "ISBN : / MISC @ (151,152)"

[1] "Masao Yoshida f PERSON @ (219,220)"

[1] "Fukushima Diichi Nuclear Station /
ORGANIZATION @ (223,226)"

[1] "Mainichi / LOCATION @ (248,248)"

[1] "Mainichi Daily News {link} Coal /
ORGANIZATION @ (251,255)"

[1] "EGAT / ORGANIZATION @ (264,264)"

[1] "Lithuanian / MISC @ (277,277)"

[1] "Stars_" Enters Nuclear Power Supply Market
J ORGANIZATION @ (283,288)"

[1] "star=_" Enters Nuclear Power Supply Market
/ ORGANIZATION @ (291,296)"

Figure 3-2. (b)

box, and therefore, without knowledge of the training dataset, some allowance was made for errors.
When entities are identified, they are labeled and output with the location of the entity for additional
reference later. An example of the output can be seen in 3-1.

Training for additional labels or custom entities is intuitive and easy to do, but tedious. It requires
annotations of sentences with the exact location of entities and which category they belong to. A good
training set requires thousands of these lines to perform well. We also tested MITIE on an unstructured
dataset. An example of the output is presented in 3-2. The base installation does not contain a trained
model for unstructured data, so as expected, there are many more errors. However, the results from the
output are still more accurate than some other models and provide some meaningful information.

Scalability is an issue for MITIE. We tested a larger dataset (7mb)and found that MITIE took
approximately 20 minutes to process. In the background, MITIE allows you to see the tool’s progress
through a command window on Windows 10, and we observed the entity extraction process being
performed sequentially with no parallelism. We also noticed that MITIE loads the entire text into
memory at once, making it cumbersome and inefficient. With the use of the C++ DIib libraries, parallel
processing is provided, therefore we believe MITIE could be made scalable without extensive alteration
of the current algorithm. The tool itself appears to contain methods for multi-thread processing to
increase speed, but we saw no actual use of these methods.

14

3.0.1.3. Challenges and Shortcomings

As mentioned above, the biggest shortcoming of MITIE is the lack of scalability. A single, small
document is not difficult for a human to read and extract important information. The real power in an
ERX tool is to be able to scan multiple large documents and/or websites and find interesting
information. MITIE seems very limited in the types of entities it can extract, limiting itself to nouns
and provided list of other interesting entities. The out-of-the-box base models are lacking and require a
large amount of training. Additionally, the extensive effort needed to train for relationship extraction
makes using the tool for that purpose very burdensome and not practical for users who want to use the
tool but don’t have a deep technical understanding of how it works. Also, the scope for relationship
extraction is limited to single sentence, making it somewhat trivial and not necessarily true.

While MITIE contains mappings for multiple programming languages, making it easy to pick up for
almost any programmer, the mappings seem to be outdated. For the R mapping, we had to downgrade
our versions of R and R-tools in order to work with the tool. This creates a security concern and makes
the tool unappealing for anyone who depends on the most current configuration for their
environments.

3.0.2. TextRazor

TextRazor is an API based tool that can be used from TextRazor’s website[9] or as a downloadable
library. TextRazor is a London based start-up company that offers a free version of their API with
limited number of uses(200 kb dataset), as well as paid tiers for more responses. TextRazor began in 2011
and was included in later works that benchmarked current ERX tools [13]. Like MITTE, TextRazor is
currently being maintained and updated, though access to the tool is much more limited. The
TextRazor documentation reveals that the tool can understand a long list of languages, with English

being the primary.

3.0.2.1. Technical Details

While the software is optimized for C++, the company offers API interfaces for Java, Python, and PHP.
With the free API, it can handle up to 200kb of data, though only given as a string or from a url. It does
not support files as input arguments. This can be worked around in the downloadable API library,
though the downloadable API requires a paid subscription. Documentation reveals built in parallelism
to handle scalability and the Amazon AWS backend supports this capability. The source code itself is
not accessible and heavily protected by the company, however many details can be extracted about the
algorithms.

TextRazor is a dictionary based tool. It scrapes websites such as Wikipedia, DBpedia, Wikidata, and
Freebase in order to understand which words are entities and their types. When entities are identified,
the software offers the name of its source for the information in the output. When a term is detected
that the software does not understand, it uses statistical analysis to guess which category the entity
should belong to as well as regular expression analysis to detect special text such as websites and email

15

Sample category output for TextRazor on structured text(a) and unstructured text(b)

health

disaster, accident and emergency
incident>accident and
emergency incident

disaster, accident and emergency
incident>accident and
emergency incident>industrial
accident and incident>nuclear
accident and incident
health>diseases and conditions
health>diseases and
conditions>cancer

economy, business and
finance>economic sector>energy
and resource>nuclear power
science and technology

disaster, accident and emergency

incident>disaster

041

0.40

science and technology
economy, business and
finance>economic sector>energy
and resource>nuclear power
science and technology>natural
science>physics
politics>government
policy>nuclear policy

disaster, accident and emergency
incident>accident and
emergency incident>industrial
accident and incident>nuclear
accident and incident

economy, business and
finance>economic sector>energy
and resource

environment

environment>natural

Figure 3-3. (a) Figure 3-4. (b)

addresses. It does support dictionary augmentation to add specific entity information to assist in

labeling.

TextRazor is not only able to extract entities and limited relationships, but also the context in which the
entities were used and the words meaning based on that context with the rest of the data. Again, this
information comes from the supplemental data where the algorithm gets the label for the word. This
means that the labels entities are assigned to are not just given, but rather also generated based on the
context of the words. This feature sets TextRazor apart from the other tools, but also limits it in some
ways as well as the information must be found and even maintained elsewhere in a free location for the
tool to find.

3.0.2.2. Performance Observations

While entity extraction was performed quickly for both the structured and unstructured datasets, we
noticed more errors than MITIE. Common words such as "he", "it", and "her" were picked up as entities
without any assessment of who these pronouns were referring to. From the structured dataset, we
noticed clear indication of the learning capabilities for the algorithm in terms of word meaning and
context. The software provides an initial score to rate its confidence in a dictionary meaning of the word
and that score changes as the document is processed, often leaving the correct meaning with the highest

confidence.

In order to understand meaning and context, and as a result relationships, TextRazor executes
hierarchical and spanning trees to connect entities together. Due to this, TextRazor’s performance
drops significantly when presented with unstructured text such as Twitter feeds. In terms of
relationships, we noticed a very weak performance. Like MITIE, TextRazor was limited to same
sentence relationships and often relationships did not make sense. This is observable in the relationship
graph visualization as well.

16

Sample output for TextRazor on structured text for entity extraction (a) and word definition
discovery (b)

i L 2 g Repandency Parse The sand was to stop the fire and additional releases of radioactive material; the boron was to prevent additional nuclear
Confidence Relevance reactions.
Entity Score score DBpedia Type Freebase Type ~ _ .
[UCICEN Phrases Relations Entities Meaning Dependency Parse
0.1078
Relation

¢ ; Partof Spelling Parent to start End
p 3 Position Token Lemma Stem Speech Suggestions Senses Position Parent Offset Offset

8 The e t D det

™ sand d sand NN

Figure 3-5. (a) Figure 3-6. (b)

Words Phrases Entities Meaning Dependency Parse

Subject Predicate Object

The sand was to stop the fire and additional releases of radioactive material the boron was to prevent additional nuclear reactions
The sand was to stop the fire and additional releases of radioactive material the boron was to prevent additional nuclear reactions
theboron was to prevent additional nuclear reactions

theboron was to prevent additional nuclear reactions

Predicate Property

releases of additional

releases of radioactive material
material radioactive
reactions additional
reactions nuclear

Figure 3-7. Example of TextRazor’s relationship extraction

17

was

nsubj ~“xcomp [punct \ccomp punct

aux [dobj \dobj nsubj xcomp
mod \\prep Aux dobj
1S D (D (D
pobj amod \amod

COEENCERC

lamod

radioactive

Figure 3-8. TextRazor depends on dependency trees to perform
context and relationship analysis.

TextRazor also provides metrics for its extraction in the form of confidence and relevancy scores. The
confidence score measures how sure the algorithm believes it is correct and the relevancy score rates each
entity with how relevant it is with the rest of the article based on the number of times it is used and its
context compared to the meaning of the other entities, almost like an extended TF-IDF analysis. The
relevancy score is intuitive and seems to match the reality of the results. However, the documentation
claims confidence is measured between one and ten, with ten being absolutely certain. In our tests, we
noticed confidence scores much higher and much lower than the bounds given with no indication as to
why. In addition, the scores given do not seem to make sense given the output results as a whole,
therefore we assume it is in error.

TextRazor resides on Amazon AWS with the goal being to have access to multi-core processing in
parallel. The documentation provides some description of parallel processing and hints at NoSQL
databases and possibly map-reduce, however, in our use of the API we saw no evidence of parallel
processing. When presented with data close to the 200kb limit, the API terminated without completing
its task. When the data was reduced, we were able to measure a linear correlation between data size and
processing time. With no access to the source code, we believe the algorithms are not using as much
parallel processing as the documentation implies, or that the use of NoSQL databases actually limits the
algorithm further on information it knows and new terms take much longer to understand. This would
mean that the scope of the text analysis is narrow, being best used on a single topic of interest.

Finally, we tested the API’s ability to handle other languages. When presented with Russian text, as
indicated in the list of languages as a possibility, TextRazor performed very poorly. It was unable to
identify any actual entities except those recognized in English such as Arabic numerals. When presented

18

text that was a mix of Russian and English, as a conversation may be, it ignored all Russian text and
extracted information from the English portions only. This shows that the algorithm is able to detect
the different languages, but information extraction is limited to Germainic languages as best.

Overall, for entity extraction, TextRazor performed well. It provides some interesting features, such as
context and definition understanding. However, it has some major failings in terms of relationship
extraction, scalability, and extra features such as multi-language recognition.

3.0.2.3. Challenges and Shortcomings

Without access to the source code, it is difficult to understand how the algorithms within TexRazor
actually work. Given the observations in its performance and the information provided in
documentation, we note a few issues that are critical to successful information extraction. As we noted
with MITIE, scalability is a large issue. TextRazor provides the ability to copy text or url to the web API
or feed the code based API strings of text or urls. However it is unable to process files without
supplemental code to load the files into strings to give to the API. For entity extraction, relying on a
large database to identify the entities and their categories is slow and can result in conflicts. This also
means that the software will be unable to recognize different spellings and abbreviations of the same
term, making it consider them separately.

As we observed, relationship extraction is poor. It is also a bottleneck for the algorithm and a source of
its slow speed. To understand context and word meaning, and as a result relationships, it builds large
dependency trees. Also, in order to understand context and update new meanings and understandings
for entities at the beginning of the text, it must save information it learns on every entity, or at the very
least, a sample of the entities. This will take a fair amount of memory and require multiple passes over
some of the data, making it inefficient.

Multiple errors in the metrics calculations lowers confidence in the software’s accuracy, as well as the
software’s inability to perform extra features such as multiple language recognition and processing. The
tool has a lot of potential, particularly in the area of context resolution, however as it is now, it does not
perform as the documentation claims.

3.0.3. ReVerb

ReVerb was developed by faculty at the University of Washington’s Turing Center. It is an open
information extraction tool, meaning that it attempts to find entities and relations with no prior
training or context. Users can simply input raw text into the tool and it will output a tab separated value
file with multiple fields, among which are the sentence the information was extracted from, the entities
and relation that was extracted, a confidence score for the extraction, and others. Information about the
tool and links to the source code can be found at [12]. Though ReVerb is no longer being maintained,
with the most recent update in 2013, its capabilities in its current form make it worth exploring.

9

3.0.3.1. Technical Details

ReVerb accomplishes entity and relationship extraction through a regex approach in an attempt to
overcome previous shortcomings of open information extractors, such as incoherent and uninformative
extractions. It attempts to do this through a regular expression analysis designed to extract more
meaningful relations within a sentence of text. The following regular expression is used:

V| VP | VW*P

V = (verb particle | adv)

W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

For example, consider the sentence "Bob claimed responsibility for the broken window.” Rather than
the triple (Bob, claimed, responsibility) being extracted, the much more informative (Bob, claimed
responsibility for, the broken window) is extracted.

Put into words, the constraint allows for just a simple verb phrase (e.g. jumped, jumped in, jumped
happily), a verb phrase followed by a particle or preposition, or a verb phrase followed by a simple noun
and ending with a preposition or particle (e.g. gave Tommy the). The convention used is that the
longest expression matched is the relation extracted.

The entities are then extracted from the left and right hand sides of this relation. ReVerb attempts to
overcome uninformative extractions through maintaining a dictionary of roughly 1.7 million
normalized relations and excluding extracted relations that, after being normalized, are not included in
the dictionary.

Put simply, ReVerb uses a combination of approaches discussed earlier. It builds its own database from
Wikipedia and data sources from pre-trained models, such as Apache’s OpenNLP [s] software. It uses
Google’s Guava [10] software for data organization and then uses Apache’s OpenNLP to extract
entities from the data. Finally, once entities are recognized and categorized, it uses clustering algorithms
built into Weka [8] to understand relationships between entities.

3.0.3.2. Performance Observations

The tool itself is simple and painless to use. All code used has been compressed into a single Java jar file,
with no building required, nor is training a model required. However, due to this, the tool performs
only adequately across the board. In almost all instances, a specialized or custom model would be better
suited to reduce the search space for terms. Additionally, attempting to follow the source code is
difficult, as the decompiled source is severely bloated. Entire libraries are compiled into the jar with only
portions of them being used or sometimes none at all. Though Java is an object oriented language, the
paradigm is overused making the source code densely broken up and inefficient.

ReVerb performed faster than other tools, taking only 97 seconds on the 7mb dataset to complete. It
accurately analyzed structured text, but performed very poorly on unstructured text, as expected
without previous training. In addition, relationships were not necessarily extracted or inferred, but
rather the entities and surrounding words were taken as the relationship, showing no context
understanding and less than a sentence limitations.

20

Sample output for ReVerb for Entity Extraction for structured text (a) and unstructured text

Source Sentence: Renewable Energy Consumption Tops
Source Sentence: On April 26, 1986 , a sudden surge of power during a reactor Nuclear for FirstTime is nuclear energy renewable .
systems test destroyed Unit 4 of the nuclear power station at Chernobyl , Argument 1: FirstTime
Ukraine , in the former Soviet Union . o
Argument 1: a reactor systems test Relation: is
Relation: destroyed Argument 2: nuclear energy renewable
Argument 2: Unit 4 of the nuclear power station Confidence: 0.6252343755830297
Confidence: 0.715412319573869

Source Sentence: Will liberals now seek to eliminate

Source Sentence: The sand was to stop the fire and additional releases of
dangerous nuclear power plants ?

radioactive material ; the boron was to prevent additional nuclear reactions .

Argument 1: The sand Argument 1: liberals

Relation: was to stop Relation: now seek to eliminate

Argument 2: the fire and additional releases of radioactive material Argument 2: dangerous nuclear power plants
Confidence: 0.8279917753043677 Confidence: 0.6145054681095162

Source Sentence: The sand was to stop the fire and additional releases of _) .
radioactive material ; the boron was to prevent additional nuclear reactions . Source Sentence: But this plant was builttoa 1970 's
Argument 1: the boron standard . "

Relation: was to prevent Argument 1: this plant

Argument 2: additional nuclear reactions

r Relation: was built to
Confidence: 0.6469822452708904

Argument 2: a 1970 's standard

Source Sentence: A few weeks after the accident , the crews completely covered Confidence: 0.9009031387090978
the damaged unit in a temporary concrete structure , called the " sarcophagus
, " to limit further release of radioactive material Source Sentence: Would you rather have a few dozen wind

Argument 1: the crews
Relation: completely covered the damaged unit in
Argument 2: a temporary concrete structure

turbines or a nuclear power plant near your home ? .
Argument 1: you

Confidence: 0.925840027140614 Relation: rather have
Argument 2: a few dozen wind turbines
Source Sentence: The Soviet nuclear power authorities presented their initial Confidence: 0.2969033409879644

accident report to an International Atomic Energy Agency meeting in Vienna,
Austria , in August 1986 .

Argument 1: The Soviet nuclear power authorities Source Sentence: | guess that one dates me .

Relation: presented Argument 1: one
Argument 2: their initial accident report Relation: dates
Confidence: 0.5718525082865894 Argument 2: me

Confidence: 0.1264239702972498

Figure 3-9. (a) Figure 3-10. (b)

3.0.3.3. Challenges and Shortcomings

While ReVerb is faster than other tools, it is not considered scalable for large text and still has room for
optimization. It also pays for its speed with sacrifices in adaptability. As mentioned above, it performed
poorly for unstructured text and requires retraining for different datasets, which is time consuming
both to create the training datasets and to process them. ReVerb makes using additional outside models
difficult as the models are built in, requiring rebuilding of the software entirely as it is currently written
each time a new model is introduced or updated. It relies very heavily on other current tools, software,
and algorithms to train and process that the software is very bloated and difficult to use for custom
processing.

3.0.4. Stanford CoreNLP

The Stanford CoreNLP software is a web based version of several Stanford NLP tools including
part-of-speech(POS) tagger, named entity recognizer(NER), and sentiment analysis. It supports third
party annotators, allowing multiple ways to train the software to user needs. The software source code
and API can be downloaded at [7] with more information and use described in [4].

Stanford CoreNLP is still currently maintained and being updated with improved algorithms. It boasts

the ability to recognize words, their parts of speech, and understand dependencies based on context. It
supports several languages including English, Spanish, Chinese, and German.

21

[Tokenization

(tokenize)

Sentence Splitting
(ssplit)

Raw
text

(pos)

I

[Part-of-speech Tagging

Morphological Analysis

Annotation
Object

(lemma)

[Named Entity Recognition
(ner)

Execution Flow

Annotated
text

[Syntactic Parsing
(parse)

|

[Coreference Resolution
(dcoref)

LLIIITTT

[Other Annotators

L /

(gender, sentiment)

Figure 3-11. Stanford CoreNLP annotator map

3.0.4.1. Technical Details

CoreNLP is written in Java. When downloaded, it comes pre-built with a Java-applet in which you load
a model and text and it will process without any extra build or installation needed. CoreNLP allows
interaction through the applet or through a command line or web service. It provides an object oriented
API for use with Java, Javascript, C++, and Python. Stanford ofters support for Java, Javascript, and
Python, though there are several third party APIs for other languages. All of this makes the tool very
accessible and easy to use and install.

CoreNLP allows the user to choose what kind of annotator they wish for entity-relationship extraction.
For example, there are several built in annotators to find dates, phone numbers, produce dependency
trees, etc. Most of these perform well, even for unstructured text, however speed performance is heavily
affected by the annotator(s) chosen. The software also allows the user to create their own annotator to
train a model. And example of the annotator system can be seen in Figure 3-11.

CoreNLP is a strictly database approach. The software trains annotators to recognize parts of speech
and entities and uses those annotators to process raw text.

3.0.4.2. Performance Observations

The software was accurate for both structured and unstructured text. The software produces the
original text with entities highlighted and coded with a legend to determine category. And example of
output can be seen in Figure 3-12 and Figure 3-13.

22

| File Edit Classifier

on a sudden surge of power during a reactor systems testdestroved |*| m | ocATION
Unit 4 of the nuclear power station at @iaaeay. [EEME. in the former SENTAVITEY
The accident and the fire that followed released massive amounts of radioactive B ORGANIZATION
material into the environment.

M DATE
QU Chernobyl Nudear Power Plant Acdident Closed AreaEmergenc/fegldd
responding to the accident used helicopters to pour sand and boron on the reactor B MONEY
debris. The sand was to stop the fire and additional releases of radioactive material;
the boron wias to prevent additional nuclear reactions. A few weeks after the accident, [—| M PERSON
the crews completely covered the damaged unitin a temporary concrete structure
called the “sarcophagus,” to limit further release of radioactive material. The Soviet M PERCENT
government also cut down and buried about a square mile of pine forest near the TIME
plant to reduce radioactive contamination at and near the site. Chernobyl's three other

reactors were subsequently restarted but all eventually shut down for good, with the
last reactor dosing in The Soviet nudear power authorities presented their
initial accident report to an meeting in [ENE
R, in

After the accident, officials dosed off the area within 30 kilometers (18 miles) of the
plant, except for persons with official business at the plant and those people
evaluating and dealing with the consequences of the accident and operating the
undamaged reactors. The Soviet (and later on, Russian) government evacuated about
115,000 people from the most heavily contaminated areas in [lEEJ8, and another
220,000 people in subsequent years (Source: UNSCEAR m pg. 53).

Health Effects from the Accident

The Chernobyl accident's severe radiation effects killed 28 of the site's 600 workers

in the first four months after the event Another 106 workers received high enough

doses to cause acute radiation sickness. Two workers died within hours of the reactor
explosion from non-radiological causes. Another 200,000 deanup workers in

and received doses of between 1 and 100 rem (The average annual radiation

dose for a [l citizen is about .6 rem). Chernobyl deanup activities eventually

required about 600,000 workers, although only a small fraction of these workers

were exposed to elevated levels of radiation. Government agencies continue to

monitor cleanup and recovery workers' health. (UNSCEAR pg. 47, 58, 107, and |+|

3S Feeds

rarch Folders

Run NER

Figure 3-12. Stanford CoreNLP sample output for structured text

‘ [stanford Named Entity Recognizer g X
File Edit Classifier

RT @mention Science EXUIGEY: Nuclear Energy, Melting Ice Caps, And Human “| m LocaTiON
Adaptation: | was on Bloggingheads.tv Science Satu... {link}”
RT @mention Should nuclear power be feared? Or more understood? {link} B ORGANIZATION
#Fukushima #energy #Germany #apan #orcot

RT @mention § s nudlear power plant in [SE% - @mention News {link} M DATE
“RT @mention Smart, important post RT @mention Studying radioactive sulfur from

isn't about nuclear power. It's about coal. bitly/r2Kcal® B MONEY
@mention Sounds good. And agreed on the boats. Larger keepout zone this time due
to nudlear power source M PERSON

RT @mention SPOTLIGHT Nuclear Safety is as Nudear Safety Does: Multiple
1 Y M PERCENT

strengthening grids integral... {link} #nudear #energy

@mention still more people than have ever died due to nudear power in the [IE TIME

"RT @mention Stop talking,start building nudear power plants,oil drilling,get a patriot

in charge, this verbal muslim/lib diarrhea has gone far enough!™

RT @mention Studying radioactive sulfur from FIELIGE isn't about nudlear power.

It's about coal. {link}

“@mention Tainted food, bribery, issues with nudear power...it's like you saw/[Elsey s

future Will there be a quake in a future book too?”

@mention That would be nice. "Health and Safety Conciderations

atRisk of Heat-Realted lliness",

RT @mention The 65th Carnival of Pro Nudear blogs (and podcasts) is up a!

Nudlear Notes. Find out what the nukes are saying {link}

“RT @mention The cement engulfed his organs, musdles and skin, everything except

his heart, a heart forged with nuclear power. He became a man of stone.”

@mention The drinking bird was predisposed venting gas at the

RT @mention The First Nudear Reactor Since The [JIRIEIIE s Accident Is

Reactivated.: The reactivation is featuring for firs... {link}

RT @mention The government plans to rent all land owned by residents in parts of no-

entry zone of Fukushima nudear power plant {link}

RT @mention The Hindu : News / National - Nudlear energy will play important role

Manmohan: {link} {link}

RT @mention THE NUCLEAR ENERGY OPTION. The famous book of Prof. is

free {link}

RT @mention The [IE #nudear industry is taking 7 steps to reconfirm safety &

emergency preparedness at nuclear plants. Learn more: {link}

L4

Run NER

Figure 3-13. Stanford CoreNLP sample output for unstructured text

23

Installation was fast and ran instantly "out of the box". The software comes with several pre-trained
models for different annotators. Examples of the training datasets and the annotators are also given. We
tested the command line API using Java in order to get the fastest responses possible given the software
is written in Java. We also used the provided Java applet GUI to compare performance and found they
were very similar.

As with the other tools, there are some scalability issues, most of which is attributed to the database
approach and sequential processing. The issue is common enough that the documentation specifically
addresses it in the online FAQ. We were able to give the software our large dataset without the software
terminating, but as with MITIE, the data was processed sequentially and was viewable in the command
line window. In essence, the software is comparing each entity to the annotators to find the closest
match, and then outputting the annotated text. The annotators are loaded into memory entirely and
kept there during processing. As the documentation states, the larger the annotator and/or the more
annotators used, the longer processing will take due to memory usage. Also, as with other tools, the
entirety of the document being analyzed is also loaded into memory all at once. The documentation
recommends input data be broken up into smaller documents before being given to CoreNLP in order
to prevent slow processing. This shows room for parallel processing and more efficient memory

usage.

The software is able to extract some linking information through its Coreference tool built in. For
example, if a person is recognized in the text, it is also able to recognize that the word, "he" in the same
sentence references that person. In addition, the software recognizes overall sentiment in text, meaning
it can recognize some context information in both structured and unstructured text.

Opverall, relationship extraction has been weak among the tools we looked into, often not existing at all.
CoreNLP does not seem able to extract relationship information, however, it goes a step in the right
direction with the parts of speech tagger, which could be a stepping stone towards greater context
understanding.

3.0.4.3. Challenges and Shortcomings

The biggest shortcoming, like other tools, is scalability. The software struggled with a 7mb file and
while this is common among all the tools, it is a small dataset. Even with the successful entity extraction
and categorization and the advanced relationship extraction compared to other tools, the lack of ability
to analyze large amounts of text gives it limited use. There are clear areas where the tool could be made
faster however, and much more scalable.

The tools allow for custom training and custom annotators to be used. Aside from the reduced
efficiency, creating these training datasets is time consuming. CoreNLP does provide extensive options

for annotators for general text, however, any specialized use will require time to train.

The software, regardless of which API or language is used, requires Java to be installed. This presents
the minor challenge of being more difficult to use on some operating systems and configurations.

24

Editable Code

t, ent.start_char, ent.end_char, ent.label_)

Figure 3-14. Example of code to use SpaCy within Python.

3.0.5. Spacy.io

SpaCy is an open source tool created by Explosion Al Source code can be found at [1] with extensive
documentation found at [2]. SpaCy is a Python based tool with language wrappers in C++, Juliam R,
and Javascript. Despite its limitation in programming languages, it offers support for over so spoken
and written languages and provides flexibility to provide models and annotated data. The source code is
easy to view and is maintained regularly and constantly improved upon. Out of the boc, SpaCy offers
several NLP tools such as the named entity recognizer, parts of speech tagger, regex matching, entity
linking, and tokenization. SpaCY is both versatile in the algorithms it provides, and is easy to install and
work with.

3.0.5.1. Technical Details

SpaCy is written in Python and is primarily for use in Python. It is easily available as both the source
code can be found on Github as well as the software can be pip installed, making it the easiest tool to
download and use. The base software comes with a few pre-trained models based on real structured
data, as well as the datasets themselves so that the models can be updated if desired. The tool is accessed
through library calls in Python that are very simple. Performing entity extraction on a file took at most
five lines of code including setup and displaying the results. An example is presented in 3-14.

SpaCy allows the user to use pre-built models trained on news articles or structured websites. However,
it is very adaptable to correcting and retraining the models and provides the datasets to do so. In
addition, creating new models either based of the pre-existing ones or from scratch is simple,
encouraged, and supported. The documentation to do most tasks with SpaCy is openly available on
their website at [2].

The tool offers a suite of capabilities. For our purposes, it offers a named entity recognizer including
entity linking, sentence dependency parsing, parts of speech tagging, and sentence segmentation. It also
offers tokenization, regex matching, and pipeline management so multiple tasks can be completed at
once making SpaCy the most versatile tool we tested.

When focusing on entity extraction, SpaCy uses a mix of dependency parsing, word vectors, and neural
statistical modeling to recognize entities and supports the use of supplementary data in certain terms are
desired as a specific label(s). Because of this unique approach, SpaCy also has the added benefit of

25

TEXT START END LABEL DESCRIPTION

Apple 0 5 ORG Companies, agencies, institutions.

UK. 27 31 GPE Geopolitical entity, i.e. countries,
cities, states.

$1 <2 54 MONEY Monetary values, including unit.

billion

Figure 3-15. An example of results from SpaCy entity extraction.

working seamlessly with deep learning tools such as TensorFlow and PyTorch for additional NLP
analysis.

SpaCy is actively maintained and updated, more so than any of the other tools we found. As an open
source project, user ideas and implementations are often considered and integrated into the software,
making it grow faster than the more restrictive tools. The Explosion Al team takes an active role in any
new features so the software remains stable and robust. Using SpaCy does require some knowledge and
proficiency in Python and is not as simple as CoreNLP and TextRazor, but usage is much more simple
than other options such ReVerb and MITIE.

3.0.5.2. Performance Observations

Entity extraction was performed quickly, though not the fastest of the tools. It gets significant bonuses
from the neural approach, however it is still affected by the slower processing speed of Python that is
dependent on the code written by the user. Its implementation makes it easy to use parallel processing
however, though we did not use it to be consistent and fair in assessing against other tools. It does
support the processing of smaller data chunks without the sacrifice of accuracy. In terms of memory,
only the trained model is kept actively in memory throughout processing, making it memory efficient as
well.

When using the base models to process text, SpaCy was reasonably accurate with structured text. SpaCy
offers easy access to the data and the labels, as shown in 3-15. The results are stored in an object so that
only information needed can be extracted and organized as the user wishes.

Unstructured text performed worse with low accuracy as expected. The pre-trained models were trained
on structured reports and news articles. However, with about soo lines of training data, the accuracy
improved significantly. SpaCy does not provide its own confidence metrics, however, it does provide
visualization tools to see the text it labeled within the sentence and paragraph the text was found and
what labels it decided. The annotated text is easily accessible to help determine the accuracy of the
results. Out of the tools tested, SpaCy required the least amount of training data and was the easiest for
creating new or updated models.

Finally, we tested three of the languages SpaCy supports, Spanish, German, and Russian. While the
accuracy was not as good as English, it clearly understood which language it was processing and could
recognize which terms were entities, though not always the labels for them. It was able to tokenize the
words in each language for additional analysis elsewhere.

26

3.0.5.3. Challenges and Shortcomings

While SpaCy could be used with other parallel libraries and is more efficient in terms of memory and
processing time to other tools, it is still not very fast for large datasets on its own. The slow down of
Python processing and the overhead of neural learning makes it difficult to process text in reasonable
time. Also, while SpaCy offers several tools within its suite, relationship extraction is missing. The tool
is able to understand parts of speech, but context understanding and relationships are beyond its
capabilities.

SpaCy makes up for these shortcomings by being easily adaptable with models, training, and use. It’s
self contained, requiring little from outside libraries to use, though accuracy depends on additional
models trained with fairly large amounts of data.

3.0.6. Other Tools

In our research, we recognize the potential of other tools. For example, we took a closer look at Deep
Mind, Dandelion, Sintelix, Lexalytics, and Catalyst. These tools have potential, but were removed from
deeper research for various reasons. Catalyst is a specialized NER tool for biological and medical
purposes. At it’s core however, it uses Spacy.io to perform all of the ERX functions. Since we already
covered this tool, it was not worth analyzing again. Dandelion was interesting in that it provided an
image search for entities extracted which could sometimes be useful. It is a web based only API that is
still being maintained by a start-up company, but other than the image search, it did not stand out
compared to other tools. Sintelix and Lexalytics are corporate based solutions with no downloadable
API. Demos are available for a cost, however the tools are marketed as a one stop, one size fits all
solution with no ability to customize, custom train, or otherwise choose parts to use. They are worth
mentioning as they are commercial solutions with the claim they can perform ERX, however, with no
ability to actually test or analyze along with the inability to customize, they are not the type of tool we
are looking into here. Finally Deep Mind is a tool no longer maintained for several years. With no real
documentation to use the code available and the requirement of outdated libraries already proven to be
insufficient, we did not test the tool but recognize it as one of the first tools commonly referenced in
literature.

27

4. FINAL OBSERVATIONS

In this chapter we summarize important information about ERX tools as well as other considerations
of ERX that has been mentioned in the analysis of the tools but not explained.

4.0.1. Common Strengths of Current ERX Tools

Among the tools analyzed, all are able to perform entity extraction with a good amount of accuracy. In
addition to structured text, such as books, articles, and blogs, many are also able to handle unstructured
text such as text messages and Tweets on Twitter with varying amounts of degradation of accuracy.
Accessibility to the tools is not difficult. All of the tools have APIs, many of which in multiple
programming languages and even some with downloadable source code. The problem is still new
enough that tools are still being maintained and created with imperfections being recognized.

4.0.2. Common Weaknesses of Current ERX Tools

Most commonly, scalability is a major issue among ERX tools. Nearly all the tools load entire datasets at
once into memory for processing. During processing itself, it is performed sequentially and not in
parallel. This leaves tools with the capability of processing small datasets only and/or consuming a large
amount of time. All of the tools have clear ways of making them more efficient so that larger datasets
can be analyzed. The largest dataset we tests was approximately 7mb, which in the world of social media
and digital text, is quite small. Therefore, there is a demand for larger scale text analysis software.

Though entity extraction is performed with a fair amount of accuracy, relationship extraction remains
an ongoing elementary stage issue. As of now, current tools can recognize two entities within the same
sentence are related, which is both trivial and not necessarily true. Context information from the text is
not understood, therefore meaning and relationships are lost. Relationship extraction remains in early
stages and, based on literature, has been mostly abandoned for new ideas.

Finally, measurements of performance are rarely implemented and even when done, are ambiguous.
Often there are errors in the calculations and other times, they are ignored entirely. There are currently
no common performance metrics to determine the correctness and quality of ERX tools.

2.8

4.0.3. Other Aspects of ERX

In our research, we found other aspects of ERX tools that were either fascinating, but not common or
done well yet. Or were issues that were common, but not from the tools themselves.

All of the tools require training to some degree in order to categorize entities. Though they all are
intuitive and easy to train, the training datasets are quite large and time consuming to create. It requires
creating thousands of lines of sample text with annotations either written into the training text, or
programming the exact locations of the entities and the annotations associated with them. As of now,
there is only one real tool to help with building training datasets, Prodigy[14]. Prodigy is an annotation
tool with a GUI that allows a programmer to manually select entities and place them in categories.
Aside from this, the job of creating training datasets is given to a room of data entry type workers to
create the annotations to feed to the tools. A possible solution is a more intuitive annotation creation
tool or to create tools with learning mechanisms to understand entity categorization automatically
based off dictionaries or some other technique.

While all the tools provided output, a few provided more visualization of the data. Dandelion gave us an
image search for each entity, but more helpful, TextRazor gave us a dependency graph to understand
the relationships between the entities. To our knowledge, TextRazor was the only one that did this.
CoreNLP and SpaCy showed us sentences with dependencies and context connections labeled which is
a decent visualization as well. Still, we saw the benefits of the visualization and believe it is a feature
current tools should provide. In addition, it would be a possible step towards more relationship
extraction in ERX tools.

As mentioned above, performance metrics for ERX tools are ambiguous at best. Those that provided
scores were not clear how they were calculated or had obvious errors in their calculation. In this strongly
emerging are of natural language processing, a common set of metrics to measure accuracy, relevancy,
and performance is needed.

Finally, we were surprised to see some work in context based understanding in TextRazor and CoreNLP.
Also related, the ability to understand a word’s exact meaning based on the context of the whole text.
This is valuable information that could aid in relationship extraction and recognizing priority of
entities. It was not common among the tools however and may be a newer branch of ERX software.

29

5. CONCLUSIONS

Entity-relationship extraction is still in early stages of research. While entity information extraction is
largely solved, with varying degrees of success, relationship extraction alone is rare. Most tools available
are easy to use, whether through code or an API, but they have some shortcomings making them fall
short of current demands. Among these are poor scalability and no solid performance metrics to gauge
their accuracy. There is ample room for improvement and additional research, however, for basic needs,
there are tools currently available to assist in entity recognition.

30

REFERENCES

[1] Explosion Al spacy.io: Industrial strength natural language processing. https://spacy.io.
Published: 2016 Accessed: April 2020.

[2] CrowdFlower. Data for everyone - judge emotions about nuclear energy from twitter.

https://www.figure-eight.com/data-for-everyone/. Published: August 2013 Accessed: June 2019.

[3] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. Proceedings of the 43rd
Annual Meeting of the Association for Computing Linguistics(ACL 2005), pages 363—370, 2005s.

[4] Apache Software Foundation. Apache opennlp. http://opennlp.apache.org/. Published: 2017
Accessed: June 2019.

[s] Kelly Geyer, Kara Greenfield, Alyssa Mensch, and Olga Simek. Named entity recognition in 140
characters or less. # Microposts, pages 7879, 2016.

[6] The Stanford Natural Language Processing Group. Stanford named entity recognizer(ner).
https://nlp.stanford.edu/software/ CRF-NER .html. Published: October 2018 Accessed: June

2019.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H
Witten. The weka data mining software: An update. SIGKDD Explorations, 11, 2009.

[8] TextRazor Ltd. Textrazor: Extract meaning from your text. https://www.textrazor.com/.
Published: 2019 Accessed: June 2019.

[9] Joshua Madadhain and Google. Goog guava project. https://github.com/google/guava/wiki.
Published: October 2016 Accessed: June 2019.

[10] Massachusetts Institute of Technology. Mitie: Library and tools for information extraction.
https://github.com/mit-nlp/MITIE. Published: August 2003 Accessed: June 2019.

[11] University of Washington Turing Center. Reverb: Open information extraction software.
http://reverb.cs.washington.edu/. Published: Unknown Accessed: June 2019.

[12] Giuseppe Rizzo, Marieke van Erp, and Raphael Troncy. Benchmarking the extraction and
disambiguation of named entities on the semantic web. LREC, pages 4593—4600, 2014.

[13] spaCY Explosion Al Prodigy: Radically efficient machine teaching, powered by active learning.
https://spacy.io/universe/project/prodigy. Published: 2019 Accessed: July 2019.

31

[14] USNRC. Backgrounder on chernobyl nuclear power plant accident.
https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/chernobyl-bg. html. Published:
August 2018 Accessed: June 2019.

32

APPENDICES

A. TOOL SIDE-BY-SIDE COMPARISON

MITIE TextRazor ReVerb Stanford CoreNLP SpaCy.io
Access
API/Code Code API Code Both Code
Cost Free Free Free Free Free
Easy to Install Yes NSA Yes Yes Yes
Easy to Use Somewhat Yes Yes Yes Yes
Origin Academic Corporate Academic Academic Corporate
Use Clause MNone May Use Mo Commercial GNU Public License MIT License
Last Maintained 2018/2019 2019 2013 2018 2020
Extractions
Entity Extraction Good Good Fair Great Great
Relations Found With Training Yes Yes Mo Mo
Categories given/generated Given Generated Generated Given Both
Unstructured Data Poor but trainable Fair Fair Good Good
Features
Import Custom Entities Yes Yes No Yes Yes
Multi-language recognition Yes No No Yes Yes
Confidence Calculations No Yes Yes No No
Relevancy Calculations Mo Yes Mo Mo Mo
Programming Languages C++, R, Python, C, Matlab Python, Java, PHP Java Java/Python Pythaon, Cython
Graph Visualization No Yes No No Yes
Context Data No Yes No No Yes
Performance
Errors Found Yes Yes Yes Yes Yes
Scalable No No No No No
Could be made scalable Yes No Yes Yes Yes

Side-by-Side Summary of the top ERX Tools

DISTRIBUTION

Hardcopy—External

Hardcopy—Internal

Email—Internal (encrypt for OUO)

Technical Library 01177 libref@sandia.gov

35

Sandia
National
Laboratories

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

