SANDIA REPORT-
SAND95-1652 « UC~705

Unlimited Release
Printed December 1995

Trajectory Analysis and Optimization
System (TAOS) User’s Manual

David E. Salguero

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-94AL85000

Approved for public release; cﬂé‘&g‘b

%
ot

M

" ‘{
st oY
-~'~111i;i§{§§§§22{f‘ !

A
gt
L e ke
5 gl
. 51,4 i
g G A ﬂ
iy /{u;g i
i 5 13 3
v Hiy ok . (mji)‘ 3 é
Al PO Ca oy
LI e R «st’l}??@ ! gil i
i "M’ﬁ‘gﬁi iﬁ{:}ﬁ;{:g: s ", i i
Lt N]

o (L
‘ ﬁ'{ §§¥§*§§§iﬁfg§;&i‘r

it g

*
5
5
&
W
.
! 1 e
5 1
.,
e v
- e
Y <
i
i
"
L
4
4
<
ot

. :
R
e
"f ‘i' !
g
b
¢

. : i i ; ERETREE
& Y 1i ot
~ Py el 3
RRERE LR
i ,
i 2 §
P LA s 3 ——— R 4
i —~
i

SRR

!ﬁ!in&iﬁf I —li%zéi

.)“‘%i « ,
%ﬂ”{?}ﬁﬁ WV

L

(o

ilf gi*‘lm’ ‘w’(' i !i{ gt BT
zixi:ilﬁl"‘.im; 'fogf;ihm! L, h

SF2900Q(8-81)

h]

AL

| /Q//7/75”

) mﬂ?ﬂ“%f‘g&wwum B
i i . i

H
¢
i i

;algaigls%lfixﬁslslii

i

|

%

s

i

I

s
A,
! RN
{4 55
7 e il LN
& H X

ASTER

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A13
Microfiche copy: A01

SAND95-1652 Distribution
Unlimited Release Category UC-705
Printed December 1995

Trajectory Analysis and Optimization
System (TAOS) User’s Manual
(Version 96.0)

David E. Salguero
Aerospace Systems Development Center
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

The Trajectory Analysis and Optimization System (TAOS) is software that simulates
point-mass trajectories for multiple vehicles. It expands upon the capabilities of the
Trajectory Simulation and Analysis Program (TSAP) developed previously at San-
dia National Laboratories. TAOS is designed to be a comprehensive analysis tool ca-
pable of analyzing nearly any type of three degree~of—freedom, point-mass trajecto-
ry. Trajectories are broken into segments, and within each segment, guidance rules
provided by the user control how the trajectory is computed. Parametric optimization
provides a powerful method for satisfying mission—planning constraints. Although
TAOS is not interactive, its input and output files have been designed for ease of use.
When compared to TSAP, the capability to analyze trajectories for more than one ve-
hicle is the primary enhancement, although numerous other small improvements
have been made. This report documents the methods used in TAOS as well as the
input and output file formats.

Acknowledgements

Over the years many people have contributed to the development of point-mass tra-
jectory analysis software at Sandia. J. L. McDowell recognized the need for general—
purpose trajectory and mission planning software and started development of the
first point-mass trajectory code. This effort was completed by the author resulting
in the Point-Mass Simulation Tool (PMAST). D. E. Outka carried on the effort,
which evolved into the Trajectory Simulation and Analysis Program (TSAP), with
major contributions involving the equations of motion, guidance, and optimization.

The use of parametric optimization in all of these codes is due to D. G. Hull from the
University of Texas at Austin. McDowell, Outka, and the author were all students
of Hull, and the trajectory codes reflect his teachings in flight mechanics and opti-
mization.

The author also thanks B. R. Sturgis for independently verifying the mathematical
formulation and methods and R. W. Greene for reviewing the document and testing
the software.

ii

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Contents

Acknowledgements
Listof Figures ...
Listof Tablescoiiiiii
Nomenclature ...t

1.Introduction i
1.1. Trajectory Simulation
1.2. DevelopmentHistoryiii...
1.3. Program Capabilities
1.4. Table and Problem InputFiles
1.5.ProgramExecution,
16.0utputFilescciiiiiiiiiiiiiii,.
17.FuturePlans ...t

2. Methods ..o

21.CoordinateSystems ...,

2.1.1. Earth-Centered and Fixed, Cartesian (ECFC) Coordinate
£33 < 11 A

2.1.2. Earth—Centered, Inertial, Cartesian (ECIC) Coordinate
System .t e e i e

2.1.3. Local Geocentric Horizon Coordinate System
2.1.4. Geocentric Coordinate Systemc.oe...
2.1.5. Local Geodetic Horizon Coordinate System
2.1.6. Geodetic Coordinate Systemccovievnnnnnn.
2.1.7. Body-Fixed Cartesian Coordinate System
2.1.8. Velocity Cartesian Coordinate Systems
2.1.9. Wind Cartesian Coordinate System
2.1.10. Inertial Platform Cartesian Coordinate System
2.1.11. Tangent Plane Cartesian Coordinate System
2.1.12. Coordinate Transformationsc.....

2.2.Equationsof Motioncoooia..
2.2.1. Numerical Integrationcccoveienennnnnn.
2.2.2,Rail Launchesand Sled Testsccovvunnn..
2.2.3. Longitude, Latitude, and Altitude Rates
2.24.Ground SpeedandRangecoiivinninnn,

2.2.5. FlightPath AngleRatescovvvennnnnn... 2-47

2.2.6. SpecificLoad Factorscc0vvveunnnnn.. 2-50
2.3. Contributions to Acceleration 2-51
2.3.1. Atmosphere Modelviiieieannn., 2-52
2.3.2. Aerodynamic FOICeScovviinnnnnnnnnnnnn. 2-56
2.3.3. Propulsive FOrcesooveiiineneeennnnnnnnn.. 2-59
234.GravityModeloiiii i 2-60
24.OutputVariablesooviiiinninn, 2-64
24.1.Rangesand Distancesccoeveevnnnnns.. 2-66
2.4.2. Radar Observationsc.oueeeeeeummnnnennnnns 2-71
2.4.3. Relative Vehicle Calculations 2-74
2.4.4. Initial Impact Point Calculations 2-75
2.4.5. Aerodynamic Variablescceuunnuunn.. 2-77
25.GuidanceRulescoooiiiiii i, 2-78
2.5.1. Control Variable Solution Processoo..... 2-81
2.5.2. Intercepts and Proportional Navigation 2-85
2.5.3.Range Insensitive AXiSooovinnnnnnnn.. 2-89
254.FlightPathLimitsc000viiuueneennn.... 2-90
2.6. Trajectory Calculations 2-91
2.6.1. Derivative Calculationscoovuuuun... 2-96
2.6.2.SearchMethodscovteiiineeenennnnnnnnnn, 2-98
2.6.3. Optimizationceviininriinnnnernnnnnnnnnn. 2-102
3.TableFiles............coooiiiii i, 3-1
1. TableTypes ..ot 3-3
3.2. Table/Problem File Relationship 3-5
33.TableFileFormat................................... 3-6
34.SimpleTablescoooviiiinii 3-9
35.FullTablescooiiiiiii, 3-13
3.5.1. Math Operationsoovveeeinnnreeenennnnnnnnnnn. 3-15
3.5.2. Constant Values and State Variable Values 3-16
3.5.3. Tabulated Data Valuescovveuevuennnnn.. 3-17
3.5.4. Storage Variablesccoiiiiiiinnnnnn... 3-18
3.5.5. User—defined Variablescccuvuunnn.. 3-19
3.5.6. If-Then Statementscooveveeeeeenennnnnnnn. 3-20
3.5.7. GOtO StAtemMeNntSvenetett e ee e 3-21
3.5.8. Skewed Tabulated Datacouvervennnnnn.. 3-22
S6EXamplesiiiii 3-25

iv

4.ProblemF Filescoiiiiiiiiiiiiii i, 4-1

41.FileFormatcoi it 4-4
4.2. SegmentDataBlocks....................ccoiatn, 4-7
421.%AeroDataBlocKkoiiiiiiiiiiiiiiiiiiiiiaaas 4-9
422.*Constants Data BlocK cciviiiiiiiiiniennnn. 4-11
423.*CgDataBlockcooviiiiiiiiiiiiiiiiiiieeanes 4-12
424 *FlyDataBlockovvveiiinnniiiiineeneanenaanns 4-13
4.2.5. *IncrementDataBlockcciiiiieininnn.. 4-20
4.26. ¥Inertial DataBlockcciiiiiii it 4-23
4.27. *IntegDataBIOCKovviiiiiiiiieieiiinnnnnnnns 4-25
428. *LimitsDataBlockot 4-26
429.*PropDataBlocKo v i it i e it 4-27
42.10.*RailDataBIockccciiiiiiieiiiiinnnennnn. 4-29
42.11.*ResetDataBIockcciiuiirinnrnienennnnnn 4-30
42.12.*WhenDataBlockc.ciiiiiiiiinnnnnnn. 4-31
4.3. TrajectoryDataBlocksccoeviiiinn.. 4-33
43.1. *DefineDataBlocKccoiviiiieniiinnnnnnnnnn. 4-35
432.*Dwn/crsDataBlocK ccvviiii i ittt 4-39
433.*FileDataBlocKcvviiiiiininenenenennnnnnn 4-40
434.*TipDataBlockcccvviiiiiiiiiiiiiiiiiiaan.. 4-42
435 *Initial Data BIoCK cviviniiiiiniiinennnnnnnn. 4-43
43.6.*PrintDataBlockcoiiiiiiiii it 4-46
4.3.7. *TangentDataBlockcccoviiriiinninnnnnnnn. 4-47
4.4. ProblemDataBlockscciiiiiiiaa... 4-48
44 1. *AtmosDataBlockcciiiiiiiiiiiiiiiiiann. 4-50
442 . *DefineDataBlockccoiiiiiiiiiinaniinnnnn. 4-52
443.*EarthDataBlockcciiiriiiennnnnnnnnnns 4-54
444 . *EgsDataBlockciiiiiiiiiiiiiiiiiiiiannn 4-58
445.*FileDataBlocKcciiiiiiiiiiii ittt 4-60
4.4.6. ¥*Optimize DataBlocko, 4-62
4477.*PrintDataBlockcociiiiiii it ittt i 4-72
448.*RadarDataBlockciiiiiieninineennnnnn. 4-74
449.*SearchDataBlocKcoviiieernnnenennnenn. 4-76
4.4.10. *Summarize DataBlockcciiiiiiiiiinnnn. 4-80
4.4.11. *SurveyDataBlockcooviiiiiiiiiiiiiinaa.,.. 4-83
4412, *Title Data BloCK . .. v et e it ie it i ieieeeenenns 4-85
4.4.13. *Units/FmtDataBlockcciiiiiiennnnnnnnn 4-86
4414, *WindDataBlockcciiiiiiiiiiienennnnn.. 4-89
45 . Examples ...t i i e it 4-91

4.5.1. BallisticReentryovuisen.... ceeeeeee.. 4-92
4.5.2.BallisticRocketcoiieviiiiinnnnnn... ... 4-98
4.5.3. Air-Launched Intercept B R LI~
4.5.4. Ground-Launched Intercept B - G I V]

Referencesooviviii Ref-1
Appendix ... veee. A-1

INdeX Index-1
Distribution ..., eee.... Dist—-1

vi

List of Figures

Figure 1-1. ATAOS Application.cciiieennnennnn...
Figure 1-2. Typical Trajectory Information.
Figure 1-3. Segmented Trajectories.ccvevenennennnnnnnnn.
Figure 1-4. A Multiple Trajectory Example.
Figure 1-5. TAOS Icon on Silicon Graphics Workstations.
Figure 1-6. Example Printout.oooiiiiiiiiiennna...

Figure 2-1. The ECFC Coordinate System.cc0cevun...
Figure 2-2. Local Geocentric Horizon Coordinates.
Figure 2-3. Geocentric Position Components.
Figure 2—-4. Geocentric Velocity Components.
Figure 2-5. Local Geodetic Horizon Coordinates.
Figure 2-6. Ellipsoidal Earth Geometry.c.ccccuveun...
Figure 2-7. Geodetic Coordinate System Geometry.
Figure 2-8. Body-Fixed Coordinates.cooveuunnennn..
Figure 2-9. Geodetic Yaw, Pitch, and Roll Angles.
Figure 2-10. Velocity Coordinate System.
Figure 2-11. Bank Angle and Wind Coordinate System.
Figure 2-12. Angle of Attack and Sideslip Definitions.
Figure 2-13. Angle of Attack and Sideslip Definitions.
Figure 2-14. Aerodynamic Angles at 90° Angle of Attack.

Figure 2-15. Total Angle of Attack and Windward Meridian Definitions.

Figure 2-16. Accelerations from Forces Acting on the Vehicle.
Figure 2-17. Thrust Vector Angles.ccovtiiiniinnnnnnnn.
Figure 2-18. East and North Distances.cc0vvunn....
Figure 2-19. Downrange and Crossrange.ceeveunennn..
Figure 2-20. Radar Station Coordinates.c..c.c.u.....
Figure 2-21. Radar Observations.c.cceiveivnnneennnnnn.
Figure 2—-22. Radar Aspect and Meridional Angles.
Figure 2-23. Relative Vehicle Calculations. e
Figure 2~-24. Lift-to-Drag Ratio.civun....
Figure 2-25. Guidance Loop.ccovtiiininrnnennnnnnnnnnn.
Figure 2-26. Parabolic Transition to Desired State.
Figure 2-27. Cubic Transition to Desired State.
Figure 2-28. Intercept GEOMeTY.vviiiienineennnnennnnn.
Figure 2-29. Proportional Navigation Geometry.

vii

L S S
!
O N O\ =

Figure 2-30. Range Insensitive AXiS.coovvivinnnennn...
Figure 2-31. MainFlowchart.coviieiinnnnnnnn.n..

Figure 2-33. Trajectory Calculation Flowchart.
Figure 2-34. Derivative Calculation Flowchart.
Figure 2-35. Newton-Raphson Search.
Figure 2-36. Secant Search.cooiiiiiinnnnnnnnnn..
Figure 2-37. Parabolic Root Search.oouuun....
Figure 2-38. Golden Section Search.c.cvvunn...

Figure 3-1. Forces Actingon Vehicle.
Figure 3-2. Axial Force Coefficient as Function of Mach Number.
Figure 3-3. Thrust and Mass Flow as a Function of Time.
Figure 3-4. Table Filesand Tables.ooovvunennnnnn....
Figure 3-5. Table Extrapolation Option.o.uveunnn..
Figure 3-6. Square and Skewed Tabulated Data.

Figure 4-1. Segmented FlightPaths.ouvun....
Figure 4-2. Problem File Organization.
Figure 4-3. Thrust Vector Angles.ovvviueeennennnn...
Figure 4-4. Downrange and Crossrange Definition.
Figure 4-5. Trajectory Output File Example.
Figure 4-6. Trajectory Printout Example.
Figure 4-7. Problem and Data Block Organization.
Figure 4-8. Example of EGS Database File.
Figure 4-9. Trajectory Output File Example.
Figure 4-10. Trajectory Printout Example.
Figure 4-11. Valid Multiple Search Structures.
Figure 4-12. Summary Variable Printout.
Figure 4-14. Altitude versus Range for Example Ballistic Trajectories.

Figure 4-15. Velocity versus Time for Example Ballistic Trajectories. .

Figure 4-16. Maximum Dynamic Pressure for Example Ballistic
Trajectories. «ovveeennin ittt i,

Figure 4-17. Maximum Axial G’s for Example Ballistic Trajectories. . .
Figure 4-18. Altitude versus Range for Example Ballistic Rocket.
Figure 4-19. Velocity versus Time for Example Ballistic Rocket.
Figure 4-20. Altitude versus East Position for an Intercept Trajectory. .
Figure 4-21. Ground-Launched Intercept Example.

viii

2-100
2-101

List of Tables

Table 2-1. TAOS Program Modules.ooiiiiiiiiiene.. 2-2
Table 2-2. Body—Attitude Control Variables. 2-78
Table 2-3. Guidance Rules that Indirectly Specify Control Variables. ... 2-79
Table 3—1. Table TYPES . .vvvvvirreieenieninenneeneeencnnennns 3-3
Table 3-2. TAOS State Variables.coiviiiieiiinenennenn. 3-7
Table 3-3. Units for Thrust and Mass Flow Tables 3-10
Table 3-4. Math Operations.coeiiiiiiiiernineenneeanns 3-15
Table 4-1. SegmentDataBlocks.coeviiiiiiiiiiinne. 4-7
Table 4-2. Body-Attitude Angles for Vehicle Guidance. 4-13
Table 4-3. Consistent Sets of Body—Attitude Angles. 4-14
Table 4—4. Flight Conditions for Vehicle Guidance. 4-16
Table 4-5. *Increment Variables.oovieiiiniiiniiennennnnn. 4-20
Table 4-6. Inertial Platform Alignment Coordinate Systems. 4-23
Table 4-7. Thrust and Mass Flow Rate Units.coevvutnn 4-27
Table 4-8. Trajectory Data BIocks.ccovvviiiiiiiiiiininnns 4-33
Table 4-9. User—-Defined Variable Math Operations and Functions. 4-36
Table 4-10. Initial Position Variables.cociiiiiiie, 4-43
Table 4-11. Initial Velocity Variables.ccovveiieinrneennn. 4-43
Table 4-12. Other Initial Condition Variables. 4-44
Table 4-13. Problem DataBlocks.cooiviiiiiiiiinennnns 4-49
Table 4-14. Atmosphere Types. . . oo vcvvviniiiiiiiiiiiiiiiiiiennn, 4-50
Table 4-15. Spherical EarthModel.coiiiiiine, 4-54
Table 4-16. WGS-72 and WGS—84 Earth Model Values. 4-55
Table 4-17. TSAP Compatible Earth Model Values. 4-56
Table 4-19. Full WGS-84 and GEM-T1 Earth Model Values. 4-56
Table 4-20. Optimization Data Block Input Variables. 4-66
Table 4-21. Radar Data Block Variables.cociivnen 4-175
Table 4-22. Search Data Block Variables.coviiiatt. 4-77
Table 4-23. Summary Variable Math Operations. 4-81
Table 4-24. Allowable Units.ccveieiiiiiiiiniienennnn. 4-86
Table 4-25. Wind Data Block Variables.c.ooviiiiinn, 4-89

Nomenclature

Symbols

a acceleration vector

[A] transformation matrix

c speed of sound

Ca axial-force coefficient

Cp drag coefficient

C lift coefficient

Cn normal-force coefficient

Cs side—force coefficient

Cx body x—axis force coefficient

Cy body y-axis force coefficient

Cz body z-axis force coefficient

e earth eccentricity

f earth flatness parameter

F force vector

g acceleration of gravity

G reference geopotential (9.80665 m/sec?)
GM gravity constant

h altitude

H geopotential altitude

] moment of inertia matrix

J gravity model zonal harmonics
| Jacobian matrix

k ratio of specific heats (1.4 for air)
L/D lift-to—drag ratio

m mass

M Mach number

M, molecular weight

M moment vector

N distance used in geodetic latitude calculations

=

ok od Y S

proportional navigation constant

pressure

power setting

dynamic pressure

range

position vector

earth radius

universal gas constant (8314.32 N-m/(kmol-K)
Reynold’s number per foot

state vector

aerodynamic reference area

nozzle exit area

time

temperature

unit vector in ECFC coordinates
acceleration of gravity potential function
closure velocity

velocity vector

x coordinate or component

distance used in geodetic latitude calculations
x—axis unit vector in ECFC coordinates

y coordinate or component

y-axis unit vector in ECFC coordinates

z coordinate or component

Z-axis unit vector in ECFC coordinates

angle of attack

azimuth angle of i vehicle

azimuth of the initial impact point

angle of attack at maximum lift-to—drag ratio
radar azimuth angle

total angle of attack

sideslip angle

Be

ballistic coefficient

Biip ballistic coefficient for the initial impact point calculations
Be Euler sideslip angle

y vertical flight path angle

0 latitude

4 vector difference or increment

& elevation angle of i* vehicle

& radar elevation angle

g angle between thrust vector and body x axis

£ angle of thrust vector projected into body y-z plane
/1 aspect angle relative to radar

(0] pitch angle

A longitude

Ap line of sight pitch angle

4y line of sight yaw angle

7] bank angle

Uy coefficient of friction

v kinematic viscosity

o] density

T molecular temperature

¢ meridional angle

ér meridional angle relative to radar

Pw windward meridian

D roll angle

Y horizontal flight path angle (heading)

1’4 yaw angle

@ angular velocity vector

Q rotation angle between ECFC and ECIC coordinate systems
Subscripts

0 initial, first, or sea level

1 temporary coordinate system, vehicle number, or first

xii

aero

gc

grav

iip

prop

rail

sp

p

e N ¢ ® 3

temporary coordinate system, vehicle number, or second
aerodynamics

body coordinate system
friction

geocentric coordinate system
geodetic coordinate system
gravity

it vehicle or i table

initial impact point

ECIC coordinate system
normal

inertial platform coordinates
polar

propulsion

radar

launch rail

specific or per unit mass
surface of earth

tangent plane coordinates

velocity coordinate system relative to Ve

velocity coordinate system relative to V,,_

wind coordinate system

X component

y component

Z component

ECFC coordinate system or.equatorial

xiii

Intentionally Left Blank

xiv

1. Introduction

1. Introduction

Sandia National Laboratories tests high—speed flight vehicles, such as sounding
rockets, reentry bodies, and guided missiles. Figure 1-1 illustrates a typical sound-
ing rocket test flight. These vehicles often travel at hypersonic velocities and at high
altitudes. The Trajectory Analysis and Optimization System (TAOS) has been devel-
oped to calculate trajectories for this type of high—speed vehicle; however, it can also
be used for slower—speed vehicles, such as aircraft and cruise missiles.

Payload Separation
2nd Stage
Payload
Tra]ectory
2nd Stage
Staging /\ Trajectory
o
1st Stage rajectory
Bum
Impact Impact
Rocket /
Launch

Figure 1-1. A TAOS Application.

TAOS predicts aircraft and missile trajectories from known vehicle characteristics.
Given a vehicle’s mass, its initial conditions, and the forces acting on it, TAOS com-
putes its trajectory. A vehicle’s trajectory is defined by its position, velocity, and ac-
celeration as a function of time. This information is used to determine a vehicle’s
overall performance characteristics, such as its range, speed, time of flight, and alti-
tude. Figure 1-2 shows typical trajectory information plotted as a function of time.

100000 5000 N
A S —
Altitude 80000)4 < Velocity 4000 / 3
() 60000 / \ (ft'sec) 3000 r/
40000 \ 2000 /
20000 1000/
0 60 120 180 240 0 60 120 180 240
Flight Time (sec) Flight Time (sec)

Figure 1-2. Typical Trajectory Information.

1. Introduction
1.1. Trajectory Simulation

1.1. Trajectory Simulation

The motion of an object relative to a fixed point in space is obtained from a set of
differential equations called the equations of motion. The equations of motion are
based on Newton’s second law as applied to rigid bodies of constant mass, that is,

SF=m-3 1 Force Equation

- - . 1-1)
IM=[I]-w; MomentEquation (

These equations represent a set of second—order differential equations that is inte-
grated with respect to time to compute an object’s motion. The position and velocity
of the object’s center of mass are obtained from the force equation, and the object’s
angular orientation and rate are obtained from the moment equation. The two inertial

acceleration vectors, d;and @ each have three components, so there are six second—
order differential equations, and this system is said to have six degrees of freedom
(6-DOF).

TAOS uses a more simplistic approach that assumes the vehicle has a control system
(automatic or human) capable of controlling the vehicle’s angular orientation. There-
fore, the vehicle’s angular orientation is assumed to be known; it is an input quantity.
This assumption eliminates the moment equation and three degrees of freedom, and
it makes the problem easier to solve.

The problem reduces to
SF=m-3 (1-2)

which represents a set of three second—order differential equations for the motion of
apointmass. Thus, TAOS is often called a point-mass trajectory simulation or a three
degree~of—freedom (3-DOF) simulation. The vehicle’s position, velocity, and accel-
eration depend on the forces acting on it and on its mass. Its angular orientation is
input, and itis assumed that a control system is capable of maintaining it. The angular
orientation is required to calculate the forces acting on the vehicle.

Although Equation (1-2) is for a constant mass rigid body, it can be used for variable
mass bodies such as aircraft and rockets. Mass can change instantaneously, for exam-
ple, when a weapon is dropped, and mass can change from the propulsive system
burning and exhausting fuel.

An instantaneous mass change is not a problem because the trajectory can be divided
into a trajectory before the change and a trajectory after the change. However, mass
changes from a propulsive system produce propulsive and drag forces. In TAOS
these forces must be accounted forin the F term. An additional mass flow equation
is added to the set of differential equations to provide user control over the vehicle’s
mass.

Over long time periods, control systems generally keep the an gular accelerations
near zero, which is called trimmed flight. In a point-mass simulation, such as TAQS,

1-2

1. Introduction
1.1. Trajectory Simulation

the forces acting on the vehicle must correspond to this trimmed condition. Trim
forces used to maintain the vehicle in various body orientations must be included as
part of the total force acting on the vehicle.

Point-mass, 3-DOF trajectory simulations can be calculated much faster than full
6-DOF simulations. They also require less information about the vehicle than
6-DOF simulations. This makes them ideal for conceptual design, mission planning,
and vehicle performance analysis. They are excellent for predicting trajectory char-
acteristics of long duration and overall system performance.

Point-mass simulations cannot be used to study stability and control problems in-
volving the dynamic response of the vehicle and its control system. They are also
poor for trajectories with large angular accelerations.

Details of the mathematical formulation used in TAOS are given in Section 2.

1. Introduction
1.2. Development History

1.2. Development History

The specific methods used in TAOS for flight path prediction have a long history.
They began with the development of the Point-Mass Simulation Tool (PMAST).!
The equations of motion, coordinate transformations, and some preliminary code for
PMAST were derived by J. L. McDowell in 1984. This mathematical formulation
was enhanced and converted into usable software by the author during 1985. Because
of its capabilities and its user interface, PMAST became widely used at Sandia for
trajectory prediction.

Parametric optimization methods vary a set of parameters to minimize an objective
function subject to constraints. These methods can be applied to trajectory analysis
to vary the shape of a trajectory or the timing of trajectory events to meet mission
planning and flight path constraints. Parametric optimization was tested in PMAST,
but it was unreliable because of singularities in the equations of motion and vehicle
attitude definitions. These problems with optimization provided the motivation for
the development of a new version of the code.

During 1987 and 1988, the equations of motion and mathematics in PMAST were
modified by D. E. Outka resulting in the Trajectory Simulation and Analysis Pro-
gram (TSAP).2 The equations of motion in PMAST were derived in a wind coordi-
nate system which is typical for aircraft trajectory simulations. Outka derived the
equations of motion for TSAP in an earth-centered, earth—fixed coordinate system
to avoid the numerical problems with singularities. This method is commonly used
for missile trajectories. Outka used unit vectors for coordinate transforms rather than
transformation matrices, which simplified parts of the code, and he also improved
the reliability and efficiency of the optimization procedure. The TSAP user interface
remained nearly identical to PMAST. TSAP quickly became the standard point—
mass trajectory simulation software at Sandia.

From 1988 to 1993 capabilities were added to TSAP as required to support flight test
projects at Sandia, and it was successfully used on many projects. However, prob-
lems involving multiple vehicles were awkward to solve with TSAP. Furthermore,
TSAP was not easy to adapt to multiple vehicles because of the way it had been pro-
grammed, so a decision was made in 1993 to develop a new multi-vehicle, point—
mass trajectory code.

The result of this effort is TAOS. The mathematical formulation in TAOS is nearly
identical to TSAP. It has been proven over time, and there is no need to change it. The
primary change from TSAP to TAOS is the extension to multiple vehicles. This is
made possible by writing TAOS in the C programming language rather than Fortran,
C provides data structures and dynamic memory allocation that make it easy to ex-
tend from a single vehicle to multiple vehicles.

Another difference between TSAP and TAOS is the user interface. The style is the
same, but numerous changes were made to support the multi-vehicle capability, to
increase flexibility, and to make it easier to use.

1. Introduction
1.2, Development History

Numerical methods have been improved in TAOS often requiring less computer pro-
cessing time than TSAP. Run time comparisons between the two programs vary
greatly and are highly dependent on the problem. Single trajectories with no opti-
mization require anywhere from about the same amount of processing time to 20 per-
cent less time with TAOS than with TSAP. Long trajectories with optimization can
run as much as 50 to 60 percent faster with TAOS.

TAOS is designed to run on UNIX systems; however, it is written in standard ANSI-
C, so it can be run on any computer system with a 32-bit C compiler. For example,
it has been tested on an IBM personal computer running Windows NT with the Bor-
land C/C++ compiler. It does require a 32-bit operating system and compiler, such
as Windows NT or VAX/VMS.

1. Introduction
1.3. Program Capabilities

1.3. Program Capabilities

TAOS is a general purpose computer program that can simulate many different types
of trajectories. One way it does this is to break the trajectory into pieces, such that
each piece is relatively simple to describe. These pieces are called trajectory seg-
ments.

Segment 2

Constant angle-of- Segment 3 Segment 4
Level tum
attack pushover Lovel fiight ;
Segment 6
Constantg
Segment 5
Segment 1 Level tum the — pushover
Constant flight other direction
path angle climb
Segment7
/ Ballistic Descent
Beginning of End of
Trejectory Trajectory

Figure 1-3. Segmented Trajectories.

Figure 1--3 shows a trajectory that has been divided into seven segments. Within each
segment, the vehicle configuration and guidance rules stay the same. When either of
these changes, a new segment is defined. The trajectories for each segment are com-
bined to form the complete trajectory.

Guidance rules, for example “fly level” or “fly at a constant angle of attack,” are
used to determine the vehicle’s angular orientation. Many guidance rules are avail-
able. Some directly specify the angular orientation of the vehicle, such as “fly a
constant pitch angle,” while others indirectly specify the angular orientation, such
as “fly alevel turn.” These rules are input for each segment telling TAOS how to cal-
culate the segment trajectory.

Because the guidance rules change instantaneously between segments, trajectories
can have discontinuities in the vehicle angular orientation between segments. An as-
sumption of this approach is that these discontinuities are small and that the control
system can nearly instantaneously change from one orientation to another. This as-
sumption is reasonable for many flight vehicles, such as missiles, aircraft, and reen-
try bodies.

Multiple trajectories are used to represent more than one vehicle or object. These are
used to track spent boosters or deployed objects and to compute intercept trajectories.
Figure 14 contains a plot with two trajectories that intercept.

During conceptual design studies, sets of trajectories are often computed where one
or more of the input parameters is systematically varied. These trajectories are then

1-6

1. Introduction
1.3. Program Capabilities

200000
Intercept
/‘/ p
150000 P~
. N
Altitude \
(f) ~
100000 g \\Klnterceptor
50000 \\
/ Targe?
% %5 50 75 100 125

Range (nm)

Figure 1-4. A Multiple Trajectory Example.

compared to study the effects of the trajectory parameters. TAOS provides a survey
capability that can be used for these tradeoff studies.

Parameter Optimization

Mission planning and conceptual design studies often require trajectories satisfying
many constraints, Parameter optimization can be used to vary a selected number of
input values to minimize an objective function and to solve for these constraints. Op-
timization is the most powerful feature in TAOS and gives the software great flexibil-
ity to solve many types of problems.

TAOS uses a parameter optimization method called vf02 originally developed by Po-
well.3 This method, one of several recursive quadratic programming methods,
solves the general nonlinear programming problem where a set of parameters is var-
ied to minimize an objective function subject to equality and inequality constraints.

Typical optimization parameters are trajectory initial conditions, guidance rules, and
segment final conditions. These parameters are varied to minimize or maximize an
objective function, such as time, range, or altitude, subject to constraints.

Simple constraints specify a value or limit for a trajectory variable, such as a final
altitude, velocity, range, or flight path angle. More complex constraints relate values
between two trajectories. For example, an altitude in one trajectory can be
constrained to be equal to an altitude in another trajectory. Optimization is used to
calculate the intercept trajectory in Figure 1-4, and constraints are used to force the
two trajectories to intercept.

Although most constraints apply to specific values at the end of segments, constraints
can be set up that apply to the entire trajectory. For example, constraints can be used-
to keep the trajectory within a maximum altitude limit or within a minimum dynamic
pressure limit.

1. Introduction
1.4. Table and Problem Input Files

1.4. Table and Problem Input Files

The current version of TAOS is a noninteractive computer program. All input data
resides in one or more files created before running TAOS. As TAOS runs, it creates
one or more output files. These output files cannot be inspected until TAOS has com-
pleted execution.

All of the input and output files are text files. They can be created, inspected, and mo-
dified with any text editor or word processor. On UNIX systems the standard textedi-
tor is vi; however, most UNIX workstations provide a window—based editor that is
much easier to use. For example, the jot editor is available on Silicon Graphics
workstations.

TAOS uses two types of input files: table files containing data such as thrust, mass
flow, and aerodynamic coefficients, and problem files containing trajectory defini-
tion data. Table filenames are of type .#bl, and problem filenames are of type .prb.

Use of these file types is required; TAOS keys on the file type when processing the
input files. Any number of table and problem files can be input; however, usually one
or two table files are input, and one problem file is input.

Aero

filetbl = Table File { Propulsion

Initial & Final Conditions
file.prb = Problem File{ Trajectory Description
Printout Control

Table files are used to define the forces acting on the vehicle and other quantities that
are complex functions of the vehicle’s state. They contain information that is general-
ly constant for a given vehicle, so the same table files are used for many different tra-
jectories. These files are often large and complex, but they are seldom modified. De-
tails of the table file format are given in Section 3.

Problem files contain information that describes how to compute the trajectories, for
example, initial conditions, trajectory segment definitions, and output descriptions
for each trajectory. Problem files are generally small and their contents change often.
The problem file format is given in Section 4.

TAOS requires a problem file to run; the table files are optional. Constant aerody-
namic and propulsive forces can be defined within a problem file so a table file is not
always required.

1. Introduction
1.5. Program Execution

1.5. Program Execution

TAOS is executed by entering a command from the UNIX shell or from DOS. On
UNIX systems this command is entered from a terminal or a terminal window. On
PC systems it is entered from a DOS window. The command has the form:

taos filel.tbl file2.tbl ... filex.prb

The program name, taos, is given first. This is the filename of the program, so it may
require directory path names to fully specify it depending on the computer system.
For example, the command

/usr/public/taocos filel.tbl file2.tbl ... filex.prb

runs the program in the file /usr/public/taos. The remainder of the command is a list
of table and problem filenames separated by spaces. TAOS reads all of the table files
first, and then it executes the problem files in the order given.

On the Silicon Graphics workstations used in the Aerospace Systems Development
Center at Sandia, an icon has been set up for TAOS, as shown in Figure 1-5. TAOS
can be executed by selecting all input table and problem files, dragging them to the
TAOS icon, and dropping them on the icon. This submits a batch job thatruns TAOS
with the selected input files. The status of the batch job can be obtained by double
clicking on the TAOS icon which opens a window containing a list of all batch jobs
in the system. The window is updated every 5 seconds so it can be left open to contin-

uously monitor job status.
TAOS
@ -ﬁf — lcon

test.tbl
taos
Table and

Problem File ~—~g.

lcons
test.prb

Figure 1-5. TAOS Icon on Silicon Graphics Workstations.

As TAOS calculates each trajectory, it saves all output data in memory. This can re-
quire large amounts of memory (4 to 16 Mb) depending on the length of the trajecto-
ry, the integration step size, and the print interval. Memory requirements may limit
the trajectories that can be calculated on smaller PC systems. UNIX workstations
generally do not have this limitation.

1. Introduction
1.6. Output Files

1.6. Output Files

TAOS automatically creates printout files. Printout files have the same filename as
the input problem files except that the file type is .out. A separate printout file is
created for each input problem file.

The printout file always contains a listing of the problem file and error messages. The
remainder of the printout file is controlled by information in the problem file, such
as a list of the variables to be printed and the print time interval. An example page
from a printout file is shown in Figure 1-6. The column headings are names of output
variables which are defined in the appendix.

Sandia National Trajectory Analysis & Optimization Software
Laboratories (TAOS - Version 96.0)

Example of a ballistic reentry-body trajectory
Problem (ballistic) / 1976 US Standard Atmosphere / Non-rotating WGS-84 Earth

Trajectory for vehicle: v

Time Alt Range Long Mach Vel Gamgd
0.000 300000.0 0.000 20.00000 19.9642 18000.00 -25.000
0.500 296194.1 1.324 20.02202 19.9715 18006.57 -25.023
1.000 292383.5 2.648 20.04405 19.9788 18013.14 -25.046
1.500 288568.3 3.973 20.06609 19.9861 18019.71 -25.069
2.000 284748.3 5.298 20.08814 19.9933 18026.27 -25.092
2.500 280923.7 6.623 20.11019 20.0006 18032.82 -25.115
3.000 277094.4 7.949 20.13225 19.9008 18039.37 -25.138
3.500 273260.5 9.276 20.15432 19.7897 18045.91 -25.161
4.000 269421.8 10.603 20.17640 19.6805 18052.43 -25.184
4.500 265578.5 11.930. 20.19848 19.5731 18058.93 -25,207
5.000 261730.6 13.258 20.22057 19.4673 18065.42 -25.230
5.500 257878.0 14.587 20.24267 19,3632 18071.89 -25.253
6.000 254020.7 15.815 20.26478 19.2606 18078.32 -25.276
6.500 250158.9 17.245 20.28690 18.1597 18084.73 -25.299

Figure 1-6. Example Printout.

TAOS also writes status information and error messages to standard output, which
is the terminal or window used to enter the command that runs TAOS. On UNIX sys-
tems this information can be redirected to a file. When using the icon on Silicon
Graphics workstations, the status information is written to the batch job output file.

Two other types of output files can be created: files containing trajectory values for-
matted for the Engineering Graphics System (EGS),4 and files containing trajectory
values arranged in columns.

EGS can be used to produce presentation—quality plots of the trajectory data. It is
available on the Silicon Graphics workstations in the Aerospace Systems Develop-
ment Center at Sandia. The trajectory plots in this report were created with EGS.

If EGS is not available, trajectory data arranged as columns of numbers in a file can
be plotted with a variety of plotting packages. This file format is similar to the stan-
dard printout, but it is not formatted with page breaks and headers. This format is also
useful for transmitting trajectory information to other people.

1-10

1. Introduction
1.7. Future Plans

1.7. Future Plans

Future versions of TAOS will have the capability to interactively create and edit table
and problem files. This will include interactive plotting of the tabulated data in the
table files. Its purpose will be to help users avoid input errors.

Similarly, future versions of TAOS will have interactive plotting of trajectory output
data. This will include plots of trajectory information during execution, so the trajec-
tory can be observed during computation. This will be useful for optimization prob-
lems that take a long time to run because they can be stopped if they are not working
correctly.

And finally, as with PMAST and TSAP, new output variables and guidance rules will
be added to TAOS as required to support projects at Sandia.

. . » -
-
' i
%
g
W..... 5
L,
DL
LR
S
) de
i3
y

A3

a3

1-12

Intentionally Left Blank

1. Introduction

2. Methods

2. Methods

As mentioned in the previous section, TAOS uses the same methods as its predeces-
sor TSAP,2 so the description of the mathematical formulation given in the TSAP
manual applies to TAOS as well. However, the mathematical formulation given in
the TSAP manual is incomplete. This section includes information in the TSAP
manual as well as additional information on the coordinate systems, equations of mo-
tion, atmosphere and gravity models, guidance methods, range calculations,
searches, and optimization.

Notation

Although a list of symbols is included at the beginning of this report, some of the
notation needs additional explanation. The large number of coordinate systems in
TAOS is confusing so a notation has been adopted that states the mathematics pre-
cisely.

Vectors of arbitrary magnitude, used for position, velocity, and acceleration, are de-
noted with an arrow as shown below, and the magnitude of these vectors is denoted
with double bars. Unit vectors with a magnitude of one are denoted with a caret, and
matrices are denoted with square brackets. In summary

¥ = vector of arbitrary magnitude
| 1] = magnitude of vector
= unit vector
[A] = matrix
A right subscript on a vector indicates a coordinate system association. For unit vec-

tors this is the coordinate system the unit vectors represent. For other vectors it is the
coordinate system dependence caused by vector differentiation with respect to time.

For example, 179 is the velocity vector relative to an earth—fixed coordinate system.

Left and right subscripts indicate the value is relative to two reference frames, so that
1] o 1s the rotational velocity between the inertial and the earth—fixed coordinate

systems. This notation appears on vectors and matrices used to convert from one sys-
tem to another.

Derivatives with respect to time are denoted with one or two dots above the symbol,
for example,

h =first derivative of h with respect to time

h =second derivative of 4 with respect to time

The dot product between two vectors can be interpreted as the projection of one vec-
tor onto another. Projecting a vector onto the unit vectors of a coordinate system gives
the components of the vector in that coordinate system; thus, vector dot products can
be used to denote the components of a vector in a coordinate system. For example,

2. Methods

17@ . 528 4 = component of earth-fixed velocity in the
geodetic coordinate system

Vg - %, =component of earth—fixed velocity in the
body coordinate system

Numerical Errors

The equations of motion are purposely written in a nonsingular form in an earth—
fixed coordinate system to avoid numerical problems during integration, such as di-
vide by zero. The only two conditions which cause problems are a vehicle at the cen-
ter of the earth and a vehicle with zero mass. If either of these conditions occurs, the
trajectory is ended and an error message is issued.

Although the equations of motion are nonsingular, many of the equations for output
variables in TAOS have denominators that can go to zero in special situations creat-
ing a divide by zero. If this occurs, TAOS assumes a reasonable value, such as zero,
and continues execution.

Program Modules

The TAOS source code is divided into modules containing related functions or sub-
routines as shown in Table 2-1.

Table 2—-1. TAOS Program Modules.

Module |Description

atmos Model atmospheres

coords Coordinate systems

derivs Equations of motion and guidance
€rTorS Error messages

in_prb Problem input

in_seg Trajectory segment input
in_trj Trajectory input
main Main program

numeric Numerical analysis

output Output files

path Trajectory calculation & control
search Search and optimization control
tables Table input and interpolation
util Utility functions

vi02 Optimization

2. Methods

Many of these modules, such as errors, in_prb, output, and tables, perform input or
output functions; these are documented in Sections 3 and 4. The modules containing
trajectory calculations, atmos, coords, derzvs, numeric, path, and search, are docu-
mented in th1s section.

Units

Internally TAOS uses English units for everything except atmosphere calculations,
which are in metric. However, the units of input and output variables can be changed
from the default English system, given in the appendix, to the metric system as shown
in Section 4.4.13.

The following unit conversion factors are used in TAOS:

0.017453293 degrees per radian

57.29577951 radians per degree

2.204622476 pounds mass per kilogram
0.45359240 kilograms per pound mass
32.1740485 pounds mass per slug

0.03108095 slugs per pound mass
3.280839895 feet per meter

0.3048 meters per foot

6076.1 feet per nautical mile
0.0001645792 nautical miles per foot

5280.0 feet per statute mile
0.0001893939 statute miles per foot
0.224808924 pounds force per Newton
4.448222 newtons per pound force
0.020885434 pounds per square foot per pascal
47.88026 pascals per pounds per square foot
9.806650 acceleration of gravity in meters per second squared

2. Methods
2.1. Coordinate Systems

2.1. Coordinate Systems

When mathematically describing the motion of one object relative to others, it is nec-
essary to define one or more reference frames or coordinate systems. The equations
describing the object’s motion are written in terms of one of these coordinate sys-
tems. When dynamics are involved, like in TAOS, the relationship of these coordi-
nate systems to an inertial or nonaccelerating reference frame is also required.

Quantities defining a trajectory, such as position, velocity, and acceleration, are giv-
en in terms of these coordinate systems. For example, a position near the earth’s sur-
face can be descibed in terms of x, y, and z components from the earth’s center, or
as longitude, latitude, and altitude. The method selected depends on the problem be-
ing solved, so TAOS provides many coordinate systems for representing these quan-
tities.

The following coordinate systems are used in TAOS:

® Earth—centered and fixed, cartesian (ECFC) system (equations of motion,
unit vectors).

® Earth—centered, inertial, cartesian (ECIC) system (inertial).

® Geocentric system (spherical earth, longitude, latitude).

® Local geocentric horizon system (spherical earth, flight path angles).

® Geodetic system (ellipsoidal earth, longitude, latitude, altitude).

® Local geodetic horizon system (ellipsoidal earth, flight path angles).

® Body system (Euler angles, body angular orientation).

® Velocity system (bank angle).

® Wind system (aerodynamic angles).

® Inertial platform system (inertial alignment platforms).

® Tangent plane system (range safety, flat earth).

The equations of motion are written in terms of the ECFC coordinate system, so it
is the most important in TAOS. All unit vectors are also written in terms of the ECFC
system so they can be used for coordinate transforms between the systems.

The following sections precisely define each system, show how the unit vectors are
calculated and show the relationships between the systems. All of the functions that
calculate unit vectors or perform coordinate transforms are in the coords module.

2. Methods
2.1. Coordinate Systems
2.1.1. Earth—Centered and Fixed, Cartesian (ECFC)

2.1.1. Earth-Centered and Fixed, Cartesian (ECFC)
Coordinate System

An ECFC coordinate system is used for the equations of motion; thus, it becomes the
primary coordinate system in TAOS. Its origin is at the center of the earth, its x and
y axes are in the equatorial plane, and its z axis points through the north pole as shown
in Figure 2-1. The earth spins about the z axis. The x axis is aligned with the Green-
wich meridian (longitude = 0°), and the y axis is aligned with the 90° meridian (lon-
gitude = 90°E). Unit vectors Xg, Yo, and Zg, are defined that are parallel to these
axes.

g

Figure 2—1. The ECFC Coordinate System.

The following output variables give position, velocity, and acceleration vector com-
ponents in ECFC terms:

Position

xecfc reXg component of position vector 7 in the ECFC

x—axis direction (the vector 7 extends from the
earth center to the vehicle’s center of mass).

yecfc -)A’e component of position vector 7 in the ECFC
y-axis direction.
zecfc [EEPS component of position vector 7 in the ECFC

z—axis direction.

2. Methods
2.1. Coordinate Systems
2.1.1. Earth—Centered and Fixed, Cartesian (ECFC)

Velocity

xecfcdt ‘7@ . J'Ee component of velocity vector 176 in the ECFC

x—axis direction (the vector 1799 is the earth-relative
velocity of the vehicle’s center of mass).

A

yecfedt Vg - 34 component of velocity vector Vg, in the ECFC
y-axis direction.

zecfcdt 17'@ . 269 component of velocity vector V@ in the ECFC
z—axis direction.

Acceleration

xecfcdt2 dg - Xg component of acceleration vector dg, in the ECFC
x-axis direction (the vector dg, is the earth-relative
acceleration of the vehicle’s center of mass).

yecfcdt2 dg -y component of acceleration vector dg in the ECFC
y-axis direction.

zecfcdt2 dg - Zzg component of acceleration vector dg in the ECFC
z-axis direction.

Because the equations of motions are written in ECFC coordinates, these values are
obtained directly from numerical integration as shown in Section 2.2.1.

2. Methods
2.1. Coordinate Systems
2.1.2. Earth-Centered, Inertial, Cartesian (ECIC)

2.1.2. Earth—Cehtered, Inertial, Cartesian (ECIC)
Coordinate System

The center of the earth is assumed to be nonaccelerating, so an inertial coordinate sys-
tem can be ‘defined with the earth’s center as its origin. The z axis of the inertial sys-

tem Z; is aligned with the earth’s spin axis 29 so it is fixed with respect to the earth.

The x and y axes of the ECIC and ECFC coordinate systems are related by a rotation
about the z axis by the angle

Q=0,+ || Bgl-¢—1) (2-1)

where
I 159 | = 15@ . 2@ = Earth’s rotation rate (2-2)

because the earth’s spin axis is aligned with the ECIC and ECFC z axes. The quantity
£ is the initial rotation angle between the ECIC and ECFC coordinate systems at
time . The initial rotation angle £, the time 7, and the earth’s spin rate || ;@ o ||
are input values (Sections 4.3.5 and 4.4.3).

Output variables that give position, velocity, and acceleration vector components in
ECIC terms are computed in the function ecic_coords and given by

Position
xecic F-x; = F- (gcosR — yg sinf)

pl

)

yecic Py, =T (¥gsing + ygcos) (2-3)

A

" Zg

pl

zecic rFezp =

Velocity
— Bl -7- (J?@sin.Q + §@cos9)

yecicdt V-3, = Vg - (Bgsing + $gcos2) (24)
+ [/ Bg] -7 KgcosR — Jgsin®)

zecicdt V-2, = Vg - 2g

Acceleration
xecicdi2 &,-% = F- ((gC0sR2 — Yo 8inQ) / m
yecicdi2 g, -y, = F- (fgsin®2 + ygcos) / m (2-5)
zecicdt2 dy-2, = F-2g [/ m

2-7

2. Methods
2.1. Coordinate Systems
2.1.3. Local Geocentric Horizon Coordinate System

2.1.3. Local Geocentric Horizon Coordinate System

The local geocentric horizon coordinate system, shown in Figure 2-2, is defined to
make it easy to compute the geocentric flight path angles. The origin is located at the
vehicle’s center of mass and is given by the position vector 7. The z axis is aligned

with the position vector 7, butis in the opposite direction so it points towards the cen-
ter of the earth. :

The x and y axes are in a plane that is perpendicular to 7 called the local geocentric
horizon plane. This plane is tangent to the earth’s surface at the point where 7 inter-
sects the earth’s surface (point S in Figure 2-2). The x axis points toward the north
pole, and the y axis points east making the y axis parallel to the equator.

Vehicle

Local Geocentric
Horizon Plane

Earth

Equatorial Plane
Center >

Figure 2-2. Local Geocentric Horizon Coordinates.

The unit vectors for the local geocentric horizon coordinate system, expressed in
terms of the ECFC coordinate system, are computed in the function geoc_unit_vec-
tors from

Xge = —sindg (CosA £g + sind Yg) + 08 g Zg
Yee = —sind ig + cosd yg (2-6)
Zge = — c080g (COSA g, + sind Jg) — sindy, 34

where dg. is the geocentric latitude and A s the longitude (Section 2.1.4).

2. Methods

2.1. Coordinate Systems
2.1.4. Geocentric Coordinate System

2.1.4. Geocentric Coordinate System

The geocentric coordinate system has its origin at the center of the earth like the
ECFC system, but position and velocity vectors are defined in terms of their magni-
tude and orientation angles. The orientation angles used for the position vector, lon-
gitude A and latitude g, form a spherical coordinate system at the earth’s center as
shown in Figure 2-3.

s,

Vehicle—__ Zg

~t}

__....___.y"$

/ T~ Projection of F onto
.% \ A A .

o Xg Yo Equatorial Plane

Figure 2-3. Geocentric Position Components.

Geocentric Position

The output variables for the position vector are defined as

rcm (171l magnitude of position vector (distance from earth
center).
long A longitude, which is defined as the angle between the

ECFC x axis and the projection of 7 onto the
equatorial plane. The angle is positive when measured
counterclockwise from the ECFC x axis or east.

latgc Oge geocentric latitude, which is defined as the angle

between 7 and the equatorial plane. It is positive
when pointed north.

In function p_geocentric_to_ecfc, the following equanons relate the geocentric
coordinate system to the ECFC system:

7-Xg = ||7]] coségccosd
7 yg = |7 cosdgsinA (2-7)
T-zg = [|7] sindg

These relationships are reversed in function p_ecfc_to_geocentric so the geocentric
coordinates are a function of the ECFC coordinates, that is,

2-9

2. Methods
2.1. Coordinate Systems
2.1.4. Geocentric Coordinate System

tand = _ O (2-8)
r- xe
7z
Sindy = ——& (2-9)
N
Geocentric Velocity

The orientation angles used for the geocentric velocity components are with respect
to the local geocentric horizon coordinate system described in Section 2.1.3. The
angles, shown in Figure 2-4, are analogous to longitude and latitude except they are
relative to the local geocentric horizon system rather than the ECFC system.

%

Projection of -\7&,
onto X, ¥, Plane

> A
Vehicle — Yee
é\gc
Figure 2—4. Geocentric Velocity Components.

The geocentric output variables defining velocity are
vel I VGB I magnitude of earth-relative velocity vector.

gamge Vg geocentric vertical flight path angle, which is the angle
between the velocity vector 17@ and the local geocentric
horizon plane, that is, 90° minus the angle between 7
and V'@. It is positive when the vehicle is moving away
from the earth’s surface.

psige Yo geocentric horizontal flight path angle, which is the angle
between the the local north vector J?gc and the projection
of the velocity vector onto the local geocentric horizon

plane. This angle is often called the heading angle and
is positive when measured clockwise from north.

From the flight path angle definitions, the velocity vector components in local geo-
centric horizon coordinates are given by

2. Methods
2.1. Coordinate Systems
2.1.4. Geocentric Coordinate System

Vg - %ge = || Vgl - cosygecosyye (2-10)
17@ . frgc = | ff'@ [| - cosygcsiny,e (2-11)
Vo 2 = —||Vg | - sinyge (2-12)

These equations can be solved for the geocentric flight path angles in terms of the
ECFC coordinate system resulting in

T2
sinyge = —&_%° (2-13)
Vel
Vg« y
tanyg = é‘-’—‘—yff (2-14)
® " e

The geocentric flight path angles are calculated in the function v_ecfc_to_geocen-
tric. The unit vectors ., y oo and 2, in Equations (2-13) and (2-14) are defined in
Equation (2-6). If ‘769 = (), the flight path angles are undefined and TAOS sets yg.
=, = 0. If the velocity vector is straight up or down (1 ygc1=90°), then the heading
angle is undefined and TAOS sets it to zero.

The reverse calculation, from geocentric to ECFC, is computed in function v_geo-
centric_to_ECFC from the equations

Vg g = — (Vg - Fg)cosdsindge — (Vg - Ygo)sind 215
— (Vg * Zgc)cosAcosdg
- (‘7@ ° égc) Sinl 00858c B
Vg 2g = (Vg - Zg)c080gc — (Vg + Zgo)sindge (2-17)

where the terms (V - Xgo), V-3 oc)»and V- Zgc) are from Equations (2-10) through
(2-12).

2. Methods
2.1. Coordinate Systems
2.1.5. Local Geodetic Horizon Coordinate System

2.1.5. Local Geodetic Horizon Coordinate System

The local geodetic horizon coordinate system is similar to the local geocentric hori-
zon system except that the horizon plane is relative to an ellipsoid representing the
earth’s surface rather than a sphere. The major axes of this ellipsoid or oblate spher-
oid are assumed to be in the equatorial plane as shown in Figure 2-5. Its shape is con-
trolled by the equatorial earth radius Rg and one of three redundant terms: the earth
polar radius Ry, the ellipsoid eccentricity e, or the ellipsoid flatness f. These parame-
ters are related by

R, =RgVl—¢® =Rg-(1 -7 (2-18)

The eccentricity e and flatness f must be less than one, and the polar radius R, must
be less than the equatorial radius Rg,. These values, describing the shape of the earth,
normally conform to the World Geodetic System WGS—-725 or WGS-846 standard,
but they can be changed as necessary as shown in Section 4.4.3.

Geodetic Local)';
A Horizon Plane &d
ﬁe
‘ A "\
xgd ®
'
ng
R, z >
v ‘\ Oge ‘\58‘1 _ Equatorial

" Plane

- Re -

Figure 2-5. Local Geodetic Horizon Coordinates.

The local geodetic horizon coordinate system has its origin at the vehicle’s center of
mass. Its z axis is directed downward, perpendicular to the surface of the ellipsoid.
The geodetic local horizon plane is normal to the z axis, and thus, it is parallel to a
plane tangent to the earth’s surface.

The x and y axes are located in the geodetic local horizon plane. The x axis is in the

plane defined by 7 and 2@, and it points north. The y axis is perpendicular to the x
axis and points east.

A comparison of the local geodetic horizon coordinate system with the local geocen-
tric horizon system shows that the origins are at the same point, the vehicle’s center

of mass. The unit vectors y“gc and)‘rgd are also identical (parallel to the equator), and
the Xg- and Z,c unit vectors are rotated about ¥gc by an angle 8,y — d .

2. Methods
2.1. Coordinate Systems
2.1.5. Local Geodetic Horizon Coordinate System

The unit vectors for the local geodetic horizon coordinate system are given by

Xpq = — $ind,, (cosA Xg + sind yg) + cosd,, Zg (2-19)
Pea = — sind Xg + cosd Jg (2-20)
Zpg = = €088, (cosA Xg +sind yg) — sind 4 2 (2-21)

These are the same as Equations (2—-6) except that the gc subscripts have been re-
placed with gd subscripts. The value of dgy required for Equations (2-19) through
(2-21) is obtained from the iterative procedure given in Equations (2—34) through
(2—41) in Section 2.1.6. The geodetic unit vectors are computed in the function
geod_unit_vectors.

2. Methods
2.1. Coordinate Systems
2.1.6. Geodetic Coordinate System

2.1.6. Geodetic Coordinate System

The geodetic coordinate system is similar to the geocentric system except that the
position and velocity vector orientations are relative to the surface of an ellipsoid
rather than a sphere. Use of the ellipsoidal earth model is more accurate than the
spherical earth, so geodetic coordinates are used more often than geocentric. TAOS
uses the approach shown in Reference 7 to handle the ellipsoidal earth geometry.

The earth’s surface is modeled by an ellipsoid of revolution, such that in the equato-
rial plane, defined by ,{‘ce and y @ the ellipsoid forms a circle with a radius Rg,. The

polar radius R, is assumed to be less than the equatorial radius Rg. Thus, points on
the earth’s surface must satisfy the equation

2 2 2
X ¥4

The ellipsoid is symmetrical about the 2@ axis so its geometry can be analyzed in
the plane formed by X and Zg as shown in Figure 2-6.

| B4

‘o
Figure 2-6. Ellipsoidal Earth Geometry.
The equation for the ellipse in the the)?@2@ plane is
2 52 23
Rs, = + — -2
® S d=e) (2-23)

where e is the eccentricity from Equation (2-18).

Points on the surface of the ellipse, such as point S in Figure 2-6, must satisfy this
equation. Lines perpendicular or normal to the ellipse, such as the line between points
S and Q, have a slope given by

2. Methods
2.1. Coordinate Systems
2.1.6. Geodetic Coordinate System

— de
tand,,; = Zs (2-24)

where 8,y is the geodetic latitude. Equation (2-23) can be differentiated and substi-
tuted into Equation (2-24) giving

z
x—:' = (1 - e)tand,, (2-25)
Equations (2-23) and (2-25) can be solved simulataneously for xs resulting in
Rgcosd,y

s T /1 —¢2 sinzégd .
From Figure 2-6 the coordinates of point S are also given by

xg = Ncosd,y (2-27)
where N is normal to the ellipsoid at point S and is the distance from point S to the
Z g axis. From Equations (2-26) and (2-27), N is given by
Ro

Substituting the expression for xg, Equation (2-27), into Equation (2-25) gives an
equation for zg, that is,

zg= (N — €®N)sind oy = N(1 — e?)sind (2-29)

This equation shows that the distance between the z-axis intercept of the surface nor-
mal, point Q, and its x-axis intercept is Ne2 as shown in Figure 2-6.

N= (2-28)

Geodetic Position

These relationships, defining the geometry of the earth’s surface as an ellipsoid, are
used to locate the vehicle’s position relative to the earth’s surface. In Figures 2-6 and
2-7 the vehicle is located at point P given by the position vector 7. The point S, in
both figures, is on the earth’s surface directly below point P.

The output variables associated with the geodetic position vector are

alt h altitude, which is the distance from the vehicle’s center
of mass to the surface of the ellipsoid measured along

the surface normal (the distance between points P and S).

long A longitude, which is defined as the angle between the
ECFC x axis and the projection of 7 onto the equatorial
plane. The angle is positive when measured counter—
clockwise from the ECFC x axis or east.

latgd Oga geodetic latitude, which is defined as the angle between
igd and the equatorial plane, where igd is normal to the
ellipsoid. Latitude is positive when directed north.

2. Methods
2.1. Coordinate Systems
2.1.6. Geodetic Coordinate System

i = Projection of 7 onto
the equatorial plane

Figure 2-7. Geodetic Coordinate System Geometry.

The longitude is the same for both geocentric and geodetic coordinate systems and
is computed from Equation (2-8). The relationship between ECFC coordinates and
the remaining geodetic position terms is given by

F-Xg = %cosd (2-30)
F-yg = Xsind (2-31)
Frig = [N-(1=ed)+h]-sind,, (2-32)
where % = (N + h)cosd,, (2-33)

These equations are used in function p_geodetic_to_ecfc to compute the ECFC com-
ponents of 7 given the geodetic position variables. However, in the reverse situation
where the ECFC components are given, these equations cannot be directly solved for
the geodetic position variables. An iterative solution is required to obtain geodetic
altitude k and latitude J,4 from the ECFC components because of the transcendental
nature of d,4 in these equations.

If the égd vector is extended to intercept the ECFC z axis, the intersection occurs at

Rge?sind,,

;= Nezsinégd = (2-34)

If the earth is assumed to be nearly spherical so that e2 « 1, then

2. Methods
2.1. Coordinate Systems
2.1.6. Geodetic Coordinate System

sind,, = sindge = rH.—'rfIiQ (2-35)

When || 7]|< Rg, this is a poor assumption, but it is adequate to get the iteration
started. With this assumption, z; becomes

2; = Rge*sindy (2-36)

This z is only an initial estimate. The following sequence of equations is used repeat-
edly to refine this estimate, terminating when the difference between z values on
successive iterations is less than 10-3. Typical applications of this algorithm achieve
an accuracy of 0.01 ft in less than three iterations, and in no cases are more than 25
iterations performed.

= ?‘ 2@ + Z; (2-37)
N+h= [#+2 (2-38)
sind , = 4 2-39

9= N+h (2-39)

R
N=e——r—2 (2—40)
’1 — ezsinzagd
z; = Ne*sind (2~41)

The purpose of this iteration is to compute altitude & and geodetic latitude dgg. Alti-
tude is obtained from Equation (2-38), and geodetic latitude is obtained from Equa-
tion (2-39).

Geodetic Velocity
The output variables for the geodetic velocity vector are
vel I ‘769 | magnitude of earth-relative velocity vector.
gamgd Vg geodetic vertical flight path angle, which is the angle

between the velocity vector ‘7@ and the local geodetic

horizon plane, that is, the angle between é‘gd and 179

minus 90°. It is positive when the vehicle is moving
away from the earth’s surface.

psigd Yed geodetic horizontal flight path angle, which is the

angle between the the local north vector J'Egd and the

projection of the velocity vector onto the local geodetic
horizon plane. This angle is often called the geodetic

2-17

2. Methods
2.1, Coordinate Systems
2.1.6. Geodetic Coordinate System

heading angle and is positive when measured clockwise
from north so that 90° is east.

The magnitude of the earth-relative velocity is the same for both geocentric and geo-
detic coordinate systems. The geodetic flight path angles are defined in terms of the
local geodetic horizon coordinate system as

Vo " %50 = | Vg |l - cosycosy,, (2-42)
Vo “Yea = Vgl - COSYySiny,, (2—43)
Vo 2 = —[Vgl - siny,y (2-44)
Solving these equations for the flight path angles gives
- Vg -2
siny,; = ——=2—82 (2-45)
Vel
Vg«
tany,, = o= (2-46)
Ve * xgd

These equations are used in the function v_ecfc_to_geodetic to compute the flight
path angles from ECFC coordinates. The geodetic unit vectors are obtained from
Equations (2-19) through (2-21). These equations are the same as those used for the
geocentric flight path angles except they are referenced to the geodetic local horizon
plane rather than the geocentric local horizon plane.

The reverse calculation, from geodetic to ECFC coordinates, is computed in function
v_geodetic_to_ecfc from

Vg -2 = — (Vg - Xgq) COSASING 5 — Vg - YedSINA (247)
— (Vg - Z,)c0sAcosd

Vo Fe = — (-I'/ﬂ; * Eg)SINASING y + (Vg - F)cosd (2-48)
— (Vg * Z,sindcosd

Vo 3g = (Vg - 2,080, — (Vg - £,)sind,, (249)

Again these are the same equations as from geocentric to ECFC, Equations (2-15)
through (2-17), except that the subscript gc has been replaced with gd.

2. Methods

2.1. Coordinate Systems
2.1.7. Body-Fixed Cartesian Coordinate System

2.1.7. Body-Fixed Cartesian Coordinate System

A body-fixed coordinate system is often used to define components of the aerody-
namic and propulsive forces. For example, the aecrodynamic coefficients C4 and Cy
define one force component along a vehicle’s centerline and another normal to it.

The origin of this system is at the vehicle’s center of mass, and the X axis is the ve-
hicle’s longitudinal axis as shown in Figure 2-8. The y axis is oriented towards the
right wing, and the z axis is oriented towards the bottom of the vehicle. The unit vec-

tors Xy, ¥, and z, are aligned with these axes.

Figure 2-8. Body-Fixed Coordinates.

The body coordinate system is related to the local geodetic horizon coordinate sys-
tem with three geodetic Euler angles: yaw ¥g, pitch ©,4, and roll @g4. The yaw and
pitch angles are analogous to the horizontal and vertical flight path angles; the only
difference is the vehicle longitudinal axis replaces the velocity vector. The rotation
sequence to convert from the local geodetic horizon system to the body system is
shown in Figure 2-9.

A A
x v A
gd &d x
Y2 : J isinto X isinto
1 . @gd(Y page 2 page)A’
r- = Yo
1
4} ¢gd
o y y
Z,4isinto &4 Ve
page A
yA 22 A 2 A
1 4\l b vz,
Yaw rotation Pitch rotation Roll rotation
about 7, about 3, about 1,

Figure 2-9. Geodetic Yaw, Pitch, and Roll Angles.

2. Methods
2.1, Coordinate Systems
2.1.7. Body-Fixed Cartesian Coordinate System

The first rotation, a yaw about the Egd unit vector produces a temporary coordinate
system shown as X;, §,, and Z, in Figure 2-9, where Z, and 2,4 are the same vector.
The second rotation, by the pitch angle, is about the unit vector ¥;- This forms anoth-
er temporary coordinate system X,, y,, and z,, where , and ¥, are the same. The
final rotation, aroll, is about the X, unit vector, and the vectors X, and £, are the same.
The same procedure is used to relate the body coordinate system to the local geocen-
tric horizon system with the geocentric Euler angles, yaw Wec» pitch Oy, and roll
Dy, and to the inertial platform coordinate system (Section 2.1.10) with the inertial
platform Euler angles, yaw ¥, pitch @), and roll @,, These angles are defined as

shown in Figure 2-9 except that the initial rotation is from the local geocentric hori-
zon system or inertial platform system rather than the local geodetic horizon system.

These rotations, expressed as transformation matrices, are defined as

b A 1 0 0 [cos8,s 0 = sinB [cos¥,, sin¥,, 07|%
Jp| = |0 c0sPy sin®ull o 1 o - sin¥y cos¥,, 0f|F,,] (2-50)
3, 0 —sind,y cosPy||sinB,y 0 cosb,, 0 0 1|z,

When expanded, these matrices give the following set of equations for the body unit
vectors: ‘

Xp = 08Oy c0s¥ ;X + cOsO ysin¥,, y,, — sin Op1 2, (2-51)

A

Yp = (Sin®Pyysin0 4c08¥y; — cosPyysin¥,)) %,
+ (sincbgdsin@gdsin'l’gd + cos P, cos Y’gd)y"gd (2-52)
+sin®,,c080,; z,,

2, = (cosPyysin@ cos Wy + sin®ysinW,,) 3,
+ (CosPysin @ ysin Wy, — sind,;c0s ¥,)3 (2-33)
+c0sP,;c080,, 2,4

The body unit vectors are computed in the function euler_to_body. They can be com-
puted from geodetic Euler angles, as shown above, or they can be computed from
geocentric or inertial platform Euler angles using similar equations. Equations
(2-51) through (2-53) defining the body unit vectors assume the Euler angles are
given, but this is not always true.

The body attitude, defined by the body unit vectors, is input directly or indirectly with
the guidance rules. Euler angles are not always given in the guidance rules. The body
attitude is often given in terms of aerodynamic angles which relate the body and wind
coordinate systems. The relationship between the body and wind coordinate systems
is given in Section 2.1.9 after the wind coordinate system has been defined.

2. Methods
2.1. Coordinate Systems
2.1.7. Body-Fixed Cartesian Coordinate System

If the body unit vectors are computed from known aerodynamic angles (Section
2.1.9), the corresponding Euler angles must still be calculated. The Euler angles are
defined as a function of the body unit vectors as follows:

. X * X
COSng = _A—Ab.__édh—.:_— (2-54)
@ * Xgp)? + (% - Foa?
Xy Y
sinWy = ———= Yod (2-55)
@y * Xg? + @y * Yg?
COs(@py +5) = %" 25y (2-56)
Cos@sd = yAI * yAb (2—57)

The yaw angle Wy is obtained by projecting the body J'Eb axis onto the local geodetic
horizon plane defined by J'Egd and y » and the pitch angle O, is obtained by project-
ing the body X, axis onto the geodetic Z,, axis. Similarly, the roll angle Pgq is ob-
tained by projecting the body ¥, axis onto the y; axis. This axis is perpendicular to
%1 and the geodetic Z,, axis, that is,

Y1 = Zga X% (2-58)

where the X, axis is obtained by solving the linear equations

X (2-59)
Agd cos 'I’gd
ng 0

The components of the unit vectors form the rows of the transformation matrix. Be-
cause this matrix is orthogonal, its inverse is its transpose, and x; is given by

o cos¥,,
0

where the components of the unit vectors now form the columns of the matrix. This
method fails when the body is pointed straight up or straight down, that is, when f:b
isaligned with Egd because the yaw angle is undefined. When this occurs, TAOS sets
the Euler angles to

2. Methods

2.1. Coordinate Systems
2.1.7. Body-Fixed Cartesian Coordinate System

&

W,=0,=0

(2-61)

_n . A . A
Opa=%" 5" 29

The equations above show how the geodetic Euler angles are computed from the geo-
detic and body unit vectors. The same procedure is used to calculate the geocentric
and inertial platform Euler angles by substituting the appropriate unit vectors. These
calculations occur in the function euler_angles.

The following output variables are used for the body coordinate system Euler angles:

yawgc
yawgd
yawi
pitchgc
pitchgd
pitchi
rollgc
rollgd
rolli

Yec
Yed
¥

Oe
O
O;

Dyc
Dy
d5gc

geocentric Euler yaw angle.
geodetic Euler yaw angle.

inertial platform Euler yaw angle.
geocentric Euler pitch angle.
geodetic Euler pitch angle.

inertial platform Euler pitch angle.
geocentric Euler roll angle.
geodetic Euler roll angle.

inertial platform Euler roll angle.

The following additional output variables give the vehicle’s acceleration and veloc-
ity vectors in the body coordinate system:

accebx

acceby

accebz

accibx

acciby

accibz

velebx

veleby

- .A
ag * X

component of earth—fixed acceleration in the body
x—axis direction.

component of earth—fixed acceleration in the body
y-axis direction.

component of earth—fixed acceleration in the body
z-axis direction.

component of inertial acceleration in the body x—axis
direction.

component of inertial acceleration in the body y—axis
direction.

component of inertial acceleration in the body z-axis
direction.

component of earth-fixed velocity in the body
x—axis direction.

component of earth—fixed velocity in the body
y-axis direction.

velebz

velibx

veliby

velibz

Vo * 5

— A

Vl'xb

- A

Vi ¥

-

Vi* g,

2. Methods
2.1, Coordinate Systems
2.1.7. Body-Fixed Cartesian Coordinate System

component of earth—fixed velocity in the body
z-axis direction.

component of inertial velocity in the body x—axis
direction.

component of inertial velocity in the body y-axis
direction.

component of inertial velocity in the body z-axis
direction.

2. Methods
2.1. Coordinate Systems
2.1.8. Velocity Cartesian Coordinate Systems

2.1.8. Velocity Cartesian Coordinate Systems

Intermediate coordinate systems, called velocity coordinate systems, are used to con-
vert from the geocentric or geodetic system to the wind coordinate system (See Sec-
tion 2.1.9): These systems, one for converting from geocentric and one for convert-
ing from geodetic, are defined the same way except that one starts from geocentric
coordinates and one starts from geodetic coordinates. This section defines the veloc-
ity coordinate system relative to the geodetic system; the same method is used rela-
tive to the geocentric system except that the gd subscripts are replaced with gc sub-
scripts.

The origin of the velocity coordinate system is at the vehicle’s center of mass. The
x axis is aligned with the wind—corrected velocity vector Vwe given by
Vg = Vg — AV, (2-62)

where 4 Vw o iS the input wind velocity vector relative to the earth’s surface (Section
4.4.14). The vector Vwe represents the velocity of the vehicle relative to the air or
atmosphere. Its magnitude is the output variable

vair | Vg || airspeed.
The y axis is perpendicular to the plane formed by the velocity x axis and the geodetic

ﬁgd axis, and the z axis is perpendicular to the other two axes and directed towards
the earth as shown in Figure 2-10.

| . Note: ¥, is into
Zg Vwe the page
Xy
Vehicle
§>./

~t}

N
ng 2y

Equatorial Plane

Figure 2—10. Velocity Coordinate System.

The velocity coordinate system unit vectors are computed in the function
wind_unit_vectors from

Xy = K"’@ (2-63)
" VW@ "

2. Methods
2.1. Coordinate Systems
2.1.8. Velocity Cartesian Coordinate Systems

24X %
A gd Ve
Yy, = T (2-64)
A EEE Y
A x A
By, = Ve (2-65)
%y, X ¥y |

The velocity coordinate systems shown above are used to define the wind coordinate
system (Section 2.1.9). Another similar velocity coordinate system is used to relate
the velocity vector to the geodetic coordinate system with flight path angles. This
system is defined the same as above except it is aligned with the earth—relative veloc-

ity vector 1763 rather than the wind—corrected velocity vector Vw o SO that

A i;e
Xy = — (2-66)
Vol

The geodetic coordinate system is related to this velocity coordinate system by two
rotations. The first rotation is about the geodetic z axis by the heading angle ¥4, and
the second rotation is about the y axis by the vertical flight path angle yg4. The rota-
tion matrices are

A . . A
Xy COSY gy 0 — siny 4] cosy,, siny,; 0]%sa

vl = 0 1 0 — sin 4 CosYyy 0 f’gd (2-67)
By| | Sin¥sa O COSYgy 0 0 1]z,

When this is expanded it gives the unit vectors
Xy = COSY, CO8Y oy Xy + COSYpqSINY oy Yoy — SINY,y 2,y (2-68)

Zy = SINY COSY,q Koy + SINYySINYy Py + COSYy 2y (2-70)

These relations are used to derive the flight path angle rates in Section 2.2.5.

2. Methods
2.1. Coordinate Systems
2.1.9. Wind Cartesian Coordinate System

2.1.9. Wind Cartesian Coordinate System

The aerodynamic forces acting on the vehicle are usually functions of aerodynamic
angles, such as angle of attack and sideslip. The wind coordinate system relates these
aerodynamic angles to the body-fixed coordinate system. Its origin is at the vehicle’s
center of mass, and its x axis is aligned with the x axis of the velocity coordinate Sys-

tem and ¥, .

The y and z axes are rotated by the geocentric bank angle Mgc from the geocentric
velocity coordinate system or by the geodetic bank angle Mga from the geodetic ve-
locity coordinate system as shown in Figure 2-11. Although these two bank angles
are slightly different to compensate for the differences between the geocentric and
geodetic coordinate systems, the result is the same wind system.

Zys % and Vw

Plane of Measurement ar into the pag 50

for Sideslip Angle S

Geocantric or Geodetic

Local Horizontal > Yy
Nﬁg‘: or lgd

Vw

A A

2w 2y
v

Figure 2-11. Bank Angle and Wind Coordinate System.

The wind coordinate system unit vectors are computed from

iw = ‘£V
Y = COSK Yy + sinu 2y (2-71)
Zw = —sing yy + cosy Zy

in the function wind_unit_vectors. The bank angle # must correspond to the same
coordinate system, geocentric or geodetic, as the velocity system unit vectors Xy, Pvs
and Zy (Section 2.1.8).

The wind and body-fixed coordinate systems are related through aerodynamic
angles as shown in Figures 2-12,2-13, and 2-15. The following pairs of acrodynam-
ic angles are used to describe the vehicle orientation relative to the wind coordinate
system: angle of attack a and Euler sideslip angle Bg, angle of attack a and sideslip
angle B, and total angle of attack ar and windward meridian ¢,,.

Angle of Attack and Euler Sideslip Angle

Figure 2-12 shows that a rotation about the body —y, axis by the angle of attack a,
followed by a rotation about the wind z,, axis by the Euler sideslip angle A, results

2. Methods
2.1. Coordinate Systems
2.1.9. Wind Cartesian Coordinate System

|,
%

Figure 2—-12. Angle of Attack and Sideslip Definitions.

in alignment with the wind axis. This definition of sideslip angle Sg, using rotations,
is typically used for aircraft applications. Generally angle of attack valuesrange from
—-180° to +180° and Euler sideslip values range from —90° to +90°, but the angles
can take on any value because they are defined by rotations.

The body unit vectors are related to the wind unit vectors with the following rotation
matrices:

| [cosa 0 —sina] [c0sBg —sinBg 0] |Xw
Yol=] 0 1 0 |-|sinBz cosBg O |Vw (2-72)
éb sina 0 cosa 0 0 1 2.

When expanded, this results in
X, = cosacosPg Xy — cosasinBp y,, — sina z, (2-73)
Yp = sinfg &y + cosPg 3, (2-74)
z, = sinacosfg x, — sinasinfg y,, + cosa Zy (2-75)

Angle of Attack and Sideslip Angle

The other sideslip angle § is defined as the angle between J“cb and the projection of
the velocity vector V,, o onto the x;, ¥, plane. When this sideslip angle is used, angle
of attack is defined as the angle between X, and the projection of the velocity vector
Vi, Onto the %, Z,, plane, that is,

tang = X% (2-76)
Xw * Xp

tanf = S22k (2-77)
Xw * Xp

These aerodynamic angle definitions are commonly used for axisymmetric vehicles,
such as reentry bodies and artillery shells, and they are associated with the total angle
of attack and windward meridian. The angles are defined by projections instead of

2-27

2. Methods
2.1, Coordinate Systems
2.1.9. Wind Cartesian Coordinate System

rotations so not all combinations of angle of attack and sideslip are valid. There are
three cases to consider: x,, * X, > 0, X, * %, < 0,and %, - %, = 0.

The first case with x,, - X, > 0, illustrated in Figure 2~12, resuits in both angle of
attack and Sideslip values between —90° and +90°, that is, 0° <la 1 < 90° and 0° <
181<90°. Since x,, - x, > 0, the vehicle can be thought of as moving in a forward
direction.

The second case with x,, - x,, < 0, illustrated in Figure 2-13, results in 90° <la |

<180° and 90° <18 1< 180°. In this case, the vehicle is moving in a backward direc-
tion.

o A

' b
57

a

XV
Figure 2-13. Angle of Attack and Sideslip Definitions.
With this definition angles of attack greater than 90° are not consistent with sideslip

anglesless than 90°. Both angle of attack and sideslip are defined with the same value
of % * X, restricting them to the values given above.

The third case with X,, - x, = 0 puts the wind vector in the §, Z, plane, and all such
wind vectors according to Equations (2-76) and (2-77) have @ = £90° and 8 =

£90°. A wind vector in the y,, z, plane cannot be uniquely defined with these angle
definitions so TAOS uses a special definition shown in Figure 2-14.

Angle of attack and sideslip when

.fw'a%b:O 1a=—90°
- a= 0°
b l
a = +90°
J'EW +ﬂ -B ﬁw

Figure 2-14. Aerodynamic Angles at 90° Angle of Attack.

When x,, - x, = 0, angle of attack is still given by Equation (2-76), but sideslip be-
comes

2. Methods
2.1. Coordinate Systems
2.1.9. Wind Cartesian Coordinate System

tanf = Xk (2-78)
Xw * Zp

This definition is similar to the windward meridian. Because the basic angle defini-
tions do not work for this case, use of angle of attack and sideslip are not recom-
mended for trajectories with the wind vector in the y,, z, plane. Angle of attack and
Euler sideslip or total angle of attack and windward meridian are recommended
instead.

Total Angle of Attack and Windward Meridian

,':)+a7-

/ ," —Pw /\
yb l“% """""""""""""""
N

Figure 2-15. Total Angle of Attack and Windward Meridian Definitions.

A
Xw

The total angle of attack and windward meridian are defined in Figure 2-15. The total
angle of attack ar is the angle between the body J'Eb axis and the wind x,, axis, and
the windward meridian ¢,, is the angle between the body z;, axis and the projection
of the velocity vector V,, , Onto the ¥, Z,, plane, that is,

_ G 392 + G - £)?

tana; (2-79)
Xw * xb
—3, 9
tang,, = —r 2k (2-80)
Xw * 2

The total angle of attack is always positive and ranges from 0° to 180°. The wind-
ward meridian can take on any value, but it is generally given as an angle between
0° and 360°. '

Aerodynamic Angle Relationships

The guidance rules in TAOS provide values for a pair of aecrodynamic angles, and the
remaining aerodynamic angles are computed from this pair of values. Relationships
to convert from one angle pair to another can be derived from the angle definitions
and the relationship of the angles to the wind coordinate system (Equations (2-73)
through (2-80)).

2. Methods
2.1. Coordinate Systems
2.1.9. Wind Cartesian Coordinate System

If angle of attack a and Euler sideslip angle Bg are known, total angle of attack ar,
windward meridian ¢,,, and sideslip angle 8 are obtained from

JsinZﬁE + cos2fsin2a

tana; = 2-81
T cosacosfy (2-80)
— sin
tang,, = _—sinfy (2-82)
sinacosf
sin
tanf = _sinfg _ (2-83)
cosacosfg

For the special case when a = £90°, 8 =-¢,,.

If angle of attack a and sideslip angle 8 are known, total angle of attack ar, windward
meridian ¢, and Euler sideslip angle S are obtained from

tana; = JtanZq + tan?B (2-84)
—_ tan,B
tang,, = (2-85)
P = ~na
sinfp = — sina;sing,, (2-86)

For the special case when a = +90°, ¢, =-8.

Finally, if total angle of attack ar and windward meridian ¢,, are known, angle of
attack a, sideslip angle 8, and Euler sideslip angle Sg are obtained from

_ sinapcosgy,

tana (2-87)
cosar
— sinarsing,,
tanfB = (2-88)
cosar
sinfp = — sina,sing,, (2-89)

For the special case when ar = 90°, f =-¢,.

Aerodynamic Angle Calculations

When all of the aerodynamic angles have been computed, Equations (2-73) through
(2-75) are used to obtain the body unit vectors. The aerodynamic angles and body
unit vectors are computed in the function body_attitude in the derivs module.

If body unit vectors are computed from Euler angles, as shown in Section 2.1.7, then
the total angle of attack and windward meridian can be computed from their defini-
tions given by Equations (2-79) and (2-80). Once the total angle of attack and wind-
ward meridian are known, the remaining angles can be obtained from Equations
(2-87) through (2-89).

2. Methods
2.1. Coordinate Systems
2.1.9. Wind Cartesian Coordinate System

The following output variables are used for the acrodynamic and bank angles:

alpha
alphat
bankgé
bankgd
beta
betae
phi

angle of attack.

total angle of attack.
geocentric bank angle.
geodetic bank angle.
sideslip angle.

Euler sideslip angle.

windward meridian angle.

2. Methods
2.1. Coordinate Systems

2.1.10. Inertial Platform Cartesian Coordinate System

2.1.10. Inertial Platform Cartesian Coordinate System

An inertial platform coordinate system can be defined at any pointin a trajectory. Its
origin is at the vehicle’s center of mass, and at a given time its axes can be aligned
with any of the other coordinate systems. By default it is aligned with the geodetic
coordinate system at the beginning of the trajectory. This means that the unit vectors
Xp, ¥,» and Zp are set equal to the geodetic unit vectors Xgp Voo and Z,, at the start

of the trajectory. Once the system is aligned, it is fixed in inertial space until it is re-
aligned by the user (Section 4.2.6).

The following output variables, computed in inertial_platform_coords, give the ve-
hicle’s position, inertial velocity, and inertial acceleration relative to the inertial plat-

form coordinate system:

Position

vip =7,
zip F—=7) -2

Velocity
xipdt V,- %,

yipdt V- Yy

Zipdt ‘71 * é\p

component of position relative to the inertial platform

in the x—axis direction (?p is the vector from the center
of the earth to the origin of the inertial platform).

component of position relative to the inertial platform
in the y-axis direction.

component of position relative to the inertial platform
in the z—axis direction.

component of inertial velocity vector 17', in the inertial
platform x-axis direction.

component of inertial velocity vector V, in the inertial
platform y-axis direction.

component of inertial velocity vector 17, in the inertial
platform z-axis direction.

Acceleration

XipdtZ Zi] * fp
yipdtz a.I) }A,p

zipdt2 d;- Zp

component of inertial acceleration vector @, in the
inertial platform x—axis direction.

component of inertial acceleration vector 4 in the
inertial platform y-axis direction.

component of inertial acceleration vector @, in the
inertial platform z-axis direction.

2. Methods

2.1. Coordinate Systems
2.1.11. Tangent Plane Cartesian Coordinate System

2.1.11. Tangent Plane Cartesian Coordinate System

The tangent plane coordinate system is fixed and tangent to the earth’s surface. It is
a cartesian coordinate system that is useful for range safety calculations and for
approximating a flat earth model.

The origin of the tangent plane coordinate system is given as a geodetic position, that
is, alatitude dy, longitude A5, and altitude hy, (Section 4.3.7). If values are not input
for the origin location, itis assumed to be located on the earth’s surface directly below
the vehicle’s initial position.

The x and y axes are in a local geodetic horizon plane tangent to the earth’s surface
and passing through the origin. The direction of the tangent plane x axis is given by
an azimuth or heading angle a;, measured clockwise from north. The z axis points
upward away from the earth’s center, and the y axis is defined to give aright-handed
coordinate system.

The tangent plane unit vectors %, ,,, and Z;, are computed from

Xp = — (sind4yCo8Ayp,cO8ay, + sindy, sinap)xg (2-90)

— (sindy,sindy, cosay, — COSAp,sina,y)y g + €080y COSAgpZgy

ip = — (sindycosdysina,, — sindy,cosay)ig (2-91)

— (sindy, sinA,pSinayy, + C0sA,CO8A)Y g + COSOypsina Zg,

2y = C080,,CO8ApRq + COSOypsind Y g + sindylg (2-92)

These equations are similar to Equations (2-19) through (2-21) for the geodetic unit
vectors except they have been rotated by the tangent plane azimuth angle ay,. The
unit vectors are used to compute the following output variables:

Xtp ary, - J'E,p x component of the vehicle’s position relative to the
tangent plane coordinate system.

ytp Ary, - y“,p y component of the vehicle’s position relative to the
tangent plane coordinate system.

Ztp A7y - 2,z component of the vehicle’s position relative to the
tangent plane coordinate system.

xtpdt V@ . J?;p x component of the velocity relative to the earth
in the tangent plane coordinate system.

ytpdt Ve y y‘,p y component of the velocity relative to the earth
in the tangent plane coordinate system.

ztpdt Vg - 2,,, z component of the velocity relative to the earth
in the tangent plane coordinate system.

2-33

2. Methods
2.1. Coordinate Systems
2.1.11. Tangent Plane Cartesian Coordinate System

xtpdt2 dg ° J?;p x component of the acceleration relative to the earth
in the tangent plane coordinate system.

ytpdt2 dg * y",p y component of the acceleration relative to the earth
: in the tangent plane coordinate system.

ztpdt2 dg ' Zp zcomponent of the acceleration relative to the earth
in the tangent plane coordinate system.

The tangent plane relative position vector A?,p is the difference between the vehicle
position vector 7 and the position vector of the tangent plane origin Tip.

The tangent plane unit vectors are calculated in the tangent_plane_unit_vectors
function and the tangent plane output variables are calculated in the tan-
gent_plane_coords function.

2. Methods
2.1. Coordinate Systems
2.1.12. Coordinate Transformations

2.1.12. Coordinate Transformations

Unit vectors are used in TAOS for coordinate transformations rather than the more
common transformation matrices because they are efficient to program. The two
methods are identical, but use of unit vectors makes it obvious that the operations re-
quired to convert a vector from one coordinate system to another are equivalent to
a dot product.

All coordinate systems in TAOS are defined with unit vectors expressed in the ECFC
coordinate system. To convert a vector from the ECFC system to another system, it
is projected onto the unit vectors of that system with dot products. For example, the
dot products

}b * ZFprope }b
-t A - A T — —
szrop,, =1Yp" ZFPYOPe =1 r : ZFprope = [bAQ] : EFprope (2-93)
2 * ZFpropg %

convert the thrust vector prmp from the ECFC system to the body—fixed system

Ei':prom' As shown above the dot products are equivalent to a transformation matrix
[pbAg] with rows consisting of the unit vector components.

Reversing the above procedure

F, prope = L @Asl * 3F, prop, = [Al ™" - SF, prop, (2-94)

I,
Xp
AT e

=Y " | * ZFprop, (2-95)
AT
Zp

= 'eb yAb ib] * EF. prop, (2-96)

converts from the body—fixed coordinate system to the ECFC system. The reverse
procedure is simplified because the transformation matrix is orthogonal so its inverse
is its transpose. In this case the columns of the transformation matrix contain the
components of the unit vectors.

Transformations to and from other coordinate systems in TAOS are handled in a sim-
ilar manner.

2. Methods
2.2. Equations of Motion

2.2, Equations of Motion

The equations of motion are derived from Newton’s second law applied to a point
mass

d =3F | m (2-97)

This equation defines acceleration in an inertial coordinate system. It is convenient
for trajectory analysis to define the acceleration in terms of an earth—fixed coordinate
system, that is, d . This system rotates relative to the inertial system at the earth’s

spin rate ;@ .

The acceleration in inertial coordinates is equivalent to taking the second derivative
of the vehicle’s position vector, that is,
> _le27 _ ’d(’d?)

g =<¢r-4d (2-98)

where ‘d/dtmeans the time derivative with respect toinertial coordinates. If the inner
derivative is differentiated relative to the rotating earth—fixed coordinate system, it
results in
- _1d|%7F =
=& + (;0q X (2-99)
au dt[dt (19 r)]
where ®d/dt means the time derivative with respect to earth—fixed coordinates.

Then, if the outer derivative is differentiated relative to the same earth—fixed coordi-
nates, it gives

[::] [38 g [: 38 M d

(2-101)

[::] - e O, -
- _ |°427 diog — d 7
as [pr + ar Xr + jog X

-

+ Iwe;x

r p—y - e d
T + g X (g XT)

The second term in Equation (2-101) containing the derivative of the earth’s spinrate
is zero because the earth’s spin rate 17 @ 1S constant. Furthermore, the notation can
be simplified with the substitutions '

[R d ;-] -
V. = dT - _ °d*F
Vo T and ag)

(2-102)

This gives

2. Methods
2.2. Equations of Motion

d; = [a’e + B g X 17@] (2-103)
+[15exve+15ex(159 x‘r’)]

The terms ;& 5 X Vg, can be combined resulting in

dy=1dg+2 (;5g X Vg)+ Bg X (;Bg XT) (2-104)
Finally, combining Equation (2-97) with (2-104) gives an expression for accelera-
tion in an earth-fixed coordinate system, that is,

dg = SF _ 2 (B X V)= By X (B XF) (2-105)

o m “o e/~ IPg Yo

This is a second—order differential equation of motion, which can be written as the
following set of first—order differential equations:

?e = ‘7@
. 7 (2-106)
= & _ R - x > _ - —> ->
If an initial position 7 and velocity with respect to the earth 17@ areknown ataninitial

time 1, and if the vehicle’s mass m and forces acting on it SFare known, these equa-
tions can be integrated with respect to time resulting in a trajectory. The functions
used to integrate the equations of motion are in the derivs module.

2. Methods
2.2. Equations of Motion
2.2.1. Numerical Integration

2.2.1. Numerical Integration

For the purpose of numerical integration, the equations of motion are written in terms

of a state vector defined as
oR
@ o -
= A x@
r y@ y@
- 7 [2@ g
SO =|3 =1l & =1lx (2-107)
Vede Z.:
V- 2@ -7

The state vector is a function of time and has a corresponding derivative vector. Giv-
en a time and state, the derivatives are

ey -

Vg * x - -
_’GB A@ "f@
) . Vo Yo Yo
$e.5 =4 |=|"e|=|Ve fo|_|% (2-108)
? V bd p—y A X
) %o dg " Xg ®
- A y
ag " Ve 2@
—- A (23]
a$ ¢ Ze L o
where
SF-%
to == + 0g Qg + wgre) (2-109)
. _ZF-3 .
o =—2 + 0 (~2ig + wgyg) (2-110)
i _2F - zg (2-111)
m
and where
wg =8¢ (2-112)

These state and derivative vectors are augmented with equations for the mass m, the
path length r, the ground range rs, and any user—defined integral variables (Section
4.3.1).

Vehicle Mass

The initial mass is given as part of the initial conditions (Section 4.3.5), and the mass
rate is given as a function of time and the vehicle’s state (Section 4.2.9). The follow-
ing output variables are associated with the vehicle’s mass:

2. Methods

2.2, Equations of Motion
2.2.1. Numerical Integration

fuel Am - g fuel used (in English units g = 32.174 Iby, / slug).
mass m vehicle mass.
mdt m mass rate.
wt m-g vehicle weight.
Path Length

The path length r represents the distance the vehicle travels through the air. It is de-
fined as the time integral of the velocity magnitude || ?e || Path length is often used

to represent the length of a launch rail or sled track. The following output variables
are associated with the path length:

plength r trajectory path length.
plmark r path length from a designated point in the trajectory.
plseg r segment path length.

Ground Range

The ground range rg is the length of the projection of the flight path onto the earth’s

surface. Its derivative is the ground speed || Vs||, the velocity of the point on the
earth’s surface directly below the vehicle. An expression for the ground speed is giv-
en in Equation (2-152) in Section 2.2.4.

Runge-Kutta Integration

The complete state and derivative vectors, calculated in the compute_derivs func-
tion, are given by

*o
x$- .
Yo
Yo P
“
- x@ > —_ .
8@ =y ® S, 8) = }:@ (2-113)
. Ze
Z
m i
r':g I ‘_"ea I
i 1751

These equations are numerically integrated with respect to time with a fixed step size
4th—order Runge-Kutta method. A fixed step size method is used for simplicity so
numerical accuracy is controlled with the input step size Az.

2-39

2. Methods
2.2. Equations of Motion
2.2.1. Numerical Integration

S+ A1 = 5@) + -é—(§+ 25 + 25" + §) As (2-114)
where
' §=565 (2-115)
§ =3¢+ 05 41, §+0.5 4¢ - 5) (2-116)
§" =5+ 0541, §+ 0.5 4t - 5'() (2-117)
§ =S¢+ A1, §+4t- 57y L (2-118)

Each integration step requires four derivative evaluations and is computed in the
function integration_step.

At each time step, TAOS computes a number of output variables from the state and
derivative vectors including longitude and latitude rates and flight path angle rates.
Equations for these values are derived in the following sections.

2. Methods
2.2. Equations of Motion
2.2.2. Rail Launches and Sled Tests

2.2.2. Rail Launches and Sled Tests

For rail-launched rockets or for sled tracks, the accelerations must be modified to
restrict the motion to the direction of the rails. The launch rail or sled track orientation
is given in-the guidance rules as a body attitude. The rail or sled is assumed to be
aligned with the body’s x, axis, so the vehicle can only move in this direction.

The accelerations required to keep the vehicle moving along the rail are given by
Xg =[a |l £ - ’%ea
Vo =1l % Yo (2-119)
tg =l % - Zg

where the magnitude of the acceleration along the rail is
1Z.aall=dg - % — 13l (2-120)

The loss of acceleration from friction with the rail || @[is computed from the static

or kinetic coefficient of friction g and the total force normal to the rail || ZF, |, that
is,

Lo K| ZF| .
@ f= f—m-— =y || dn|| (2-121)
where
|dall= [/@g - 9% + @q - 2»)° (2-122)

In other words, the acceleration normal to the rail is the vector difference between
the total acceleration and the acceleration along the rail. The acceleration loss from
friction is the product of the normal acceleration and the coefficient of friction uy. If
the velocity is near zero (less than 0.001 ft/sec), the static coefficient of friction is
used in Equation (2-121); otherwise, the kinetic coefficient of friction is used (Sec-
tion 4.2.10).

When arocket is mounted on a launch rail, the rail mechanism prevents it from mov-
ing backwards; it can only move forward in the positive x, direction. Therefore,
TAOS limits || @, || > 0 forrail launches to keep the vehicle motionless before mo-
tor ignition.

For sled tests this limitation does not apply because the sled can both accelerate and
decelerate. Sled tracks are normally oriented parallel to the earth’s surface so the ini-
tial acceleration along the tracks before motor ignition is zero and the sled remains
motionless.

2. Methods
2.2. Equations of Motion
2.2.3. Longitude, Latitude, and Altitude Rates

2.2.3. Longitude, Latitude, and Altitude Rates

TAOS computes the longitude, latitude, and altitude rates as the following output
variables in the function compute_state_rates:

longdt | yl longitude rate.

latgedt 4§, geocentric latitude rate.
latgddt & ed geodetic latitude rate.

altdt h altitude rate or rate of climb.

Longitude Rate

Longitude A is defined as
sind = ——#—— (2-123)
‘/(;" xe)z + (- }’@)2
? * a%@

cosd = = = (2-124)
- xe)2 +@- J’e)z

SO

1 =tan-! ?__y_@_:l (2-125)
r- xe

which is the same for both geocentric and geodetic coordinate systems. Longitude
rate A can be obtained by differentiating this equation as follows:

l. — (‘7@ ¢)A’@)(?'Afg;) - (V@A‘ Jlé@)(;")A’e) (2-126)
- x@)z + (- }’@)2
: Ve; - (— sind Sé@ + cosA y"GB)

A = = (2-127)
JO 30 + G o)

The denominator is the projection of the position vector onto the equatorial plane.
If it becomes zero, the longitude rate is undefined and TAOS sets it to zero.

Geocentric Latitude Rate

From Figure 2-2, the geocentric latitude rate § gc 18 defined as

2. Methods
2.2. Equations of Motion
2.2.3. Longitude, Latitude, and Altitude Rates

5. = Yo " Fge (2-128)
gc

Il

Geodetié Latitude Rate

The geodetic latitude rate é gdcannotbe determined as easily. A derivation of geodet-
ic latitude rate begins by multiplying Equation (2-33) by the quantity (I —e?) tan Ogd
and subtracting Equation (2-32) to get

#(1 — eHand,, —~ 7+ ig = — he’sindy (2-129)
This equation can be differentiated with respect to time to get

A

F(1—e)tand,, + 0,y % (1 — e)sec?d,y— Vg - 2y

= — he?sind ; — 8, he>cosd (3130

which can be solved for ¢d Tesulting in
. {z’cosé ed ™~ [J:f(l — €2) + he2cosd gd] sind gd} c0sd,y (2131

(1 — €?) + he?cos®d,,
where

¥=(N+h)cosdy, (2-132)
¥ = Vg - (COSA Xg + sind yg) (2-133)
i=Vg ig (2-134)
h==Vg iy (2-135)

Equation (2-133) comes from differentiating Equations (2-31) and (2-32). Substi-
tuting Equations (2-132) through (2-135) into (2-131) and performing some algebra
simplifies this expression to

Vg« %
0pq = - fd. (2-136)
N-[—1=2) +n
1—e?sin?d,,
Finally, substituting Equation (2-28) for N gives
. Vg - 2
Opa = ® ¢ (2-137)
Ro(1—¢e?)

h+
(1 _ez Sinzatd)hs

2. Methods
2.2. Equations of Motion
2.2.3. Longitude, Latitude, and Altitude Rates

The geodetic latitude rate is singular when the denominator in Equation (2-137) is
zero. When this condition occurs, the geodetic latitude rate is setequal to the geocen-
tric value.

Altitude Rate and Acceleration

A result of the derivation for geodetic latitude rate is the altitude rate / given in Equa-
tion (2-133). The vertical acceleration / can be obtained by differentiating this equa-

tion yielding
h=—Gg 2= Vg 2y (2-138)
where égd is given by differentiating Equation (2-19)

Zga = L[= cosd,; (cosh ig + sind Pg) — sind tg] (2139

= [sind g (cosh £ + sind J¢) - €088,y Zg| 8,4 (2-140)

+ €080 ,4(sind £g — cosd Fg) A

The vertical acceleration is required for one of the guidance rules (Section 2.5.1).

Dynamic Pressure and Mach Number Rates

Two other rates, the second derivative of dynamic pressure and the first derivative
of Mach number, are required by some of the guidance rules. One definition of dy-
namic pressure is

g=05o| Vy, | (2-141)
Differentiating this twice gives

q =05 é " Vwe "2 +2 Q ” ‘7“"9 " - " VW@ " + e " VW@ "2 (2-142)

where
) = a_h . 2.9_ =Pk Q.Q_
e=% m " am (2-143)
and
=9% .9 _ ; 90
=32 an (2-144)

The terms with || f';we l|and 6% /ah? are assumed to be small, | f}we || is assumed to

be equal to || f}@ |l» and the partial derivative of atmospheric density with respect to
altitude is obtained numerically from the model atmosphere.

2. Methods
2.2. Equations of Motion
2.2.3. Longitude, Latitude, and Altitude Rates

Similarly, the Mach number, which is given by

M=|Vy|l/c (2-145)

can be differentiated resulting in

M= | Vieg | € = [l Vv K (2-146)
02
where
P o= .a_h. .9¢c —p. dc _
€= k" o (2-147)

Again || Vwe ||is assumed to be equal to || ‘_;ea || and the partial derivative of the speed

of sound with respect to altitude is computed numerically from the model atmo-
sphere.

2. Methods
2.2. Equations of Motion
2.2.4. Ground Speed and Range

2.2.4. Ground Speed and Range

As mentioned previously, the ground range rg is the length of the projection of the
flight path onto the earth’s surface. Its derivative is the ground speed || V|, the veloc-
ity of the point on the earth’s surface nearest the vehicle. This point is where an exten-
sion of the geodetic Egd axis intersects the earth’s surface, that is, the point on the
earth’s surface directly below the vehicle.

The following output variables are computed in the function compute_state_rates
for ground range and speed:

range rs ground range for the entire trajectory.

grseg rs ground range for a trajectory segment.

grmark rg ground range from a designated point in the trajectory.
vgr KA ground speed.

The ground speed vector is defined as
Vs = Vg + 4V (2-148)

where 4 Vs is the velocity of a point on the earth’s surface below the vehicle relative

to the vehicle. Another way of saying this is that A Vs is the rate of change of the alti-
tude vector, that is,

—» _ d A
AV =2(h z,) (2-149)
=hig+hiy (2-150)

The altitude rate h is defined in Equation (2-133), and the rate of change of égd is
given in Equation (2-140). If Equation (2—150) is substituted into Equation (2-148)
and if V@ is expanded into its geodetic components, it becomes

‘_;S = (‘7® * igd) igd + (V@ *)A’gd) yAgd + h égd (2—151)

Now the geodetic velocity components can be replaced with the definitions in Equa-
tion (2-49) resulting in

Vs=[Vgl - COSY gy (COSY,, ‘egd + siny,, yAgd) +h fgd (2-152)

Ground speed is the magitude of this vector, and ground range is the integral of
ground speed over time.

2. Methods

2.2. Equations of Motion
2.2.5. Flight Path Angle Rates

2.2.5. Flight Path Angle Rates

The following flight path angle rates are computed as output variables in the function
compute_rates.

psigcdt P ec geocentric heading rate.

psigddt 9, geodetic heading rate.

gamgedt 7, geocentric vertical flight path angle rate.
gamgddt 7, geodetic vertical flight path angle rate.

Equations for the flight path angle rates are derived from the angular rate between
the velocity coordinate system defined in Equations (2—-68) through (2-70) and the
geocentric or geodetic coordinate system. The derivation shown here is for the geo-
detic flight path angle rates; the same method can be used for the geocentric flight
path angle rates.

The angular velocity of the velocity coordinate system can be expressed as
oBy = @lgy + 4By (2-153)

which is the sum of the angular velocity between the ECFC and geodetic coordinate
systems and the angular velocity between the geodetic and velocity coordinate sys-
tems.

From the coordinate system definitions, the angular velocity between the ECFC
coordinate system and the geodetic coordinate system is given by

0Boa =42 —0ggVea (2-154)

Similarly, the angular velocity between the geodetic coordinate system and the ve-
locity coordinate system is given by

gd&;V = ¢gd 23:1 + ?gd yAV (2-155)
Equations (2-153) through (2-155) can be combined to get
Qav =1 29 - 5gd }A’gd + 1tl)gd é:gci + ygd ﬁv (2-156)

If this equation is broken into its components in the velocity coordinate system, the
component in the y, direction is

—-

e?v’ Yy = @ 3@ - 584 5’34) Yy + Ved (2-157)
because
VoaZga Iy =10 (2-158)

The definition of the heading angle ¥4 given in Equation (2-69) can be substituted
into Equation (2-157) yielding

2, Methods
2.2. Equations of Motion
2.2.5. Flight Path Angle Rates

e®y - Yy=@A2%g) — 5gdcos¢gd + Vo (2-159)
The same procedure can be used to get the component of Equation (2-156) in the 2,
direction resulting in
oy Zy=(@ ig — égd Yea + Vea 2 * 2y (2-160)
Equation (2-70) can be used to simplify this to
oBy Zy=12%g 2y — 5gdsinygdsim/;gd + YpaC08y,y (2-I61)

An expression for the angular velocity between the ECFC and velocity system can
be obtained by writing the earth—fixed acceleration as the velocity differentiated with
respect to the velocity coordinate system, that is,

L d|Val .
a=llellx

® 5 *v T gWy X Vg (2-162)

where

Vel _dg- Ve .
= = = ae * xV (2—163)
dt A

The cross product in Equation (2-162) simplifies because the velocity vector is
aligned with the Xy, axis in the velocity coordinate system giving

Xy Y, 2y
@51’ X ‘79 = ‘iVx wvy sz (2-164)
[Vell 0 0

=[Vel - [(@@ - 2y) Yy — (oDy Iy fv]
where 0y, @ v, and wy, are the components of @ Wy in the velocity coordinate sys-
tem.
Equations (2-162) through (2-164) can be combined resulting in
If this equation is broken into its yyand 7, components, it gives

g Yy =IVall - (g&y- 2 (2-166)

— A ae * yAV .

ey Iy = —5— (2-167)
Vgl

and

2. Methods
2.2. Equations of Motion
2.2.5. Flight Path Angle Rates

EGB : £V = —| V@ fl - (ea;v . f’v) (2-168)
- A - E@) £V
e@y* Yy =—=—0 (2-169)
Vel

Equations (2-159) and (2-169) can be equated and solved for 7, giving
_ 3&9 : 2V
Vel

Similarly, Equations (2-161) and (2-167) can be equated and solved for 1 od giving

}"gd -

— A Zg Yy + 0,008, (2-170)

Lo v _j Zg Iy + 5gdsinygdsinngd
Wl

. 171
wgd (2-171)

COSY g

The unit vectors yy and Zy are obtained from Equations (2-68) through (2-70).

2. Methods
2.2, Equations of Motion
2.2.6. Specific Load Factors

2.2.6. Specific Load Factors

One definition for the specific load vector is the inertial acceleration of the vehicle
minus the acceleration from gravity, that is,

dsp = d; — Ggray (2-172)

Another equivalent definition for specific load vector is the sum of the aerodynamic
and propulsive forces acting on the vehicle divided by the vehicle mass, that is,

7 = 2F gero + 2F, prop (2-173)
sp m :

Specific load factors, the components of the specific load vector, are useful for deter-
mining structural requirements and limitations, and they are often referred to as the
g loading. TAOS computes the following specific load factor output variables in the
function compute_derivs:

nx dsp * x specific load factor component along the body x—axis
often called the axial g’s.

ny dgp * y"b specific load factor component along the body y-axis.

nz dsp 2, specific load factor component along the body z-axis.

ntotal I dsp || magnitude of the specific load vector often

referred to as the total g’s acting on the vehicle.

Another related quantity commonly used is called the normal g’s or lateral g’s.Itcan
be computed from the specific load factors with

8, = [@y *) + @gp - 3)° (2-174)

2. Methods
2.3. Contributions to Acceleration

2.3. Contributions to Acceleration

The vehicle acceleration, given by the equations of motion, is

| dg = ZmE - 2'(159X‘7@)—15$X(15®X7) (2-175)

The term SF/m represents the contributions to acceleration from all of the external
forces acting on the vehicle. This includes aerodynamic forces Ef«:aem, propulsive

forces Ei"p rop» a0d gravitational forces Z’fgm,,. These forces and their corresponding
accelerations are shown in Figure 2-16.

—-

Qprop =

Figure 2—16. Accelerations from Forces Acting on the Vehicle.

Aerodynamic forces SF,.r, are functions of the vehicle’s shape, its state, and the
earth’s atmospheric properties, such as temperature, pressure, and density. TAOS
contains several atmosphere models, given in Section 2.3.1, that compute these prop-
erties. Aerodynamic force calculations from input data are given in Section 2.3.2.

Propulsive forces Zi"pmp, from rocket or jet engines, are defined with input data and
discussed in Section 2.3.3.

TAOS assumes trajectories are near to the earth so that gravitational forces from the
earth are predominant. Gravitational forces from the moon, sun, and planets are ne-
glected. An earth gravity model is presented in Section 2.3.4 that computes accelera-
tion from gravity dg,,,.

2. Methods
2.3. Contributions to Acceleration
2.3.1. Atmosphere Model

2.3.1. Atmosphere Model

The atmosphere models available in TAOS were originally developed by Acurex
Corporation under contract to Sandia and subsequently corrected by Landrum in
1987.12 The models include the 1976 U.S. standard atmosphere13, 1966 supplemen-
tal atmospheres!4, Tonopah range data, and a mean annual Kwajalein atmosphere. 15

The 1976 U.S. standard atmosphere is an idealized, mid-latitude representation of
the atmosphere under year-round moderate solar activity. Other atmosphere models
are similar in that they represent average conditions for a given location and season.

On any given day the actual atmospheric properties may significantly vary (as much
as 50 percent for density) from the atmosphere model depending on the specificloca-
tion and date. However, it is impossible to predict actual atmospheric conditions for
a given location and date, so model atmospheres are used as a best approximation.
The 1976 U.S. standard atmosphere is widely used for consistency when comparing
trajectories.

All of the atmosphere models rely on the same basic assumptions to simplify analy-
sis. From these assumptions, equations can be developed relating altitude, tempera-
ture, pressure, density, speed of sound, and viscosity. These equations are used to
compute the following output variables in TAOS:

temp T temperature.

pres P pressure.

rho 0 density.

sndspd ¢ speed of sound.

nu v kinematic viscosity.
Assumptions

The gas composition of the atmosphere is assumed to satisfy the aerostatic equation

dp=—p0-g-dh (2-176)

and the perfect gas law
=o-R..7 2-177
p=e M, ()

where g is the acceleration due to gravity, 4 is the altitude above sea—level, R*is the
universal gas constant (8314.32 N-m/(kmol-K), and M,, is the molecular weight.

The atmosphere is assumed to be divided into concentric layers surrounding the
earth. Within each layer the gradient of the molecular temperature 7 with respect to
the geopotential altitude H is assumed to be constant, that is,

4T — constant (2-178)

dH

2. Methods
2.3. Contributions to Acceleration
2.3.1. Atmosphere Model

M,
where 7=—X-T (2-179)
w
h
and H=1 g - dh (2-180)
GJo

The zero subscript indicates sea-level conditions. For example, M,,, is the molecular
weight at sea-level which is 28.9644 kg/kmol for the 1976 U.S. standard atmosphere
model and 28.96 kg/kmol for all other atmosphere models. The reference geopoten-
tial Gis9.80665 m/sec2. This corresponds to the sea-level acceleration due to gravity
at a latitude of 45.5425° from Equation (2—-183).

For atmospheric calculations the acceleration of gravity is assumed to vary with alti-
tude according to the inverse square law

R.' \°
—o o |—® (2-181)
4 gO (RQ, + h)

where Rg/' is the effective earth radius for geopotential calculations. When this is
substituted into Equation (2-180) and integrated, the geopotential altitude becomes

g=58.[Re'" (2-182)
G \Rg +h
The sea-level acceleration due to gravity in m/sec? is assumed to be a function of
latitude and given by Lambert’s equation
&0 = 9.806160 - (1 — 0.0026373cos20 + 0.0000059 cos228) (2-183)

The latitude used in this equation is the latitude used to describe the atmosphere mod-
el. Forexample, a 60°N atmosphere uses a value of 60° for the latitude. Thisisincon-
sistent with the gravity model used for trajectory calculations, butitis consistent with
the 1976 U.S. standard!3 and 1966 supplemental atmosphere models.!4

The effective radius of the earth, used in Equation (2-182) for calculating the geopo-
tential altitude, is different from the actual radius of the earth. It is obtained from

28
R.' = 2-184
® " 3085462 X 10~6 + 2.27 X 10=%¢0s28 — 2.0 X 10— 12¢os4d ()

which gives an earth radius of 6356.766 km at a latitude of 45.5425°.

The properties for each atmosphere layer are given in tables that are a function of alti-
tude h or geopotential altitude H. Molecular temperature T and molecular tempera-
ture gradient dr/dH are given as a function of geopotential altitude H. Molecular
weight M,, is given as a function of altitude k. These table values represent the prop-
erties at the base of each atmosphere layer.

2-53

2. Methods
2.3. Contributions to Acceleration
2.3.1. Atmosphere Model

Temperature

The geopotential altitude, molecular temperature, and gradient are obtained from the
tables for the base of the i**layer. The molecular temperature and weight at a specific
geopotential altitude within this layer are

T=71; + (H-H) (2-185)

M, = M, +de H - H) (2-186)

and the atmospheric temperature is
M,

Wo

T =

T (2-187)

Pressure

The atmospheric pressure is obtained by writing Equations (2-176) and (2-177) as
a function of geopotential altitude using Equations (2-179) and (2-180) resulting in

dp = — pgodH (2-188)
oR*r

and = (2-189)
=M.,

Dividing Equation (2-188) by Equation (2-189) gives the differential relation

M
Q = — ——go ¥o dH
p R'zt
The molecular temperature 7 is a linear function of the geopotential altitude H as
shown in Equation (2-185). Substituting this equation into Equation (2-190) and in-
tegrating gives the following two expressions for pressure depending on the value
of the molecular temperature gradient:
_ (gono(H— H,-))
pP=p;e Rz for
gono
T;\ R*-4 dr (2-192)
aH for £-= 0
P=Pi '() dH

(2-190)

dr _ (2-191)

These equations for atmospheric pressure are first used to compute pressure at the
base altitudes of the atmospheric layers and then later to compute pressure atany geo-
potential altitude.

Density, Speed-of-Sound, and Viscosity

The equation for atmospheric density

2. Methods
2.3. Contributions to Acceleration
2.3.1. Atmosphere Model

p-M,
R'-7
is obtained from combining Equations (2-177) and (2-179).

0

o= (2-193)

The speed of sound is given by

= [kRT_ [kRz 2-194
c 7 M,y (.)

where k is the ratio of specific heats, which is equal to 1.4 for air.
And finally, kinematic viscosity v is computed from Sutherland’s formula

1.1.458 X 10~6 715
0 T+ 1104

v = (2-195)

Atmosphere Calculations

The 1976 U.S. standard atmosphere table is defined up to an altitude of 146 km. The
other atmosphere models are defined up to altitudes ranging between 30 km and 117
km, and then they are extrapolated to 146 km such that at 146 km they are the same
as the 1976 standard atmosphere. The function atmos_setup is executed prior to any
atmosphere calculations to select the tables for the desired atmosphere model and
load them into arrays for later use.

Atmosphere data for altitudes below 146 km is computed as shown above in function
atmos_properties. Above 146 km a separate table containing temperature, pressure
and density as a function of altitude for the 1976 U.S. standard atmosphere is used
for all atmosphere models. The function atmos_hi_alt linearly interpolates tempera-
ture and exponentially interpolates pressure and density from this table for altitudes
up to 1000 km.

All of the model atmosphere functions are in the atmos module. This module is sepa-
rate so it can be easily used with other software.

2. Methods
2.3. Contributions to Acceleration
2.3.2. Aerodynamic Forces

2.3.2. Aerodynamic Forces

Aerodynamic force vectors are calculated from aerodynamic coefficients given in a
table or problem file (Sections 3.1 and 4.2.1). The coefficients are converted to forces
by multiplying them by the dynamic pressure g and the reference area Sref.

Three different sets of aerodynamic coefficients can be input: the axial and normal
force coefficients (C4 and Cy), the lift, drag, and side force coefficients (Cr,, Cp, and
Cs), and the body x, y, and z force coefficients (Cx, Cy, and Cz). Each set of coeffi-
cients defines an aerodynamic force vector. If more than one set of coefficients is giv-

en, they are summed to obtain 3F,,,,.
The aerodynamic coefficients are often functions of the Mach number and Reynold’s

number. Both of these quantities are computed as output variables along with the dy-
namic pressure, that is,

dynprs q = 0.7pM? dynamic pressure.
mach M =| VwQ I /¢ Mach number.

reypft Ry =| Vwe, (Wig Reynold’s number per unit length.

These variables are functions of the atmospheric pressure p,the speed of sound ¢, and
the kinematic viscosity ¥ (Section 2.3.1).

Axial and Normal Force Coefficients

The axial and normal force coefficients are often used for axisymmetric vehicles
such as reentry bodies and missiles. The axial force acts in the opposite direction of
the body x axis, and the normal force acts in the opposite direction of the windward
meridian ¢,,.

A unit vector representing the windward meridian qg » is obtained by projecting the
x axis of the wind coordinate system onto the plane formed by the body ¥, and z,,
axes as shown in Figure 2-12 in Section 2.1.9, that is,

é, = Ow - Yp) Yp + Gw - 2)) 2, (2-196)

\/ (-fw ¢ }"\b)z + (xw ¢ éb)z
Now the axial and normal coefficients can be converted to an aerodynamic force with
j;"aero: —'0243b4-Ca¢¢b)'q.Swf (2-197)

The first term represents the axial force and the second term represents the normal
force. Equation (2-196) is singular when the wind x axis is aligned with the body x
axis, in other words, when the total angle of attack is zero, so TAOS assumes the nor-
mal force is zero when this occurs.

Lift, Drag, and Side—Force Coefficients

Lift, drag, and side-force coefficients are often used for aircraft applications. The lift
force is in the opposite direction to the wind z axis, the drag force is in the opposite

2-56

2. Methods
2.3. Contributions to Acceleration
2.3.2. Aerodynamic Forces

direction to the wind x axis, and the side force is in the same direction as the wind
y axis. Thus, the aerodynamic force vector is given by

Faero = = (Cp#w—Cs 9, + CLzw) q Sref (2-198)

Body-Axes Force Coefficients

The force coefficients Cx, Cy, and Cz, sometimes obtained from wind tunnel tests,
represent forces aligned with the body—fixed coordinate system, so the aerodynamic
force vector is

iaero = (Cx ib + Cy i’b + C, éb) °q S,ef (2-199)

Aerodynamic Forces

Aerodynamic forces are calculated in the function force_aero. TAOS first converts
all types of aerodynamic coefficients to lift, drag, and side forces using the defini-
tions given above and coordinate transformations. If more than one set of coefficients
is defined (with multiple *aero data blocks as shown in Section 4.2.1), then the forces
from each set of coefficients is added together giving the total lift, drag, and side
force. Finally, the total aerodynamic force is transformed from the wind coordinate
system to the ECFC coordinate system so it can be used in the equations of motion.

The following output variables are used in TAOS for the aerodynamic coefficients:

ca Ca axial aerodynamic force coefficient.

cn Cn normal aerodynamic force coefficient.

cl C total aerodynamic lift coefficient.

cd Cp total aerodynamic drag coefficient.

cs Cs total aerodynamic side—force coefficient.
cx Cx body x—axis aerodynamic force coefficient.
cy Cy body y-axis acrodynamic force coefficient.
cz Cz body z—axis aerodynamic force coefficient.

The output variables for the lift, drag, and side—force coefficients are always calcu-
lated. The remaining output variables are only defined when they correspond to an
input set of coefficients. For example, if tables are input defining C4 and Cy, then
the corresponding output variables are defined, but the output variables for Cx, Cy,
and Cz are left undefined.

When multiple sets of aerodynamic coefficients are input, only the lift, drag, and
side—force coefficients are guaranteed to represent the total forces acting on the ve-
hicle. If all of the input aerodynamic coefficients are of the same type, then the corre-

2-57

2. Methods
2.3. Contributions to Acceleration
2.3.2. Aerodynamic Forces

sponding output variables are totalled correctly. However, if the input coefficients

are not the same type, then the remaining coefficients are either undefined or repre-
sent partial totals.

2. Methods
2.3. Contributions to Acceleration
2.3.3. Propulsive Forces

2.3.3. Propulsive Forces

The magnitude and direction of propulsive force vectors are given in the table file
as shown in Section 3.1 or in the problem file as shown in Section 4.2.9. If more than

one force vector is given, they are summed to form Ef?'p,op. The equations of motion

are for a point mass, so thrust vectors act through the vehicle’s center of mass, and
their direction is determined from two thrust vector angles, £; and &;, defined in Fig-
ure 2-17.

Projection of ?p,o,,

onto y, 2, plane
\
2) *2\ :

V£

¥, is out of the page

F}m
Vehicle

Figure 2-17. Thrust Vector Angles.

The thrust vector angles are analogous to the total angle of attack and windward me-
ridian. The thrust vector angle &; is the angle between the body x axis and the thrust
vector and has values ranging from 0° to 180°. The thrust vector angle & is the angle

between the projection of the thrust vector onto the plane formed by y, and z, and
the negative y, axis.

The thrust vector is defined as

F = |F -cose; % — | F - sing, cose, y
prop | prop I .1 b . l Apmp i 1 2 Y (2-200)
= || Fprop || - sine,sine, z,

in function force_prop. 1t is converted from the body—fixed coordinate system to the
ECFC coordinate system with a coordinate transform as shown in Section 2.1.12.

The following output variables are associated with the propulsive force vector:

thrust | Fprop] total thrust vector magnitude.
epl £ thrust vector angle 1.
ep2 & thrust vector angle 2.

If more than one propulsive force vector is given (more than one *prop data block
as shown in Section 4.2.9), then the thrust output variable is the sum of the thrust
magnitudes. This only has meaning if all of the thrust vectors are aligned. The thrust
vector angles, epl and ep2, have values corresponding to the last thrust vector eva-
luated (the *prop data blocks are evaluated in the same order as input).

2-59

2. Methods
2.3. Contributions to Acceleration
2.3.4. Gravity Model

2.3.4. Gravity Model

The gravitational field surrounding a planet is represented with a gravity potential
function U. The gravitational acceleration vector, required for trajectory analysis, is
the gradient of the potential function, that is,

VU = Ggray (2-201)
When the gravity potential function is applied to the earth, it is called the geopoten-

tial. The geopotential is a function of an object’s position relative to the center of the

earth so it is written as a function of the geocentric coordinates || 7]}, ¢, and A. The
geopotential is commonly expressed in terms of spherical harmonics as follows:

U = HG_,Lﬁ 1+ Z z [l—b"] n,m(Slnagc) [Cn’mcosm + Sn,mSlnmA] (2—202)
n=2m=0

One reason spherical harmonics are used for the geopotential is that the constants
Gs,m and S, , can be related physically to regions on the earth’s surface. Earth gra-
vitational models, created from satellite tracking measurements, consist of values for
the constants GM, Rg, G, 1, and S ;.

Since the center of the geocentric coordinate system coincides with the earth’s center
of mass, the first terms of the expansion, C; ¢ and Cj j, are zero so they have been
eliminated by summing from n = 2 rather thann = 1.

Geopotential

The geopotential function can be divided into three parts. The first part
GM
17l

corresponds to the potential derived from treating the earth as a point mass. When

the spherical earth model is selected in TAOS, it consists of just this one term. All
other terms are neglected.

(2-203)

The second part of the geopotential consists of the terms which are only functions
of latitude, that is, the terms with m = 0. These terms are called the zonal harmonics.
The second-degree zonal harmonic models the oblateness of the earth shape, and it
is the largest of the spherical harmonic terms.

A common simplification of the geopotential is to include only the zonal harmonic
terms, resulting in

o

n

R

U= %‘ﬁ 1+ [ﬁ] P, o(sindgo) C, g (2-204)
n=2

This equation is often written in terms of J,, where J, = —-C, ¢ giving

2-60

2. Methods
2.3. Contributions to Acceleration
2.3.4. Gravity Model

n
2[R
U= %{1 -> [ﬂ%l] P, (sindgc) J,,} (2-205)

n=2

The third part of the geopotential consists of the remaining terms that depend on lon-
gitude. The largest of these terms is usually the degree 2 and order 2 term which mod-
els the asymmetry of the earth about the equator. This term is significantly smaller
than the second degree zonal harmonic term that models the oblateness of the earth.10

Legendre Functions

The Ppm(sindgc) terms in the geopotential function are Legendre functions of
sind g, defined as®

P, m(8ind o) = c0s™0 4 * —d® _(p (sindz) (2-206)
e & d(sinégc)'"("0 gc)
where
n
P, (sind,) = —t—- — 2% (5in?5,. — 1 (2-207)
rOTTTEE T 2mm d(sinégc)"(o= 1)
The notation
—42&___(P(sindy)) (2-208)

d(sindg)"

means the n? derivative of P with respect to sind gc- For example, the first four Le-
gendre functions of order zero are

Pl’o(Sin 68(_-) = Sinagc
P, (sindge) = 1 - (3sindgc — 1) (2-209)
P3(sindge) = 3 - (5sindgc — 3sindge)

P,o(sindg) = &+ (35sin*dc — 30sin?dgc + 3)

Normalization

The spherical harmonic coefficients in the geopotential functions given in Equations
(2-202) and (2-204) are unnormalized. These coefficients become very small as the
degree increases partly because of the nature of the gravity field, but mostly because
the associated Legendre functions become large. Thus, itis common to normalize the
coefficients and Legendre functions by a scale factor that is a function of the degree
and order given by10

Ppm = [(2 — Om)(2n.+ 1)2—2—;—%%] * Pum (2-210)

2. Methods
2.3. Contributions to Acceleration
2.3.4. Gravity Model

and to normalize the coefficients G, ,, and Sy, by the inverse of this, for example,

C.. = 1 m+mt] (2-211)
| Crm [(2 =@ ¥ D = m)!] Cam

where O, = 1if m = 0, and 6,, = 0if m > 0. Normalized Legendre functions and
coefficients are denoted with a bar.

TAOS uses the unnormatized form of the Legendre functions and coefficients be-
cause it neglects all terms higher than 4th degree. However, published coefficients
for the WGS—-846 and GEM-T1! gravity models are normalized and must be un-
normalized before they can be used in TAOS.

Gravity Acceleration Vector

As stated previously, the gravity acceleration vector is the gradient of the geopoten-
tial function so the components of the gravity acceleration vector in geocentric coor-

dinates are
= s _ 1 .3U g
Qerav * Xgc "-'-.." aagc (2-212)
- A 1 olU
Voo = T 2-21
Agrav " Ygc |7l cosdgc 04 (2-213)
Agray * Zge = — #I_Z." (2-214)

The dgrav * Zgc term is negated because 7 is in the opposite direction of Z,.. Taking
the partial derivatives of Equation (2-202) and substituting them into Equations
(2-212) through (2-214) results in

Rg | & Punsing,)
I71] .,.z..; 30 e

- .2 _GM <

By * $e = 150 * [Comcosmd + S,sinmA (2-215)
n=2

" GM @ -ie_- " im Pm(sinagc) . [

Byay * 9,0 = 17 2 |71 cos3,. ~ C,nsinmi + S,,,cosmi] (2-216)

m=0

By 5. = %{1 +> 0+ 1)[%] D Pun(sindy) - [Comcosmd + s,,,sinmz.]} (2-217)
n=2 m=0

These equations are used with n = 4 in function accel_grav to compute the gravity

acceleration vector for the wgs—84—full and gem-tI-full earth models (Section

4.4.3). The gravitational effects of the sun and moon are neglected.

They are simplified to only include zonal harmonic terms through n = 4 for the
tsap—72 and tsap—84 earth models. These earth models correspond to those used in
TSAP2; however, they are somewhat inconsistent because the J3 and Jy terms are

2. Methods
2.3. Contributions to Acceleration

roughly the same order of magnitude as some of the nonzonal harmonic terms that
have been neglected.

The standard wgs—72 and wgs—84 earth models in TAOS include only the second de-

gree zonal harmonic J; so the equations for the gravity acceleration vector simplify
to

2
— A R .
Qgrav * Xgc = "GAIIIZ [“ —»n] -3 stlnagc COSégc) (2-218)
dgrav * Yoo = 0 (2-219)

2
R
- 2 _ GM . _ el .3 . 2 _ _

The earth models that include only the J, term provide adequate accuracy for a point—
mass trajectory code like TAOS. The effects of higher—order terms on most trajecto-

ries is small and well within the accuracy of other features of the code such as the
atmosphere models.

2. Methods

2.4. Output Variables

2.4. Output Variables

Ateach integration step TAOS computes the following output variables from the ve-

hicle’s state:
' Range and Distance
crsrng Arg distance perpendicular to a reference azimuth.
dwnmng Arg distance along a reference azimuth.
east Arg distance along constant latitude.
north Arg distance along constant longitude.
Radar rvation
radmg [|47/| radar range.
radmgdt [} A7 radar range rate.
radrgde2 || 47| radar range acceleration.
radaz ar radar azimuth angle.
radazdt a, radar azimuth rate.
radazdt2 a, radar azimuth acceleration.
radelv &r radar elevation angle.
radelvdt &, radar elevation rate.
radelvdt2 &, radar elevation acceleration.
radasp nr vehicle aspect angle from radar.
radmer ¢, vehicle meridional angle from radar.
Relative Vehicle Variables
relrng 147 relative range of ith vehicle.
relaz a; relative azimuth angle of it® vehicle.
relelv &; relative elevation angle of i vehicle.
relvel 1.47; 1 closure velocity of ith vehicle.
relxb AF; %, x—position of ith vehicle in body axis system.
relyb 47, -y, y-position of it vehicle in body axis system.
relzb A47; -z, z-position of ith vehicle in body axis system.
Initial Impact Point Variables
iip_latgd o iip geodetic latitude of initial impact point.

2-64

2. Methods
2.4. Output Variables

iip_long A iip longitude of initial impact point.
iip_time tiip time at initial impact point.
iip_mg ry, range to initial impact point.
iip_azm Cip azimuth to initial impact point.

Aer namic Variabl

alpha_ld aip angle of attack at maximum lift-to—drag ratio.
ballistic . ballistic coefficient.
vd L/D lift-to—drag ratio.

These variables are computed only if they are used or referenced in the input problem
file. For example, if one of these variables is listed as a printout variable or as a seg-
ment final condition, then it is computed.

2. Methods
2.4. Output Variables
2.4.1. Ranges and Distances

2.4.1. Ranges and Distances

If the flight path is projected onto the earth’s surface, the resulting curve gives the
ground range as shown in Section 2.2.4. This is the distance traveled by the vehicle
along the earth’s surface, but it is not referenced to anything. The ranges and dis-
tances in this section use two—dimensional coordinate systems defined on the earth’s
surface to act as references for the trajectory ground track.

East and North Distances

An east/north coordinate system is defined on the earth’s surface such that the east
axis is aligned with lines of constant latitude and the north axis is aligned with lines
of constant longitude as shown in Figure 2—18. The origin of the coordinate system
islocated ata known reference point, often the initial position of a vehicle. This two-
dimensional coordinate system is useful for short-range trajectories where the
earth’s curvature is not a factor.

: Noﬂh] [l [] &
Linesof ----4-- Axis f[-------- SRR meoeeeo- ST
constant ' - East =e Vehicle :
latitude ____ . ______ et Ao L
' ' ' North :
e ® - - - - --- N - oo - - {-:----;--n:----
+ Reference ' East Axis | " '
. Point : X ! X

Figure 2-18. East and North Distances.

The east distance is the distance between the reference longitude and the vehicle’s
longitude along the reference latitude. Similarly, the north distance is the distance be-
tween the reference latitude and the vehicle’s latitude along the reference longitude.

These calculations depend on methods that determine the distance between two
known longitude/latitude points on the earth’s surface. This is a well-known geodesy
problem and many methods are available.

Sodano’s Inverse Method

TAOS uses Sodano’s inverse method because it is accurate, it is noniterative, and it
works over both short and long distances.!6 The method is coded in function soda-
no_inverse in the derivs module. It requires the longitude and geodetic latitude of two
points on the earth’s surface, that is, (4,, & ga,) @04 (4, 6,4). Then, the distance on

the earth’s surface Arg between these two points is given by

2. Methods
2.4. Output Variables
2.4.1. Ranges and Distances

Fo= (1414 Flp + sinfysing [+ Prsing ~ fotescs] 2220
- %m[(f+)@ + sing cos¢) —f2¢200t¢]
— 2sin?f, sin?B, fsingcosg
+ sing, sinf, mf’ [Sin¢ cos’¢ + ¢2csc¢]

+ '116 m2[¢ + singcosp — 2singcos’p — 3¢200t¢]

where
cos¢ = sinf;sinf, + cosBcosf, - A, —4;) (2-222)
m = 1 — cos?B,cos?B,sin’(A, — A,)csc?¢ (2-223)
and
tanB; = (1 — fHtand Rpsindgg, (2-224)
81 RgC0SO,y
R,sind
-1 _ gd; (2-225)
tanfy = (1 = Htandyy, Rgcosd,,

The earth’s equatorial radius R 4, the earth’s polar radius Rp, and the flatness param-
eter f are defined in Section 2.1.5.

Sodano’s inverse method also gives azimuth angles between the two points. An azi-
muth angle is similar to a heading angle. It is measured clockwise from north so that
a 0° azimuth angle points north and a 90° azimuth angle points east. The earth’s sur-
face is modeled as an ellipsoid so a constant azimuth angle defines a curve. A curve
connecting two points on the earth’s surface has an azimuth angle at each point called
a forward azimuth ¥5,4 and a backward azimuth ¥, ;.

Given two points, the forward azimuth corresponds to the azimuth of the connecting
curve at the first point, and the backward azimuth corresponds to the azimuth at the
second point. In many cases the difference between the angles is approximately
180°. From Sodano’s inverse method, they are given by

tany,, = cosf,sina (2-226)
sindp + 2cosp,sing, sin?4
cosf, sind .
A, = B (2-227)

sindf — 2cosf; sinf,sin?4

2. Methods
2.4, Output Variables
2.4.1. Ranges and Distances

where
cosf,cosB,sin(d, — 4,)
A=,12—,11+(Ay I:i2n¢(2 1)[(f+f2)¢
— 1sinf, sinB, f(sing + 2p2cscp) (2-228)
+ Imf(sing cosgp — 5¢ + 4¢2c0t¢):|
AB =0,y — Oyy + n(sin20,, —sin20,,) - (2-229)
- -;-nz(sin4(§g‘,,1 —sindd,,) + %n3(sin668d1 — §in60,,)
= 0,4, — Opq +25in(0,y — 0,,)[sinf;siny(n +n? +n®) (2-230)
— cosBcosBy(n — n? + n?))
and
n=_0"_"%p (2-231)
Rg + Rp

Downrange and Crossrange

Another coordinate system can be defined on the earth’s surface for downrange and
crossrange calculations as shown in Figure 2-19. In this system downrange is mea-
sured from a reference point along a reference azimuth. Crossrange is measured per-
pendicular to the reference azimuth.

Longitude Veilicle

: X

' Crossrange Reference

X (\ Azimuth

\ AZi 6

v Azimuth ®

' Ang‘le _~" P

. \ Downrange
Reference] / |
Point A Latitude

Figure 2—19. Downrange and Crossrange.

A Newton-Raphson iterative search is used to vary the downrange until the differ-
ence between the backward azimuth ¥, , from the point P to the reference point and

the forward azimuth ¥4 from point P to the vehicle is 90°, that is,

In other words, the point P slides along the reference azimuth line until the down-
range and crossrange lines are perpendicular.

2-68

2. Methods
2.4. Output Variables
2.4.1. Ranges and Distances

The Newton-Raphson search method solves for a value x such that an error function
fix) = 0 (Section 2.6.2).2 From an initial estimate of x,, a new value of x,4; is esti-
mated from

Xna1 = % = fom) * 520 (- (2-233)

where n is the iteration counter. The partial derivative of f{;,;) with respect to x is esti-
mated numerically using a forward difference. In this application, x is the downrange
and the error function f{x) is the difference between the angle 8 and 90°, that is,

F&) =Z = Wyaer — Ypud (2-234)

Sodano’s Direct Method

The error function in the Newton-Raphson solution requires Sodano’s direct method
to calculate the backward azimuth 1, ., the longitude A,, and latitude & ¢d, Of point

P given areference longitude 4, areference latitude 0 gdy areference azimuth, and
a distance Arg,16

Sodano’s direct method begins by computing the angle ¢ from

¢ = C—ne 25ing + tme'?[sing cos¢ — &) + 3n%'*sing cosg

+ 1 m e"‘[llC 13sincost — 8L cos?¢ + 10s1n§cos3C]

+ -Z-mne"‘[B sing + 2&cos¢ — 5sing cos2§] (2-235)
where
= l[1 + 1e'2sm2ﬂl][1 - coszﬂlsinzw] (2-236)

n= [1 + ‘e’zsmzﬂl][sinzﬂl cos¢ + cosﬂlcoswsinﬂlsing] (2-237)

=4rs 2-23
and
2 2
S R + Rj (2-239)
1 —e2 R}

Theangle g, , defined the same way as in Sodano’s inverse method, is computed with

Equation (2-224), and the earth’s eccentricity e is defined in Section 2.1.5. After the
angle ¢ is computed, the geodetic latitude of point P is given by

2. Methods
2.4. Output Variables
2.4.1. Ranges and Distances

tand,, = (2-240)
* (= Rycosp,
where
sinf, = sinf,cos¢ + cosB, cosysing (2-241)
and

cosfB, = /cos?B, sin2y + (sinB,sing — cosB; cosycosphi)? (2-242)

The longitude of point P is calculated from

- -1 sing siny g
A =4+ 1+t [cosﬂlcosgb - sinﬂlsinqbcosy;] (2-243)

where
l= cosﬂlsimp[— f&+3fnsint + %fzm * (€ — sing cosC)] (2-244)

And finally the backward azimuth from point P to the reference point is obtained
from

— cosp, siny
sinf,sing — cosf;cosy cos¢g

tany, . = (2-245)

Sodano’s direct method is coded in the function sodano_direct in the derivs module.

Once the longitude and latitude of point P are known, the forward azimuth and dis-
tance from point P to the vehicle can be calculated with Sodano’s inverse method.
The two azimuth angles are used in Equation (2-234) to compute the error function
for the downrange/crossrange Newton-Raphson search.

2. Methods
2.4. Oustput Variables
2.4.2. Radar Observations

2.4.2. Radar Observations

Radar observations are simulated by tracking a vehicle’s trajectory from an earth—
fixed position representing the radar antenna. Trajectories can be observed from
many radar locations.

For radar observations a local geodetic horizon coordinate system is defined with its
origin at the radar antenna as shown in Figure 2—-20. Itis fixed with respect to the earth
and a vector 7, can be defined that gives its position relative to the earth’s center. This
system has unit vectors Xy, ¥, and z,, aligned with the local geodetic horizon system,
so they can be computed from Equations (2-19) through (2-21) in Section 2.1.5 us-
ing the station’s position information.

Z

“9
4 Y, Radar Station

X
4 Geodetic Local
Pp - A orizon Plane
Iy Zr

) Equatorial

B - Plane

- R

Figure 2-20. Radar Station Coordinates.

The position of the vehicle relative to the radar station is given by
A7, =7—7 (2-246)
and the radar range is the magitude of this vector, that is, || 47, .

A unit vector can be defined in this direction with

A A?r
8, = A (2-247)
T 47

The azimuth ¢, and elevation angle ¢, of the vehicle relative to the radar station,
shown in Figure 2-21, are defined as

47,3

tana, = —):’ (2-248)
ar, - x,

sing, = — fiy - 3, (2-249)

The azimuth angle a, is measured in the geodetic local horizon plane containing the
unit vectors X, and 3. It is the angle from the vector x, so that 0° is north and 90°

is east. The elevation angle &, is measured from the geodetic local horizon plane and
is positive when oriented away from the earth.

2-71

2. Methods
2.4. Output Variables
2.4.2, Radar Observations

Vehicle

Radar
Station

Figure 2-21. Radar Observations.

Expressions for the rates and accelerations of the radar range, azimuth angle, and
elevation angle are obtained by differentiating the above equations. Range rate and
acceleration are along the unit vector u, and are given by

|47 ||= Vg - &, (2-250)
|47, ||= @g - iy + Vg - iy (2-251)

where the derivatives of the unit vector are

i - ‘7@ - (‘7@ * ﬁr)ﬁr

u — (2-252)
’ |47
i _ dg =47 ||ir = 2V - ity (2-253)
Ur = —
47|
The first two derivatives of the azimuth angle are
o, - o3 50~ T S0, 3y s
Ar, - x)* + 4r, - y,)
Gr = g }A”)({?' 'Af'i _ (a? : %')(f?' 97 (2-255)
ar; - x,)? + (4r, - y,)
2, [(Vg - 5)UF, - 3) + (Vg -)47, - 5]
(A?r : 32,)2 + 7, -)’Ar)z
and the derivatives of the elevation angle are '
ér = — ity - Z,S€CE, (2-256)
& = [sf sing, — z;f, . 2,] sece, (2-257)

The radar aspect angle 7, is the angle between the vehicle longitudinal x,, axis and
the line of sight to the radar station u,as shown in Figure 2—22. The meridional angle

2-72

2. Methods
2.4. Output Variables
2.4.2. Radar Observations

¢, is the angle produced by the radar line-of-sight vector u, projected onto the ve-
hicle plane formed by y, and z,,. These angles are analogous to the total angle of at-
tack and the windward meridian.

cg > A
b Wy
7 b ¢Q &
r
) &, i, prcijecited
2 £b onto Yy
plane
Figure 2-22, Radar Aspect and Meridional Angles.
The aspect angle is defined as
sing, = /Gy -)% + Gir - 2,)° (2-258)
costyy = — Uy * X (2-259)
and the meridional angle is defined as
sing, = ———0 T b (2-260)
VGr + 902 + Gir - 2)?
cos¢, = — -3 (2-261)

(&r) }A’b)z + (ﬁr : éb)Z

The radar observations are computed in the function radar_out in the derivs module.

2. Methods
2.4. Output Variables
2.4.3. Relative Vehicle Calculations

2.4.3. Relative Vehicle Calculations

When trajectories are calculated for more than one vehicle, the position of each ve-
hicle relative to the other can be computed. For a given vehicle, the position of other
vehicles with respect to the vehicle’s body coordinate system is illustrated in Figure
2-23.Ttis defined one of two ways: with arange, azimuth angle, and elevation angle,
or with X, y, and z coordinates in the body coordinate system.

A;’i Other
Vehicle

Current
Vehicle

Figure 2-23. Relative Vehicle Calculations.

The orientation of the vehicle’s body—fixed coordinate system is given from the guid-
ance rules. It is an input value, and it can change instantaneously. Therefore, rates
and accelerations in the body coordinate system cannot be computed.

The relative range || 47|, azimuth angle a;, and elevation angle ¢, are defined the
same way as for the radar observations, but they are referenced to the current ve-
hicle’s body coordinate system. Thus, the relative position of the i vehicle is given
by

a7, =7, -7 (2-262)
A unit vector can be defined in this direction with
u; = % (2-263)
i
and then the azimuth and elevation angles are defined as
tana; = j_:,:—:?; (2-264)
sing; = — ﬁi . £b (2-265)

The x, y, and z components of the relative position vector A7; are computed by proj-
ecting the relative position vector onto the body unit vectors with dot products.

The relative vehicle calculations are performed in the function vehicle_obs in the
path module.

2. Methods
2.4. Output Variables
2.4.4. Initial Impact Point Calculations

2.4.4. Initial Impact Point Calculations

The initial impact point (ITP) is calculated by integrating a ballistic trajectory from
the vehicle’s current state to impact with no propulsive forces and a simplified,
constant drag coefficient, aerodynamic model. The drag coefficient, the aerodynam-
ic reference area, and the vehicle’s weight are given by an input ballistic coefficient
Biip- The TIP is an estimate of the impact point if the propulsive system fails during
flight and is often required for range safety analysis.

The equations of motion, given in Section 2.2, are used for the IIP calculations. The
contributions to acceleration include the acceleration from gravity Zz’gm and the ac-

celeration from aerodynamic forces @,.,,. The acceleration from propulsive forces
is zero.

The acceleration from gravity is computed as shown in Section 2.3.4. The accelera-
tion from aerodynamic forces is computed from

- —_ i':aero — (CD 9 Sfef) 3, = (CD Srefq &
= v = | —=

) Xy, (2-266)

Qgero = m m w
=28} 2, (2-267)
ﬂiip
g (05l Vy,), (2-268)
= wa
ﬂiip

As shown in Section 2.1.8, the unit vector chw is defined as

A Vw,
Xy, = —=— (2-269)
1V, |
so the acceleration from aerodynamic forces simplifies to
daero = 0.5 - g - 0 - Vw@ I - i,’Wa, / ﬂiip (2-270)

For the IIP calculation the equations of motion are integrated with an adaptive
Runge-Kutta integration method from Fehlberg.? This method integrates with the
4th—order Runge—Kutta method shown in Section 2.2.1, but it uses results from a
5Sth—order Runge—Kutta integration to estimate the integration error and automatical-
ly adjust the integration step size. The adaptive step size method is ideal for the ITP
calculation because only the final result is used; the trajectory is not divided into seg-
ments and results are not required at print intervals.

The integration step size is adjusted from 0.5 to 60 seconds such that the integration
error is between 0.001 and 0.01 ft. Typical step sizes are 10 to 20 seconds. Even with

2-75

2. Methods
2.4. Output Variables
2.4.4. Initial Impact Point Calculations

these large step sizes, the ITP calculations require a significant amount of processing
time.

The impact time, longitude, and geodetic latitude are determined from the integra-
tion. The ITP range and azimuth are measured from the origin of the tangent plane

coordinate system and are computed with Sodano’s inverse method as shown in Sec-
tion 2.4.1.

The function iip_calc in the derivs module performs the numerical integration for the
IIP calculation. It calls the function iip_derivs to compute the derivatives of the equa-
tions of motion. The IIP output variables are computed in the function iip_out.

2. Methods
2.4. Output Variables
2.4.5. Aerodynamic Variables

2.4.5. Aerodynamic Variables
The ballistic coefficient, defined by
Be = w - _m-g
CD : Sref CD : Sref
is a useful design parameter for reentry vehicles. It is a measure of how fast the reen-
try vehicle decelerates as it enters the earth’s atmosphere. Vehicles with low ballistic
coefficients, such as 500 1b¢/ft2, decelerate rapidly and have low aerodynamic heat-

ing, whereas vehicles with high ballistic coefficients, such as 4000 Ibg/ft2, do not de-
celerate as fast and have high aerodynamic heating.

The lift-to—drag ratio L/D, given by
8% G
CD *q- S ref CD
is ameasure of the aerodynamic efficiency of a vehicle. An unpowered vehicle glides
furthest when flying at the angle of attack for maximum lift-to—drag ratio ar/p.

(2-271)

L/D = (2-272)

Figure 2-24 shows L/D as a function of angle of attack for a typical vehicle. The angle
of attack for maximum L/D is found with a simple golden—section search (Section
2.6.2). This method is used because it converges despite possible discontinuities in
the L/D function. The maximum L/D calculations are performed in the maxlod func-
tion in the derivs module.

__— Maximum /D

D

Angle of attack

Figure 2-24. Lift-to—Drag Ratio.

2. Methods
2.5. Guidance Rules

2.5. Guidance Rules

Because TAOS is a 3-DOF point-mass trajectory simulation, the body attitude or an-
gular orientation cannot be obtained from the equations of motion. Instead the body
attitude is input in the form of guidance rules. Itis assumed that the vehicle has a con-
trol system that can maintain this body attitude.

The body attitude, given by the body~fixed coordinate system, is defined relative to
one of the other coordinate systems with three angles. If defined relative to the geo-
centric, geodetic, or inertial platform coordinate systems, three Euler angles must be
provided. If defined relative to a velocity coordinate system, a pair of aerodynamic
angles and a bank angle must be provided. Regardless of the method, the body atti-
tude requires three angles. Table 2-2 contains a list of the valid combinations of
angles that can be used to define the body attitude.

Table 2-2. Body-Attitude Control Variables.

Set Body-Attitude Angles

1 a Angle of attack Bk Euler sideslip angle |z, Geocentric bank angle
2 o Angle of attack B Sideslip angle Hge Geocentric bank angle
3 ar Total angle of attack $w Windward meridian | ug. Geocentric bank angle
4 o Angle of attack BE Euler sideslip angle Hgd Geodetic bank angle
5 a Angle of attack B Sideslip angle lgq Geodetic bank angle
6 a1 Total angle of attack ¢w Windward meridian Hgq Geodetic bank angle
7 W Geocentric yaw angle | 6, Geocentric pitch angle @, Geocentric roll angle
8 W4 Geodetic yaw angle 6,4 Geodetic pitch angle P,4 Geodetic roll angle
9 Y, Inertial yaw angle 6, Inertial pitch angle D, Inertial roll angle

Control Variables

The vehicle acceleration, and therefore, its motion, is determined from the forces act-
ing on it. These forces are generally a function of the aerodynamic angles, which in
turn are functions of the body attitude angles. These angles control the forces which
control the trajectory, so these variables can be thought of as control variables.

Another way to think of this is to observe the functional dependency of the vehicle
acceleration. Acceleration is a function of the total force acting on the vehicle which
includes aerodynamic, propulsive, and gravitational forces. For a vehicle with fixed
geometry, the aerodynamic forces are commonly functions of altitude, velocity,
angle of attack, and sideslip angle. Propulsive forces are typically functions of alti-
tude, velocity, and power setting. The altitude and velocity are known from the ve-
hicle’s state, but the angle of attack, sideslip, and power setting are independent vari-
ables or control variables whose values must be given in order to integrate the equa-
tions of motion.

2. Methods
2.5. Guidance Rules

TAOS uses four control variables. Three variables are from one of the sets of body
attitude angles given in Table 2-2, and the fourth variable is power setting P. The con-
trol variables affect the forces acting on the vehicle only if the forces, defined in
tables, are functions of them. For example, if the propulsion tables are not a function
of power setting, then power setting has no effect on the propulsive force and no ef-
fect on the trajectory.

Guidance Rules

Values for the control variables are determined from guidance rules. These rules are
input and they either directly or indirectly give values for the control variables. There
are four control variables, so four guidance rules must be provided.

An example of a guidance rule that directly gives a value for a control variable is “fly
at a 5° angle of attack.” A value for angle of attack, a control variable in Table 2-2,
has been directly specified, so no further action is required.

Values for any of the control variables in Table 2-2 can be given directly, but they
must form a consistent set. All of the control variables directly specified must be in
one of the sets in Table 2--2, that is, they must all be on the same row in the table.

An example of a guidance rule that indirectly specifies a control variable is “fly at
a 0° vertical flight path angle,” in other words, “fly level.” To maintain level flight,
the vehicle must be at some angle of attack, but this value is unknown. So TAOS must
solve for the required angle of attack to maintain level flight.

Table 2-3 contains a list of guidance rules indirectly specifying control variables.
Each guidance rule has one or more control variables associated with it. TAOS tries
to solve for the value of one of these control variables that satisfies the gnidance rule.

Table 2-3. Guidance Rules that Indirectly Specify Control Variables.

Guidance Rule Control Variables | Solution Variable
Fly at a constant altitude a,ar, P i
Fly at a constant lift coefficient a,ar C,
Fly at a constant side—force coefficient B. BE> Pw Cs
Fly at a constant dynamic pressure Pa,ar g
Fly at a constant geocentric flight path angle |a, ar, P Ve
Fly at a constant geodetic flight path angle |a,ar, P Vo
Fly intercept or proportional nav in pitch a,ar Vo
Fly intercept or proportional nav in yaw B, B> $w» Hge» Hga 1/-,“
Fly at a constant lift—to—drag ratio a,ar L/D
Fly at the maximum lift-to—drag ratio a,ar Qo

2. Methods
2.5. Guidance Rules

Fly at a constant Mach number Pa,ar M
Fly at a constant axial-g loading P a,ar d, - %
Fly at a constant lateral-g loading B, BE, ¢w g, 9,
Fly at a constant normal-g loading a,ar 3, %
Fly at a constant geocentric heading angle | B, BE, $w» Hgc, tigd P,
Fly at a constant geodetic heading angle B, BE: D Hges Hgd %Z’,d
Fly ata constant thrust P | F. o |
Fly up/down range insensitive axis in pitch |a, ar Tip
Fly up/down range insensitive axis in yaw |8, BE, dw» Hges Hed a;,
Fly at a constant velocity Pa,ar I v-.e I

The solution variable in Table 2-3 is a function of the control variables and is related
to the guidance rule. It is generally an acceleration value that can change instanta-
neously in the trajectory.

2. Methods
2.5. Guidance Rules
2.5.1. Control Variable Solution Process

2.5.1. Control Variable Solution Process

TAOS analyzes the input guidance rules and determines which rules directly specify
control variables and which do not. It compares the list of control variables directly
specified with those in Table 2—2 and selects the control variable set with the lowest
number that matches the ones input. If the input control variables do not match one
of the sets, an inconsistent set of guidance rules has been input and an error occurs.

Control variables directly specified are set to the input values, and a list of the control
variables and guidance rules indirectly specified is kept.

The solution process for the indirectly specified control variables is iterative. This
procedure, shown in Figure 2-25, is called the guidance loop. Itis part of the deriva-
tive calculation for the equations of motion.

l:

Calculate Forces

| Vary control

variables to
Calculate Accelerations get accelera-
T tions required

by guidance

Calculate Rates rules
Guidance Loop 1
‘ Solution
complete

Figure 2-25. Guidance Loop.

Accelerations can change instantaneously along the trajectory so each guidance rule
is associated with an acceleration or “solution” variable as shown in Table 2-3. A
desired value for the acceleration variable is obtained from the guidance rule, and a
control variable is varied until the acceleration variable is equal to the desired value.
In other words, the indirectly specified control variables are varied until the differ-
ence between the computed and desired values of the acceleration variables is zero.
This results in a set of nonlinear equations that can be solved using a multi-dimen-
sional Newton-Raphson method.

In some cases, such as C;, and n,, the value of the acceleration variable is directly
given in the guidance rule. This is the desired value used in the guidance loop.

In other cases, such as altitude or flight path angle, the value of the acceleration vari-
able is not given in the guidance rule. The guidance rule gives a desired value for the
time integral or double integral of the solution variable. The guidance rule is con-
verted into a desired acceleration by assuming that the guidance rule is a 2nd or 3rd
order function of time that transitions from the current value to the desired value.

2-81

2. Methods
2.5. Guidance Rules
2.5.1. Control Variable Solution Process

Parabolic Transition

The guidance rule “fly a constant geodetic vertical flight path angle equal to 5 de-
grees” gives a desired value for the acceleration variable ¥ gd and its integral ¥ g4, that
is, ygd' =35 andygd' = 0. The prime is used to indicate the desired value.

The current value of y,4 may or may not be 5 degrees, but for this example, it is as-
sumed to be greater than 5 degrees. TAOS assumes that Y¢a Should be a 2nd order
parabolic function of time that transitions from the current value to the desired value
within a time interval A4 Yeuiq as shown in Figure 2-26.

Yed @ — State

Parabolic function
of time
Desired
State
Ygd’ ~-0—
- Atgyia >
t t+ Atgyig

Figure 2-26. Parabolic Transition to Desired State.

The value of Az,,;4, input by the user, acts as a time constant. Large values of At,iq
cause small corrections to the flight path, and it takes a long time for the trajectory
toreach the desired conditions. Small values of 4 Louid Cause large corrections and the
trajectory reaches the desired conditions quickly. As values of A teuid get small, the
corrections may be too large and the trajectory oscillates until the desired value is
reached. Values of Aty,;4 can be too small causing the trajectory to diverge from the
desired value.

The desired value of the acceleration variable, ¥4 in this case, is the derivative of
the parabolic curve evaluated at the current time. The current time ¢ and current value

of yga are known as well as the desired value ¥4’ and its derivative ¥4’ at time £ +
Atgyig. A parabolic curve of the form

Yed ® = at* + bt + ¢ (2-273)
is fit through these values. Its derivative is

Vea ®) =2at +b (2-274)

where

2. Methods

2.5. Guidance Rules
2.5.1. Control Variable Solution Process

a= ygd - '}'gd' + }.'gd’ : Atguid (2-275)
Atguid

This procedure, in function parab_guidance_correctionin the derivs module, is used

for all of the single—derivative acceleration variables, such as ¥z, ¥¢q, and || V|-

Cubic Transition

A similar procedure is used for the double derivative acceleration variables, such as

h, except that a 3rd order curve is fit through the known information in the function
cubic_guidance_correction (Figure 2-27).

Current
State
Cubic function
; of time
k and k Desired
State
B and B’ .
Atguid =||

Figure 2-27. Cubic Transition to Desired State.

In this case, the current altitude and altitude rate are known along with the desired
altitude and altitude rate. With four known values, a cubic curve of the form
@ =aP +b2+ct+d (2-277)

can be used to transition from the current state to the desired state. Differentiating
this function twice gives

h'() = 6at + 2b (2-278)
where

_G-m)YG -+ ht, — 1)@ — &) + (0 — Bée — o, + 1) (2-279)
2, -)¢ - +in) - @ - D@ -2+ 1)

2. Methods
2.5. Guidance Rules
2.5.1. Control Variable Solution Process

- B - h— 2b(t2 - tl) (2-280)

* 32— 13

Newton-Raphson Solution

The remaining part of the solution process solves for the values of the control vari-
ables giving the desired accelerations. The control variables are placed in a vector

X and the solution functions, which are the differences between the desired accelera-
tion and the actual acceleration f; = f — f, are placed in another vector f

A multi-dimensional Newton-Raphson method can be used to find the values X such

that the vector f is zero.® This method starts from an initial estimate of the vector
X, and gets a new estimate from

I =E—"L-F (2-281)

where [J] is the Jacobian matrix of f with respect to X, that is,
3 o o
dx; Ox; ox;
9 %
dxy x5 Oxy (2-282)
% ¥
0x3 dx3 0x3
etc.

(/1

The Jacobian matrix [J] and the vector f are evaluated at %,, to get anew estimate
of X,, ;. The subscript n denotes the iteration number.

This procedure can be simplified by substituting 7, ,; = ¥, ; — X, which results
in

—

N-Zypy=—f (2-283)

This is a set of linear equations in 7, so it can be solved with Gaussian elimination.8
Gaussian elimination is more efficient than the matrix inversion required to solve
Equation (2-281).

The Newton-Raphson procedure converges faster if the initial estimates are close to
the solution. For the first point in a trajectory, the initial estimates for the control vari-
able values are halfway between their upper and lower limits. After the first trajecto-
ry point has been calculated, the initial estimates for the next trajectory point are set
to the solutions from the previous point. This assumes the control variables are not
changing rapidly during the trajectory which is normally true.

2. Methods

2.5. Guidance Rules
2.5.2. Intercepts and Proportional Navigation

2.5.2. Intercepts and Proportional Navigation

Intercept trajectories can be computed three ways in TAOS: with optimization, with
predictive guidance, and with proportional navigation guidance. When optimization
is used, the trajectory final conditions are constrained to intercept the target. Opti-
mization varies the trajectory shape to meet these constraints and to maximize or
minimize another quantity such as time or velocity. Many trajectories are computed
in an effort to find the best one. An example of an intercept trajectory computed with
optimization is shown in Section 4.5.3.

The other two methods compute an intercept trajectory directly. These trajectories
are not optimum, but no iteration is required. Ateach point along the intercept trajec-
tory, the target state is observed and the vehicle trajectory is modified in an effort to
hit the target.

The predictive guidance method assumes the target trajectory is nonaccelerating and
estimates a straight line intercept point. Then it modifies the trajectory to fly towards
the estimated intercept point.

The proportional navigation method tries to keep the line—of-sight angle from the
vehicle to the target constant, in other words, it tries to keep the line—of-sight rate
zero. It commands accelerations proportional to the line—of-sight rate.

Inall cases the intercept trajectories are idealistic in that the guidance and control sys-
tem is not modeled. TAOS also does not model the radar or sensors used to detect and
track the target. Because of this, the intercept trajectories cannot be used to predict
miss distances. But the trajectories are useful to predict overall performance capabil-
ity, for example, time and range to intercept.

Predictive Guidance

The intercept geometry used for predictive guidance is shown in Figure 2-28, where
vehicle 1 is the interceptor and vehicle 2 is the target. If the interceptor and target are
assumed to be nonaccelerating and they are assumed to be at the same position at the
intercept time ¢, then

PO+ =0V =F@0+(;—1t)-V, (2-284)

where ¢ is the current time. This equation can be solved for the time to intercept giv-
ing

i —t= 17 =71 (2-285)
1V, =Vl
so the predicted intercept point is
7= Ty) + Vy - 1% -7l (2-286)

2 — —
1Vy = V2l
Horizontal and vertical geodetic flight path angles are determined for a straight line
path from the interceptor to the predicted intercept point given by A7. These flight

2-85

2. Methods
2.5. Guidance Rules
2.5.2. Intercepts and Proportional Navigation

path angles are used as guidance rules for the solution method shown in the previous
section. These calculations are performed in the function intercept in the derivs mod-

ule.

Intercept
® — Point

Interceptor

Figure 2-28. Intercept Geometry.

Proportional Navigation

Proportional navigation commands accelerations perpendicular to the line—of-sight
angle and proportional to its rate.17 The geometry is shown in Figure 2-29, where
vehicle 1 is the interceptor and vehicle 2 is the target.

\ Vehicle 2
(Target)
Vehicle 1
(Interceptor)
AT projected

onto the x—y plane

Figure 2-29. Proportional Navigation Geometry.

The line~of—sight vector A7 is the difference between the position vectors of the two
vehicles. Its orientation with respect to the ECFC coordinate system is given by two
angles: a line—ofsight yaw angle 4y and a line—of—sight pitch angle A p- The line—
of-sight yaw angle is defined as

4,

2. Methods
2.5. Guidance Rules
2.5.2. Intercepts and Proportional Navigation

A-» . A
tand, = T e (2-287)
Aar - xe
and the line-of-sight pitch angle is defined as
A—» . A
tand, = ——1_ <@ (2-288)
JEF - 3g)? + UF - Jg)?
These angles can be differentiated to get the line—of—sight angular rates
_dr- i) - UV-3g) — UT-$g) - AV - £o) (2-289)

4,

AT - Xg)? + (AT - ¥g)?

AV - 2T - £o)2 + (AT - §o)7] — (AT - 26)[(AT - £)(AV - Go) + (AT - $HAT - 5]
JUF - 3o + (AT - $) [T - 2o)* + T+ Jo)? + UT - £

(2-290)

The desired acceleration is proportional to these rates, that is,
ny=N-V,-A, (2-291)
n, =N -V, -4, (2-292)

The navigation constant N’ is an input value, and it typically ranges from two to five.
The closure velocity V. is the projection of the relative velocity vector onto the line—
of—sight vector, that is,

AD .A,

The accelerations ny and n, are perpendicular to the line-of-sight vector, so they
must be transformed to the ECFC coordinate system. A coordinate system with its
x axis aligned with the line—of-sight vector is related to the ECFC by two rotations:
(1) a rotation about the ECFC z axis by the angle A, and (2) a rotation about the y
axis of this system by the angle A . Thus, the rotation matrices are given by

x cosd, sind, O] cosd, 0 sind,]{*e (2-294)
y| =|-sindpcosd, 0ff 0 1 0 {lyg| @29

7 — sindy 0 cosAy|| 2

Z LOS 0 0 1 y y Zg

The rotation matrices can be multiplied and then transposed to give the transforma-
tion for the accelerations

2. Methods
2.5. Guidance Rules
2.5.2. Intercepts and Proportional Navigation

dg " ig| [cosApcosdy — sindpcosd, — sind, 0

dg Yol =| sind, cosA, 0 |.|np| (2-297)
dg - g cosApsindy — sindpsind, cosd, | [

The acceleration component aligned with the velocity vector can be ignored because
the impact speed is not critical. The acceleration components normal to the velocity

vector are important because these accelerations turn the trajectory so it hits the tar-
get.

The acceleration vector in ECFC coordinates dg can be converted to desired hori-
zontal and vertical flight path angle rates with Equations (2-170) and (2-171) from
Section 2.2.5. Values of the control variables that produce these accelerations can be
obtained with the Newton-Raphson method as shown in Section 2.5.1.

The function prop_nav in the derivs module handles the proportional navigation cal-
culations.

(2-296)

2. Methods
2.5. Guidance Rules
2.5.3. Range Insensitive Axis

2.5.3. Range Insensitive Axis

If a vehicle is on a ballistic trajectory above the sensible atmosphere and its velocity
is instantaeously incremented (a AV is applied), it normally changes the time and
range to impact. However, if the A Vis applied in a specific direction, called the range
insensitive axis, only the time to impact changes, the range does not change as shown
in Figure 2-30. :

Ballistic Trajectories

/

-
AV along range
insensitive axis

N
Vehicle

Impact
Point

Figure 2-30. Range Insensitive Axis.

The range insensitive axis has two solutions: one that increases the time to impact,
and one that decreases the time to impact. If a4 Vis applied along the range insensi-
tive axis that increases the time to impact, the 4 Vis said to be applied “up” the axis.
If the 4V decreases the time to impact, it is applied “down’ the axis.

The range insensitive axis guidance rules align the body x axis with one of the range
insensitive axes. The solution for the range insensitive axis begins by calculating the
initial impact point range and azimuth from the current state with no 4V applied
(Section 2.4.4). Then a multi-dimensional Newton—-Raphson search (Section 2.5.1)
isused to vary the direction of a 10 ft/sec 4 Vto give the same impact point. Allimpact
points are computed with no aerodynamic forces.

The function range_insensitive_axis in the derivs module calculates the required
pitch and yaw angles which define the body attitude.

2. Methods
2.5. Guidance Rules
2.5.4. Flight Path Limits

2.5.4. Flight Path Limits

In addition to the guidance rules, limits or constraints can be imposed on the flight
path. These constraints are usually applied directly to the control variables to act as
upper and lower search boundaries for the Newton-Raphson method. But any guid-
ance rule can be used as a flight path limit.

Limits on Specified Control Variables

If a limit is applied to a control variable that already has a specified value, the limit
is ignored. For example, if a guidance rule says to “fly at a 25° angle of attack’ and
angle of attack has been limited to 15°, the limit is ignored and angle of attack is set
to 25°.

Limits on Free Control Variables

If alimit is applied to one of the free control variables, that is, one of the controls that

does not have a specific value, then the limit is applied during the Newton-Raphson

search. The search procedure keeps the values of the control variables within default

limits of =£30° for the angle of attack and sideslip and within =+ 180° for all other
angles.

If the search fails to converge resulting in a flight path that does not follow the guid-
ance rules, then one possible solution is to decrease the limits on the control variables
to more reasonable values. Sometimes the aerodynamic tables do not extrapolate
smoothly to angles as high as +30° so limiting the angles to less than =30° im-
proves convergence.

Limits on Flight Conditions

If alimit is applied to a guidance rule that does not specify a control variable directly,
then at each integration step, the trajectory values are compared to the limiting val-
ues. If a limit is exceeded, the limit becomes a new guidance rule replacing one of
the existing guidance rules.

Each guidance rule is associated with a set of control variables. These control vari-
ables are prioritized in the order of the most likely to be used to satisfy the guidance
rule. This list is used to obtain the control variable most likely associated with the
exceeded limit. Then the guidance rule currently associated with that control vari-
able is replaced with the limiting guidance rule.

For example, if a vehicle is climbing at an angle of attack and hits an altitude limit,
the altitude limitreplaces the guidance rule associated with angle of attack. The limit-
ing guidance rule forces the trajectory to remain at a constant altitude equal to the
limiting value.

2. Methods
2.6. Trajectory Calculations

2.6. Trajectory Calculations

The previous sections discuss different parts of the trajectory calculations, but they
do not show how all the parts fit together. This section provides an overview of the
trajectory calculations and how they are implemented in TAOS.

Main Program

When TAOS is executed, processing begins with the main function in the main mod-
ule. Figure 2-31 is a flowchart showing the logic in this function. TAOS begins by
creating two lists from the command line arguments: one containing a list of the table
filenames and one containing a list of the problem filenames. Command line argu-
ments are the filenames given in the command that runs TAOS (Section 1.5).

Process command
line ariments

| Create a printout file |

If 1st problem file,
read all table files

Read problem input
data
—————— l
Compute
trajectories

¥

Output trajectory
data

'

Repeat for each
—1 combination of survey
values

'

Repeat for each
problem

'

Repeat for each
problem file

!

Figure 2-31. Main Flowchart.

A loop processes each input problem file. For each file, a corresponding printout file
is created; however, this file remains empty until later in the function.

If it is the first problem file, then all table files are read and saved in memory. They
remain in memory for all subsequent problem files.

2-91

2. Methods
2.6. Trajectory Calculations

Problem files can contain multiple problems so another loop is nested inside the
problem file loop to process each problem. For each problem, the input data is read
into memory and saved in a data structure.

This data structure begins with a linked list containing information for each vehicle
or trajectory as shown in Figure 2-32. The data structure for each vehicle contains
input and output data including input trajectory initial conditions, input segment def-
initions, and output trajectory variables at each integration time step. The informa-
tion is organized so it is easy to retrieve. The data structure in TAOS contains many
more records and lists than shown in Figure 2-32; Figure 2-32 shows only the major
features of the data structure. ’

Seg o Seg Seg |_ste.
Vehicle 1 Vehicle 1 2 3
\ data
structure
- Output Output Output
Vehicle 2 variables| variable variable
at t4 att atty
etc.
Vehicle 3

l etc.

Use of dynamic memory allocation and linked lists for input and output data elimi-
nates constraints on the amount of information that can be processed. In practice this
means that there are few limitations on the number of vehicles that can be input, the
number of segments for each vehicle, the amount of output data, or the length of the
trajectory. These are only limited by the maximum amount of memory available on
the computer.

Figure 2—-32. Vehicle Data Structure.

After the problem input data has been read, trajectories are calculated for each ve-
hicle and the trajectory data is written to the printout file. Other output files are also
created at this point. No trajectory data is written to the printout file until all trajecto-
ries have been calculated so if the program ends prematurely, the output files are

empty.

If surveys have been defined, the trajectories are recomputed for each combination
of survey values.

Trajectory Calculations

The box in Figure 2-31 labeled “compute trajectories” can be expanded resulting
in the flowchart in Figure 2-33. This flowchart represents the logic in function com-
pute_trajectories in the path module.

2. Methods
2.6. Trajectory Calculations

Initialize starting
trajectories

o |
Compute a At

'

Integrate all trajectories
one time step

'

If segment final condition hit,
change segment or end trajectory

'

If search function hit, restart
trajectories as necessary for search

:

Check for starting new
trajectories

3

All trajectories
completed?

'

Figure 2-33. Trajectory Calculation Flowchart.

The trajectory calculations begin by locating the starting vehicle which is the vehicle
with the minimum initial time. Trajectories can be initialized by directly specifying
initial conditions or by using an initial state from an existing trajectory, but at least
one trajectory must be initialized from directly specified initial conditions. A starting
trajectory must exist.

The status for each trajectory, indicating whether a trajectory is active or inactive, is
maintained throughout the trajectory calculations. A trajectory is active if ithas been
initialized and is currently being integrated, and a trajectory is inactive if it has not
yet been initialized or if it has already been computed.

After the starting trajectories are initialized, the trajectory calculation loop is entered.
It begins by selecting the minimum integration time step A¢ for all vehicles. This time
step is compared to the print time intervals and reduced if necessary so that calcula-
tions are performed at every print interval. If a guidance rule contains a table that is
a function of time, the time step is adjusted to ensure that each table point is hitexact-

ly.

Time is used to synchronize all trajectories, in other words, all trajectories are inte-
grated with the same At step size. The time step calculations are in function
get_next_time_step in the path module.

After the integration time step has been determined, the equations of motion for each
active vehicle can be integrated one time step. Each vehicle is treated separately, that

2-93

2. Methods
2.6. Trajectory Calculations

is, each vehicle has its own equations of motion and is integrated separately. The ve- -
hicles are not combined into one large set of differential equations. The function in-
tegration_step in the derivs module contains the Runge-Kutta numerical inte gration
procedure.

Segment Final Conditions

After each integration step, the segment final conditions on each trajectory are in-
spected in the function check_final_conditions in the path module. If a segment final
condition boundary has been crossed, the last integration step is repeated while vary-
ing the integration time step until the final condition is met within a small tolerance.
The secant method, a linear search method similar to Newton—Raphson, is used for
this search process (Section 2.6.2).8

It is possible to have more than one segment final condition encountered in an in-
tegration step. There are two cases where this can happen: if two or more segments
end at exactly the same time, or if two or more segments end at different times. Tests
are made to check for the first case, and if it occurs, then both segments are ended
simultaneously. If the second case occurs, the step size is repeatedly halved until only
one final condition is hit. Then the secant search is used to find the step size that meets
this final condition.

Search and Optimization Loops

Search and optimization loops, used to solve for trajectory constraints, can be de-
fined in a problem. Both types of 1oops vary one or more input values to meet a goal.
The goal is a simple function, often just the value of an output variable, that is eva-
luated ata specific point in the trajectory. In TAOS the search goals or objective func-
tions can only be evaluated at the end of a segment.

At the end of each segment, the function search_function_hit in the search module
is used to determine if a search has been defined with its objective function evaluated
at this segment. If this occurs, then the input parameters for the search are modified
according to the search or optimization algorithm and the trajectory is restarted. The
parabolic search algorithms are given in Section 2.6.2, and an overview of the opti-
mization algorithm is given in Section 2.6.3.

The trajectory is restarted just prior to the location of the modified input parameters;
thus, only the part of the trajectory that changes is recomputed. This minimizes the
amount of calculation required for the search and optimization loops.

Multiple Trajectories

When a final condition is encountered ending a segment, the trajectory may be con-
tinued with another segment or it may end. If the trajectory continues, a new segment
isinitialized and the trajectory calculation proceeds as shown above. During segment
initialization inactive trajectories are inspected in the function add_new_vehicles in

2-94

2. Methods
2.6. Trajectory Calculations

the path module and if any use the current segment as a starting point, then they are
initialized and added to the list of active trajectories.

If the end of the trajectory has been found, then the trajectory is marked as completed.
The trajectory calculation process continues until all trajectories are completed.

2. Methods
2.6. Trajectory Calculations
2.6.1. Derivative Calculations

2.6.1. Derivative Calculations

The derivatives for the equations of motion are calculated within the box labeled “in-
tegrate all trajectories one time step” in Figure 2-33. The function integration_step
calculates the derivatives four times each time it propagates the trajectory forward
one time step. The derivatives are calculated in the function compute_derivs in the
derivs module as shown in the flowchart in Figure 2-34.

|

Compute coordinate system
unit vectors & the vehicle’s
state in different coordinate
systems
]
| Compute state rates]
v

Compute acceleration

of gravity
]

Compute atmosphere
propetties
v
Compute winds, airspeed,
Mach number, etc.

v

Compute body attitude,

aerodynamic angles,

and body unit vectors
v

Compute aerodynamic
and propulsive forces

v

Compute accelerations
& derivatives

v

Compute angular acceleration
rates and specific load factors

v

Loop to vary body attitude
to solve for guidance rules

v
Revise accelerations & derivatives
for rail launch or sled test

v
Compute other
output variables

v
Figure 2-34. Derivative Calculation Flowchart.

2. Methods
2.6. Trajectory Calculations
2.6.1. Derivative Calculations

Derivative calculations are a function of the time and the vehicle’s state. The ve-
hicle’s state is maintained in ECFC coordinates so the first step in the derivative cal-
culation is to compute the vehicle’s state in geocentric and geodetic coordinates (Sec-
tions 2.1.4 and 2.1.6). These calculations must be first because many subsequent cal-
culations require knowledge of the vehicle’s state in these two coordinate systems.

Similarly the state rates, that is, the longitude, latitude, and altitude rates, are com-
puted (Section 2.2.3). This is followed by computing the acceleration of gravity vec-
tor (Section 2.3.4), the atmospheric properties (Section 2.3.1), and the airspeed,
Mach number, dynamic pressure, and Reynold’s number (Sections 2.1.8 and 2.3.2).

Aninitial body attitude is assumed to start the guidance loop. From this body attitude,
the aerodynamic angles and body coordinate system unit vectors are calculated (Sec-
tions 2.1.7 and 2.1.9). Once the body attitude is known, the aerodynamic and propul-
sive forces acting on the vehicle can be obtained from the tables (Sections 2.3.2 and
2.3.3), and then the accelerations and derivatives can be computed (Section 2.2.1).

The methods used to solve for the body attitude, given guidance rules, may require
the acceleration vector in geodetic coordinates or the specific load factors so these
are calculated just before the end of the guidance loop (Sections 2.2.5 and 2.2.6). The
guidance loop modifies the body attitude to produce accelerations satisfying the in-
put guidance rules (Section 2.5).

After the guidance loop is finished, the acceleration vector may be modified if a rail
launch or sled is involved (Section 2.2.2). Finally the remaining output variables are
calculated (Section 2.4).

2. Methods
2.6. Trajectory Calculations
2.6.2. Search Methods

2.6.2. Search Methods

Two types of one—dimensional search methods are used in TAOS. One type solves
for a root of a function, that is, it varies a parameter to drive a function to zero. The
other type -varies a parameter to minimize a function. These one-dimensional
searches can be nested to solve multi-dimensional problems if the functions are well
behaved.

Within each type of search, several methods are used depending on the application.
For example, a linear search is used to solve for segment final conditions because the
search interval is small enough that most functions are nearly linear. Trajectory
searches used to meet constraints use a parabolic method because it converges slight-
ly faster in most cases.

Methods that solve for a root of a function vary a parameter x to solve for f{x) = 0.
Parameter values are restricted to upper and lower bounds, that is, xy, < x < xp;. The
function f{x) is nonlinear, but it is assumed to be reasonably well-behaved within the
interval from X, to x3;, and it is assumed to have a single root in the interval,

fix)
fixa) af
~ ox
0 - X
*n Xn+1

Figure 2-35. Newton—Raphson Search.

Newton-Raphson

The Newton-Raphson method is a simple technique that solves for a root of a func-
tion. It starts from an initial estimate of the root x, and assumes the function is linear,
that is,

FG) = flxn) + (x — xn) gl; (2-298)
Solving this equation for f{x,+;) = 0 gives
Xpp1 = Xn — flxp) - Efa(_;; (2-299)

Figure 2-35 shows how Equation (2-299) updates the estimate of the root from x,
t0 x4 using the slope df/ox.

2. Methods
2.6. Trajectory Calculations
2.6.2. Search Methods

Equation (2-299) is used repeatedly to refine the estimate of x until f{x) is within a
given tolerance. The derivative gf/axis estimated numerically with a forward differ-
ence.

Secant Method

The secant method is related to Newton—-Raphson because it also assumes the func-
tion fix)is linear. This method begins by evaluating the function at the upper and low-
er boundaries of the search interval, that is, at x;, and x;. With the assumption that
the function is linear, the value of x for f{x) = 0 is

Xhi — Xio]

* T =0 [W

as shown in Figure 2-36.

(2-300)

fixo)
new
Xhi - .
= Eliminate this
part of the search
0 interval
fix) |
x i)
Xlo Xhi

Figure 2-36. Secant Search.

The function is evaluated at this estimate for the root and a new search interval is de-
fined with x as one of the search boundaries. The signs of f{x;,) and f{xy;) must be
different for a root to exist in the interval, so the boundary that has the same sign as
fix) is replaced with x. This procedure is repeated until the estimate of f{x) is within
a given tolerance.

Parabolic Root Search
The parabolic method assumes the function is a 2nd-order polynomial of the form

fO =a®+bx+c (2-301)

This function has three unknowns so three function evaluations are required to calcu-
late the coefficients a, b, and c. TAOS uses one procedure to obtain these function
evaluations during the startup phase and another procedure after the startup phase.

The startup phase makes two function evaluations at f{x-Ax) and f{x+A4x) where x
is aninitial estimate and A.xis an estimate of the accuracy of x. For example, an initial

2-99

2. Methods
2.6. Trajectory Calculations
2.6.2. Search Methods

estimate of x might be 2.5 with an estimated accuracy Ax of =+ 1.0. These two func-
tion evaluations are used in a linear approximation similar to Equation (2-300) to es-
timate an x value for the third function evaluation as shown in Figure 2-37. All of
the x values must be within a search interval given by x1, and xy;.

A parabola is fit through these
three points to obtain a new
estimate of the root

Aix)

Xo Xhi
Figure 2-37. Parabolic Root Search.

With three values x;, x, and x3 and their function evaluations fx1), fixz), and fixz),
the coefficients of the 2nd-order polynomial can be computed from

_ 63 = DGy = fxy)] — 62 — 2D[f(x,) — fx3)] (2-302)

b
(&3 = XDy — x3) — (2 — x2)(x, — x5)
_ J(xp) = fx3) = blxy — x3) (2-303)
a= 2 _ 22
X373
¢ = f(xy) — ax2 — bx, (2-304)
This polynomial has two roots at
g=—b= Vb2 — 4ac (2-305)
2a

Generally only one of the roots is in the search interval. If both roots are in the search
interval the one closest to the last best estimate of the root is chosen. If this cannot
be determined the lower value is chosen.

At this point there are four x values. Only three are required to solve for the polyno-
mial on the nextiteration, so the x value furthest from the estimate of the root is elimi-
nated. Then the function is evaluated at the estimated root value and the procedure
is repeated. This continues until f{x) is less than a given tolerance.

Golden-Section Search

The search methods shown above are all used to find a root of a function. The follow-
ing searches, such as the golden—section method, solve for the minimum of a func-
tion.

2. Methods

2.6. Trajectory Calculations
2.6.2. Search Methods

The golden-section search is one of the simplest methods requiring no derivatives
of the function. It begins by evaluating two points in the search interval chosen such
that they divide the interval into golden sections, that is,

Xy = X — alxy; — xp,) (2-306)
x2 = xlo + a(x}u’ - xlo) (2-307)

where a is the golden—section ratio -5-2“—1

Ax) fixz)e
M!mmyn) must be
in this interval
fix)e —_—

Eliminate this part
of the search interval

Xlo X1 X2 Xhi
Figure 2—-38. Golden Section Search.

Based on the function evaluations f{x;) and f{x), part of the search interval is elimi-
nated. If f{x,) is greater than flx;), then the new upper search limit becomes x; = x2
and x; = x; as shown in Figure 2-38. A new x; value is estimated from Equation
(2-307) and the procedure is repeated. If f{x,) is less than f{x;) a similar procedure
is used except that xy, is set to x; and x; = x,. This process continues until the value
Xni — Xlp is less than a tolerance.

Parabolic Minimization

The parabolic minimization search is nearly identical to the parabolic root search.
The only difference is that the minimum of the parabola is used instead of its roots.
This method has the same startup phase as the parabolic root method resulting in
three function evaluations. A parabola is fit through these points with Equations
(2-302) through (2-304) and then the minimum is computed with

=L -
X a (2-308)
Tests are made to determine if this is a minimum or maximum. If it is a minimum,
then the search interval is redefined keeping the minimum point in the middle if pos-
sible. If this is not a minimum, then the search interval is redefined to keep the three

lowest function evaluations.

After anew search interval has been determined, the function is evaluated at the new
point, a parabola is fit through the points, and the procedure is repeated. It converges
when the predicted minimum value ax? + bx + ¢ is within a given tolerance of the
actual function evaluation f{x).

2-101

2. Methods
2.6. Trajectory Calculations
2.6.3. Optimization

2.6.3. Optimization

The general nonlinear programming problem varies a setof » variables or parameters
x such that they minimize an objection function f{x) subject to a set of m equality and
inequality constraints ¢j(x), that is,
Minimize fi (x,-) for i=12.,n (2-309)
subject to
cj(x,-) =0 for j =1,2,.., m,

cl(x,-) =0 for j=m +1,.., m

Typically the equality constraints are grouped together and given first, followed by
the inequality constraints.

Han-Powell Method (vf02)

TAOS uses the Han-Powell method, originally developed by Powell as the code
vf02ad, to solve the nonlinear programming problem.3-22 The Han-Powell method
belongs to the class of methods called recursive quadratic programming (RQP). It
solves the nonlinear programming problem iteratively as a sequence of quadratic
programming problems using an active constraint approach. The active constraints
are all of the equality constraints plus selected inequality constraints that are current-
ly being treated as equality constraints.

Initial estimates for the optimization parameters x are required to start the procedure.
The parameters are modified at each iteration to reduce the value of the objective
function and to satisfy the constraints.

With the active constraint approach, the problem reduces to an equality problem

Minimize f(x) ' (2-310)
subjectto c(x) =0

at each iteration. This problem is solved in two steps: the first step is to determine
a search direction, and the second step is to search in this direction for a minimum.

The search direction dx is found by approximating the objective function Jf{x) with
a quadratic function Q(dx), that is,

fG +6x) = f(x) = QOx) = f(x)0x + £0xTfu()dx (2-311)
and approximating the constraints ¢(x) with linear functions, that is,
c(x + 0x) = c(x) + cx(x)ox (2-312)

where fi(x) and cx(x) are the gradients of f{x) and c(x). The Hessian matrix f..(x) can
be replaced by a positive definite matrix B called the variable metric matrix resulting
in

2-102

2. Methods
2.6. Trajectory Calculations
2.6.3. Optimization

Minimize Q(6x) = fu(x)0x + 16x"Box (2-313)

subjectto cx(x)0x + c(x) = 0

Details of the solution to this problem using active constraints are given in Refer-
ences 3 and 22. The result is a search direction dx that is used in a one—-dimensional
search to find a new estimate for x. The one—dimensional search uses a penalty func-
tion to ensure that it stays within the constraints.

TAOS uses a version of vf02ad obtained from D.G. Hull at The University of Texas
at Austin. This code was converted to the C programming language by the author.

Optimization Parameters

The optimization parameters x are defined by the user in the problem file with special
keywords (Section 4.4.6). Any input numerical value can be used as a parameter. The
most common optimization parameters are trajectory initial conditions, guidance
rules, and segment final conditions. The optimization process works best when there
are only a few parameters, so the goal is to minimize the number of parameters while
maintaining the fidelity of the simulation.

The shape of a trajectory is controlled by control variables (angle of attack, sideslip,
bank angle, and power setting) whose values are determined by the guidance rules
(Section 2.5). If the guidance rules are defined as optimization parameters, then opti-
mization can be used to shape the trajectory to achieve a goal such as maximum range
while satisfying a set of constraints.

Angle—of-attack values are
defined as optimization parameters

Angle ' / Final time
of X is also

attack , : : . : : defined as
' ' ' ' ' ' optimization
X X ' . ' X / parameter
to t4 ta ts t4 ts tx
Time

Figure 2-39. Optimization Used for Trajectory Shaping.

A common way to set up a trajectory shaping optimization problem is to enter a guid-
ance rule table giving a control variable as a function of time. For example, a guid-
ance rule can give angle of attack as a tabulated function of time as shown in Figure
2-39, This angle—of—attack time history is interpolated at each integration step to ob-
tain the control variable value. The final time and the tabulated angles of attack are
defined as the optimization parameters. The other time values are estimated constant
values.

Preliminary trajectories must be calculated to get estimates for the final time and
angles of attack that are reasonable. The optimization procedure is more sensitive to

2-103

2. Methods
2.6. Trajectory Calculations
2.6.3. Optimization

the initial estimates for the parameters when an angle—of-attack time history is used.
The starting trajectory must be reasonable.

Optimization varies these parameters, the final time and angles of attack, to achieve
the objective function and constraints. This procedure works best when the angle—
of—attack points in the time history are evenly distributed. Since the last time value
is an optimization parameter that changes, it can get very large relative to the other
values or it can get very close to the next to last value. To help solve this problem,
TAQS can periodically restart the optimization procedure and automatically adjust
the time history values such that they are evenly distributed.

Objective Functions and Constraints

In addition to the optimization parameters, the user also defines the objective func-
tion f{x) and the constraints c(x) (Section 4.4.6). The most common objective func-
tions are time, range, and velocity. Although optimization problems are classically
stated to minimize an objective function, the same procedure can be used to maxi-
mize a function because the maximum of f{x) is the minimum of —f{x). Thus, opti-
mization can be used to determine maximum range and velocity.

Inequality constraints limiting the optimization parameters to reasonable values are
recommended. Additional equality and inequality constraints can be applied to any
trajectory output variable at the end of any segment. For problems with multiple tra-
jectories, constraints can be defined using variables from all of the trajectories.
Constraints are commonly used to solve for trajectory final conditions and to force
events to occur at specific points in the trajectory.

Constraints affecting the entire trajectory, such as a maximum altitude or a minimum
dynamic pressure, must be handled with special user—defined integral variables
(Section 4.3.1). For example, the variable h,,,, can be defined as

hmax = I (h — 100000)2 for k > 100000 (2-314)

hmax = 0 otherwise

so that hpqy is positive when a maximum altitude of 100,000 ft is exceeded and zero
otherwise. This variable can be used in the following optimization constraint:

Constrain Ay, < 0 (2-315)

The optimization procedure can have numerical problems if the objective function
or constraints have values extending across several orders of magnitude. To avoid
this problem, the objective function and constraints can be normalized with reference
factors such that their values are in the range from 1 to 10. The reference factors are
either automatically determined or input by the user.

Gradients

The optimization algorithm requires the gradients of the objective function f{x) and
the constraints c(x), that s, f;(x) and c,(x). These are calculated numerically with for-

2. Methods
2.6. Trajectory Calculations
2.6.3. Optimization

ward or central differences. For a given 0x, central differences gives more accurate
derivatives than forward differences, but at the expense of an additional function
evaluation. The accuracy of forward differences can be improved by using a smaller
Ox value. Gradients computed with forward differences work well in practice for

most problems and avoid extra function evaluations, but both gradient methods are
provided in TAOS. '

2-105

2. Methods

Intentionally Left Blank

3. Table Files

3. Table Files

Before a flight trajectory can be computed, all the forces acting on the vehicle must
be known. On an airplane or rocket, the primary forces are lift, drag, thrust, and
weight as shown in Figure 3-1. Lift and drag forces are aligned with the wind axis
system, thrust forces are aligned relative to the body axis system, and weight forces
are aligned with the gravity vector.

Lift
Thrust

Dra
\g

Weight

Figure 3—1. Forces Acting on Vehicle.

Lift and drag forces are normally given in terms of nondimensional lift and drag coef-
ficients and a reference area. These aerodynamic coefficients are difficult to predict;
they are often computed with aerodynamic prediction software, such as Missile Dat-
com!8 and Sandiac!?, or they are obtained from wind tunnel tests. The resultis a tabu-
lated set of aerodynamic coefficients that is often a function of Mach number, alti-
tude, and angle of attack. For example, Figure 3-2 shows the axial force coefficient
as a function of Mach number.

2.0
15
Ca A\
10— \\
\ \
0.5
0.0

0 1 2 3 4 5 6 7 8
Mach Number

Figure 3-2. Axial Force Coefficient as Function of Mach Number.

Thrust and mass flow data for jet and rocket motors are usually obtained from analy-
sis software or from tests. Again this data is normally tabulated because no analytical
functions exist. For jet engines thrust and fuel flow are typically a function of Mach
number, altitude, and power setting. For rocket motors thrust and mass flow are usu-
ally given as functions of time as shown in Figure 3-3.

3. Iable Files

80000 8
60000 L 6
Thrust \ Mass Flow
(Ib) 40000 \ (slugs/sec) 4
20000 A 2
%0 20 30 40 50 %

Time

10 20 30 40 80
Time

Figure 3—3. Thrust and Mass Flow as a Function of Time.

Tabulated data, defining forces on the vehicle, are input to TAOS with table files.
Each table file consists of one or more tables with each table identified by a name as
shown in Figure 3—4. A table defines a single value, such as thrust or mass flow. This
value can be a constant, it can be interpolated from tabulated data, it can be computed
from an equation, or it can be computed from a combination of interpolations and

equations.

(table-1)

Data defining a
thrust value

Table L v
names

(table-2)

Data defining a
mass flow value

(table-3)

etc.

/\/_/

Figure 3-4. Table Files and Tables.

) Table file contains

one or more tables

3. Table Files
3.1. Table Types

3.1. Table Types

Each table in a table file has a table type corresponding to the value that is defined
in the table. For example, the thrust table type defines a thrust value. The table type
is compared to its use in the problem file, and if it is not used correctly (for example,
a thrust table used for axial force coefficient), an input error occurs. Table 3-1 con-
tains a list of the table types used in TAOS.

Table 3-1. Table Types

Table Type | Description

ca Axial force coefficient (in body coordinates)
cn Normal force coefficient (in body coordinates)
cl Lift force coefficient (in wind coordinates)
cd Drag force coefficient (in wind coordinates)
cs Side force coefficient (in wind coordinates)
cx Body x-axis force coefficient

cy Body y-axis force coefficient

cz Body z-axis force coefficient

thrust Thrust magnitude

tvecl Thrust vector angle 1

tvec2 Thrust vector angle 2

mdot Mass flow

cg Center of gravity

windv Wind magnitude

windh Wind direction or heading

winde Wind component in east direction

windn Wind component in north direction

windd Wind component in “down” direction
output User—defined output variable

Aerodynamic force coefficients can be defined one of three ways: in the vehicle body
axis with Cx, Cy, and Cz, in the wind axis with Cp, Cp, and Cg, or in an axisymmetric
system with C, and Cn. These sets of coefficients go together; they cannot be mixed.
For example, C, Cp, and Cg form a valid set of aerodynamic coefficients; Cy,, Cp,
and Cp are not a valid set of aerodynamic data.

Thrust and mass flow tables are used for all types of jet and rocket motors. The thrust
table defines the magnitude of the thrust vector; the direction of the thrust vectorrela-
tive to the body coordinate system is given by the thrust vector angle tables.

3. Table Files
3.1. Table Types

Point-mass trajectory analysis methods assume a vehicle is always in a trimmed
condition, that is, the moments always sum to zero. Therefore, trimmed aerodynamic
coefficients should be input rather than untrimmed values. Trimmed aerodynamic
coefficients are often a function of the vehicle’s center of gravity, and center of grav-
ity is in turn often a function of the vehicle’s weight. The cg table type is provided
to define a value for center of gravity that can be used later in the aerodynamic coeffi-
cient tables.

Wind tables define the components of the wind velocity vector in a local horizon
coordinate system. The wind horizontal velocity is given by either the windv (veloc-
ity magnitude) and windh (wind heading) tables or by the winde (east component)
and windn (north component) tables. The windv and windh tables go together, and
the winde and windn tables go together. A vertical wind component can also be input
with the windd table.

Output tables are used to calculate user—defined output variables such as heat transfer
rates. Values from the output tables are not used during the trajectory calculations,
but they are available when computing user—defined output variables (Sections 4.3.1
and 4.4.2).

3. Table Files
3.2. Table/Problem File Relationship

3.2. Table/Problem File Relationship

Information in the problem file tells TAOS which tables to use for each part of the
trajectory. Trajectories are divided into segments, and different tables can be used in
each segment. For example, the line

*aero cacz(stagel_ca_on) cn=(stagel_cn)

in the problem file tells TAOS to use a table called stagel_ca_on for the axial force
coefficient and a table called stagel_cn for the normal force coefficient (Section
4.2.1). These table names must be in the input table files. When TAOS needs a value
for the axial force coefficient, it will retrieve it from the table stagel_ca_on.

Table names are given in *aero, *prop, *cg, and *wind data blocks in the problem
file. They can also be used in *define data blocks when defining user—defined output
variables. All tables referenced in a problem file must be in the table files.

More than one table of each type can be given in a trajectory segment; the values from
each table are added together. For example, if two thrust tables are given, they are
evaluated separately and then added together to get the total thrust force. Multiple
tables can also be used for a component buildup of the total vehicle lift and drag
forces.

3. Table Files
3.3. Table File Format

3.3. Table File Format

Table files are text files that can be created with a text editor or word processor. On
UNIX the standard vi editor can be used, or on a Silicon Graphics workstation, the
Jjot editor can be used. Table files can also be created with other software, such as
Aero?0 and Rocket.2!

Values

Table data is read line by line and is not column dependent. Information must be giv-
en in the correct order so TAOS knows how to interpret it. Lines can be any number
of characters in length and blank lines are ignored. Names and values in the file can
have up to 72 characters so they are essentially unlimited in length.

Names and values are separated with white—space characters (such as space, tab, or
carriage-return), commas, equal signs, parentheses, colons, greater than signs, and
less than signs. Because these special characters are used as delimiters to separate
names and values, they cannot be imbedded within a name or value. For example,
the value 30,000 is not correct because the comma is a delimiter that separates values;
30,000 is interpreted as two values: 30 and 0. The correct way to input this value is
30000.

Input values are not column dependent (they are freefield), so indentation can be
used to make the table file easier to understand. Many examples are given in this re-
portusing indentation to make it easier to see how the values relate to each other. This
style is encouraged because it reduces input errors.

Values can be input with or without a decimal point. All values are interpreted asreal
numbers; no distinction is made for integers. Values can also be input in scientific
notation, that is, e-format. For example, the number 2000 can be input as “2000,”
*2000.0” or “2.0e3.”

TAOS converts all characters to lower case before interpreting them as names or val-
ues so upper and lower case letters are equivalent. Use of lower—case characters is
recommended for improved readability.

Comments

Comments start with the special character # and continue to the end of the line. They
can be placed anywhere in the file except within a name or value. The following lines
show examples of valid comments:

the entire line is used for comments
0.2 0.3 0.4 0.5 # Mach numbers

In the first line, the special # symbol is in the first column. Everything after the #
symbol is treated as a comment and ignored by TAOS, so the entire line becomes a
comment. In the second example, the comment does not begin until after the four val-
ues. From the # symbol to the end of the line is treated as a comment.

State Variables

As TAOS computes the trajectory of a vehicle, it keeps track of many values. All of
these values together define the vehicle’s state as it moves along the trajectory, so
they are called state variables. As mentioned previously, a table defines a single val-
ue, that s, it contains enough information so that TAOS can compute its value. Usual-
ly the value is a function of one or more of the state variables; for example, thrust is
often a function of time. At each instant along the trajectory, the value of time is
known; therefore, the value of thrust is known. Table 3-2 contains a list of the state

variables that can be referenced in TAOS tables.

3. Table Files
3.3. Table File Format

Table 3-2. TAOS State Variables.

Variable | Description Variable | Description

alpha Angle of attack pitchgd | Geodetic pitch angle

alphat Total angle of attack pitchi Inertial pitch angle

alt Geodetic altitude™ power Power setting

aludt Geodetic altitude rate’ pres Atmospheric pressureT
bankgc | Geocentric bank angle psigc Geocentric heading angle‘f
bankgd | Geodetic bank angle psigd Geodetic heading angle1r
beta Sideslip angle range Range

betae Euler sideslip angle cm Distance from earth center®
cg Center of gravity rcmdt Rate from earth center®
dynprs | Dynamic pressurér reypft Reynold’s number per foot
epl Thrust vector angle 1 tho Atmospheric density‘f

ep2 Thrust vector angle 2 rollgc Geocentric roll angle
gamgce Geocentric flight path angleT rollgd Geodetic roll angle

gamgd | Geodetic flight path angle* rolli Inertial roll angle

grmark | Ground range since last reset segment | Segment number

grseg Segment ground range sndspd | Atmospheric speed of sound’
latgc Geocentric latitude’ sref Aerodynamic reference area
latgedt | Geocentric latitude rate temp Atmospheric temperature’
latgd Geodetic latitude™ thrust | Total thrust

latgddt | Geodetic latitude rate time Time!

long Longitudzfr tmark Time since last reset”
longdt Longitude rate tseg Segment time?

mach Mach number vair Velocity relative to air
mass Vehicle mass’ vel Inertial velocity"

nu Atmospheric kinematic viscosity* vgr Velocity relative to ground
plength | Pathlength visc Atmospheric viscosity
plmark | Path length since last reset wt Vehicle weight"

3. Table Files
3.3. Table File Format

plseg Segment path length yawgc Geocentric yaw angle
phi Windward meridian yawgd Geodetic yaw angle
pitchge | Geocentric pitch angle yawi Inertial yaw angle

Wind and center of gravity tables can only be functions of a limited number of the
state variables which are designated with the T symbol in Table 3-2. These tables are
evaluated before all of the state variables are known. Tables also cannot be functions
of themselves; for example, a thrust table cannot be a function of thrust.

The default units for the state variables are given in the appendix. These can be
changed in the problem file with the *units/fmt data block (Section 4.4.13).

User-Defined Variables

There are times when the state variables alone do not provide enough flexibility; for
example, there may be three thrust versus time curves for three different versions of
a rocket motor. These curves can be placed in separate tables, or they can be placed
in the same table. If they are put in the same table, thrust becomes a function of both
time and another variable that can be called version. This new variable is called a
user—defined variable because any name can be used except those reserved for the
state variables in Table 3—2. When a user—defined variable is detected, it must be giv-
en a value in the problem file. For example, the line

*prop thrust=(stagel) version=2

says to use a table called szage! for thrust and to set the user—defined variable version
equal to two. The value of version is constant within a segment of a trajectory, but
it can be surveyed like any other numerical input value (Section 4.4. 11).

3. Table Files
3.4. Simple Tables

3.4. Simple Tables

Two table formats are available in TAOS. The first is called the simple format be-
cause it is easy to create, but it has limited capability. The second is called the full
format because it provides the full capabilities of the software, but it is somewhat
more difficult to create.

Simple tabies consist of a single set of tabulated numbers. The set of tabulated num-
bers defines a function of one or more state variables (or independent variables). The
simplest table is a function of one variable; for example, a table of thrust values given
as a function of time is shown below.

{motor_1)
table thrust(time)
time = 0.0, 0.5, 2.0, 4.0, 4.5, 5.0
thrust = 0.0, 3500., 3100., 2950., 600., 0.0

The table begins with a name in parentheses followed by the keyword rable. This is
followed by the table type, thrust, and alist of independent variables, in this case the
variable time. Tabulated values for the independent variable, time, and the dependent
variable, thrust, are given next. For each value of time, a corresponding thrust value
is given.

Table Identification Name

Simple tables always begin with a name enclosed in parentheses. This name is called
the table identification name and is used in the problem file to reference the table.

The name must be unique among all input table files. The name cannot have spaces
or other delimiters in it; however, the use of nondelimiter special characters, such as
underscores, dots, or dashes, is encouraged to make the name readable.

Table Function Definition

The table identification name is followed by the keyword table and the table type
(from Table 3-1). A list of up to five state variables (or independent variables) for
the table is given next. These variables must be separated with commas and enclosed
in parentheses, so it reads like a function definition. For example,

table ca(mach,alt,alpha)

says that Cj is a function of Mach number, altitude, and angle of attack.

Extrapolation Option

The function definition is followed by an extrapolation keyword, either extrap or
no_extrap. This keyword is optional and controls extrapolation of the table values
when the independent values are not within the range of the tabulated values as
shown in Figure 3-5.

3. Table Files
3.4. Simple Tables

All interpolation and extrapolation is linear, so this should be taken into account
when entering values and setting the extrapolation option. The default is to allow ex-
trapolation.

Extrapolation No Extrapolation
,n//‘ 'I /D/’I:
f(x,2) . j/‘:’// E f(x,2) N j//' y Ii
2 07 a' 2 i g” -
X X

Figure 3-5. Table Extrapolation Option.

Table Parameters

The extrapolation option may be followed by a variable name and value called the
table parameter. This parameter provides some additional information associated
with the table.

For aerodynamic coefficient tables, the parameter is the reference area, sref. For
thrust and mass flow tables, a parameter called unizs gives the units used in the table.
Allowable units for the thrust and mass flow tables are given in Table 3-3. Other table
types do not use a table parameter.

Table 3-3. Units for Thrust and Mass Flow Tables

Thrust Units Mass Flow Units Mass Flow Units Mass Flow Units
b Ib/sec Ib/min Ib/hr
n (Newtons) slugs/sec slugs/min slugs/hr
kn (Kilonewtons) | g/sec g/min g/hr
kg/sec kg/min kg/hr
Examples

An example of a complete table definition line for an axial force coefficient table is

table ca{mach,alpha) extrap sref=2.162

which defines a table that is a function of Mach number and angle of attack, allows
extrapolation, and uses a reference area of 2.162 ft2. (The units of sref default to ft2,

3. Table Files
3.4. Simple Tables

but they can be changed with the *units/fmt data block in the problem file as shown
in Section 4.4.13). Another example is

table mdot(time,motor) no_extrap units=lb/hr

which defines a table for mass flow rate that is a function of time and a user—defined
variable called motor, does not allow extrapolation, and has units of Iby/hr.

Independent Variable Values

The table definition information is designed to be put on one line. This line is fol-
lowed by values for the independent variables. The variable name is given first, fol-
lowed by a list of values; for example,

mach = 0.2, 0.4, 0.6, 0.8, 0.9
alpha = 0, 2, 4

Any number of values can be input. The number of values is limited only by the
amount of memory available in the computer. Values for independent variables must
be strictly increasing or decreasing, and duplicate values are not allowed.

Values can be entered with or without decimal points; they are all treated as real num-
bers. Values can also be entered in scientific notation (e—format) as follows:

time = 0., 1.0el, 2.0el, 6.0el, 7.0el, 9.0el,
2e02, 4e02, 6e02

Spaces or commas are usually used to separate values because they provide the most
distinctive separation for the reader. Values do not have to be all on one line; they can
be continued as shown above.

When a table is a function of more than one independent variable, values for these
variables need to be given in the same order as listed in the function definition. For
example,

table cx(alt,mach) extrap sref=5.30 # CORRECT:
alt = 0, 10000 # Altitudes first
mach = 5, 10, 15, 20 # then Mach numbers

is correct because altitude is given before Mach number in both the function defini-
tion and in the list of values. An error is generated if the Mach number values are giv-
en first:

table cx(alt,mach) extrap sref=5.30 "# INCORRECT: Altitude

mach = 5, 10, 15, 20 # is first in definition
alt = 0, 10000 # but Mach values given
first

Dependent Variable Values

After all independent values have been given, the dependent values are listed. For
tables with a single independent variable, there is a one to one correspondence be-

3. Table Files
3.4. Simple Tables

tween the independent and dependent variable values. The following complete thrust
table illustrates this:

(example_thrust)
table thrust(time) units=1lb no_extrap
time = 0.0, 0.1, 1.0, 2.0, 3.0, 3.4, 3.5
thrust = 0, 5100, 4950, 4900, 4840, 4700, 0

Attime =2.0 seconds, the thrust is 4900 Ibs. The same number of values must be giv-
en for both time and thrust.

For tables with more than one independent variable, one must be careful that the de-
pendent values are given in the correct order. The following example shows the cor-
rect order:

(example_cx)
table cx(alt,mach) extrap sref=5.30
alt = 0, 10000
mach = 5, 10, 15, 20
cx = 0.030, 0.027, 0.025, 0.024 # Values for alt=0
0.035, 0.031, 0.029, 0.028 # Values for alt=10000

Values for each Mach number for the first altitude are given first, followed by values
for the second altitude. There must be a dependent value for each combination of in-
dependent values. In this example there are two altitudes and four Mach numbers;
multiplying these together means there must be eight Cx values.

The following table is a function of three independent variables:

(example_ca)
table ca(alt,mach,alpha) no_extrap sref=10.0
alt = 0, 5000
mach = 4, 6, 8
alpha = 0, 2, 4, 6
ca = 0.020, 0.021, 0.022, 0.024 # Values for mach=4, alt=0
0.018, 0.019, 0.020, 0.022 Values for mach=6, alt=0
0.017, 0.018, 0.019, 0.021 # Values for mach=8, alt=0

=

.0.021, 0.022, 0.023, 0.025 # Values for mach=4, alt=5000
0.020, 0.021, 0.022, 0.024 4 Values for mach=6, alt=5000
0.019, 0.020, 0.021, 0.023 # Values for mach=8, alt=5000

There are two altitudes, three Mach numbers, and four angles of attack, so there must
be 2 - 3 . 4 =24 values for C,. Values for altitude = 0 are given first. Within this set
of values, values for Mach = 4 are given first, followed by values for Mach = 6, and
so on. This pattern continues for all values of Mach and altitude. It can be extended
to tables that are functions of four or five independent variables.

3. Table Files
3.5. Full Tables

3.5. Full Tables

Full tables provide more ways to define table values than simple tables. In a simple
table, the table value is obtained by interpolating a table. Values of the independent
variables (the state variables) are known from the flight path integration, and the tab-
ulated data values are known from the input. Linear interpolation is used to compute
the table value or dependent variable. The only flexibility is in the selection of the
independent variables and their values.

In a full table, the table value is obtained by executing a sequence of math operations.
When TAOS needs to compute a table value, it is first initialized to zero. Then a se-
quence of math operations, provided in the table input, is executed one ata time. Each
math operation adds, subtracts, multiplies, etc. the current table value with another
value. The other value can be a constant, a value interpolated from a table, a state vari-
able, or a user—defined variable. It is analogous to using a calculator with an accu-
mulation register to compute the table value.

The sequence of math operations is much like a simple programming language. The
math operations let the user control how a table value is computed. Temporary values
can be stored for later use just like a calculator, and simple if~then and goto state-
ments give some flow control over the calculation.

The following example illustrates this concept:

(1st_stage)
table thrust units=lb

start
sub pres # subtract atmospheric pressure
mult 3.219 # multiply by nozzle exit area
add tvac(time) # add the vacuum thrust

time 0, 0.2, 0.2, 0.5, 1.0, 4.0, 4.1, 4.2, 4.3

tvac = 0, 1200, 1050, 980, %950, 910, 100, 650, O
end

This table defines thrust magnitude in 1bg as the vacuum thrust minus the atmospheric
pressure times the nozzle exit area, that is,

| Eprop |=11 Fvac | = P * Snoz (3-1)

The calculation begins at the szarz statement by initializing thrust to zero. Then the
atmospheric pressure is subtracted from zero giving a negative value with the sub
pres statement. After this statement is executed the table value is equal to negative
pressure. The next statement, mult 3.219, multiplies the current table value by a
constant representing the nozzle exit area. After this statement executes, the table
value is equal to a negative pressure times the nozzle exit area. Finally the statement
add tvac(time) interpolates the table values for the vacuum thrust as a function of
time and adds this value to the table value. The resulting thrust value is used in the
flight path calculations.

Like any programming language there are many ways that this same calculation can
be done. Another method for the same calculation is to multiply the pressure and exit

3. Table Files
3.5. Full Tables

area together, save this in a temporary variable, clear the table value, interpolate the
vacuum thrust, and finally subtract the saved pressure times area value. This method
takes more math operations and is less efficient.

Tables are evaluated many times while calculating a flight path so it is worth some
effort to make them efficient. Reducing the number of math operations in a table can
significantly reduce the processing time.

3. Table Files
3.5. Full Tables
3.5.1. Math Operations

3.5.1. Math Operations

Math operations available in TAOS are given in Table 3-4. The sequence of math
operations always begins with the start keyword and ends with the end math opera-
tion. The last math operation in a table must be the end operation.

Table 3—4. Math Operations.

Operation | Description Operation | Description

add Add value to table value In Natural log of table value

sub Subtract value from table value log Log base 10 of table value

mult Multiply value by table value e ¢ raised to the table value power
div Divide table value by value sin sin of table value (in degrees)
idiv Divide value by table value cos cos of table value (in degrees)
exp Raise table value to power of value tan tan of table value (in degrees)
iexp Raise value to power of table value asin sin~! of table value (in degrees)
max Limit table value to less than a value acos cos~! of table value (in degrees)
min Limit table value to greater than a value | atan tan~! of table value (in degrees)
set Set table value to a value Zero Set table value to zero

abs Absolute value of table value csto Store table value and set it to zero
neg Negate table value if If-then statement

sqr Square table value goto Goto statement

sqrt Square root of table value end End of table

Math operations that only operate on the current table value do not require additional
information, such as a constant or table. For example,

start
add alpha
sin
sqr
add 1.0
end

computes (I + sin’a). The math operations sin and sgr do not require additional val-
ues; they operate only on the current table value. The math operation add does require
another value. Angle of attack is added in the first add statement, and the constant
1.0 is added in the second add statement.

In Table 3—4, operations add through set require an additional value; operations abs
through zero do not require an additional value. The csto, if, and goto operations are
special operations discussed later in this document. The additional value required by

_operations add through set can be a constant, a state variable, a value interpolated
from a table, a temporary storage variable, or a user—defined variable.

3. Table Files
3.5. Full Tables
3.5.2. Constant Values and State Variable Values

3.5.2. Constant Values and State Variable Values

Constant values are always treated as real numbers. They can be entered with or with-
out decimal points and scientific notation using e-format is acceptable. Some exam-
ples of math operations with constants are

add 2.0
malt 1.5e-6
exp 3

which computes the value ((x + 2.0) - 1.5x10-6)3 where x is the current table value.

Values of the state variables change as the flight path is integrated. When table values
are computed during path integration, current values of the state variables can be re-
trieved by using the variable names from Table 3-2. For example, dynamic pressure
(defined as 0.7pM?) can be computed with

add 0.7

mult pres
mult mach
mult mach

The default units for these variables are given in the appendix, but these can be
changed in the problem file with the *units/fimt data block (Section 4.4.13).

3. Table Files
3.5. Full Tables
3.5.3. Tabulated Data Values

3.5.3. Tabulated Data Values

Values for math operations can be linearly interpolated from a table that is a function
of up to five independent variables. The tables are given in the same format as shown
previously for simple tables. The table dependent variable name is given first, fol-
lowed by a list of independent variables enclosed in parentheses. A list of values is
given for each independent variable defining a matrix. Then values for the dependent
variable are given for each combination of independent values.

The simplest table is a function of one variable. For example,

add cdh(alt)
alt = 0, 50000, 100000, 150000, 200000
cdh = 0.0, 0.002, 0.006, 0.011, 0.042

defines a value called cdh that is a function of altitude. The value interpolated from
the table for cdh is added (because of the add operation) to the current table value.
The name cdh must be unique, that is, it cannot be a state variable or a user—defined
variable. It is only an identification name; it is not available as a storage variable so
it cannot be referenced by subsequent math operations.

In the nextexample, the table value is multiplied by a factor obtained from a tabulated
function of Mach number and a user—defined variable called #ype.

mult factor(type,mach)

type = 0, 1

mach = 0.0, 0.999, 1.000, 25.0

factor = 0.5, 0.5, 1.0, 1.0, # Values for type = 0
1.0, 1.0, 2.0, 2.0 # Values for type =1

The value of zype is set in the problem file, for example, in the *aero or *prop data
block. If type is set to zero, then the table value is multiplied by 0.5 for subsonic Mach
numbers and 1.0 for supersonic Mach numbers. If type is set to one, these multiplica-
tive factors are doubled.

Tabulated functions of more than two variables are input using the same pattern as
shown previously for simple tables (Section 3.4). Another method, called skewed
tabulated data, is available as shown in Section 3.5.8

3. Table Files
3.5. Full Tables
3.5.4. Storage Variables

3.5.4. Storage Variables

The math operation csto (clear and store) is used to save temporary calculations for
later use, just like a storage register on a calculator. After a value is saved and given
aname, it can be retrieved and used in subsequent math operations. For example, the
operations

add alpha
cos

sqr

csto ca2

calculate cos?a and save it as the variable ca2. The csto operation also sets the current
table value to zero in preparation for subsequent math operations.

The storage variable name given with the csto operation must be unique; in other
words, it cannot be a state variable from Table 3-2 or a user—defined variable used
elsewhere in the table or problem files.

The variable ca2 with its value of cos%a can be used in subsequent calculations, either
as a value for a math operation or as an independent variable of a table. For example,

add alpha

cos

sgr

csto ca2

add factor(ca2,mach)

uses the variable ca2 as an independent variable in a table. This provides the capabili-
ty to enter tables that are complex functions of the state variables. In this case factor
is a function of cos?a and Mach number.

3. Table Files
3.5. Full Tables
3.5.5. User—defined Variables

3.5.5. User—defined Variables

If a variable name is used in a math operation and it is not a state variable or a storage
variable, then TAOS assumes that it is a user—defined variable. TAOS expects its val-
ue to be given in the problem file in the *aero, *constants, *cg, *prop, or *wind data
blocks (Sections 4.2.1,4.2.2,4.2.3,4.2.9, and 4.4.14). These are the same places that
the table identification names are given telling TAOS which tables to use.

User—defined variables can be used in math operations just like state variables. They
are just constants that have values set in the problem file. The advantage of using
user—defined variables and setting the values in the problem file versus using
constants in the table file is that the user—defined values can be automatically sur-
veyed in the problem file (Section 4.4.11). Thus, if the table constant takes on differ-
ent values, then it is wise to make it a user—defined variable. For example, the table

{constant_thr)
table thrust units=1b
start
sub pres
mult anoz
add tvac
end

uses two user—defined variables: anoz and tvac. Because this is a thrust table, values
for anoz and tvac are given in the *prop data block in the problem file. This table is
generic in the sense that it can be used to represent any constant thrust rocket motor.

User—defined variables are a powerful tool, but they must be documented carefully.
Itis easy to create a table file with many user—defined variables and then later on for-
get that they are required when setting up a problem file. Comments should be used
to document all user—defined variables.

3-19

3. Table Files
3.5. Full Tables
3.5.6. If~Then Statements

3.5.6. If-Then Statements

The if math operation provides a simple way to control the flow of calculations in a
table. If statements are of the form

if (relationship) then math_operation
where relationship is
value relation value

and where value is a constant or a variable name. The relation is the symbol <, >, or
=, For example, the statement

if (mach > 5.0) then add f2(time) no_extrap
time = O, 1, 2, 3
f2 = 2.5, 2.6, 2.95, 3.8

says to add the value f2 that is a function of time to the table value if the Mach number
is greater than 5.

In an if statement, the relationship, such as mach > 5.0, is evaluated first. If the rela-
tionship is true, then the math operation following the then keyword is executed. In
this case if the Mach number is greater than 5, the value of /2 is interpolated as a func-
tion of time and added to the table value. If the relationship is false, that is, the Mach
number is less than or equal to 5, nothing is done and the calculations proceed to the
next math operation.

Only simple relationships are allowed in TAOS. Combinations such as mach < 5 &
alt > 50000 are not allowed. Relations for not equal to and greater than or equal to
are not provided because they are redundant.

3. Table Files
3.5. Full Tables
3.5.7. Goto Statements

3.5.7. Goto Statements

Goto math operations and labels are also used to control the flow of calculations, and
they are often used in conjunction with if statements. Every math operation can have
an optional label. A label is any name or value placed in front of the math operation
and separated from it with a colon. For example, the statements

label_1: add time

label_2: sub tmark

lable_3: csto delta_time

all have labels. Labels are like other names in that they cannot have imbedded delim-
iters (blanks, commas, etc.), so underscores are used to make them readable.

Labels are referenced by goto math operations. For example,

start
super: if (mach < 1.0) then goto sub # *"if” test
add mach
mult mach # This set of math
csto mach2 # operations is for
add cdsup(mach2) # Mach > 1 (supersonic)
mach2 = 1.0, 4.0, 9.0, 25.0
cdsup = 0.120, 0.094, 0.075, 0.055
goto done
sub: add cdsub(alpha) # This set of math

alpha = 0, 5, 10 $ operations is for
cdsub = 0.020, 0.023, 0.027 # Mach < 1 (subsonic)

done: end

performs one set of calculations if the Mach number is less than one or subsonic and
performs a different set of calculations if the Mach number is greater than one.

3. Table Files
3.5. Full Tables
3.5.8. Skewed Tabulated Data

3.5.8. Skewed Tabulated Data

So far all sets of tabulated values have had a dependent value for every combination
of independent values. The independent values form a matrix and values of the de-
pendent variable are given for each combination. This is shown on the left side of
Figure 3-6 for a function of two independent variables. The matrix of independent
values forms a square for functions of two independent variables or a cube for func-
tions of three independent variables, so these tables are called square tables.

Square Table Skewed Table
—0—0 O
- D//'f’ TG 7, o
| i b O
f(x,2) A TR t(x,2) S e N
':3/ ! | l A ., -
23| /D“'D\\D\ \EI] ZSD/’D/G \U
X X

Figure 3-6. Square and Skewed Tabulated Data.

However, sets of tabulated data are often not complete. The right side of Figure 3-6
shows a function defined at different x values for z;, z,, and z3. Not only are the val-
ues different, but the number of points in each curve is also different. In TAOS tabu-
lated sets of data like this are called skewed. They can only be input using the full
table format; skewed tables are not allowed in the simple table format.

The following example shows how skewed sets of tabulated data are input;

add cxo(alt,mach)

alt = 0, 50000

mach = 3, 5, 7, 9

cxo = .020, .021, .019, .o018, # Values for alt = 0
.021, .022, .021, .020 # Values for alt = 50000

alt = 100000, 150000

mach = 7, 10, 15

cxo = .024, .023, .021, # Values for alt = 100000
.027, .025, .024 # Values for alt = 150000

The tabulated data is broken into smaller sets that are square in nature. In this exam-
ple, values for the same Mach numbers are available at altitudes of 0 and 50,000 ft,
so this part of the table is input first. Values for a different set of Mach numbers are
available at altitudes of 100,000 and 150,000 ft, so these are input next. It is similar
to entering two separate tables: one for the low altitudes and one for the high alti-
tudes.

Another way to enter this table is to break it down even further as follows:;

add cxo(alt,mach)

alt = 0

mach = 3, 5, 7, 9
cxo = .020, .021, .019, .018,
alt = 50000

mach = 3, 5, 7. 9
cxo = .021, .022, .021, .020
alt = 100000

mach = 7. 10, 15

cxo = .024, .023, .021

alt = 150000

mach = 7, 10, 15

cxo = .027, .025, .024

3. Table Files
3.5. Full Tables
3.5.8. Skewed Tabulated Data

In this example, a simple one—dimensional table is given for each altitude. The one—
dimensional tables can each have different Mach number values and a different num-
ber of Mach numbers.

In the general case, one—dimensional tables are given for the last independent vari-
able (the right most variable) for each combination of remaining independent vari-
ables and values. The sets of data are grouped or nested such that values for the left
most independent variable are in the outermost loop. The following three—dimen-
sional example helps to clarify this:

add ca{alt,mach,alpha)

alt=10000, mach=5, alpha=0,2,4,6,8
ca = .20, .21, .23, .26, .28

$# Values for 10,000
start here

alt=10000, mach=10,
ca = .19, .19, .20, .22

alpha=0,2,4,6

alt=10000, mach=15,
ca = .18, .19, .21

alpha=0,2,4

alt=30000, mach=10,
ca = .21, .23, .25, .29

alpha=0,2,4,6 # Values for 30,000

start here

alt=30000, mach=15,
ca = .20, .21, .23

alpha=0,2,4

A simple one—~dimensional table that is a function of angle of attack is given for each
combination of Mach number and altitude, but the number of angles of attack and
the angle—of—attack values are different for each table. In this example, all of the in-
dependent values for a set of data are given on the same line; values are read free—
field, so this format is allowed.

Altitude is the left most or first independent variable listed, so altitude values must
be in the outermost loop. Thus, the Mach number values are nested within the altitude
values. This means that the altitude values must be repeated until all Mach numbers

3. Table Files
3.5. Full Tables
3.5.8. Skewed Tabulated Data

have been given. Note that there are more Mach number values at an altitude of
10,000 ft than at 30,000 ft. Altitude, Mach number, and angle of attack are all inde-

pendent variables, so their values must be given in strictly increasing or decreasing
order.

3. Table Files
3.6 Examples

3.6 Examples

The following examples are provided to show what complete tables look like in prac-
tice. The first example is a thrust table for a rocket motor.
(recruits_thr)
table thrust

gstart
add thr(tmark)

tmark = 0.00, 0.04, 0.06, 0.11, 0.21, 0.36
0.65, 0.84, 0.96, 1.16, 1.36, 1.49
1.52, 1.61, 1.70, 1.80, 2.00, 2.16
99.0

thr = 0, 493, 37113, 37507, 36520, 36520,
39482, 39235, 37803, 34842, 33263, 33361,
32276, 18556, 11845, 7501, 2270, 0,
0
mult 2.0 # No. of recruits
mult 0.9936 # cosine of nozzle cant angle (6.5 deg)
end
Thrust is a function of time, but the variable rmark is used instead of time because
itcan be reset to zero at any pointin the trajectory. It is preferable to tseg because tseg
is automatically reset at the beginning of each segment, whereas tmark is only reset
when requested by the user. The value from the thrust table is multiplied by two fac-
tors: the first one is the number of rocket motors, and the second one accounts for

the nozzles canted at 6.5° to the vehicle centerline.

The second example is an axial force coefficient table that is only a function of Mach
number. This type of table is commonly used for ballistic sounding rockets that fly
at zero angle of attack.

(strypi)
table ca sref=5.241
start
add ca(mach)
mach = 0.00 0.6 0.72 0.8 0.85 0.9
1.02 1.1 1.18 1.5 1.75 2.1
2.9 3.2 4.0 5.2 6.2 8.0
ca = 0.97 0.96 0.99 1.03 1.1 1.27
1.93 1.82 1.72 1.39 1.2 1.01
0.74 0.68 0.62 0.54 0.47 0.36
end

The table shown above is in the full table format, but it qualifies for the simple table
format. In the simple table format, it appears as follows:

(strypi)
table ca(mach) sref=5.241

mach = 0.00 0.6 0.72 0.8 0.85 0.9
1.02 1.1 1.18 1.5 1.75 2.1
2.9 3.2 4.0 5.2 6.2 8.0

ca = 0.97 0.96 0.99 1.03 1.1 1.27
1.93 1.82 1.72 1.39 1.2 1.01
0.74 0.68 0.62 0.54 0.47 0.36

The tables shown so far are small, but they do not have to be. In practice, tables tend
to be larger so they more accurately simulate the vehicle’s characteristics. The trajec-
tory calculations are often only as accurate as the aerodynamic and propulsion data.

3. Table Files
3.6 Examples

The following mass flow table is for an Orbus rocket motor where the mass flow data
is a function of time and is from an actual motor firing:

(orbus_mdt)
table mdot units=1lb/sec
start

add mdt(tmark)

tmark = -999.00 0.00 0.00 0.02 0.04 0.06
0.08 0.10 0.12 0.14 0.16 0.18
0.20 0.22 0.24 0.26 0.28 0.30
0.32 0.34 0.36 0.38 0.40 0.42
0.44 0.46 0.48 0.50 0.52 0.54
0.56 0.58 0.60 0.70 0.80 0.90
1.00 1.10 1.20 1.30 1.40 1.50
1.60 1.70 1.80 1.82 1.84 1.86
1.88 1.90 1.92 1.94 1.96 1.98
2.00 2.02 2.04 2.06 2.08 2.10
2.12 2.14 2.16 2.18 2.20 2.22
2.24 2.26 2.28 2.30 2.32 2.34
2.36 2.38 2.40 2.60 2.80 3.00
3.20 3.40 3.60 3.80 4.00 4.20
4.40 4.60 4.80 5.00 5.20 5.40
5.60 5.80 6.00 6.20 6.40 6.60
6.80 7.00 7.20 7.40 7.60 7.80
8.00 8.20 8.40 8.60 8.80 9.00
9.20 9.40 9.60 9.80 10.00 10.20

10.40 10.60 10.80 11.00 i1.20 11.40
11.60 11.80 12.00 12.20 12.40 12.60
12.80 13.00 13.20 13.40 13.60 13.80
14.00 14.20 14.40 14.60 14.80 15.00
15.20 15.40 15.60 15.80 16.00 16.20
16.40 16.60 16.80 17.00 17.20 17.40
17.60 17.80 18.00 18.20 18.40 18.60
18.80 19.00 19.20 19.40 19.60 19.80
20.00 20.20 20.40 20.60 20.80 21.00
21.20 21.40 21.60 21.80 22.00 22.20
22.40 22.60 22.80 23.00 23.20 23.40
23.60 23.80 24.00 24.20 24.40 24.60
24.80 25.00 25.20 25.40 25.60 25.80
26.00 26.20 26.40 26.60 26.80 27.00
27.20 27.40 27.60 27.80 28.00 28.20
28.40 28.60 28.80 29.00 29.20 29.40
29.60 29.80 30.00 30.20 30.40 30.60
30.80 31.00 31.20 31.40 31.60 31.80
32.00 32.20 32.40 32.60 32.80 33.00
33.20 33.40 33.60 33.80 34.00 34.20
34.40 34.60 34.80 35.00 35.20 35.40
35.60 35.80 36.00 36.20 36.40 36.60
36.80 37.00 37.20 37.40 37.60 37.80
38.00 38.20 38.40 38.60 38.80 39.00
39.20 39.40 39.50 39.60 39.70 39.80
39.90 40.00 40.10 40.20 40.30 40.40
40.50 40.60 40.70 40.80 40.90 41.00
41.10 41.20 41.30 41.38 999.0

mdt = 0.00 0.00 0.50 11.12 16.38 17.35
18.10 18.85 19.60 19.58 19.54 19.50
19.46 19.42 19.38 19.33 19.29 19.24
19.20 19.18 19.16 19.14 19.12 19.10
19.09 19.07 19.09 19.12 19.15 19.17
19.20 19.24 19.27 19.45 19.62 19.79
19.96 20.13 20.30 20.48 20.65 20.83
21.00 21.18 21.35 21.39 21.42 21.46
21.43 21.40 21.37 21.34 21.31 21.29
21.26 21.23 21.20 21.17 21.14 21.12
21.09 21.06 21.03 21.00 20.98 20.95

3. Table Files
3.6 Examples

20.92 20.89 20.86 20.83 20.81 20.78
20.75 20.75 20.74 20.72 20.70 20.69
20.68 20.67 20.65 20.63 20.61 20.60
20.58 20.55 20.53 20.50 20.47 20.43
20.40 20.36 20.32 20.28 20.24 20.20
20.16 20.10 20.04 19.97 19.90 19.83
19.77 19.70 19.64 19.56 19.48 19.37
19.24 19.12 19.05 19.14 19.27 19.40
19.54 19.68 19.83 19.97 20.12 20.27
20.41 20.56 20.71 20.86 21.01 21.16
21.30 21.44 21.58 21.73 21.88 22.01
22.14 22.27 22.40 22.53 22.66 22.79
22.92 23.05 23.18 23.31 23.43 23.55
23.67 23.79 23.91 24.03 24.14 24.25
24.35 24.44 24.54 24.63 24.74 24.84
24.94 25.05 25.15 25.24 25.34 25.43
25.51 25.59 25.66 25.73 25.79 25.85
25.89 25.94 25.99 26.03 26.08 26.13
26.18 26.23 26.27 26.32 26.36 26.40
26.44 26.48 26.52 26.56 26.60 26.63
26.66 26.68 26.70 26.71 26.72 26.74
26.76 26.77 26.79 26.80 26.81 26.82
26.83 26.85 26.86 26.88 26.90 26.92
26.94 26.95 26.96 26.96 26.96 26.95
26.90 26.74 26.58 26.49 26.42 26.35
26.28 26.22 26.14 26.05 25.93 25.73
25.53 25.32 25.10 24.87 24.65 24.42
24.20 23.99 23.77 23.57 23.36 23.15
22.94 22.73 22.54 22.34 22.13 21.92
21.71 21.50 21.29 21.08 20.87 20.65
20.43 20.21 19.99 19.77 19.55 19.31
19.07 18.86 18.67 18.46 18.25 18.03
17.82 17.62 17.52 17.41 17.29 17.18

17.07 15.10 11.23 7.30 5.30 3.99
3.11 2.57 2.08 1.76 1.44 1.15
0.86 0.54 0.25 0.00 0.00

csto mdmotor
ACS roll control gas loss

add macsr (tmark)

tmark = -999.9 -0.000001 0.0 41.5 41.500001 999.9
macsr = 0. 0. 1.0 1.0 0. 0.
div 41.5
div 32.174

add mdmotor
end

The first part of this table contains the mass flow in Ibp,/sec as a function of time. The
data points are given every 0.02 seconds. The second part of the table accounts for
the mass loss from the attitude control system.

A final example is given of an axial force coefficient table for a reentry vehicle that
is a function of Mach number, altitude, and angle of attack. This table is not shown
in its entirety because it is too large, but enough is shown to illustrate the input pat-
tern,

3. Table Files

3.6 Examples
{(rv_ca)
Aerodynamic axial force coefficient
table ca sref = 2.50
start

add ca(alt,mach,alphat)

0.0
0.000,
6.000,

16.000,
0.04556,
0.06987,
0.15006,

alt =
alphat

ca =

0.0
0.000,
6.000,

16.000,
0.04263,
0.06864,
0.15358,

alt =
alphat =

alt =
alphat =

0.0
0.000,
6.000,

16.000,
0.04051,
0.06652,
0.15146,

ca =

alt =
alphat =

20000.0
0.000,
6.000,

16.000,
0.04620,
0.07052,
0.15071,

ca =

20000.0
0.000,
6.000,

16.000,
0.04330,
0.06931,
0.15425,

alt =
alphat =

ca =

20000.0
0.000,
6.000,

16.000,
0.04121,
0.06722,
0.15216,

alt =
alphat =

ca =

. etc.

250000.0
0.000,
6.000,

16.000,

alt =
alphat =

mach = 14.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

0.04673, 0.04990,
0.08267, 0.09685,
0.17202, 0.19634,

mach = 16.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

0.04381, 0.04720,

0.08179, 0.09642,

0.17765, 0.20473,

mach = 18.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

0.04169, 0.04508,

0.07967, 0.09430,

0.17553, 0.20261,

mach = 14.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

0.04738, 0.05054,

0.08332, 0.09750,

0.17266, 0.19699,

mach = 16.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

0.04448, 0.04787,
0.08247, 0.09710,
0.17832, 0.20540,

mach = 18.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

0.04239, 0.04578,

0.08037, 0.09500,

0.17623, 0.20331,

mach = 18.00
1.000, 2.000,
8.000, 10.000,

18.000, 20.000,

3.000,
12.000,
24.000,

0.05401,
0.11260,
0.25216,

3.000,
12.000,
24.000,

0.05167,
0.11307,
0.26911,

3.000,
12.000,
24.000,

0.04955,
0.11095,
0.26699,

3.000,
12.000,
24.000,

0.05465,
0.11325,
0.25280,

3.000,
12.000,
24.000,

0.05234,
0.11374,
0.26978,

3.000,
12.000,
24.000,

0.05025,
0.11165,
0.26769,

3.000,
12.000,
24.000,

4.000,
14.000,

0.05877,
0.13030,

4.000,
14.000,

0.05684,
0.13210,

4.000,
14.000,

0.05472,
0.12998,

4.000,
14.000,

0.05942,
0.13094,

4.000,
14.000,

0.05751,
0.13278,

4.000,
14.000,

0.05542,
0.13068,

4.000,
14.000,

5.000,
15.000,

0.06408,
0.13991,

5.000,
15.000,

0.06255,
0.14253,

5.000,
15.000,

0.06043,
0.14041,

5.000,
15.000,

0.06473,
0.140586,

5.000,
15.000,

0.06322,
0.14320,

5.000,
15.000,

0.06112,
0.14111,

5.000,
15.000,

3. Table Files
3.6 Examples

ca = 0.50320, 0.50438, 0.50777, 0.51224, 0.51741, 0.52311,
0.52921, 0.54236, 0.55699, 0.57364, 0.59267, 0.60310,
0.61415, 0.63822, 0.66530, 0.72968,

end

This table is a function of total angle of attack rather than angle of attack because Cp
is symmetric, that is, Cp is the same for negative angles of attack as for positive
angles of attack. Using total angle of attack eliminates duplicate tabulated values.

The skewed format for tabulated data is used even though the data meets the condi-
tions for the square format. This is often done when the table is generated by a com-
puter program, such as Aero,20 because the skewed tabulated data format is more
general and can be used for any type of tabulated data.

3. Table Files

Intentionally Left Blank

4. Problem Files

4. Problem Files

Table files contain information defining the aerodynamic and propulsive forces act-
ing on a vehicle. Problem files contain the remaining information required to com-
pute a trajectory, for example, a vehicle’s initial mass and its flight profile. This in-
formation is combined to integrate the equations of motion resulting in a trajectory
or flight path.

TAOS has the capability to integrate several trajectories simultaneously. Each trajec-
tory represents a separate vehicle. Information in the table and problem files is used
to define the flight profiles for each trajectory or vehicle.

Each trajectory is divided into segments, where each segment can be described with
simple guidance rules. Figure 4-1 shows an example of a maneuvering reentry tra-
jectory. The first segment is flown ballistically, the second segment is a constant
angle of attack pullout to level flight, the third segment is a level turn, and the last
segment is flown ballistically to impact.

® Segment 1
Start of Ballistic
trajectory Segment 2

'Y Constant a pullout
Segment 3
Level tumn
. /
-
N Segment 4
End of Ballistic
trajectory @

Figure 4-1. Segmented Flight Paths.

Input data in the problem file describes how each segment is computed, that is, the
vehicle configuration, the guidance rules, the final conditions, and the next segment
to execute. Segments are joined together continuously to form trajectories.

Problem files have a hierarchical structure as shown in Figure 4-2. A problem file
contains one or more problems. Each problem contains information defining one or
more trajectories. Each trajectory definition contains information defining one or
more trajectory segments.

A problem can have any number of trajectories defined, and each trajectory can have
any number of segments. The size of the problem is limited only by the amount of
memory available on the computer and the computer’s processing speed.

4. Problem Files

— Problem File
— Problem 1 Problem File Hierarchical Structure
— Trajectory 1
_ Problem File
Segment 1
Segment 2
| Prob. 1 Prob. 2 otc
Segment 3 / \
etc.
— Trajectory 2 Traj. 1 Traj. 2
L efc.
— Problem 2
[Trajectory 1 Seg.1 Seg.2 Seg.3
— Figure 4-2. Problem File Organization.

Each trajectory in a problem is identified with a unique trajectory number and name.
The trajectory number is used within TAOS to identify each trajectory. Both the tra-
jectory number and name appear on output files to identify each trajectory.

Within a trajectory, each segment is identified with a unique segment number. Al-
though a descriptive title can be given for a segment, it is not used to identify the seg-
ment. The segment numbers must be unique within a trajectory, but different trajec-
tories can use the same set of segment numbers.

The following problem file defines a simple trajectory:
(pullout)

*title Example of a maneuvering trajectory
*atmos standard
*earth wgs-84

*trajectory 1 rv start on 1
*initial geodetic
long=0.0 lat=0.0 psi=90.0 time=0.0
alt=300000 vel=18000 gama=-30 wt=1000.0

*print time alt range mach vel gamgd dynprs alpha ca cn

*segment 1 Ballistic flight
*aero ca=(rv_ca) cn=(rv_cn)

4. Problem Files

*when dynprs>1000 goto 2

*segment 2 Constant alpha pullout to level flight
*aero ca=(rv_ca) cn=(rv_cn)
*fly alpha=10.0
*when gamgd=0 stop

*end

This problem file contains a single problem beginning with (pullout) and ending with

*end. Although problem files can contain more than one problem, it is good practice
to only put one problem in each file and run each problem as a separate task or pro-
cess. This way if the first problem fails, it does not prevent other problems from run-
ning,.

Data Blocks

Each set of information in the problem file begins with an asterisk and a name, for
example, *title, *atmos, and *trajectory. These are special names TAOS keys on so
it will know what type of information follows.

For example, information defining the initial conditions of the trajectory is given af-
ter the *initial keyword as follows:

*jinitial geodetic
long=0.0 lat=0.0 psi=90.0 time=0.0
alt=300000 vel=18000 gama=-30 wt=1000.0

This set of information (everything from the *initial keyword up to the next *print
keyword) is called a data block. This particular one is called the *initial data block.
Information in this data block gives the vehicle’s initial state.

Other data blocks in this problem file include the *title data block which gives a prob-
lem title, the *atmos data block which says to use the 1976 U.S. standard atmosphere,
and the *earth data block which says to use the WGS-84 earth model. Each data
block has a variety of options to choose from.

This problem defines a single trajectory containing two segments. Indentation is
used to show the problem file structure. The *initial, *print, and *segment data
blocks are all part of the *trajectory block. The *aero, *fly, and *when data blocks
are part of the *segment blocks; they are repeated for each segment. The indentation
follows the structure shown in Figure 4-2.

Section 4 of thisreport is organized the same way as the problem file. Each data block
is discussed in a separate subsection. The subsections are grouped according to the
organization shown in Figure 4-2. Section 4.1 contains some general information
about the problem file format, Section 4.2 discusses the segment data blocks, Section
4.3 discusses the trajectory data blocks, and Section 4.4 discusses the problem data
blocks. The last section, Section 4.5, contains several example problem files.

4. Problem Files
4.1. File Format

4.1. File Format

Problem files are text files so they can be created with any standard text editor such
as UNIXs vi or Silicon Graphics’ jot. They can also be created with other software,
such as an interactive trajectory design code.

Information in problem files is read into TAOS one line at a time. Each line of text
contains some names and values separated by special characters such as spaces or
commas. These special characters are called delimiters; valid delimiters are white-
space characters (space, tab, etc.), commas, equal signs, parentheses, colons, great-
er—than signs and less-than signs. Because delimiters are used to separate names and
values, they cannot be imbedded within a name or value.

Internally TAOS requires names that are lowercase. Names and keywords entered
in uppercase are automatically converted to lowercase, so from a user standpoint case
is not important.

Names and Values

Names and values can be placed anywhere on a line; they do not have to be in certain
columns. This freefield style of input allows indentation to make it easier to visual-
ize the problem file structure and to avoid input errors.

Because of the free-field style of input, the order of names and values in the problem
file is often important. For example, in the trajectory data block

*trajectory 3 missile start on 23

the order of each item in the data block is important. The keyword *trajectory must
be followed by a trajectory number. This is followed by a trajectory or vehicle name.
The keywords start on must follow these two values, and, finally, the last value is the
starting segment number. In other data blocks, where lists of variables and values are
given, the order may be less critical.

Numerical values can be input as integers without a decimal point, as real numbers
with a decimal point, or as real numbers in scientific notation (e—format). For exam-
ple,

*initial geodetic
time = 20, vel = 2.0e4, wt=345.5, gama = -24.3

uses the value 2.0e4 which is read as 2.0 X 104 or 20,000.

Note that delimiters cannot be imbedded within a value, so the value

wt = 10,000 # Incorrect value

is incorrect. The comma is interpreted as a delimiter, so TAOS thinks there are two
values instead of one. In this case, it reads 10 and 0 instead of 10000.

4. Problem Files
4.1, File Format

Survey, Search, and Optimization Parameters

One of the powerful features of TAOS is its ability to systematically vary input pa-
rameters for tradeoff studies. This is accomplished with surveys, searches, and opti-
mization loops. Surveys vary input parameters through a set of known values, and
for each value, a trajectory is computed. Searches vary one or two input parameters
to achieve certain conditions during the trajectory. For example, the initial flight path
angle can be varied until the final range equals a desired value. Optimization loops
vary a set of input parameters to maximize or minimize a trajectory value subject to
some constraints. For example, the angle—of-attack history during a trajectory can
be varied such that range is maximized while maintaining an impact velocity above
a desired value and maintaining a minimum dynamic pressure.

All of these methods change or adjust values of input variables given in the problem
file. They can only change numerical values; surveys, searches, and optimization
loops cannot be used to change table names or other keywords in a problem file.

Numerical values are designated for a survey by setting a variable equal to a special
keyword. For example,

*initial geodetic
time = 20, vel = 2.0e4, wt=surv-1, gama = -24.3

has an initial weight that is no longer set to a numerical value. Instead it has been set
to the keyword surv—1, which says to set the initial weight to values given in the *sur-
vey data block for survey loop number 1 (Section 4.4.11).

Similarly, values can be designated for searches with the srch—n keyword where n
is the search number (Section 4.4.9). Values are designated for optimization loops
with the optx-n keyword, where x is the optimization loop letter and n is the optimiza-
tion parameter number (Section 4.4.6).

At this point it is only necessary to know that this capability exists; for more details,
see the separate sections on surveys, searches, and optimization.

Titles

Some data blocks have titles. Titles are special in that the delimiters are ignored.
Titles extend from the first nonblank character to the end of the line. Titles are also
special in that they are not converted to lowercase; case is preserved as input.

Comments

Comments, starting with the special # character, can be placed anywhere in a problem
file. Comments extend from the # character to the end of the line. Blank lines are ig-
nored, so they can be used to put space between sections of information to make it
easier to read.

For example, the data block

4. Problem Files
4.1. File Format

*define alt_km # Altitude in km
alt_km = alt / 3280.84; # Convert units of altitude

defines a new variable called alt_km that is the vehicle’s altitude in kilometers rather
than feet. Comments have been used to document what this data block does.

4. Problem Files
4.2. Segment Data Blocks

4.2. Segment Data Blocks

Segment data blocks provide information describing how to calculate a trajectory
segment. This includes numerical integration parameters, the vehicle configuration,
guidance rules, segment final conditions, and what to do next. This is alot of informa-
tion, so it is organized into data blocks. Thus, segment data blocks contain other types
of data blocks.

Segment data blocks begin with a line containing the keyword *segment, for exam-
ple,

*segment 23 2nd Stage Boost

The value following *segment is the segment number, in this case segment number
23. It is required and it must be unique within a trajectory. An optional title, such as
2nd Stage Boost, follows the segment number.

The remainder of the segment data block is made up of other types of data blocks as
shown in Table 4-1. A segment data block extends from the *segment keyword to
the next trajectory or problem data block keyword. Usually this is another *segment
keyword or a *trajectory keyword (See Table 4-8 for a list of trajectory data block
keywords and Table 4-13 for a list of problem data block keywords).

Table 4-1. Segment Data Blocks.

Data Block | Description

*aero Defines aerodynamic coefficients

*constants Provides values for user—defined variables
*cg Defines the center of gravity

*fly Defines a guidance rule

*increment Allows discontinuities in the vehicle’s state
*inertial Aligns an inertial platform coordinate system
*integ Provides parameters for numerical integration
*limits Defines limits on the flight path

*prop Defines propulsive thrust and mass flow

*rail Provides parameters for rail launches and sleds
*reset Allows discontinuities in the vehicle’s state
*when Provides final conditions and what to do next

The following segment data block is an example of a rail-launched missile:

*segment 1 Rail Launch
*integ dtprnt=0.10 4dt=0.01
*aero ca=(stagel_ca) cn=(stagel_cn)
*prop thrust=(thrustl) mdot={mdotl)

4. Problem Files
4.2, Segment Data Blocks

*prop thrust=(t_recruits) mdot=(m_recruits)
*rail 1launch cfstat=0.15 c¢fslid=0.01
*when plength=25.0 goto 3

This segment data block contains an *integ block giving integration and print step
sizes, an *aero block with aerodynamic table names, two *prop blocks with thrust
and mass flow table names, a *rail block for the rail launch guidance, and a *when
block with the final conditions. The *when block is also used for continuing the tra-
jectory; in this case, segment 3 is computed next.

The following sections describe the input parameters and format for each segment
data block. Additional examples of segment data blocks are given in Section 4.5.

4. Problem Files
4.2. Segment Data Blocks
4.2.1. *¥Aero Data Block

4.2.1. *Aero Data Block

The *aero data block is used to define the aerodynamic coefficients. It is optional;
if it is not input, all aerodynamic coefficients are set to zero. If more than one *aero
data block is input in a segment, the aecrodynamic forces are computed for each *aero
data block and then added together.

There are three different sets of aerodynamic coefficients that can be input: the axial
and normal force coefficients (Ca and Cy), the lift, drag, and side force coefficients
(Ct, Cp, and Cg), and the body x, y, and z force coefficients (Cx, Cy, and Cz). The
aerodynamic coefficients are defined in Section 2.3.2.

Within each *aero data block, a consistent set of aecrodynamic coefficients must be
input. Coefficients from different sets cannot be mixed. For example, Cp, and Cp are
in the same set, so they form a valid set of coefficients, whereas Cp, and Cjp are not
in the same set, so they cannot be used together.

If a segment has more than one *aero block, it is recommended that all of them use
the same type of aerodynamic coefficients. If this is done, then all of the output aero-
dynamic coefficients are the sum of the coefficients from each *aero block. Other-
wise, the forces used to compute the trajectory are correct, but only the Cr, Cp, and
Cs output coefficients are correctly totaled.

Constant Coefficients

Aerodynamic coefficients can be input either as constants or as tables. Constant val-
ues are input by giving the coefficient name and its value as follows:

*aero ca=0.0215 cn=0.118 sref=5.437

This data block defines the axisymmetric coefficients C4 and Cy. These values are
constant for the duration of the segment.

Besides the aecrodynamic coefficient values, a value has been given for the reference
area Spr. The reference area is used to compute the aerodynamic forces from the co-
efficients and it has default units of ft2. It is required when all coefficients are set to
constants; when tables are used, the reference area can be given in one of the tables.

When a reference area is specified in the *aero data block, it overrides values given
in tables. When multiple *aero blocks are given or when aerodynamic tables contain
different values of Sy, Srr should not be given in the *aero data block.

Aerodynamic Tables

Aerodynamic coefficients can also be given in tables by setting the coefficient names
equal to a table identification name enclosed in parentheses. For example,

*aero ca = {(ca_clean) cn = (cn_clean)

4. Problem Files
4.2. Segment Data Blocks
4.2.1. *Aero Data Block

requests a table called ca_clean for the axial force coefficient and a table called
cn_clean for the normal force coefficient.

Tables can be used for some coefficients while others can be set to constants. In the
following example, the lift coefficient is set to a table name and the drag coefficient
is set to a constant;

*aero cl=(1lift_x) cd=0.2351

The side force coefficient is not given, so it is set to zero. The reference area is not
given either, so it must be provided in the Jif¢_x table.

User-Defined Variables

Tables can be functions of user—defined variables as shown in Section 3.5.5. If user—
defined variables are referenced in a table, then values for them must be given in the
problem file.

One place values can be given for user—defined variables is in the *aero data block.
Although values can be given for any user—defined variable within this data block,
usually values are only given for the user—defined variables in the aerodynamic
tables. Values for other user—defined variables are given in the data blocks where
they are referenced. This way the table name and its user—defined variables are given
together in the problem file. Another method is to give values for the user—defined
variables in a *constants data block (Section 4.2.2).

Once a value has been given for a user—defined variable, it remains set at that value
unless changed in a subsequent data block. This means that values for user—defined
variables do not have to be repeated within each segment if they do not change. How-
ever, it is good practice to provide values in each segment to avoid input errors.

The following *aero data block defines values for two user—defined variables:

*aero cd=(drg_model) cl=(1ft_model)
flaps=25, gear=0, sref=225.0

This block provides table names for Cy, and Cp, and it sets the reference area to 225
fi2. It also provides values for two user—defined variables: flaps and gear. These vari-
ables must appear in the tables; arbitrary variable names that never appear in a table
cannot be input. These variables could be flags in the table used for flap deflection
and gear up or down.

4. Problem Files
4.2. Segment Data Blocks
4.2.2. *Constants Data Block

4.2.2. *Constants Data Block

Tables can be functions of user-defined variables as shown in Section 3.5.5. If user—
defined variables have been referenced in tables, then values for these variables must
be provided. These values can be given in the *aero, *prop, *cg, or *constants data
blocks. Values only need to be given for the user—defined variables in tables refer-
enced in a segment; if a table is not used in a segment, then values do not have to be
provided for its user—defined variables.

The *constants data block is optional. It is provided as a convenience, so that values
for all user—defined variables can be grouped together. The *constants data block is
only used to provide values for user—defined variables. If the tables are not a function
of user—defined variables, a *constants data block should not be input.

There are two styles for providing user-defined variable values. One style defines
the user—defined variable values in the data block where the table is referenced. For
example, an *aero data block that references a table with a user—defined variable also
provides a value for that variable. This style uses the *aero, *prop, and *cg data
blocks to define values for the user—defined variables.

The other style is to provide values for all user—defined variables in the *constants
data block. This groups all user—defined variables together in one place. Some people
prefer the first style and others prefer this style, so both are provided.

The *constants data block consists of the *constants keyword followed by the user—
defined variables set equal to their values. For example,

*constants type=3, tmult=1.2,
mmult=1.15

sets the user—defined variable type equal to 3.0, rmult equal to 1.2, and mmult equal
to 1.15. These variables must be used in the tables supplied with this problem file.

Once a value has been given for a user—defined variable, it remains set at that value
unless changed in a subsequent data block. This means that values for user—defined
variables do not have to be repeated within each segment if they do not change. How-
ever, it is good practice to provide values in each segment to avoid input errors.

4. Problem Files
4.2. Segment Data Blocks
4.2.3. *Cg Data Block

4.2.3. *Cg Data Block

One of the assumptions in TAOS is that the control system is capable of maintaining
the vehicle’s body attitude. For example, when a constant angle of attack guidance
scheme is requested, it is assumed that there is a control system capable of maintain-
ing a constant angle—of-attack body attitude. For many aerospace vehicles, this con-
trol system uses aerodynamic controls, such as flaps, canards, and elevators. The
control settings required to maintain steady flight at various body attitudes are a func-
tion of the vehicle’s center of gravity, that is, maintaining a constant angle of attack
requires different control settings depending on the vehicle’s center of gravity.

The aerodynamic coefficients used in TAOS are for steady trimmed flight. Because
of this, they are generally a function of the vehicle’s center of gravity. The vehicle’s
center of gravity, in turn, is often a function of its weight. As fuel or propellantis used,
the weight and center of gravity change, and this affects the aecrodynamics.

This is handled in TAOS by making the aerodynamic tables a function of the center
of gravity or cg state variable and by defining a value for cg in the *cg data block.
The cg can be set to a constant, or a table can be used to compute its value. The *cg
data block is optional; cg is set to zero if it is not input.

The *cg data block consists of the *cg keyword, followed by the cg variable name
and its value. The following *cg data block sets the center of gravity to a constant
value:

*cg cg=0.69

The center of gravity can be stated in inches, in percent of body length, orin any other
convenient units aslong asits use isconsistent in both the *cg data block and the aero-
dynamic tables. TAOS treats the center of gravity as a nondimensional value.

A cg table can also be used to compute the vehicle’s center of gravity. For example,
*cg cg=(wt_cg) config=2

requests TAOS to use a table called wr_cg to compute the center of gravity. This table,
like others, can be a function of weight or any of the other state and user—defined vari-
ables.

In the example above, a user—defined variable, config, has been assigned a value. The
*cg data block can be used to assign values to any of the user—defined variables, but
itis usually only used to assign values to the user—defined variables referenced in the
cg table.

4. Problem Files
4.2. Segment Data Blocks
4.2.4. *Fly Data Block

4.2.4. *Fly Data Block

TAOS uses input guidance rules to determine values for four control variables so a
trajectory can be calculated. The body attitude is specified by three control variables,
such as, angle of attack, angle of sideslip, and bank angle. The thrust level is con-
trolled by a fourth control variable called power setting. Guidance rules and control
variable values are input with *fIy data blocks.

The *fly data blocks are optional. If no *fTy data blocks are given for a segment, then
all control variables are set to zero. Unless unusual aerodynamic tables are given, this
represents a ballistic trajectory.

Each *fly data block specifies a guidance rule which determines a value for one or
more of the control variables. Since there are four control variables, there can be a
maximum of four *fy data blocks in each segment. The control variables default to
zero, so if this is an acceptable value for a control variable, a *fly data block is not
required for that control variable.

Body Attitude Guidance

The three body-attitude control variables are treated separately from the power set-
ting control variable. Values for these control variables can be specified directly rela-
tive to the surrounding air mass with aerodynamic angles, or they can be specified
directly with conventional Euler yaw, pitch, and roll angles relative to inertially
fixed, geocentric, or geodetic coordinate systems. They can also be specified indi-
rectly by supplying a desired flight condition, such as level flight, and letting TAOS
solve for the control values that give the desired flight condition.

Valid body-attitude angles that can be specified directly in guidance rules are given
in Table 4-2. The angles in Table 42 can be combined to form nine sets of consistent
angles as shown in Table 4-3. A set of guidance rules in a segment must contain a
consistent set of angles.

Often when the angles are directly specified, all three angles in a set are input in three
*fly data blocks. This is not required, however. If only one angle is specified directly,
it leaves the remaining two angles free. Other *fly data blocks may specify flight
conditions that must be satisfied and the free angles will be set such that the flight
conditions are met. Or if no other *fly data blocks are given, the angles default to zero.

Table 4-2. Body-Attitude Angles for Vehicle Guidance.

Variable Symbol Description
alpha a Angle of attack
alphat ar Total angle of attack
bankgc Hgc Geocentric bank angle
bankgd Hgd Geodetic bank angle

4. Problem Files
4.2, Segment Data Blocks
4.2.4. *Fly Data Block

beta B Angle of sideslip
betae Be Euler angle of sideslip
phi Pw Windward meridian

pitchgc G Geocentric pitch angle
pitchgd 6Oy Geodetic pitch angle

pitchi - 6 Inertial platform pitch angle
rollgc Dy Geocentric roll angle
rollgd Dy Geodetic roll angle

rolli b; Inertial platform roll angle
yawgce Yer Geocentric yaw angle
yawgd WVed Geodetic yaw angle

yawi v Inertial platform yaw angle

Table 4-3. Consistent Sets of Body-Attitude Angles.

Set Body-Attitude Angles

1 alpha betae bankgc
2 alpha beta bankgc
3 alphat phi bankgc
4 alpha betae bankgd
5 alpha beta bankgd
6 alphat phi bankgd
7 yawgc pitchgc rollge

8 yawgd pitchgd rollgd

9 yawi pitchi rolli

The angles given in the *fly data blocks are checked to ensure that they form a consis-
tent set according to Table 4-3. If some angles are not specified directly, those that
are specified are checked for consistency with Table 4-3. The lowest numbered set
is selected containing the specified angles. The remaining unspecified body-attitude
angles in this set are allowed to vary to meet other *fly flight conditions.

Some examples of *fly data blocks will help clarify their use. The data blocks

*fly alpha
*fly betae

5.0
2.5

say to fly at an angle of attack of 5° and a sideslip of 2.5°. Only two angles are speci-
fied. Using Table 4-3, these angles are both in Set 1 and Set 4, but Set 1 is chosen
because it has a lower set number, so the remaining body-attitude angle is bankgc.
Since this angle is not specified and no other *fly data blocks are given, it defaults
to zero. Power setting also defaults to zero because it is not specified.

4. Problem Files
4.2, Segment Data Blocks
4.2.4. *Fly Data Block

The mostcommon format of each *fTy data block is the *fIy keyword followed by one
of the guidance variables and its value. Another format is available, used primarily
for optimization, which is discussed later in this section.

In the example above, use of alpha and betae is encouraged over alpha and beta be-
cause of the way that the two sideslip angles, beta and betae, are defined. When alpha
and beta are used and they become +90°, the standard angle definitions are unde-
fined. The standard definitions are modified to avoid these problems, but this system
of angles is not as robust as alpha and betae (Section 2.1.9).

The following example illustrates an incorrect set of *fly data blocks:

*fly alphat = 5.0 # Incorrect guidance rules
*fly betae = 5.0 # Angles are inconsistent

This is an inconsistent set of body-attitude angles because total angle of attack is
associated with windward meridian, not sideslip. Alphat and betae are not contained
in one of the valid sets of angles in Table 4-3, so this set of *fly data blocks generates
an input error.

Referencing Current Values
The data blocks

*fly yawgd =
*fly pitchgd
*fly rollgd = *

*
= *

show another feature of the *fly data block. All of the values have been set to an aster-
isk rather than a number. An asterisk tells TAOS to use the value from the end of the
previous segment; asterisks can be used in the *fly data block in place of any number.
Asterisk values should not be used on the first ssgment of a trajectory because there
are no previous values to reference.

Power Setting

The power setting variable, power, is a special control variable that can be used in
combination with the tables to simulate an engine throttle. If the thrust and mass flow
tables are a function of power, then power can be used to vary the thrust and mass
flow values like a throttle. Power setting is a nondimensional value so its units can
be anything as long as they are consistent in both the table and problem files.

For example, if thrust and fuel flow tables for a jet engine are entered as a function
of the engine rpm using power to represent rpm, then the rpm value can be controlled
in the *fly data block by setting the power variable. A value for power can be directly
input, or it can be indirectly specified by entering a desired flight condition, such as
constant Mach number.

Flight Condition Guidance

So far control variables have been specified directly, but they can also be specified
indirectly with desired flight conditions, such as level flight. When they are specified

4. Problem Files
4.2, Segment Data Blocks
4.2.4. *Fly Data Block

indirectly, TAOS determines the control variables that have not been directly speci-
fied (the free control variables) and varies them using an iterative Newton-Raphson
search method to solve for the desired flight conditions (Section 2.5.1).

The guidance rules or flight conditions that can be specified in the *fTy data block are
listed in Table 4—4. The iterative search method used to solve for these conditions
usually converges, but convergence is not guaranteed. If the actual flight conditions
are significantly different from the desired flight conditions, a convergence problem
may occur.

Table 44. Flight Conditions for Vehicle Guidance.

Variable |Description

alt Fly at a constant altitude
cl Fly at a constant lift coefficient
cs Fly at a constant side—force coefficient

downria | Fly down the range insensitive axis

dynprs Fly at a constant dynamic pressure

gamgc Fly at a constant geocentric flight path angle
gamgd Fly at a constant geodetic flight path angle
intercept | Fly to intercept another trajectory

1/d Fly at a constant lift-to—drag ratio

Vd_max |Fly at the maximum lift-to—drag ratio
mach Fly at a constant Mach number

nx Fly at a constant axial specific load factor
ny Fly at a constant lateral specific load factor
nz Fly at a constant normal specific load factor
propnav | Fly to intercept with proportional navigation
psigc Fly at a constant geocentric heading angle
psigd Fly at a constant geodetic heading angle
thrust Fly at a constant thrust

upria Fly up the range insensitive axis

vel Fly at a constant velocity

If problems occur, first ensure that the free control variables are capable of control-
ling the vehicle to meet the desired flight conditions. For example, if bank angle is
zero, then angle of attack has no effect on heading, so TAOS is not able to solve for
an angle of attack to fly a given heading angle.

Then check the control variable limits, which are given in the */imits data block (Sec-
tion 4.2.8). Upper and lower bounds on the control variables can be specified to keep
the values reasonable. Values should be limited to the range of values given in the
tables to avoid extrapolation problems.

4. Problem Files
4.2. Segment Data Blocks
4.2.4. *Fly Data Block

Finally, check the value of dzguid in the *integ data block. Itcontrols the rate at which
the flight path is corrected from the actual flight conditions to the desired flight
conditions. It acts as a time constant or gain, and if it is too large or too small, the flight
path does not correct to the desired conditions.

The following set of *fIy data blocks demonstrates use of the flight conditions guid-
ance rules:

*fly gamgd = 0
*fly mach = 0.80
*fly bankgd = 0
*fly betae = 0

All four data blocks have been input specifying two control variables directly,
bankgd and betae, and two control variables indirectly, alpha and power. TAOS
solves for values of alpha and power that result in a zero flight path angle (level
flight) and a 0.8 Mach number. The last two *fIy data blocks are optional because
these variables default to zero, but they have been included in this example for clarity.

Special Guidance Rules

The guidance rules l/d_max, intercept, propnav, downria, and upria are special cases.
The I/d_max guidance rule solves for the angle of attack that maximizes the lift-to—
drag ratio. It does not require a value, so it is used as follows:

*fly 1/d_max

The intercept guidance rule places the vehicle on an intercept trajectory with another
vehicle. Its value is set to the trajectory number of the target vehicle, for example,

*fly intercept = 3

says to intercept vehicle or trajectory number 3. The vehicle’s trajectory will be im-
mediately pointed towards the estimated intercept point using a predictive guidance
method (Section 2.5.2).

Similarly the propnav guidance rule is used to intercept another trajectory with pro-
portional navigation (Section 2.5.2). Again the guidance rule value is set to the trajec-
tory number of the target vehicle. For example,

*fly propnav = 2

uses proportional navigation to intercept trajectory number 2. The value of dtguid,
given in the *integ data block, is used for the proportional navigation constant.

The intercept and proportional navigation guidance rules require two free control
variables: one control for yaw and one control for pitch. These two special guidance
rules are equivalent to two normal guidance rules. When they are used, a maximum
of three *fly data blocks can be input.

The downria and upria guidance rules orient the body x axis along the range insensi-
tive axis. If the velocity is incremented in the direction of the range insensitive axis,

4. Problem Files
4.2. Segment Data Blocks
4.2.4. *Fly Data Block

it changes the time to impact but does not change the range. The downria guidance
rule solves for the range insensitive axis that reduces the flight time, and the upria
guidance rule solves for the axis that increases flight time (Section 2.5.3).

The range insensitive axis solution procedure uses the initial impact point (IIP) to de-
termine the vehicle’s range. The guidance rule value, generally zero, is used as the
impact altitude. For example,

*fly downria = 100000
solves for the range insensitive axis using an “impact” altitude of 100,000 ft.

The downria and upria guidance rules are similar to the intercept guidance rules in
that they require two free control variables: one control for yaw and one control for
pitch. These special guidance rules are equivalent to two normal guidance rules.

Rate Guidance

So far all examples have shown guidance rules that specify body-attitude angles or
flight conditions. Body-attitude rates and flight condition rates can also be specified
by adding the suffix d to the end of the variable name (dr stands for dot or the first
derivative with respect to time). For example, angle of attack rate is given by alphads.
The data blocks

*fly gamgd = 0
*fly psigddt = 5.0
*fly betae = 0

*fly powerdt 1000

requestlevel flight (gamgd = 0), aheading rate of 5 deg/sec (psigddt = 5), no sideslip
(betae = 0), and a power setting rate of 1000 units/sec (powerdt = 1000). If power
setting is proportional to thrust in the propulsion tables, this produces a level acceler-
ating turn. Angle of attack and geocentric bank angle are varied to turn at the re-
quested heading rate while maintaining level flight.

Guidance Tables

If constant values or rates do not represent the desired trajectory, values can be inter-
polated from a table that is a function of a state variable as follows:

*fly alpha vrs tseg interp-2

0.0 0.0
5.0 1.0
6.0 2.0
5.0 3.0
0.0 4.0

This data block says to interpolate angle of attack from the table as a function of the
segment time. The vrs keyword separating the guidance variable and the state vari-
able isrequired. Guidance tables can be functions of the same state variables as tables
(Table 3-2).

4. Problem Files
4.2. Segment Data Blocks
4.2.4. *Fly Data Block

The interp—2 keyword is optional and requests interpolation method 2 (circular inter-
polation). Three interpolation methods are available for guidance tables:

interp—-1 linear interpolation
interp-2 circular interpolation?3
interp-3 polynomial interpolation

Linear interpolation, interp—1, is the default.

Guidance tables are primarily used for flight path optimization where the angle—of-
attack (or another control variable) time history is varied to minimize or maximize
a flight condition subject to constraints. Sections 4.4.6 and 4.5.3 contain examples
of this type of guidance table.

During optimization, the table values are perturbed by a very small amount when cal-
culating gradients. To ensure the gradient is computed accurately, it is important to
integrate to each pointin the table. Consequently, the integration step size is automat-
ically adjusted such that the table points are at the end of integration steps. This only
occurs when the guidance table is a function of a time variable (time, tseg, or tmark).

4. Problem Files
4.2. Segment Data Blocks
4.2.5. *Increment Data Block

4.2.5. *Increment Data Block

Normally values for a vehicle’s state and time are continuous across trajectory seg-
ments; however, the vehicle’s state and time can be instantaneously changed forming
a discontinuity by including an *increment data block. This is most often used for
weight changes, for example, dropping a weapon or missile staging. The data block

*increment wt==325
instantaneously reduces weight 325 1b (if default units are used).

The *increment data block is identical to the *reset data block (Section 4.2.11), ex-
cept that *reset sets a time or state variable to an input value, whereas *increment
adds the input value to the current value of the time or state variable. The *increment
data block increments or delta’s the time or state variable plus or minus from its cur-
rent value.

If both *reset and *increment data blocks are present in a segment, values are reset
first and then incremented. Multiple *reset and *increment data blocks can be given
in a segment; they are executed in the order given.

The variables that can be changed with the *increment data block are listed in Table
4-5. Position and velocity variables are maintained in many different coordinate sys-
tems so they have been grouped in Table 4-5 in consistent sets. Sets of position and
velocity variables in *increment data blocks must be in the same coordinate system.

For example, if the velocity xecicdt is incremented, then values for yecicdt and ze-
cicdt can also be changed. But values for velocity in other coordinate systems, for
example, vel cannot be changed. This restriction applies to all of the position and ve-
locity variables in Table 4-5.

Table 4-5. *Increment Variables.

Variable Description

alt Altitude

long Longitude

latgd Geodetic latitude

cm Distance from earth center

long Longitude

latge Geocentric latitude

xecfc Earth centered fixed x coordinate

yecfc Earth centered fixed y coordinate

zecfc Earth centered fixed z coordinate

xecic Earth centered inertial x coordinate
yecic Earth centered inertial fixed y coordinate
zecic Earth centered inertial fixed z coordinate
dxb Position increment along body x axis
dyb Position increment along body y axis
dzb Position increment along body z axis

vel Velocity

gamgc Geocentric flight path angle

psige Geocentric heading angle

4. Problem Files
4.2. Segment Data Blocks
4.2.5. *Increment Data Block

vel Velocity
gamgd Geodetic flight path angle
psigd Geodetic heading angle

xecfecdt Velocity earth centered fixed x coordinate
yecfcdt Velocity earth centered fixed y coordinate
zecfedt Velocity earth centered fixed z coordinate

xecicdt Velocity earth centered inertial x coordinate
yecicdt Velocity earth centered inertial y coordinate
zecicdt Velocity earth centered inertial z coordinate

wt Weight

mass Mass

fuel Fuel used

time Time

tseg Segment time

tmark Mark time

range Ground range

grseg Segment ground range

grmark Mark ground range

plength Path length
plseg Segment path length
plmark Mark path length

iip_beta Ballistic coefficient for IIP calculations

Weight and mass are similar. If one is given, then the other cannot be given because
they both refer to the same state variable. Fuel, on the other hand, can be reset or in-
cremented at any time.

The time, range, and path length variables are independent of each other, so any com-
bination is valid. The segment variables (tseg, grseg, and plseg) are automatically
reset to zero at the beginning of a segment. The *increment values are applied after
these variables have been reset to zero.

Problems with a single trajectory can have discontinuities in time so the time variable
can be reset or incremented. But problems with more than one trajectory use time to
relate the trajectories to each other so discontinuities in time can cause errors. The
variable time should not be reset or incremented in problems with multiple trajecto-
ries. The variables tseg and #mark do not have this problem because they measure
relative time.

The “mark” variables (tmark, grmark and plmark) are useful to keep track of time,
range, and path length from intermediate points in the trajectory. At the beginning
of the trajectory, they correspond to the variables time, range, and plength. But the
mark variables can be restarted at any segment with the *reset data block, or they can
be incremented with the *increment data block.

The ballistic coefficient for the initial impact point (IIP) calculation can be reset or
incremented at any time. It is only used for the initial impact point calculation.

4. Problem Files
4.2, Segment Data Blocks
4.2.5. *Increment Data Block

Object Deployment

The variables dxb, dyb, and dzb are used for deploying objects or dropping weapons
where one trajectory is initialized from another. A deployed object’s initial position
is usually offset slightly from the vehicle’s center of mass. This offset is the position
of the object relative to the body coordinate system before the object is deployed or
dropped.

A deployed object is generally initialized from the beginning of an existing trajectory
segment, for example,

*trajectory 2 Obj2 start on 1
*initial from trajectory 1, segment 6

*segment 1 deployment
*reset wt=50
*increment velibx=5
*increment dxb=1.5 dyb=3.2 dzb=0.35
*fly pitchi = *
*fly yawi = *
*fly rolli = *
*when tseg>0 goto 2

initializes a new trajectory 2 from the beginning of segment 6 in trajectory 1 repre-
senting an object deployment in space. The initial state of the new object is copied
from trajectory 1 and it can be adjusted with *reset and *increment data blocks in the
first segment.

In this example, the weight of the new object is set to 50 1b, and it is deployed with
a velocity increment (delta-v) of 5 ft/sec along the body x axis. Its position is adjusted
relative to the body coordinate system with the variables dxb, dyb, and dzb because
its center of mass is slightly offset from the original vehicle. The variables dxb, dyb,
and dzb always act as increments to a vehicle’s position so their values can be set in
a *increment or *reset data block with the same effect.

The guidance rules used in this example hold a constant body attitude in inertial
space. This ensures that the body attitude of the object matches the body attitude of
the original vehicle so the position (dxb, dyb, and dzb) and velocity (velibx) incre-
ments are applied in the correct direction. The same result can be obtained by making
the guidance rules of the first segment the same as those of the original vehicle. The
first segment can be immediately terminated with a final condition of £seg>0 so that
other guidance rules can be used to calculate the trajectory of the deployed object.

4. Problem Files
4.2. Segment Data Blocks
4.2.6. *Inertial Data Block

4.2.6. *Inertial Data Block

TAOS maintains an inertial platform coordinate system that is fixed in inertial space.
The Euler angles yawi, pitchi, and rolli are referenced to this system and the position,
velocity, and acceleration vectors can be output in this system (Section 2.1.10).

The inertial platform coordinate system is initially aligned with the local geodetic
horizon coordinate system and located at the trajectory initial position. It is aligned
such that the x axis points north, the y axis points east, and the z axis points down
(towards the earth’s center). This alignment and position can be changed at the begin-
ning of any segment with the *inertial data block.

The coordinate systems that the inertial system can be aligned with are given in Table
4-6. The default coordinate system is geodetic. All of the coordinate systems are de-
fined in Section 2.1.

Table 4-6. Inertial Platform Alignment Coordinate Systems.

Name Description

body Body axis system
ecfc Earth-centered—fixed coordinate system
(specify east and down vectors)

geocentric | Local geocentric horizon system
(specify longitude/latitude position)

geodetic Local geodetic horizon system
(specify longitude/latitude position)

velocity x-axis parallel to velocity vector and
z-axis coplanar with geodetic z—axis

wind Wind axis system

Geocentric and Geodetic Alignment
The data block

*inertial platform alignment geocentric

aligns the inertial coordinate system with the local geocentric horizon system and lo-
cates the system at the vehicle’s center of mass. The keywords platform and align-
ment are both optional.

If aligning with the geodetic or geocentric coordinate systems, normally the current
vehicle latitude, longitude, altitude, and time are used for alignment. However, align-
ment can occur at another location by specifying a latitude, longitude, and altitude
or it can occur at a different time by specifying a time. For example,

*inertial platform lat=28.8 long=-81.5 alt=550 time=100

4. Problem Files
4.2. Segment Data Blocks
4.2.6. *Inertial Data Block

aligns the coordinate system with the geodetic horizon system located at a geodetic
latitude of 28.8° N, a longitude of 81.5°W, an altitude of 550 ft, and at a time of 100
seconds. The time is the same used for computing all trajectories; alignment time is
required to account for the effects of earth rotation on the inertial system.

The variables long, lat, and alt are used to change the position of a platform aligned
to local geodetic horizon coordinates, and the variables long, lat, and rcm are used
to change the position of a platform aligned to local geocentric coordinates. For geo-
detic alignment, the alt variable is optional and has a default value of zero (sea level).

Body, Wind, and Velocity Alignment
The inertial coordinate system can be aligned with the body axis system with
*inertial platform body

The body attitude information is not available at the beginning of the first segment
of a trajectory because the guidance scheme that determines these axes has not been
executed. Therefore, the inertial coordinate system should not be aligned with either
the body or wind coordinate system on the first segment of a trajectory.

An initial dummy segment with a final condition of #seg>0 can be used to calculate
the body attitude from the trajectory initial conditions. Then, the inertial platform can
be aligned with the body, wind, or velocity coordinate system at the start of the se-
cond segment.

The inertial platform is located at the vehicle’s center of mass when aligning with the
body, wind, or velocity coordinate systems. An alignment time can still be given,
which aligns the platform as though the current position and velocity existed at the
specified time.

ECFC Alignment

If the platform is aligned with the earth—centered, earth—fixed coordinate system
(ECFC), the axes are parallel to the ECFC unit vectors and the platform is located
atthe vehicle’s center of mass. The orientation of the unit vectors defining the inertial
platform axes can be changed by entering east and down vectors. Only two unit vec-
tors need to be defined; the remaining vector is calculated to give a right-handed
coordinate system. The X, y, and zcomponents of these vectors are given in the ECFC
system with the variables eastx, easty, eastz, downx, downy, and downz. If only one
of the vectors is given, the default value is used for the other one. For example, the
data block

*inertial ecfc eastx=0.7071 easty=0.7071 eastz=0.0
downx=0.0 downy=0.0 downz=-1

twists the east and north inertial vectors 45°.

4. Problem Files
4.2. Segment Data Blocks
4.2.7. *Integ Data Block

4.2.7. *Integ Data Block

Trajectories are computed by integrating the equations of motion with a 4th—order
fixed step size Runge—Kutta numerical integration method. The integration step size,
which controls the accuracy of the calculations, is fixed for each segment of the tra-
jectory. It needs to be small enough to capture the effects of changing aerodynamic
and propulsive forces, but large enough so that computation time is not excessive.
The default step size of 0.10 seconds can be changed with the *integ data block. For
example,

*integ dt=0.25

says to use a 0.25 second integration step size. Typical step sizes range from 0.01 to
0.5 seconds. The minimum integration step size is 1 X 10~ seconds.

Output variables are printed at the beginning and end of each segment and at even
increments of the print interval within the segment. Besides controlling the printout,
the print interval also controls the amount of memory required for the trajectory be-
cause all trajectory output variables are saved in memory at the printout times. Thus,
small print intervals increase memory requirements and vice versa. The print inter-
val, dtprnt, defaults to 1.0 second. The data block

*integ dtprnt=0.5 dt=0.05

changes the printinterval to 0.5 seconds and the integration step size to 0.05 seconds.

Guidance Time Constant

Some guidance rules, such as those in Table 44, specify the control variables indi-
rectly with a desired flight condition. If the actual flight conditions are different from
the desired conditions, the control variables are adjusted such that the trajectory cor-
rects to the desired conditions (Section 2.5.1). The rate of this correction is controlled
by the guidance time constant, dguid.

If dtguid is small, large corrections are made in an effort to quickly achieve the de-
sired flight conditions. If dtguid is large, small corrections are made to gradually
achieve the desired conditions. So dtguid acts somewhat like a time constant with
small values giving oscillations that may or may not damp to the desired conditions,
and large values giving exponential convergence to the desired flight conditions.

In the following data block, dtguid has been changed to 5 seconds:
*integ dtprnt=1.0 dt=0.20 dtguid=5.0

A value of 5 seconds is considered large. It causes small corrections to be made to
the flight path in order to meet the requested flight conditions. These corrections may
be too small to achieve the desired conditions. Experimentation is required to get the
desired results, and the default value of 1 second works well for most guidance rules.

4. Problem Files
4.2. Segment Data Blocks
4.2.8. *Limits Data Block

4.2.8. *Limits Data Block

TAOS, being a 3-DOF simulation, assumes that a control system is available that can
achieve the body attitudes requested in the guidance scheme. Usually the control sys-
tem can only maintain body attitudes for certain flight conditions, and the body atti-
tude angles are restricted as well. The *limits data block provides a way to keep the
trajectory within these bounds.

Limits can be set on any of the guidance variables given in Tables 4-2 and 44, except
for intercept, prop, downria, upria, and I/d_max. For example,

*limits alpha<20 alpha>-10

puts a 20° upper boundary and a ~10° lower boundary on angle of attack. Greater—
than and less—than signs are used to designate whether the limit is an upper or lower
bound.

The limiting variables do not have to be the same as those used for the guidance
scheme; limits can be imposed on any of the guidance variables. Any number of lim-
its can be specified. For example,

*limits bankgd>-60 bankgd<60 alpha>-15 alpha<15.0
beta>-15 beta<15

puts limits on three of the control variables: alpha, beta, and bankgd.

Flight condition guidance (Table 4-4) requires iterative searches to solve for the con-
trol variables. Limits on the body attitude angles help control convergence during
these searches.

4. Problem Files
4.2, Segment Data Blocks
4.2.9. *Prop Data Block

4.2.9. *Prop Data Block

Each *prop data block defines a thrust force and its corresponding fuel flow or mass
flow rate. If more than one *prop data block is given in a segment, the propulsive
forces and mass flow rates from each data block are added together to get the total
propulsive force and mass flow rate. If no *prop data blocks are given in a segment,
thrust and mass flow are set to zero.

A propulsive force vector is defined by.a magnitude and a direction. The direction
is given by two angles, ep] and ep2, defined in Figure 4-3 as €, and ;. If both thrust
vector angles are zero, the default, the thrust force is aligned with the body x axis.

5= S\,

A

Vi, Thrust Vs

Thrust

Figure 4-3. Thrust Vector Angles.

Values for the thrust force, the thrust vector angles, and the mass flow rate can be
constants or they can be obtained from tables. The following data block sets the thrust
and mass flow rate to constant values:

*prop thrust=250
thr_units=kn

mdot=120.0
mdt_units=kg/sec

The variables thrust and mdot give values for the thrust force and the mass flow rate.
The variables thr_units and mdt_units give the units for the thrust and mass flow rate.
If no value or table name is provided for a variable, it is set to zero. So in the example
shown above, the thrust vector angles, ep! and ep2, are both zero.

The default unit for thrust is /b and for mass flow rate is Ib/sec; other allowable units
are given in Table 4-7.

Table 4-7. Thrust and Mass Flow Rate Units.

Thrust Units Mass Flow Units Mass Flow Units Mass Flow Units
Ib Ib/sec Ib/min Ib/hr
n (Newtons) slugs/sec slugs/min slugs/hr
kn (Kilonewtons) | g/sec g/min g/r
kg/sec kg/min kg/hr

4. Problem Files
4.2. Segment Data Blocks
4.2.9. *Prop Data Block

Another example,

*prop thrust=(thr_recruits) mdot (mdt_recruits)
nrecruits=2

illustrates the use of tables to compute the thrust and mass flow rate. In this case the
thr_recruits table is used for thrust and the mdt_recruits table is used for mass flow
rate. ’

The tables in this example require a value for the user—defined variable, nrecruits,
representing the number of motors. Like other data blocks that allow tables to be spe-
cified, values can be given for user—defined variables. Once a value has been given
forauser—defined variable, it remains set at that value unless changed in a subsequent
data block. This means that values for user—defined variables do not have to be re-
peated within each segment if they do not change.

Units for thrust and mass flow rate can be specified in the tables, so they are not given
here. If units are given both places, the units in the *prop data block override those
given in the tables.

Some jet engines have thrust vector control, which can be used to improve takeoff,
landing, and turning performance. The data block

*prop thrust=(thr_f100x) mdot={(mdt_f100x)
epl=10.0

sets the thrust vector angle to 10°. The thrust vector angles in this version of TAOS
can be constant or computed with a table; they must be known before the flight path
is computed. In future versions of TAOS, they will be control variables so they can
be varied to meet the desired flight conditions.

4. Problem Files
4.2. Segment Data Blocks
4.2.10. *Rail Data Block

4.2.10. *Rail Data Block

Rail launches and sled tests are special cases because the vehicle is constrained by
rails to move only in one direction. For rail launches and sled tests, the *rail data
block is used instead of the *fly data blocks to determine the body attitude and the
trajectory. The direction of the rail or sled is obtained from the trajectory initial condi-
tions or from the end of the previous segment. The motion of the vehicle is
constrained in this direction for the duration of the segment (Section 2.2.2).

A rail launch is requested with the data block

*rail launch cfstat=0.15 cfsl1id=0.01

where cfstat is the static coefficient of friction and ¢fslid is the sliding or kinematic
coefficient of friction. The static coefficient of friction is used when the velocity is
less than 0.001 ft/sec; otherwise, the sliding coefficient of friction is used. Because
of this, two segments are often used to simulate rail launches: the first segment is
from a velocity of 0 ft/sec to a velocity of 0.001 ft/sec, and the second segment is for
velocities greater than 0.001 ft/sec. This simulates the amount of time required for
the thrust forces to overcome the static friction force and move the vehicle.

For a rail launch, TAOS assumes the missile is attached to the rail such that it cannot
move backwards, so negative accelerations in the direction of the rail are ignored.
The path length, plength, can be used as a segment final condition to represent the
rail length (Section 4.2.12).

A sled test can be simulated with
*rajil sled cfstat=0.17 cfsl1id=0.02

where again cfstat and ¢fslid are the coefficients of friction. Negative accelerations
are allowed for the sled test because the vehicle accelerates up to speed and then
slows to a stop.

4. Problem Files
4.2. Segment Data Blocks
4.2.11. *Reset Data Block

4.2.11. *Reset Data Block

The *reset data block works the same way as the *increment data block (Section
4.2.5) except that variables are set to the input value instead of incremented by the
input value. The rules for resetting variables are the same as those for incrementing
variables. Variables that can be reset are given in Table 4-5.

Typical uses of the *reset data block include resetting the variable tmark with

*reset tmark=0

which is used to mark an event during the trajectory. Forexample, rocket motor thrust
in the propulsion tables is often made a function of tmark rather than time or tseg. This
allows the motor burn time to extend across several segments and allows motor igni-
tion at any point in the trajectory. The value of tmark just needs to be reset to zero
at motor ignition. Other similar variables are grmark, plmark, and fuel.

Another common use of the *reset data block is to set the weight to a known value
after missile staging, for example,

*reset wt=1100

sets the weight to 1100 Ib regardless of what has happened previously in the trajecto-
Iy.

4. Problem Files
4.2. Segment Data Blocks
4.2.12. *When Data Block

4.2.12. *When Data Block

Segment initial conditions are obtained from the trajectory initial conditions or from
the final conditions of the previous segment. Segments are flown according to the
guidance rules given in the *fly or *rail data blocks and they continue until a final
condition is met. At that point, the segment ends, and if there is another segment in
the trajectory, it is started.

The *when data block is used to provide a segment final condition. It also tells TAOS
whatto do next, that is, whether to transfer to another segment or to end the trajectory.
Each segment musthave atleast one *when data block giving a final condition; other-
wise, the segment never terminates.

An example of a segment final condition is
*when alt<200000 goto 4

which reads “end the current segment when altitude becomes less than 200,000 ft
and then start executing segment number 4.” The variable name, in this case alt, can
be any valid output variable name including user—defined output variables. A list of
output variables is given in the appendix.

Final conditions can also compare two output variables, for example,
*when alpha = alpha_l/d goto 2

ends the segment when the angle of attack equals the angle of attack for maximum
lift-to—drag ratio.

Values from other Trajectories

Output variables from other trajectories can be referenced by using subscripts, for
example,

*when mach(3] > 4 goto 21

says to end the segment when the Mach number on trajectory 3 becomes greater than
4.0. Subscripts are always enclosed in square brackets.

When final conditions are used to compare two variables, subscripts can be used on
both variables to compare values from different trajectories. For example,

*when east[2] = east[l] goto 7

ends the segment when the two trajectories have the same east position.

Final Condition Relationships

The relationship in a *when data block can be greater than, less than, or equal to.
Since all values are continuous real numbers, using the greater than or less than often

4. Problem Files
4.2. Segment Data Blocks
4.2.12. *When Data Block

has the same effect as the equal sign because the segment will end when the variable
is equal to the value. The difference occurs at the beginning of a segment.

When a segment starts executing, it checks the final conditions for immediate ter-
mination. If any of the final conditions are satisfied initially, they cause an immediate
transfer to another segment. As a result the final condition machk> 3 is much different
from mach=3. A mach>3 final condition terminates the segment immediately if the
Mach number is greater than 3.0, whereas the mach=3 final condition only termi-
nates the segment immediately if Mach is exactly equal to 3.0. In practice use of
greater than and less than is more common than the equal sign.

Ending Trajectories

So far, all of the examples have shown segment transfers using the goto keyword.
When the end of a trajectory is reached, there is no segment to transfer to, so the stop
keyword is used as follows:

*when time=65 stop

This data block ends the trajectory when the time is equal to 65 seconds. Calculations
proceed until a segment final condition with szop is encountered.

Multiple Final Conditions

Segments can have any number of final conditions. The first condition encountered,
while computing the trajectory, is executed. This allows complex branching in the
trajectory depending on what happens as shown in the following example:

*when tmark>25 goto 6
*when alphat>5 goto 11

If the “mark” time becomes equal to 25 seconds before the total angle of attack reach-
es 5°, then segment 6 is executed next; otherwise, segment 11 is executed next.

If two final conditions are immediately satlsﬁed at the beginning of a segment, the
first one listed is executed.

Itis good practice to have atleast one final condition on a time variable. Forexample,

*when gamgd<0 goto 4
*when tseg>1000 goto 10

normally ends the segment when the flight path angle becomes zero. But if there is
a problem and the flight path angle never reaches zero, the segment still ends after
1000 seconds. This prevents infinite loops.

4. Problem Files
4.3. Trajectory Data Blocks

4.3. Trajectory Data Blocks

Trajectory data blocks contain information associated with the entire trajectory. Seg-
ment data blocks, discussed in Section 4.2, are one of the trajectory data blocks. Oth-
er trajectory data blocks are shown in Table 4-8.

Table 4-8. Trajectory Data Blocks.

Data Block Description

*define User—defined output variables
*dwn/crs Downrange/crossrange reference
*ile Create output file

*iip Initial impact point variables
*initial Initial conditions

*print Printout variables

*segment Segment definition (Section 4.2)
*tangent Tangent plane coordinate system

Trajectories begin with the *trajectory keyword, a trajectory number, a trajectory
name, the keywords start on, and a segment number. For example, the data block

*trajectory 2 target start on 31

begins trajectory number 2 for a vehicle called rarget on segment number 31. All of
the items following the *frajectory keyword are required.

Trajectory information continues until another *trajectory keyword is found or until
a unique problem data block keyword is found. Some keywords, such as *file and
*print, are used both inside and outside of a trajectory definition, so they do not termi-
nate a set of trajectory data. Only those keywords that are unique to a problem file,
such as *trajectory, *search, and *atmos, end a set of trajectory data (Section 4.4).

Trajectory definitions must contain an *initial data block giving the initial conditions
and at least one *segment data block. Usually they contain at least one *print data
block so that trajectory results are written to a printout file.

The following gives an outline of a trajectory definition:
*trajectory 1 missile start on 1
*initial ..
*print ...
*segment 1 First segment definition

*segment 2 Second segment definition
*trajectory 2 target ...

Indentation has been used to show the organization of the trajectory information. Tra-
jectory 1 extends from the first *trajectory keyword to the second *trajectory key-

4. Problem Files
4.3. Trajectory Data Blocks

word. Between these keywords, initial conditions are given in the *initial data block,
printout variables are listed in the *print data block, and segments are defined in the
*segment data blocks. Each *segment data block consists of additional data blocks,
as shown in Section 4.2, that tell TAOS how to compute each segment.

The following sections give the details of each trajectory data block.

4. Problem Files
4.3. Trajectory Data Blocks
4.3.1. *Define Data Block

4.3.1. *Define Data Block

The standard trajectory variables computed in TAOS are listed in the appendix.
These are always computed and available for printout and plotting; however, some
problems require other variables that are not among the standard output variables.
These variables are different depending on the type of problem.

In an effort to solve this problem, TAOS provides user—defined output variables. As
long as the variables of interest can be calculated from the standard variables with
one or more equations, that is, they are functions of the standard variables, then they
can be computed as user—defined variables.

User—defined variables are given a name which must be different from the standard
output variables. This is followed by one or more equations that show how to com-
pute the new variable. The user—defined variable can be computed directly from the
equations, or the equations can define the variable’s derivative, which can be inte-
grated along with the other equations of motion.

The equations defining how to calculate a user—defined variable are given in a simpli-
fied C language. This is similar to Fortran so users familiar with programming in ei-
ther of these languages should not have trouble entering the equations. The examples
below help clarify how equations are input.

The first example,

*define alt_km
alt_km = alt / 3280.84;

computes altitude in kilometers rather than feet. The name of the new variable is
alt_km. 1t is given following the *define keyword, and it must also appear on the left
side of an equation somewhere in the definition. In this example, there is only one
simple equation, so alt_km must be the variable on the left side of the equal sign. The
values and variables on the right side of the equal sign must all be standard output
variables, previously input user—defined variables, temporary variables, or
constants. In this case, alt is a standard output variable and 3280.84 is a constant. The
equation ends with a required semicolon.

Temporary Variables

In the nextexample, the stagnation point heat transfer rate for a blunt body of revolu-
tion in hypersonic flow is approximated with

- 3.15
g = 1.600 / 2 Vo l|l pruse sec (4-1)
/Ra VO ||| Ve]

where R, is the nose radius, @ and gp are the ambient and sea—level density, || V¢ ||
is the flight velocity, and || V', | is satellite velocity (usually 26,000 ft/sec).

4. Problem Files
4.3. Trajectory Data Blocks
4.3.1. *Define Data Block

The following data block defines a user—defined variable, stag_heat, with this equa-
tion:

*define stag_heat
rnose = 1.0 / 12.0;
stag_heat = (17600.0/sgrt(rnose))*sqrt(rho/0.0023769)

*(vel/26000.0)+3.15;

A nose radius of 1 inch is converted to feet and saved in a temporary variable called
rnose. Temporary variables are only used within the user—defined variable calcula-
tion. If a variable name is not a standard output variable or a previously input user—
defined variable, it is assumed to be a temporary variable. Temporary variables must
be defined before they can be used.

The only thing unusual about the equation for stagnation heating rate is the use of A
for raising a value to a power. This symbol is used in TAOS rather than the pow func-
tion in C or the ** operator in Fortran.

The equation for stagnation heating rate requires two lines. Statements continue until
a semicolon is reached; the semicolon is required at the end of each statement just
like in the C language.

Math Operations and Functions

Table 4-9 contains a list of operators and functions that can be used in equations for
user—defined variables. All of the standard mathematical operators are available, and
they have the same precedence as in C and Fortran. Many standard functions are also
provided; again these are defined in TAOS as they are in the C language.

Table 4-9. User—Defined Variable Math Operations and Functions.

Operator | Description Function |Description

+ Add sin(x) Sine of x (deg)

- Subtract cos(x) Cosine of x (deg)

* Multiply tan(x) Tangent of x (deg)

/ Divide asin(x) sin~! of x where x € [-1,1]

A Exponentiation acos(x) cos™! of x where x € [-1,1]
> Greater than atan(x) tan~! of x in range [-/2,71/2]
< Less than atan2(x) |tan™! of x in range [-m,7]

>= Greater than or equal to | sinh(x) Hyperbolic sine of x (deg)
<= Less than or equal to cosh(x) Hyperbolic cosine of x (deg)
== Equal to tanh(x) Hyperbolic tangent of x (deg)
= Not equal to exp(x) Exponential function e*

&& Logical and log(x) Natural logarithm of x

I Logical or loglO(x) |Base 10 logarithm of x

4. Problem Files
4.3. Trajectory Data Blocks
4.3.1. *Define Data Block

sqrt(x) Square root of x

ceil(x) Smallest integer not less than x
floor(x) Largest integer not greater than x
abs(x) Absolute value of x

table(id) Lookup value from a table where
id is the table name

The table function is special in that it is used to retrieve a value from a table in the
table file. The function parameter, id, is the table identification name (Section 3.4),
and the table must be of type output. For example,

*define special
special = (rho/0.0023769) *table(special_tbl);

references the output table special_tbl. A possible use of output tables is for aerody-
namic heating analysis. Output tables containing heat transfer rates could be interpo-
lated to get the heat transfer rates experienced in a trajectory, and then this value
could be limited by a trajectory optimization constraint.

If-then statements can be used to control how a user—defined variable is calculated.
For example,

*define nx_max
nx_max = max(nx);
if (nx_max < 0) nx_max = 0;

calculates the maximum axial g loading. The if statement, written in standard C syn-
tax, limits nx_max to positive values. The relationship of the if statement is always
enclosed in parentheses. If the relationship evaluates as true, then the statement fol-
lowing the relationship is executed.

More than one statement can be executed as a result of the if statement by enclosing
them in curly brackets as follows:

*define new_var
new_var = 0;
if (time > 20) (
ratio = pres / 2116.2;
new_var = ratio * table(tbl_id};

}

The C language uses curly brackets to group together parts of the if~then statement;
the keywords then and endif are not used as in Fortran.

Curly brackets are also required for an if-then—else statement as shown in the follow-
ing example:

*define var
if {(mach > 1.0) {
x = 1 + mach*mach;
var = sqrt(x) * table(outx);

4. Problem Files
4.3. Trajectory Data Blocks
4.3.1. *Define Data Block

} else {
var = table(outy);
}

The current version of TAOS only supports assignment statements and if-then—else
statements. While loops, for loops, and other C language control statements cannot
be used.

Integral Variables

A common use of integral user—defined variables is in a flight path optimization
constraint. Constraints at specific points along the flight path are given directly in the
*optimize data block (Section 4.4.6). However, an integral variable is necessary to
keep the entire flight path within a constraint.

For example, to keep the flight path within a minimum dynamic pressure of 100 1b#/
ft2, an integral variable can be defined as

if 9 > 100 or vel < 1000 Imin = f 0.0 dr (4-2)

otherwise 9min = I (100.0 - q)zdt (4-3)

Optimization constraints work best if the constraint variable is set up such that it is
less than zero if the constraint is satisfied and greater than zero if the constraint is vio-
lated. In this case, if the dynamic pressure is greater than the minimum value while
the vehicle is flying at a high speed, the derivative is set to zero. However, if the dy-
namic pressure drops below 100 Ib¢/ft2, then the derivative takes on a positive value.

This can be converted to a user—defined variable definition as follows:

*define integral qmin=-0.10
if (dynprs > 100 || vel < 1000) {
amin = 0.0;
} else {
‘qmin = (100.0 - dynprs)~2;
}

The integral keyword says that the variable gmin is defined as a derivative that must
be integrated with respect to time along the flight path. Its initial value is set to —0.10,
anegative value, so initially the constraint is satisfied. The if statement is written us-
ing Csyntax. It translates to “if the dynamic pressure is greater than 100 or the veloc-
ity is less than 1000, set gmin equal to zero; otherwise, set qmin equal to 100 minus
the dynamic pressure squared.”

4. Problem Files
4.3. Trajectory Data Blocks
4.3.2. *Dwn/crs Data Block

4.3.2. *Dwn/crs Data Block

East, north, downrange, and crossrange are defined from a reference point, given by
alongitude and geodetic latitude, as shown in Figure 4—4. The trajectory is projected
to the earth’s surface, and the distances are measured along this curve (Section 2.4. 1.
East is the component of distance traveled along a constant latitude and north is the
component of distance traveled along a constant longitude. Downrange is the com-
ponent of distance traveled along a reference azimuth or heading, and crossrange is
the component of distance traveled perpendicular to this heading.

A
Trajectory projected North
to the earth’s surface ~—— Crossrange

\
Reference

Azimuth or
Heading Woq g%‘gz

East
Reference >

Point

Figure 4. Downrange and Crossrange Definition.

All of these distances use the same reference point. The reference heading is only
used by the downrange and crossrange calculations. The reference longitude, lati-
tude, and heading default to the beginning of the trajectory given by the initial condi-
tions.

If a different reference point is required or if multiple trajectories need to use the same
reference point, then these values can be given in the *dwn/crs data block. For exam-
ple,

*dwn/crs latgd=10 long=95 azm=45

places the reference pointat alatitude of 10°N and a longitude of 95 °E. The reference
heading or azimuth is 45° from north or northeast.

4. Problem Files
4.3. Trajectory Data Blocks
4.3.3. *File Data Block

4.3.3. *File Data Block

The *file data block is used to create files containing columns of trajectory informa-
tion. Trajectory output variables are written to the file as columns of numbers, and
each column is separated by at least one space. Column headings are placed at the
beginning of the file, but, thereafter, the columns are continuous. This format is ideal
for importing to other software, such as a plotting program or a spreadsheet. There
are no page headings or other information that must be removed; at most, the column
headings must be removed.

For example,

*file traj.dat
time alt long latgd range vel

writes the trajectory variables to the file traj.dat. Figure 4-5 shows the first part of
this file.

Time aAlt Long Latgd Range Vel
0.000 300000.0 20.00000 0.00000 0.000 18000.00
0.500 294835.2 20.01991 0.00000 1.196 18008.93
1.000 289665.1 20.03982 0.00000 2.394 18017.86
1.500 284489.8 20.05975 ~ 0.00000 3.591 18026.78
2.000 279309.3 20.07968 0.00000 4.789 18035.69
2.500 274123.5 20.09962 0.00000 5.988 18044.58
3.000 268932.4 20.11958 0.00000 7.188 18053.45
3.500 263736.2 20.13954 0.00000 8.388 18062.31
4.000 258534.7 20.15951 0.00000 9.588 18071.13
4,500 253328.0 20.17950 0.00000 10.789 18079.91
5.000 248116.2 20.19949 0.00000 11.991 18088.65
5.500 242899.1 20.21949 0.00000 13.193 18097.33
6.000 237676.9 20.23950 0.00000 14.396 18105.96
6.500 232449.5 20.25952 0.00000 15.599 18114.52

Figure 4-5. Trajectory Output File Example.

The filename must be valid. If the file already exists, it is overwritten with no warnin g
and the old data is lost. This is normally satisfactory because the file will be updated
to contain information from the most recent run.

Any standard output variable or user—defined output variable can be written to the
file. User—defined variables referenced in a *file data block must be defined prior to
the reference. The units and printout format are controlled with the *units/fimt data
block (Section 4.4.13).

Each output line is limited to 400 characters, so this limits the number of output vari-
ables that can be listed to about 30, Usually it is best to limit the number of output
variables to 12 or fewer because some screen editors and printers can only handle
about 130 characters per line.

Radar and relative vehicle output variables, those starting with rad or rel, must con-
tain a subscript enclosed in square brackets. For example, the variable radrng[2] is
used to print the radar range of the current trajectory from radar station number 2,

4. Problem Files
4.3. Trajectory Data Blocks
4.3.3. *File Data Block

and the variable relvel[4] is used to print the closing velocity of trajectory number
4 relative to the current trajectory.

Any number of *file data blocks can be included in a trajectory definition. An output
file is created for each *file data block.

4. Problem Files
4.3. Trajectory Data Blocks
4.3.4. *lip Data Block

4.3.4. *lip Data Block

The initial impact point (IIP) is obtained by integrating a ballistic trajectory from the
current state of the vehicle to a final altitude with no propulsive forces (Section
2.4.4). A constant drag coefficient acrodynamic model, given by a ballistic coeffi-
cient, is used to simplify the analysis. This simulates the impact point if the propul-
sive system fails and is used for range safety analysis.

The initial impact point is calculated if one of the associated output variables is refer-
enced inthe problem (iip_lat, iip_long, iip_time, iip_rng, or iip_azm). These calcula-
tions require a ballistic coefficient and a final impact altitude which are given in the
*iip data block. For example,

*iip iip_beta=550 iip_alt=1000

sets the ballistic coefficient to 550 1bg/ft2 and the impact altitude to 1000 ft for the IIP
calculations. The default ballistic coefficient and impact altitude are both zero. For
zero drag, the ballistic coefficient should be set to zero instead of a large number, The
ballistic coefficient can be reset anytime during the trajectory with an *increment
(Section 4.2.5) or *reset data block (Section 4.2.11).

The output variables iip_rng and iip_azm give the range and azimuth of the initial
impact point relative to the origin of the tangent plane coordinate system. The range
is the distance from the initial impact point to the origin of the tangent plane system.
The azimuth is the forward azimuth from the tangent plane origin to the initial impact
point measured from north. If these ouput variables are required, a *tangent data
block should be included to define the origin of this coordinate system (Section
4.3.7).

4. Problem Files
4.3. Trajectory Data Blocks
4.3.5. *Initial Data Block

4.3.5. *Initial Data Block

The initial conditions or starting point of a trajectory are given in the *initial data
block. Initial conditions define the initial state of the vehicle, that is, its position and
velocity vectors and its mass. They also define a starting time, range, and pathlength.

Initial conditions can be provided directly by giving specific values for the position,
velocity, and mass, or they can be provided indirectly by using values froma different
trajectory. The latter method is used when a vehicle releases or drops objects or when
amissile stages. This way trajectories for all objects or stages can be computed at the
same time.

Specific Initial Conditions

When entering specific initial conditions, the *initial data block consists of a key-
word designating a coordinate system followed by a set of variables and values defin-
ing the vehicle’s initial state. The position and velocity variables must be consistent
with the coordinate system. Table 4-10 contains sets of position variables for each
coordinate system, and Table 4-11 contains sets of velocity variables for each sys-
tem,

Table 4-10. Initial Position Variables.

Coordinate System Variable Description
Geodetic alt Altitude
long Longitude
lat Latitude
Geocentric cm Distance to earth center
long Longitude
lat Latitude
ECFC or ECIC X Position x component
Position y component
z Position z component

The geodetic coordinate system is the default for initial conditions. For example,

*initial
alt=30000 long=0 lat=45 # Position vector variables
vel=750 gamma=0 psi=90 # Velocity vector variables
wt=2000 time=0 # Other variables

defaults to the geodetic coordinate system. The three position variables are from
Table 4-10 for the geodetic coordinate system, and the three velocity variables are
from Table 4-11.

4. Problem Files
4.3. Trajectory Data Blocks
4.3.5. *Initial Data Block

Table 4-11. Initial Velocity Variables.

Coordinate System Variable Description

Geodetic or Geocentric | vel Velocity
gamma Flight path angle
psi Heading angle

ECFC or ECIC xdt Velocity x component
ydt Velocity y component
zdt Velocity z component

Table 4-12. Other Initial Condition Variables.

Variable Description

mach Mach number (use instead of vel)

wt Weight

mass Mass (use instead of wt)

time Time

range Ground range

path Path length

t 0 Time at which omega_0 applies
omega 0 | Angle between ECFC and ECIC at t_0

The units of these variables is the same as for the standard output variables given in
the appendix. Units can be changed with the *units/fimt data block (Section 4.4.13).

The other variables initializing weight and time are from Table 4—12, The only re-
quired variable from this table is w (or mass). The variable mass can be substituted
for wt; one or the other can be input, but not both. Similarly, the variable mach is spe-
cial in that it can be substituted for vel when entering the initial velocity. Mach num-
ber or velocity can be entered, but not both.

The remaining variables in Table 4-12 are optional and default to zero. The variables
t_Oand omega_0 control the angular difference between the ECEC and ECIC coordi-
nate systems at a given time. At a time equal to z_0, the ECIC coordinate system is
rotated an angle omega_0 from the ECFC system. Thus, at time t, the ECIC coordi-
nate system is rotated at an angle £ from the ECFC system given by

Q=8+, Bgll - (z- 1) (4

where the earth’s rotation rate || ;@ o || is given in the *earth data block (Section
4.4.3).

The following data block illustrates initial conditions given in the ECFC coordinate
system:

4. Problem Files
4.3. Trajectory Data Blocks
4.3.5. *Initial Data Block

*injitial ecfc
X = 19099345.2 y = 9974312.7 Z = 6489105.4 # Position
xdt = -173.973 ydt = 10327.52 zdt = 26425.9 # Velocity
time = 769.35 wt = 1053.9 # Time and Wt
t_epoch = -1045.2 omega_0 = 25.3 # ECFC to ECIC

This trajectory starts at time 769.35 seconds. However, the angular difference be-
tween the ECFC and ECIC coordinate systems is not known at this time, so itis input
at the known time of —1045.2 seconds or 1814.55 seconds before the trajectory starts.
The times of all trajectories are relative to a ¢ = 0 mission time.

Initial Conditions from a Trajectory

Initial conditions for a trajectory can be obtained from another trajectory, so that mul-
tiple trajectories can branch from a single trajectory. For example, in trajectory 1 an
aircraft releases a weapon at the beginning of segment 6. The weapon’s initial condi-
tions are the same as the aircraft’s initial conditions at the beginning of segment 6,
that is,

*initial from segment 6, trajectory 1

The from keyword says to retrieve initial conditions from another trajectory. Initial
conditions always are taken from the beginning of a segment; in this case, from the
beginning of segment 6 in trajectory 1.

When initial conditions are obtained from another trajectory, the variables trajectory
and segment are input as shown above. Variables from Tables 4-10and 4-11 defining
the position and velocity should not be given. Values for the variables z_0 and ome-
ga_0 from Table 4-12 can be given following the segment and trajectory numbers.
These variables are often set to the same values in all trajectories to ensure the same
ECIC coordinate system.

After a trajectory has been initialized from another, the *increment (Section 4.2.5)
and *reset (Section 4.2.11) data blocks can be used in the first segment to adjust its
initial state. In general, the deployed object’s weight must be set because its weight
is different from the original vehicle. In addition, its position is usually adjusted be-
cause its center of mass is not at exactly the same place as the original vehicle’s center
of mass.

4. Problem Files
4.3. Trajectory Data Blocks
4.3.6. *Print Data Block

4.3.6. *Print Data Block

The *print data block is similar to the *file data block, described in Section 4.3.3.
However, it writes trajectory output variables to a standard output file formatted for
printing rather than to a user—specified file. The standard output file has the same file-
name as the problem file, but it is of type .out instead of . prb. It has page breaks and
headings formatted for a standard printer with 132 characters per line and 60 lines

per page.

A table of trajectory data is written for each *print data block. Any number of *print
data blocks can be included within a trajectory, and a maximum of 10 trajectory out-
put variables can be given per *print data block. For example,

*print time alt range mach gamgd dynprs

creates the output shown in Figure 4-6. The output begins with a page heading, a title,
and column headings that are repeated on every page. This is followed by the trajec-
tory variables. The output format of each variable is controlled with the *units/fmt
data block (Section 4.4.13).

sandia National Trajectory Analysis & Optimization Software
Laboratories {(TAOS - Version 96.0)

Example of a ballistic RV trajectory
Problem (marv) / 1976 US Standard Atmosphere / Non-rotating WGS-84 Earth
Trajectory for vehicle: rv

gama = =35

Time Ale Range Mach Gamgd Dynprs
0.000 300000.0 0.000 19.9642 -35.000 0.829
0.500 294835.2 1.196 19.9741 -35.021 1.100
1.000 289665.1 2.394 19.9840 -35.042 1.457
1.500 284489.8 3.591 19.9939 ~35.063 1.932
2.000 279309.3 4.789 19.9659 ~35.083 2.537
2.500 274123.5 5.988 19.8147 -35.104 3.295
3.000 268932.4 7.188 19.6670 -35.125 4.263
3.500 263736.2 8.388 19.522% -35.146 5.495
4.000 258534.7 9.588 19.3812 -35.167 7.059
4.500 253328.0 10.789 19.242% -35.187 9.036
5.000 248116.2 11.991 19.1075 -~35.208 11.528
5.500 242899.1 13.193 18.9750 -35.229 14.660
6.000 237676.9 14.396 18.8451 -35.249 18.584

Figure 4-6. Trajectory Printout Example.

A line of trajectory data is printed at the beginning and end of each segment as well
as at each print interval within the segment. A line is skipped between segments so
they can be easily identified.

Radar and relative vehicle output variables, those starting with rad or rel, must con-
tain a subscript enclosed in square brackets. For example, the variable radrng[2] is
used to print the radar range of the current trajectory from radar station number 2,
and the variable relvel[4] is used to print the closing velocity of trajectory number
4 relative to the current trajectory.

4-46

4. Problem Files
4.3. Trajectory Data Blocks
4.3.7. *Iangent Data Block

4.3.7. *Tangent Data Block

The origin of the tangent plane coordinate system is fixed to the earth and its location
is given in geodetic coordinates. The x and y axes are tangent to the earth’s surface
and the z axis points upward. The x axis is oriented along a heading or azimuth mea-
sured clockwise from north (Section 2.1.11).

Output variables, listed in the appendix, are calculated giving the position, velocity,
and acceleration in tangent plane coordinates. In addition, the initial impact point
range and azimuth are measured from the origin of the tangent plane coordinate sys-
tem.

The *tangent data block is used to provide the location and orientation of the tangent
plane coordinate system. For example,

*tangent latgd=21.982 1long=-159.759 alt=87.2 azm=140

positions the origin at a latitude of 21.982°N, a longitude of 159.759°W, and an alti-
tude of 87.2 ft above sea level. The coordinate system is oriented so the x axis points
along a 140° azimuth or heading (approximately southeast).

The *tangent data block is optional. The origin of the tangent plane coordinate sys-
tem defaults to a point on the earth’s surface directly below the vehicle’s initial posi-
tion. In its default orientation, the x axis points north.

P

4. Problem Files
4.4. Problem Data Blocks

4.4. Problem Data Blocks

The problem file contains one or more problems or cases, which in turn contain one
or more trajectory definitions. Each trajectory definition begins with the *trajectory
data block (Section 4.3) and ends with the next nontrajectory and nonsegment key-
word. Trajectory definitions contain one or more segments forming a hierarchical
structure as shown previously in Figure 4-2.

It is important to group the data blocks according to their purpose. All data blocks
defining a segment must be grouped together, and all data blocks defining a trajectory
must be grouped together. The remaining data blocks do not have to be grouped to-
gether, but the problem file is much easier to understand if they are grouped than if
they are randomly scattered through the file. Grouping the remaining data blocks also
tends to reduce errors.

(problem_id)
Problem Data Blocks

'_T;ajectow Data Blocks

[Segment Data Blocks |
| Segment Data Blocks |
| Segment Data Blocks |

Problem
File

'_Tr?jectory Data Blocks
| Segment Data Blocks |
| Segment Data Blocks |
| Segment Data Blocks |

Problem Data Blocks
*end

Figure 4-7. Problem and Data Block Organization.

The result is a problem file that is structured as shown in Figure 4-7. It begins with
an identifier enclosed in parentheses. The identifier is often the same as the problem
filename, but this is not required. This is followed by a group of data blocks contain-
ing information that applies to the entire problem.

These data blocks are not associated with a specific trajectory or segment; they apply
to all of the trajectories. Examples include the *atmos, *earth, and *wind data
blocks. Table 4-13 contains a complete list of these data blocks. The data blocks
marked with the T symbol are best placed at the beginning of the problem. The re-
maining data blocks should be put at the end of the problem.

After the initial group of problem data blocks, a set of data blocks is given defining
the first trajectory. Within this set of data blocks are data blocks defining segments

4. Problem Files
4.4. Problem Data Blocks

for this trajectory. A set of data blocks for a second trajectory follows the first one.
This continues for each trajectory in the problem. Finally, the last group of problem
data blocks is given, and the problem ends with the *end keyword.

Table 4-13. Problem Data Blocks.

Data Block | Description

*atmos' Awmnosphere model
*define’ User—defined variables
*earth’ Earth model

*egs EGS database files
*file Output files

*optimize Trajectory optimization
*print Printout file

*radar’ Radar observations
*search Trajectory searches
*summarize | Summary variables
*survey Trajectory surveys
*itle? Problem title
*units/fmt Units and output format
*wind" Winds

The data blocks at the beginning of the problem do not reference other trajectory or
segment information, such as trajectory or segment numbers or user—defined vari-
ables. They contain general problem information that is independent of the trajecto-
ries. For example, the *atmos and *earth data blocks specify the atmosphere and
earth models used for all trajectories.

The problem data blocks at the end usually reference trajectory and segment in-
formation that must be defined previously. For example, a *search data block defines
an objective function or goal of the search that references trajectory and segment
numbers. Another example is an *egs data block that references user—defined vari-
ables. The user—defined variables must be defined before they are referenced. This
potential input error can be avoided if the *egs data block is placed at the end of the
problem.

4. Problem Files
4.4. Problem Data Blocks
4.4.1. *Atmos Data Block

4.4.1. *Atmos Data Block

An atmosphere model, defining temperature, pressure, density, speed of sound, and
viscosity as a function of altitude, is required to integrate the equations of motion
(Section 2.3.1). TAOS contains 20 standard model atmospheres, listed in Table 4-14,
and has two user—defined model atmospheres. The default is the 1976 U.S. standard
atmosphere.

The atmosphere models extend to an altitude of 1000 km; however, above an altitude
of 146 km, all of the models are the same as the 1976 U.S. standard atmosphere. Be-
low sea level, temperature is extrapolated based on the temperature gradient at sea
level, and pressure is held constant at the sea level value. Other atmospheric proper-
ties are computed from the temperature and pressure.

Atmospheres are selected by entering the atmosphere number following the *afmos
keyword. For example

*atmos 20
selects the Kwajalein mean annual atmosphere model.

The selected atmosphere model applies to all trajectories in a problem; different tra-
jectories cannot use different atmosphere models. The 1976 U.S. standard atmo-
sphere is commonly used, so a special keyword standard can be used instead of enter-
ing the number one. Similarly, the special keyword none can be used instead of atmo-
sphere type zero.

Table 4-14. Atmosphere Types.

Type |Atmosphere Type |Atmosphere

0 None 11 60° North July

1 1976 U.S. Standard - 112 75° North January

2 15° North Annual 13 75° North January (Cold)
3 30° North January 14 75° North January (Warm)
4 30° North July 15 75° North July

5 45° North January 16 Tonopah Winter

6 45° North July 17 Tonopah Spring

7 45° North Spring/Fall 18 Tonopah Summer

8 60° North January 19 Tonopah Fall

9 60° North January (Cold) 20 Kwajalein Mean Annual
10 60° North January (Warm)

User-Defined Atmosphere

The first type of user—defined atmosphere requires tabulated values for all atmo-
sphere properties as a function of altitude. The input format is best illustrated with
the following example:

4. Problem Files
4.4. Problem Data Blocks
4.4.1. *Atmos Data Block

*atmos user

alt temp pres rho sndspd visc
0 548.2 2111. .00224 1147 3.895e-7
5000 530.0 1774. .00195 1128 3.780e~7
10000 511.0 1480. .00168 1109 3.701e-7
15000 494.9 1229. .00124 1072 2.602e-7
20000 477.5% 833. .00105 1051 3.400e-7

The keyword user indicates that this is a user—defined atmosphere with all properties
specified. The next line gives column headers for the atmosphere properties and for
altitude. All of these keywords are required, but their order is not important, that is,
temp can be given before pres or vice versa. These keywords are the same as the at-
mosphere output variables given in the appendix, and the units for each variable can
be changed with the *units/fimt data block (Section 4.4.13).

The atmospheric properties are given as a function of altitude, so usually altitude is
the first column of the table. The atmospheric properties on each line in the table cor-
respond to an altitude. The altitude values must be strictly increasing, and no dupli-
cate altitudes are allowed.

As the flight path is calculated the table values are linearly interpolated to obtain the
atmospheric properties. Enough values must be provided so that linear interpolation
models the atmospheric properties adequately. There are no limits on the number of
values that can be input.

Site-Measured Atmosphere

The second type of user—defined atmosphere requires only pressure and density as
a function of altitude. It is called a site-measured atmosphere and an exponential
function is used for interpolation. This means that fewer points are required to repre-
sent a realistic atmosphere.

A site-measured atmosphere is input the same way as a user—defined atmosphere ex-
cept that there are fewer columns of data. For example,

*atmos site

alt pres rho
0 2115. 0.00223
10000 1485. 0.00166
20000 830. 0.00105
30000 6217. 0.00089%
40000 241. 0.00058

A temperature is estimated from the pressure and density with the ideal gas law, and
speed of sound and viscosity are computed from this temperature.

4. Problem Files
4.4. Problem Data Blocks
4.4.2. *Define Data Block

4.4.2. *Define Data Block

TAOS always computes a standard set of variables for each trajectory. Additional
variables can be defined within a trajectory definition that are functions of these stan-
dard variables (Section 4.3.1). These user—defined variables are defined only within
a trajectory. If a quantity of interest is a function of variables from more than one tra-
jectory, it must be defined outside of the trajectory definitions. Then, trajectory num-
bers can be used to reference values from different trajectories.

The difference between *define data blocks within a trajectory definition and those
outside of a trajectory definition is that *define data blocks within a trajectory are re-
stricted to be functions of that trajectory’s output variables, and data blocks outside
a trajectory are not restricted to be functions of a single trajectory. *Define data
blocks outside of trajectory definitions can be used to compute relative values
comparing two or more trajectories.

User—defined variables are input the same way regardless of whether the *define data
block is within a trajectory definition or not. A unique name is given followed by
equations that show how to compute the new variable. User—defined variables that
are defined outside of trajectory definitions cannot be integral variables; this type of
user—defined variable is only allowed within a trajectory definition.

The equations defining how to compute the user—defined variable are given in a sim-
plified C language which is similar to Fortran. For example,

*define del_alt
del_alt = (alt{l] - alt[2]) / 3280.84;

computes the difference in altitude between trajectory numbers 1 and 2 inkilometers.

The name of the new variable is del_alt. It is given following the *define keyword,
and it must also appear on the left side of an equation somewhere in the definition.
In this example, with one equation, del_alt must be the variable on the left side of the
equal sign.

The values and variables on the right side of the equal sign must all be standard output
variables, previously input user—defined variables, temporary variables, or
constants. In this case, alt is a standard output variable and 3280.84 is a constant.
Since this data block is located outside of the trajectory definitions in the problem
file, trajectory numbers are required to fully specify the variables. Trajectory num-
bers are enclosed in square brackets so they look like subscripts.

Table 4-9 in Section 4.3.1 contains a list of operators and functions that can be used
in equations for user—defined variables. All of the standard mathematical operators
are available, and they have the same precedence as in C and Fortran. Many standard
functions are also provided; again these are defined in TAOS as they are in the C lan-
guage.

The table function shown in Table 4-9 cannot be used in *define data blocks outside
of a trajectory definition. Tables are functions of the state of a vehicle or trajectory

4. Problem Files
4.4. Problem Data Blocks
4.4.2. *Define Data Block

so they must be associated with a specific trajectory. They cannot be evaluated out-
side of a trajectory.

Equations must end with a semicolon like in C. The semicolon is required even when
there is only one equation like in the example shown above. Since equations continue
until a semicolon is encountered, they can extend across multiple lines as necessary.

‘When more than one equation is required to define a value, temporary variables can
be used. These variables must be unique, that is, they cannot have the same name as
a standard output variable or another user—defined variable. They are only defined
within the *define data block. For example,

*define rel_range
dx (east[2] - east[1l])"2;
dy (north{2] - north[1])"2;
rel_range = sqgrt(dx+dy);

computes a relative horizontal range between two trajectories using two temporary
variables, dx and dy, in the calculation.

If-then—else statements can be used as shown in Section 4.3.1, but while loops, for
loops, and other C-language control statements are not allowed.

User—defined variables given outside of the trajectory definitions can only be refer-
enced by *print, *file, *egs, and other *define data blocks that are also outside of the
trajectory definitions.

4. Problem Files
4.4. Problem Data Blocks
4.4.3. *Earth Data Block

4.4.3. *Earth Data Block

TAOS requires an earth model to generate a trajectory. An earth model consists of
an earth or planet shape, a gravity model, and some additional parameters such as the
earth rotation rate. Four standard models are provided: a spherical earth model, the
WGS-72 model,’ the WGS-84 model, and the GEM-T1 model.1! If these models
are not acceptable, parameters can be modified to produce a user—defined earth mod-
el.

The earth is assumed to be an ellipsoid with the equatorial radius greater than the po-
lar radius. Its shape is given by an equatorial radius and either the polar radius, the
eccentricity, or the flatness. If one of the latter parameters is provided, for example,
eccentricity, the other two can be computed (Sections 2.1.5 and 2.1.6).

The earth’s gravity is defined by a gravity constant (GM) and gravity harmonic coef-
ficients (either J, or Gy, and S, ,,,). Two additional values, the earth rotation rate and
the Ibp, to slug conversion factor, are required to complete the earth model.

Spherical Earth Model

The simplest earth model is spherical. It requires an earth radius, an earth rotation
rate, a gravity constant, and a lby, to slug conversion factor, These values default to
the WGS-84 values as shown in Table 4-15. The spherical earth model is selected
with the *earth data block as follows:

*earth spherical omega=0

where the keyword spherical sets the spherical earth default values. The remaining
variables and values, in this case omega=0, override the defaults.

Table 4-15. Spherical Earth Model.

Symbol |Description Default Value
reqtr Earth radius (ft) 20925646.3255

.| omega Rotation rate (rad/sec) 7.292115x10-5
gm Gravity constant (ft3/sec?) 1.40764438125x1016
g Ibm to slug conversion 32.1740485

WGS-72 and WGS-84 Earth Models

The WGS-72 and WGS-84 earth models assume the earth has an ellipsoidal shape
with the equatorial radius greater than the polar radius. These models are selected
with the wgs—72 or wgs—84 keywords. One of these keywords must immediately fol-
low the *earth data block name. Variables and values overriding the defaults can be
given following this keyword. For example,

4. Problem Files
4.4. Problem Data Blocks
4.4.3. *Earth Data Block

*earth wgs-84 omega=0

selects the WGS—84 earth model but sets the earth rotation rate to zero. Nonrotating
earth models are often used in conceptual design analysis.

Because of the ellipsoidal shape, the WGS-72 and WGS-84 earth models require
additional parameters as shown in Table 4-16. The earth’s shape is defined by the
equatorial radius and one of the remaining shape parameters: the polar radius, the ec-
centricity, or the flatness. If more than one of these parameters is given, the geometry
most likely will be inconsistent.

Table 4-16. WGS-72 and WGS—84 Earth Model Values.

Symbol |Description WGS-84 WGS-72

reqtr Equatorial radius (ft) 20925646.3255 20925639.7638
rpolr Polar radius (ft) 20855486.5953 20855480.7087

ecc Eccentricity 0.0818191908426 0.0818188106627
flat Flatness parameter 1/298.257223563 1/298.26

omega Rotation rate (rad/sec) 7.292115x10-5 7.292115147x10°5
g 1bm to slug conversion 32.1740485 32.1740485

gm Gravity constant (f3/sec?) | 1.40764438125x1016 | 1.40764544069x1016
j2 Degree 2 zonal harmonic 1.08262998905x10-3 | 1.08261579002x10-3

The gravity model is also modified with the second—degree zonal harmonic coeffi-
cientJ, to account for the ellipsoidal shape of the earth. The remaining gravity coeffi-
cients are neglected.

TSAP Earth Models

TSAP and PMAST use a WGS-72 and WGS-84 earth model containing gravity zon-
al harmonic coefficients through degree 4. The second—degree gravitational zonal
harmonic J> accounts for the oblateness of the earth. The remaining zonal harmonics
account for additional gravitational variations with respect to latitude. Use of the J3
and Jy zonal harmonics are questionable for typical trajectories because they are of
similar magnitude to the nonzonal harmonics which vary with longitude and to the
gravitational effects of the sun and moon. If J3 and Jy are defined, then the nonzonal
harmonic terms should also be defined for consistency.

However, the J;3 and J; zonal harmonics have been maintained in the tsap—72 and
tsap—84 earth models so results from TAOS can be consistent with those from its pre-
decessors TSAP and PMAST. The default values for J; and Jy are shown in Table
4-17, and they are the same values used in TSAP and PMAST.

4. Problem Files
4.4. Problem Data Blocks
4.4.3. *Earth Data Block

Table 4-17. TSAP Compatible Earth Model Values.

Symbol |[Description WGS-84 WGS-72
j3 Degree 3 zonal harmonic -2.532153068x10° |-2.538810043x10-5
ja Degree 4 zonal harmonic -1.610987610x10-6 -1.655970000x10-6

Full Degree—4 Earth Models

Two additional earth models, wgs—84—full and gem—tI—full, are available which in-
clude all terms in the gravity geopotential up through degree 4. Table 4-18 contains
the variables and default values used for these two models. The coefficients input to
TAOS are unnormalized, so if different values are input, they must also be unnormal-
ized. Use of these earth models is not recommended because the gravitational effects
of the sun and moon, which are neglected, are of the same order of magnitude as
many of the coefficients.

Table 4-19. Full WGS-84 and GEM-T1 Earth Model Values.

Symbol |Description WGS-84 GEM-T1

reqtr Equatorial radius (ft) 20925646.3255 20925646.3255
rpolr Polar radius (ft) 20855486.5953 20855486.5953
ecc Eccentricity 0.0818191908426 0.0818191908426
flat Flamess parameter 1/298.257223563 1/298.257223563
omega Rotation rate (rad/sec) 7.292115x10-5 7.292115x10-5

g Ibm to slug conversion 32.1740485 32.1740485

gm Gravity constant (f/sec?) | 1.40764438125x1016 | 1.4076441552x1016
€20 Degree 2 zonal harmonic -1.082629x10-3 -1.082625%x1073
c22 Degree 2 nonzonal harmonic | 1.572805x10-6 1.574322x10-6
c30 Degree 3 zonal harmonic 2.532153x10-6 2.532618x1076
c31 Degree 3 nonzonal harmonic | 2.194673x10-6 2.192402x10°6
c32 Degree 3 nonzonal harmonic | 3.096837x10~7 3.086210x10~7
¢33 Degree 3 nonzonal harmonic | 1.000789x10~7 1.005372x10~7
c40 Degree 4 zonal harmonic 1.610987x10-6 1.616190x10-6
c4l Degree 4 nonzonal harmonic [~5.080013x10~7 -5.060561x10~7
c42 Degree 4 nonzonal harmonic |7.780961x10-8 7.759155%x10-8

4. Problem Files
4.4. Problem Data Blocks
4.4.3. *Earth Data Block

c43 Degree 4 nonzonal harmonic | 5.926679x10-8 5.922238x10-8
c44 Degree 4 nonzonal harmonic |-3.948164x10-9 —4.015116x10-9
s22 Degree 2 nonzonal harmonic |-9.023759x10~7 -9.035928x10~7
s31 Degree 3 nonzonal harmonic |2.709571x10~7 2.695880x10~7
s32 Degree 3 nonzonal harmonic |-2.121201x10~7 -2.119137x1077
$33 Degree 3 nonzonal harmonic | 1.973456x10~7 1.970571x10~7
s41 Degree 4 nonzonal harmonic |—4.498693x10~7 -4.507384x10~7
s42 Degree 4 nonzonal harmonic | 1.466394x10~7 1.484816x10~7
s43 Degree 4 nonzonal harmonic |-1.189998x10-8 -1.198933x10-8
s44 Degree 4 nonzonal harmonic | 6.540039x10~9 6.517407x10°9

un

4. Problem Files
4.4. Problem Data Blocks
4.4.4. *Egs Data Block

4.4.4. *Egs Data Block

The Engineering Graphics System (EGS) is available on the Silicon Graphics
workstations in the Aerospace Systems Development Center at Sandia.4 This soft-
ware is designed tointeractively plot sets of analysis data, such as trajectory data. The
data for EGS must be in a special format called the EGS database format, so the *egs
data block is available to produce a file containing trajectory variables in this format.
It provides a simple interface to EGS, so that high—quality plots of the trajectory data
can be produced quickly.

The *egs data block contains a filename and a list of variable names. The file pro-
duced by this data block, an EGS database file, usually has the file type .dbf. A data-
base file is created for each *egs data block, and any number of *egs data blocks can
appear within a problem file.

An example of an *egs data block is

*egs traj.dbf
time alt range vel mach long latgd gamgd
psigd dynprs alpha nx ny nz ntotal

where the database filename is traj.dbf and 15 output variables have been listed. Any
number of output variables can be listed in the data block. Figure 4-8 contains a list-
ing of the first part of the database file created from this example.

*EGS DATA FILE

*TITLE
Example of a ballistic RV trajectory
*SYMBOLS

gama = gama

trajectory = Trajectory Number

time = Time (sec)

alt = Altitude (ft)

range = Range (nm)

vel = Velocity (ft/sec)

mach = Mach Number

long = Longitude (deg)

latgd = Geodetic Latitude (deg)

gamgd = Geodetic Flight Path Angle (deg)
psigd = Geodetic Heading Angle (deg)
dynprs = Dynamic Pressure (slugs)

alpha = Angle of Attack (deg)

nx = Body X-axis Load Pactor (g)

ny = Body Y-axis G's (g}

nz = Body Z-axis G’s (g)

ntotal = Total G's (g}

*VARIABLES

LEVEL 1 gama

LEVEL 2 trajectory
LEVEL 3 time alt range vel mach long
latgd gamgd psigd dynprs alpha nx
ny nz ntotal
*TABLE

-35.000 1.00
0.000 300000.0 0.000 18000.00 19.9642 20.00000
0.00000 ~35.000 90.000 0.829 0.000 -0.0026
0.0000 0.0000 0.0026
0.500 294835.2 1.196 18008.93 19,9741 20.01991
0.00000 -35.021 90.000 1.100 0.000 -0.0034
0.0000 0.0000 0.0034

Figure 4-8. Example of EGS Database File.

4. Problem Files
4.4. Problem Data Blocks
4.4.4. *Egs Data Block

Data is automatically written to the database file for each trajectory defined in the
problem, so no trajectory numbers are given. The units and output format of each
variable can be set with the *units/fimt data block (Section 4.4.13).

TAOS overwrites the *egs database files without warning each time it runs. This au-
tomatically updates the files so they contain the latest trajectory information for a
problem. If this is not desirable, then the filename must be changed between runs or
the database files can be renamed before each new run.

Radar and relative vehicle output variables, those starting with rad or rel, must con-
tain a subscript enclosed in square brackets. The subscript gives the radar station
number or the trajectory number for the relative vehicle calculations. For example,
the variable radrng[2] is used to output the radar range of each trajectory from radar
station number 2, and the variable relvel[4] is used to output the closing velocity of
trajectory number 4 relative to the other trajectories.

If surveys have been defined (Section 4.4.11), the survey loops form different data
levels in the EGS database file so EGS can be used to plot the trajectory data as a func-
tion of the survey variables. In Figure 4-8 the variable gamais a survey loop variable,
and a set of trajectories is computed for each value it takes on.

Summary variables (Section 4.4.10) are not written to the standard EGS database
file. If summary variables have been defined, they can be written to an EGS database
file with

*egs summary file.dbf

The summary keyword and the filename are required; no output or summary variable
names are given. This form of the *egs data block, with the summary keyword and
a filename, requires at least one survey loop and at least one summary variable. All
summary variables are written to the EGS database file as a function of the survey
variables.

4. Problem Files
4.4. Problem Data Blocks
4.4.5. *File Data Block

4.4.5. *File Data Block

The *file data block is used to create files containing columns of trajectory informa-
tion. A list of variable names is given in the data block, and a column of trajectory
data is written for each variable. These files are not formatted for printing, that is,
they do not contain page breaks and page headers. They are intended for use by other
applications, such as plotting programs or spreadsheets, that require columns of data.

*File data blocks can appear either within trajectory definitions or outside of the tra-
jectory definitions. The difference is that *file data blocks within a trajectory defini-
tion assume the information written to the file is for a specific trajectory; whereas,
*file data blocks outside of the trajectory definitions do not make this assumption.
Theresultis that the variables listed for *file data blocks outside of the trajectory defi-
nitions must contain trajectory numbers enclosed in brackets.

For example,

*file compare.dat
time[l] altfl] alt[2] alt[3] wvelll]l vel[2] vell3]

writes the time from trajectory number 1, the altitudes from trajectories 1, 2, and 3,
and the velocity from trajectories 1, 2, and 3 to the file compare.dat. Figure 4-9
shows the first part of this file.

Time[1) Ale(1] Ale(2} Ale([3) Vell1l] vel(2} Vel (3)
0.000 100000.0 80000.0 90000.0 9000.00 7000.00 8000.00
0.500 100000.0 80000.0 90000.0 8992.80 6987.89 7991.04
1.000 100000.0 80000.0 90000.0 8985.61 6975.80 7982.09
1.500 100000.0 806000.0 90000.0 8978.43 6963.73 7973.14
2.000 100000.0 80000.0 90000.0 8971.24 6951.68 7964.21
2.500 100000.0 80000.0 90000.0 8964.07 6939.65 7955.29
3.000 100000.0 80000.0 90000.0 8956.89 6927.64 7946.39
3.500 100000.0 80000.0 90000.0 8949.72 6915.65 7937.49
4.000 100000.0 80000.0 90000.0 8942.56 6903.67 7928.60
4.500 100000.0 80000.0 90000.0 8935.40 6891.72 7919.73
5.000 100000.0 80000.0 90000.0 8928.24 6879.78 7910.86
5.500 100000.0 80000.0 90000.0 8921.09 6867.86 7902.00
6.000 100000.0 80000.0 90000.0 8913.94 6855.97 7893.16
6.500 100000.0 80000.0 90000.0 8906.80 6844.09 7884.33
7.000 100000.0 80000.0 90000.0 8899.66 6832.23 7875.51
7.500 100000.0 80000.0 90000.0 8892.53 6820.39 7866.69
8.000 100000.0 80000.0 90000.0 8885.40 6808.56 7857.88
8.500 100000.0 80000.0 90000.0 8878.27 6796.76 7849.08
9.000 100000.0 80000.0 90000.0 8871.15 6784.98 7840.28
9.500 100000.0 80000.0 90000.0 8864.04 6773.21 7831.49

10.000 100000.0 80000.0 90000.0 8856.93 6761.47 7822.70

Figure 4-9. Trajectory Output File Example.

The filename must be valid. If the file already exists, itis overwritten with no warning
and old data is lost. This is normally satisfactory because the file always contains in-
formation from the most recent run. Any number of *file data blocks can be included
in a problem; one output file is created for each *file data block.

Any standard output variable or user—defined output variable can be written to the
file. Most variables are associated with a trajectory so a trajectory number is required,
and it must be enclosed in brackets as shown above. The only exceptions are user—de-
fined variables defined outside of the trajectory definitions because they are

4. Problem Files
4.4. Problem Data Blocks
4.4.5. *File Data Block

associated with the entire problem, not a single trajectory. The units and the printout
format are controlled with the *units/fimt data block (Section 4.4.13).

Each output line is limited to 400 characters; this limits the number of output vari-
ables that can be listed to about 30. Usually it is best to limit the number of output
variables to 12 or fewer because some screen editors and printers can only handle
about 130 characters per line.

Radar and relative vehicle output variables, those starting with rad or rel, must con-
tain an additional subscript enclosed in square brackets. The first subscript gives the
radar station number or the trajectory number for the relative vehicle calculations,
and the second subscript gives the vehicle trajectory number. For example, the vari-
able radrng[2][1] is used to print the radar range of trajectory number 1 from radar
station number 2, and the variable relvel[4][2] is used to print the closing velocity
of trajectory number 4 relative to trajectory number 2.

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

4.4.6. *Optimize Data Block

Parametric optimization can be used to maximize or minimize a trajectory character-
istic, such as final range or velocity, and itcan be used to satisfy trajectory constraints,
such as a final impact position or flight path angle. Although optimization is one of
the most powerful features of TAOS, the numerical optimization methods are com-
plex and not as reliable as the rest of the trajectory integration methods.

A parametric optimization problem varies a set of parameters x; in order to maximize
or minimize an objective function f{x;) subject to a set of constraints c(x;). The param-
eters.x; are input variables in the problem file. The objective function f{x;) is an output
variable at a specified point in the trajectory, for example, an output variable at the
end of a trajectory segment. The constraints ¢(x;) can be equality constraints, where
an output variable must be equal to a value, or inequality constraints, where a limit
or boundary is imposed.

TAOS uses a nonlinear constrained optimization method based on recursive quadrat-
ic programming called vf02ad (Section 2.6.3).3 The partial derivatives required by
the algorithm are estimated with forward or central differences.

Optimization Loops

Optimization is often only applied to part of a trajectory, called the optimization loop.
The loop extends from the first segment containing an optimization parameter x; to
the segment defining the objective function f{x;). It can contain any number of seg-
ments.

A problem can have up to five optimization loops, but they must not overlap and they
cannot be nested. Each loop in a problem must be completely independent from other
search and optimization loops. The optimization loops are given a letter identifier (a,
b, ¢, d, or) which is used to associate the optimization parameters x; with the opti-
mization data block defining the objective function f{x;) and constraints c(x;).

An optimization loop can have any number of parameters x;, but in practice the opti-
mization method works best if the number of parameters is less than 25. The method
converges faster and better with fewer parameters, so the goal in setting up an opti-
mization loop is to include just enough parameters to adequately model a trajectory.
The parameters are numbered starting from one. The numbers must be sequential,
so if there are 10 parameters, they must be numbered from 1 to 10. However, they
do not have to appear in any particular order in the problem file.

Optimization Parameters

Optimization parameters are identified by setting an input variable equal to the key-
word optx—n, where x is the optimization loop letter and » is the parameter number.
For example,

*fly alpha = opta-2

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

designates the angle—of—attack value as optimization parameter number 2 in loop a.
Any input variable with a numerical value (a number, not a table name) can be desig-
nated as an optimization parameter. The initial conditions and guidance rules are
most commonly used as optimization parameters.

A common technique used to optimize part of a trajectory is to define a segment with
a guidance rule and final condition similar to the following:

*fly alpha vrs tseg

opta-1 0.0
opta-2 5.0
opta-3 10.0
opta-4 15.0
opta-5 opta-6

*when tseg>opta-6 stop

This uses six parameters to define an angle—of-attack time history for a segment. Al-
though the segment times must be estimated, optimization is used to determine the
angle of attack values required to satisfy the objective function and constraints. The
final segment time is included as a parameter to give more flexibility to the flight
path.

Objective function

So far, only the optimization parameters x; have been specified. The remaining parts
of the optimization loop, that is, the objective function and constraints, are given in
an *optimize data block.

The firstline of the *optimize data block defines the objective function f{x;). The most
commonly used variables for the objective function are time, range, and velocity. For
example,

*optimize a for vel=max on segment 6, trajectory 1

defines the objective function as the final velocity of segment number 6 in trajectory
number 1. The goal of optimization is to maximize this value. The optimization loop
letter, in this case a, is given firstimmediately following the *optimize keyword. The
keyword for is required between the loop letter and the objective function. Any out-
put variable can be used for the objective function, and the output variable can be set
to min or max. The segment and trajectory numbers are required.

Constraints

The next set of lines can be used to define constraints on the flight path. These
constraints are optional, and they can be equality or inequality constraints. Forexam-
ple, the lines

constrain vel=3000
constrain gamgd=-80
constrain amin<0

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

define three constraints. These constraints are on the trajectory output variables, not
on the input optimization parameters. Limits on the parameters are given later in the
data block. ‘

In this example, the constraints are evaluated at the same point in the trajectory as
the objective function because no trajectory or segment numbers are provided. If
these constraints are applied as a continuation to the *optimize example above, then
the velocity must be equal to 3000, the flight path angle must be equal to —80, and
the user—defined variable gmin must be less than zero at the end of segment number
6 on trajectory number 1.

Segment and trajectory numbers can be specified on each constraint if they are differ-
ent from those given for the objective function. For example,

constrain vel on segment 3, trajectory 2 = 3000
constrains the velocity on segment 3 in trajectory 2 to 3000 ft/sec.

User—defined integral variables, such as gmin shown above, are often used for in-
equality constraints in optimization to keep a trajectory parameter within known
boundaries. For example, vehicles with aerodynamic control surfaces must operate
within the atmosphere, that s, they require a minimum dynamic pressure to maintain
vehicle control. This limit must be maintained over the entire trajectory, not just at
the end of a segment. If the limit is 500 Ibg/ft2, then a user—defined integral variable
can be defined as

9min = j (g — 500)® Jfor g < 500 (4-5)

Gpin = 0 otherwise (4-6)

If gmin is constrained to be less than zero, it forces the dynamic pressure to stay above
the minimum value of 500 lbg/ft2. Altitude, g loads, and other flight path constraints
can be defined similarly. Section 4.3.1 contains information explaining how to input
an integral user—defined variable.

Multiple~Vehicle Constraints

The full constraint expression consists of the keyword constrain followed by a rela-
tionship and an optional reference factor. The relationship consists of an output vari-
able name, followed by a relationship (=, <, or >), followed by a value. The value
can either be a number, like shown in the examples above, or another output variable
evaluated at the same or different point in the trajectory. This feature is useful when
computing intercept trajectories, for example,

constrain alt=alt{2]

says to make the altitude on the optimization trajectory equal to the altitude on trajec-
tory number 2. Enclosing the trajectory number in brackets is one method for enter-
ing the trajectory number.

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

Another method is to use keywords as follows:

constrain alt on segment 6, trajectory 1
= alt on segment 4, trajectory 3

This makes the altitude on segment number 6 in trajectory number 1 equal to the alti-
tude on segment number 4 in trajectory number 3. These altitudes are undefined un-
less both segment 6 in trajectory 1 and segment4 in trajectory 3 have been computed
at the time the objective function is evaluated. The keywords trajectory and on seg-
ment are used to provide the trajectory and segment numbers.

Trajectory numbers can be given with subscripts enclosed in square brackets, for ex-
ample,

constrain east[2] on segment 4 = east[l] on segment 7
Or they can be given following the keyword trajectory as follows:

constraint east on segment 4, trajectory 2
= east on segment 7, trajectory 1

Both methods result in the same constraint. Trajectory numbers cannot be given
twice using both a subscript and the trajectory keyword.

If both trajectory and segment numbers are given, the segment number is given first
followed by the trajectory number. If trajectory and segment numbers are not given
in the constraint, they default to the objective function values.

Referencing Values

The optimization method is more reliable if all values involved in the calculations,
that is, the parameters, the objective function, and the constraints, are of approxi-
mately the same order of magnitude. If some constraints or parameters have values
that are orders of magnitude larger than others, then numerical difficulties often re-
sult, Methods are provided in TAOS to normalize or reference values involved in the
optimization process.

Constraint relationships that contain a number, such as alr=30000, are automatically
normalized-or referenced by the number (unless it is zero). Other constraints can be
referenced by an input value, for example,

constrain vel on segment 11 = vel[3] on segment 4, ref=1000

references both velocity values in the constraint by a factor of 1000. The refvariable
must be the last item in the constraint (it follows the relationship). Itis optional, and
its only purpose is to improve the numerical calculations.

Optimization Control Variables

After constraints have been given, some variables, summarized in Table 4-20, are
input that control the optimization process. All of these variables have reasonable de-
fault values, so they are optional.

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

The objective function reference value fref is used to normalize the objective func-
tion the same way the ref variable is used on constraints. For best results the value
| fix;Mfrer | should be between 1 and 10.

The convergence accuracy variable fol controls when the optimization procedure be-
Keves it has a valid solution. Smaller values may produce a better solution, but they
require many more iterations to converge. If the value is too small, convergence may
not be achieved.

Table 4-20. Optimization Data Block Input Variables.

Variable |Description Variable |Description

fref Objective function reference val- | derivs Derivative method (default=1)
ue (default = 1.0)

tol Convergence accuracy dx Derivative increment
(default = 1.0x10-5) (default = 1.0x10-8)

maxitr Maximum number of iterations | adjust Guidance table adjust (default=0)
(default = 50)

integ Integration control (default=1) surveys Survey control flag (default=0)

restarts Restart control (default = 0) print Printout control (defauli=0)

The maximum number of iterations maxitr controls the number of times that the opti-
mization procedure vf02ad is called. It is related to the number of function evalua-
tions (the number of trajectories computed). If maxitr is set to zero, the trajectory is
calculated once with the initial parameter estimates. This is used to check the starting
trajectory making sure it is reasonable.

During the optimization process, trajectories are recomputed many times, once for
each function evaluation. The integration control variable integ controls whether all
trajectories in a problem are recomputed (=1) or whether only the trajectory with the
objective function is recomputed (=0). If the optimization problem is restricted to
a single trajectory, then integ can be set to zero significantly reducing the amount of
computation; the problem runs much faster. If the optimization problem has
constraints that reference other trajectories, then it is probably necessary to recom-
pute all trajectories with integ set to one.

Automatically Restarting Optimization

If the optimization procedure has not converged within the maximum number of it-
erations, it can be restarted. Sometimes restarting from the current solution provides
additional progress towards the minimum. The variable restarts controls how many
times the optimization procedure is restarted before it stops. A value of zero results
in no restarts.

When restarts are used, the maxitr value needs to be reduced to a smaller value such
as 20. On the last restart, optimization is allowed to proceed for twice the number of
iterations given by maxitr in an effort to achieve convergence.

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

When angle—of-attack time histories are used in a *fly data block for optimization,
for example,

*fly alpha vrs tseg

opta-1 0
opta-2 20
opta-3 40
opta-4 60
opta-5 80
opta-6 100
opta-7 opta-8

*when tseg>opta-8 stop

the segment times have to be estimated. The optimization procedure generally works
best when these points are evenly distributed within the segment as shown above.
However, during optimization the final segment time, opta—8, can change to either
a very large number or to a number very close to the previous point, 100. In either
case, the distribution of time history points becomes uneven, which can affect the
solution.

The guidance table adjustment variable, adjust, controls whether these time values
are automatically adjusted to be evenly spaced when the optimization procedure re-
starts. If it is set to zero, no adjustment takes place, and if it is set to one, then the val-
ues are adjusted at each restart.

Numerical Derivatives

The optimization procedure requires partial derivatives during the solution process.
These derivatives can be computed numerically with a central—difference method,
derivs = (, or a forward—difference method, derivs = 1. Forward—difference deriva-
tives are computed from

of(x) _ f&x + 0x) — f() (4-7)
ax ox
and central—difference derivatives are computed from
If) _ f(x + 6x)—f (+-0x) (4-8)
ax 20x

The accuracy of both derivative methods is controlled by the derivative increment
variable dx or dx. Smaller values of dx give more accurate derivatives than larger val-
ues until the limits of numerical precision are reached. The central-difference meth-
od requires more function evaluations, but gives more accurate derivatives than the
forward-difference method for the same value of dx. The default values for derivs
and dx generally work well and do not have to be modified.

Survey Control Flag

If surveys are used with optimization, the surveys variable controls the starting tra-
jectory for each set of survey values. For the first set of survey values, the starting

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

trajectory is always the one given by the par—n variables in the *optimize data block.
The default (surveys = 0) uses this same starting trajectory for all other survey values.
But if surveys = 1, the solution from the previous set of survey values is used as a
starting trajectory for the next set of survey values. This often improves convergence
when the optimum trajectories do not change much from one survey value to the next.

Printout Control

The optimization process always prints a summary giving the optimization parame-
ters, the objective function, and the constraints at each iteration. By setting the vari-
able print to one, the trajectory is printed after each iteration. This is sometimes use-
ful for locating problems with the optimization process, but it produces a large
amount of output. It is not recommended except when the variable maxirr is set to
a small value such as 0 or 1.

Initial Estimates and Limits on Parameters

The optimization procedure requires an initial estimate or starting trajectory. The
procedure works best when this trajectory has similar characteristics to the final solu-
tion. The initial estimate is given by providing a value for each optimization parame-
ter. In addition to the initial estimate, upper and lower boundaries, and a reference
or normalizing value can be specified for each parameter.

These values are given according to the optimization parameter numbers used in the
problem file. For example, values for the parameter opta—3 are given with

par-3=6.5, lo-3=~10, hi-3=30

This input line sets the initial estimate for parameter 3 to 6.5, and it limits parameter
3 to values between —10 and 30. No reference value is given with the ref~3 variable
because this parameter does not take on extremely large or small values.

The following example:
par-2=1000, 1o-2=-10000, hi-2=100000, ref-2=10000

uses the ref-2 variable to normalize or reference the parameter to values in the range
of -1 to 10. This is only necessary if the parameter values become very large (greater
than 1000) or very small (less than 0.01).

Values for the initial estimate are required for each parameter. Values for the upper
and lower limits are not required, but they are recommended. Reference values are
optional. Usually values for each parameter are given on separate lines making it
easy to read as shown in the example below.

Example Data Block

The full optimization data block consists of the objective function definition, the
constraints, the control variables, and the parameter values. The following example
contains a complete optimization data block showing how these parts fit together:

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

*optimize a for range=max on segment 12, trajectory 1

constrain vel=4000
constrain gamgd=-75

fref=100 maxitr=40 tol=1.0e-7
par-1=9.9 lo-1=-15 hi-1=15
par-2=8.5 lo-2=-15 -hi-2=15
par-3=5.0 lo-3=-15 hi-3=15
par-4=1.0 lo-4=-15 hi-4=15

par-5=65.0 lo-5=51.0 hi-5=300.0

This data block sets up an optimization problem with five parameters that maximizes
the range at the end of segment 12 on trajectory 1. While maximizing the range, the
final velocity must be 4000 and the final flight path angle must be —75. The optimiza-
tion procedure ends either when it has converged or after 40 iterations with no re-
starts.

Convergence

The optimization procedure ends when the maximum number of iterations is exceed-
ed, when it detects convergence, or when it has problems converging. If the maxi-
mum number of iterations is exceeded, values for the objective function for the last
few iterations can be inspected in the printout file. If the objective function is not
changing much, then the resulting trajectory is probably near optimum. Otherwise,
the value for the input variable maxitr needs to be increased.

The optimization procedure often ends with the message “optimization procedure
does not detect convergence, but it cannot make further progress towards the mini-
mum.” This message means that the optimization procedure found a search direction,
but while searching along this direction, it could not find a minimum. In other words,
the one—dimensional search failed to locate a minimum. This usually means that the
optimization procedure has converged as far as it can given the numerical precision
of the computer, that is, the convergence tolerance is too small for the optimization
method to achieve. This message can be treated as a warning message, butin general
it means a good solution has been found.

Troubleshooting — Optimization Loop

Trajectory optimization is more an art than a science because the methods used, such
as vf02ad, are sensitive to the starting trajectory and to the accuracy of the partial de-
rivatives. Experience and judgement are required to successfully use optimization.

The optimization loop definition is the first place to check if the optimization proce-
dure fails to converge or gives poor results. When an optimization parameter is var-
ied, the objective function and constraint values should change. If they do not
change, then the parameter has no effect and can be eliminated.

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

The end of the optimization loop is at the end of the segment given in the objective
function definition. At this point in the trajectory, all other trajectories and segments
referenced in constraints must have been computed. TAOS must be able to inspect
the trajectory up to this point and retrieve values for all of the constraint variables.

If the optimization loop involves more than one trajectory and integ = 0, then prob-
lems can occur. The optimization loop must be set up carefully so that all values re-
quired by the objective function and constraints can be properly calculated. It is often
more practical to use integ = I even though it is less efficient.

Test runs can be made with maxitr = 0 to check the optimization loop definition. The
effect of changing values of the optimization parameters can quickly be determined
with a few testruns. This method can also be used to verify that the starting trajectory
is reasonable.

Troubleshooting — Segment Final Conditions

If you are using an optimization parameter to control the length of a segment, it is
best to use a segment final condition based on a time variable. For example,

*when tseg > opta-3 goto 5§

lets the optimization procedure determine when to end the segment. Final conditions
with time variables work better than other variables, such as altitude, because time
is a strictly increasing variable.

When final conditions are optimized, only one final condition on time should be
used. If more than one final condition is used, the optimization procedure becomes
confused when sometimes one final condition is hit and other times a different condi-
tion is hit. Optimization constraints can be used to satisfy additional requirements at
the end of a segment.

Troubleshooting — Starting Trajectory

The optimization procedure tends to be sensitive to the starting trajectory, that is, the
initial estimates of the parameters. Optimization problems with a large number of pa-
rameters tend to be more sensitive to initial estimates than those with a small number
of parameters. If an optimization loop fails to converge or gives a poor solution, then
one should try different values for the initial estimates. Sometimes small changes
to the initial estimate cause the optimization procedure to begin working properly.

A solution from optimization should not be trusted completely because the procedure
sometimes converges to a local minimum instead of a global minimum. A good way
to check the validity of an optimization solution is to rerun the problem with a differ-
ent starting trajectory. If it results in the same solution, then a global minimum has
probably been found.

Troubleshooting — Numerical Derivatives

Numerical derivatives are required by the optimization procedure at each iteration.
As mentioned previously, these are calculated with forward or central differences by

4. Problem Files
4.4. Problem Data Blocks
4.4.6. *Optimize Data Block

making very small perturbations in the trajectory. The integration step size, given in
the *integ data block, must be small enough to accurately capture these small per-
turbations. If it is too large, numerical errors in the trajectory integration cause incor-
rect derivatives and these cause the optimization procedure to work towards an incor-
rect solution. Experimentation is required to judge how small to make the integration
step size.

Accurate derivatives are critical to the performance of the optimization procedure.
If the integration step size is not the problem, then the truncation error from the deriv-
ative calculation may be too large. The accuracy of the derivatives can be improved
by decreasing the size of the derivative increment dx by an order of magnitude or
more or by changing the derivative method to central differences with derivs = 0.

The value of dx is limited by the numerical precision of the computer. When it is too
small, numerical errors become larger than the truncation error, and the optimization
procedure continues to have difficulties. At this point, the value of dx should be in-
creased and central differences should be used.

Troubleshooting — Surveys

Using surveys with optimization often causes problems because the same starting
solution cannot be used for all survey values. This is particularly a problem when op-
timization parameters are in an angle—of—attack time history. Trajectories with opti-
mized angle—of-attack time histories are best run individually and not surveyed un-
less the survey value does not change much. Sometimes the restart and adjust options
can be used to solve this problem with surveys, but they should only be tried as a last
resort.

Troubleshooting — Angle—of-Attack Time Histories

A common problem with optimization parameters in an angle—of-attack time histo-
ry, such as

*fly alpha vrs tseg

opta-1 0
opta-2 10
opta-3 20

opta-4 opta-5

is with the lower limit on the last time value opta—S5. If this value becomes less than
the previous time value (20), then the time values in the table will not be continuously
increasing and table interpolation will fail. So the lower limit of this parameter must
be set to a value slightly larger than the previous time point, for example,

lo-5 = 20.5

4. Problem Files
4.4. Problem Data Blocks
4.4.7. *Print Data Block

4.4.7. *Print Data Block

The *print data block can appear either within a trajectory or within a problem (out-
side of a trajectory definition). The purpose of the *print data block is the same in
either case: to write trajectory information to the standard output file. The standard
output file has the same filename as the problem file, but it is of type .out instead of
.prb. It has page breaks and headings formatted for a standard printer with 132 char-
acters per line and 60 lines per page.

The difference between *print data blocks located within a trajectory definition and
those located outside of a trajectory is that those located within a trajectory assume
the printed information is for that trajectory. The variables printed are assumed to be
associated with the trajectory containing the *print data block.

*Print data blocks that are not within a trajectory definition do not make this assump-
tion, so trajectory numbers enclosed in brackets are required in addition to the vari-
able names. This provides the capability to print variables from several trajectories
on the same page.

For example,

*print
time{l] alt[l] alt[2] rangel[l]l rangel2]

prints the time from trajectory number 1, the altitude from trajectories 1 and 2, and
the range from trajectories 1 and 2 as shown in Figure 4-10. This makes it easy to
compare values from different trajectories. Data from different trajectories are re-
lated by mission time so al#/1] and alt[2] refer to the altitudes of trajectories 1 and
2 at the same instant in time.

Sandia National Trajectory Analysis & Optimization Software
Laboratories {TAOS - Version 96.0)

Example of two vehicles relative to each other
Problem (two} / 1976 US Standard Atmosphere / Non-rotating WGS-84 Earth
Trajectory for vehicle: vehicle_ 1

Time{l) Alc[l) Alc(2] Range{1} Range (2]
0.000 100000.0 80000.0 0.000 0.000
0.500 100000.0 80000.0 0.737 0.573
1.000 100000.0 80000.0 1.473 1.146
1.500 100000.0 80000.0 2.209 1.717
2.000 100000.0 80000.0 2.944 2.287
2.500 100000.0 80000.0 3.678 2.857
3.000 100000.0 80000.0 4.412 3.425
3.500 100000.0 80000.0 5.145 3.993
4.000 100000.0 80000.0 5.878 4.559
4.500 100000.0 80000.0 6.610 5.124
5.000 100000.0 80000.0 7.341 5.689
5.500 100000.0 80000.0 8.072 6.252
6.000 100000.0 80000.0 8.803 6.815
6.500 100000.0 80000.0 9.532 7.376
7.000 100000.0 80000.0 10.262 7.937
7.500 100000.0 80000.0 10.990 8.497
8.000 100000.0 806000.0 11.718 9.055
8.500 100000.0 80000.0 12.446 9.613
9.000 100000.0 80000.0 13.172 10.170
9.500 100000.0 80000.0 13.899 10.725

10.000 100000.0 80000.0 14.624 11.280

4. Problem Files
4.4. Problem Data Blocks
4.4.7. *Print Data Block

The printout begins with a page heading, a title, and column headings that are re-
peated on every page. This is followed by the trajectory variables. Any of the stan-
dard output variables listed in the appendix can be printed along with any user—de-
fined variables. The output format of each variable is controlled with the *unizs/fint
data block (Section 4.4.13).

A table of trajectory data is written, with a maximum of 10 output variables, for each
*print data block. Any number of *print data blocks can be included within a prob-
lem.

Radar and relative—vehicle output variables, those starting with rad or rel, must con-
tain an additional subscript enclosed in square brackets. The first subscript gives the
radar station number or the trajectory number for the relative—vehicle calculations,
and the second subscript gives the vehicle trajectory number. For example, the vari-
able radrng[2][1] is used to print the radar range of trajectory number 1 from radar
station number 2, and the variable relvel[4][2] is used to print the closing velocity
of trajectory number 4 relative to trajectory number 2.

4. Problem Files
4.4, Problem Data Blocks
4.4.8. *Radar Data Block

4.4.8. *Radar Data Block

Radar observations of trajectories can be simulated from one or more fixed radar sta-
tion locations. Radar observations include the range, azimuth, and elevation angles,
their rates, and their accelerations. The vehicle aspect and meridional angles relative
to the station are also computed (Section 2.4.2).

The presence of one or more radar output variables in the problem triggers the radar
observation calculations. The radar stations are identified with a number, starting
with 1. Subscripts enclosed in square brackets are used on the radar output variables
to indicate the station number. For example, radrng[2] is the radar range from station
number 2, and radrmg[3][2] is the radar range from station number 3 for trajectory
number 2. When double subscripts are used, the trajectory number is given last.

A *radar data block is required for each radar station giving its location. For exam-
ple,

*radar 1 station_x alt=539.24, 1long=-91.43562,
latgd=30.02347

defines radar station number 1, called station_x, at a geodetic latitude of
30.02347°N, a longitude of 91.43562°E, and an altitude of 539.24 ft.

Any number of radar stations can be defined. Although they are identified with a sta-
tion number, they also have a station name which is used as a comment to further
identify the station. The station number and name must immediately follow the *ra-
dar keyword. The remaining variables, giving the station location, follow. These
variables can be given in any order.

The station location is input with the geodetic position variables alt, long, and latgd.
Additional cartesian offset values from this location can be input with the variables
diste, distn, and distd. These adjustments are made relative to the position given by
alt, long, and latgd, in the local geodetic horizon coordinate system, and they do not
follow the curvature of the earth’s surface. Therefore, these adjustments should be
small to maintain accuracy.

The station location variables are normally referenced to the earth model shape given
in the *earth data block; however, this can be changed by entering earth shape in-
formation in the *radar data block. Earth geometry input in the *radar data block
is only used for the radar calculations; it is not used anywhere else in the trajectory
calculations.

The keywords wgs—72 and wgs—84 can be used to select an earth model, or the earth
shape values can be input directly with the variables regtr, rpolr, flat, and ecc. As with
the *earth data block, the earth shape variables must produce consistent geometry.
The variable regrr isrequired, and one of the other shape variables (rpolr, flat, or ecc)
must be given. Additional values are redundant and may form inconsistent geometry.

The input variables for the *radar data block are summarized in Table 4-21. The fol-
lowing *radar data block

4. Problem Files
4.4. Problem Data Blocks
4.4.8. *Radar Data Block

*radar 2 station_y alt=112.4 long=65.345 latgd=12.435
wgs-72 distn=25.5 diste=15.2 distd=-10.3

shows another example which defines a station relative to a WGS-72 earth model
that is located at an altitude of 112.4 ft, a longitude of 65.345°E, and a latitude of
12.435°N. From this position the radar is offset 25.5 ft north, 15.2 ft east, and 10.3

- ft up.

Table 4-21. Radar Data Block Variables.

Variable |Description Variable |Description

alt Altitude of radar station (ft) reqtr Earth radius at equator (ft)

long Longitude of radar station (deg) Ipolr Earth radius at pole (ft)

latgd Geodetic latitude of radar station (deg) | flat Earth flatness parameter (0 < flat< 1)
distn North offset (ft) ecc Earth eccentricity (0 <ecc< 1)

diste East offset (ft) wgs—72 Use WGS-72 earth shape

distd Down offset (ft) wgs—84 Use WGS-84 earth shape

4. Problem Files
4.4. Problem Data Blocks
4.4.9, *Search Data Block

4.4.9. *Search Data Block

Trajectories often have constraints that must be satisfied, such as a final velocity or
range. Generally optimization is used in TAOS to obtain a trajectory that meets a set
of constraints (Section 4.4.6). Optimization varies a set of parameters to maximize
or minimize an objective function subject to a set of constraints. However, if the
problem is simple and there are only one or two parameters and constraints, opti-
mization may not be necessary, especially since optimization techniques are not
completely reliable. A simpler, more reliable, search method is provided to handle
the simple cases.

Search Parameters

Each search is one dimensional, that is, it repeatedly modifies a value in the problem
file until a condition is met. For example, a constant angle of attack used in a pullout
from descending flight to level flight can be varied until the pullout occurs at a given
altitude. More than one variable in a problem file can be changed in a search, but all
of the variables are set to the same value each time the variable is modified.

The search variables in a problem file are designated with the keyword srch—n (Sec-
tion 4.1). For example,

*fly alpha = srch-1

says that a search is going to be used to determine the value of the angle of attack.
The search, that is, how to compute this value, is defined later in the problem file in
a *search data block.

The search number, the “1” in the example above, relates the search variables to the
*search data block. Any number of searches can be defined producing a set of nested
one dimensional search loops, but if more than two nested searches are required, it
is usually best to use optimization rather than searches.

Search Objective

If a search variable, like srch—1, is used in the problem file, then there must be a corre-
sponding *search data block in the file. A data block corresponding to the above ex-
ample might look like

*search 1 vary alpha until alt=30000 on segment 3,trajectory 1
xlo=0.5 xhi=10.0 xest=5.0 dx=1.0 tol=0.001
xref=1.0 £fref=10000 maxitr=20 print=1 integ=0

The firstline defines the search objective; in this case, the angle of attack in the guid-
ance policy is varied until the final altitude on segment 3 of trajectory 1 is equal to
30,000 ft. The next two lines give the search control parameters, for example, the
angle of attack is varied between 0.5° and 10.0° with an initial estimate of 5.0°.

Parabolic search methods are used as shown in Section 2.6.2. These methods vary
a search variable x until a search function fx) is equal to a value, a minimum, or a

4. Problem Files
4.4. Problem Data Blocks
4.4.9. *Search Data Block

maximum. The search function, given in the *search data block, determines the type
of search.

The first values in the *search data block are the search number, the keyword vary,
aname, and the keyword until. The name is used to identify the search parameter in
the printout file; any name can be used.

The search objective is given next as an output variable setequal to a value. The value
can be a constant, another output variable, the keyword min, or the keyword max. A
segment and trajectory number must be provided for the output variable, and if a se-
cond output variable is given, segment and trajectory numbers can be provided for
it as well. For example,

*search 1 vary pitch_rate until pitchi on segment 2
= pitchi on segment 3, trajectory 2

says to modify the pitch rate (most likely a value in a guidance rule) until the inertial
pitch angles on two segments are equal. The trajectory number is only given for one
of the variables, so it is assumed to be the same for both.

In the following example, subscripts enclosed in square brackets are used to denote
the trajectory numbers:

*search 1 vary weight until alt[l] on segment 3
= alt[2] on segment 5

Trajectory numbers can be given with subscripts or with the trajectory keyword, but
not with both. When segment and trajectory numbers are given and the trajectory
keyword is used, the segment number must be given first, followed by the trajectory
number. If a trajectory or segment number is not provided for a variable, itis assumed
to be the same for both variables.

Search Control Variables

Table 4-22 contains a list of the search control variables. The search methods require
an initial estimate of the search parameter xest, an initial search increment dx, alower
search boundary xlo, and an upper search boundary xki. The other search control
variables have default values so they are optional.

Table 4-22. Search Data Block Variables.

Variable |Description Variable |Description

xlo Lower search boundary xref Search variable reference value
(default = 1.0)

xhi Upper search boundary fref Search function reference value
(default=1.0)

xest Initial search estimate maxitr Maximum no. of iterations
(default = 20)

4. Problem Files
4.4. Problem Data Blocks
4.4.9. *Search Data Block

dx Initial search interval integ Search trajectory calculation option
(default=1)
tol Convergence accuracy print Print option (default = ()
(default = 1.0x10-5)

The search increment, dx, is an indication of how well the initial estimate is known.
The values (xest - dx) and (xest + dx) should bracket the solution. If dx is small, the
initial estimate is assumed to be close to the actual solution.

The search convergence accuracy, rol, controls when the search converges. As the
convergence accuracy is reduced, more search iterations are required for conver-
gence.

The reference factors, xref and fref, are chosen such that the ratios | x/xref| and
| fix)/fref | are between 1 and 10. In the first example above, the search parameter x
is the angle of attack and has a value between 0.5 and 10.0, so a reference value of
1.0 is acceptable. The search function f{x) is the final altitude on a segment, and its
value is going to be 30,000 when the search converges. A reference value of 10,000
is input to scale this large number to between 1 and 10.

The variable maxizr is the maximum number of search iterations or search attempts.
If it is set to zero, only one trajectory is calculated using the initial estimate of the
search value.

The variable integ controls whether all trajectories within a search loop are recom-
puted (a value of 1), or whether only the search trajectory is recomputed (a value of
0). A value of one is safe in that all trajectories are recomputed each search iteration;
however, this may not be necessary and it can take significantly more computation
time than the alternative.

The variable print is used to control trajectory printout during the search. A value of
zero means that only a summary of the search is printed, and a value of 1 prints every
trajectory during a search. When print = 1, a large amount of printout is produced
so it should only be used when problems occur with a search loop.

Search Loops

A search is defined as starting at the beginning of the segment containing the search
parameter. If there is more than one search parameter, the first segment encountered
that has a search parameter is used to start the search. The search extends to the seg-
ment given by the search objective function. This part of the trajectory is recomputed
each iteration of the search.

Multiple searches can be defined independently of each other as shown in the left dia-
gram of Figure 4-11. They can also be nested so that one search is entirely within
another search as shown in the middle diagram. But searches cannot be defined that
intersect each other as shown in the right diagram.

4. Problem Files
4.4. Problem Data Blocks
4.4.9. *Search Data Block

B Search 1 | Search 3 B Search 1
: Search 2

_Search 2 l: Search 1 {earch 2
B Search 3 Search 3
;orrect f:_o;'-ect In:orrect

Figure 4-11. Valid Multiple Search Structures.

For nested search loops, the looping structure can be clarified by using dummy seg-
ments (segments with a zseg > 0 final condition). These segments do not affect the
trajectory because they are of zero length; however, they can be used for evaluating
search objective functions.

4. Problem Files
4.4. Problem Data Blocks
4.4.10. *Summarize Data Block

4.4.10. *Summarize Data Block

Summary variables are used in conjunction with surveys to perform tradeoff and sen-
sitivity studies. A survey systematically changes the value of one or more input vari-
ables, and for each set of values, trajectories are calculated (Section 4.4.11). Summa-
ry variables are calculated after each set of trajectories is completed. When values
are surveyed, summary variables can be tabulated as a function of the survey vari-
ables.

Summary Variables:

qe payload vel_bo max_alt range
75.000 2000.0 5979.9 560694 178.38
75.000 3000.0 4975.7 390018 131.45
75.000 4000.0 4252.3 285922 101.79
75.000 5000.0 3702.0 216962 81.42
75.000 6000.0 3270.9 168834 66.64
80.000 2000.0 6042.7 652736 133.66
80.000 3000.0 5022.0 460668 99.95
80.000 4000.0 4282.3 342741 78.58
80.000 5000.0 3716.8 264181 63.91
80.000 6000.0 3270.7 209022 53.31

Figure 4~12. Summary Variable Printout.

Figure 4-12 contains an example printout of summary variables for a problem that
calculates sounding rocket trajectories for different payload weights and launch
angles. The survey variables are the launch elevation angle, ge, and the payload
weight, payload. The summary variables are the burnout velocity, vel_bo, the maxi-
mum altitude or apogee, max_alt, and the final range, range. Each line of the summa-
ry printout represents a trajectory. In this case, ten trajectories have been calculated
for five payload weights and two launch angles.

For each trajectory (or set of trajectories for a multi-vehicle problem), a summary
variable has a single value. This value is calculated from a set of input commands,
given in a ¥summarize data block, representing math operations. The math opera-
tions work the same way as in table files (Section 3.5).

For example, the first summary variable shown above, vel_bo, is defined with the
data block

*summarize vel_bo
add vel on segment 3, trajectory 1

The summary variable name, vel_bo, is given first, followed by a single math opera-
tion. Summary variable names do not have to be unique; they are only used for the
column headings in the printout file.

Summary values are initialized to zero and then the math operations are executed.
In this case, the velocity at the end of segment 3 on trajectory 1 is added to zero. Only
one math operation is given, so the calculation is finished. This example is typical

4. Problem Files
4.4. Problem Data Blocks
4.4.10. *Summarize Data Block

of summary variables; they are usually used to retrieve a specific value from a trajec-
tory rather than perform a complex sequence of math operations.

The two other summary variables in Figure 4-12 are defined with the data blocks

*summarize max_alt
add max(alt(1])

*summarize range
add last(range) trajectory 1

Max, Min, First, and Last Special Functions

These data blocks illustrate some special functions that are available for summary
variables. The max function, used to retrieve the maximum altitude, searches the en-
tire trajectory for the maximum value of a variable. The last function retrieves the
last or final trajectory value. Other similar functions are min and firsz. These func-
tions eliminate the need for segment numbers because they apply to the entire trajec-
tory.

Trajectory data is saved in memory at the beginning and end of each segment and at
every print interval. When the special functions max and min scan the trajectory data
for maximum and minimum values, they only look at the saved trajectory data. They
select the maximum or minimum saved value and then use the two adjacent values
to fit a parabola and estimate the actual minimum. Thus, the accuracy of the resuit
depends on the print interval. If the value changes rapidly, the print interval may need
to be reduced to obtain more accurate results.

Normally segment and trajectory numbers are required when any variable is re-
trieved from a trajectory. Segment numbers are given first following the keywords
on segment. Trajectory numbers are given next following the keyword trajectory, as
shown in the first example for vel_bo. Trajectory numbers can also be given as sub-
scripts enclosed in square brackets as shown in the definition for max_altr.

Math Operations

All of the examples shown above use the add math operation, but there are many oth-
ers as shown in Table 4-23. The first set of operations (add through iexp in the first
column of the table) require an additional value, in other words, they operate on the
current summary value and an additional input value. This value can be an output
variable from a trajectory as shown above orit can be a constant. The remaining math
operations (abs through atan) do not require an additional value. They only operate
on the current value of the summary variable.

Table 4-23. Summary Variable Math Operations.

Operation | Description Operation | Description
add Add a value to the summary sqrt Square root of summary value
value

4. Problem Files
4.4. Problem Data Blocks
4.4.10. *Summarize Data Block

sub Subtract a value from the sum- |ln Natural log of summary value
mary value

mult Multiply a value by the summa- |log Log base 10 of summary value
ry value

div Divide summary value by sum- {e e raised to the summary value
mary value

idiv Divide value by the summary |sin Sine of summary value (deg)
value

exp Take summary variable to a cos Cosine of summary value (deg)
power given by a value

iexp Take value to the power given |tan Tangent of summary value
the summary value (deg)

abs Absolute value of summary val- | asin sin~! of summary value (deg)
ue

neg Negate summary value acos cos~! of summary value (deg)

sqr Square summary value atan tan™! of summary value (deg)

A *summarize datablock can include any number of math operations, although most
summary variables are defined with only one or two operations. The following exam-
ple, which calculates the difference in final range between two trajectories, has 3
math operations:

*summarize delta_rng
add last(range[1l])
sub last(range([2])
mult 1.852

The summary variable, delta_rng, is initialized to zero. The first operation adds the
final range from trajectory 1 to the summary value which is zero. The next operation
subtracts the final range from trajectory 2 resulting in the difference between the two
ranges. The last operation converts the units of range from nautical miles to kilome-
ters.

The previous example used the last function to select the final range so no segment
numbers were given. The following example selects altitudes from within two trajec-
tories and calculates the difference:

*summarize delta_alt .
add alt on segment 4, trajectory 1
sub alt on segment 11, trajectory 2
div 3280.84

This example calculates the difference between the altitude at the end of segment 4
on trajectory 1 and the altitude at the end of segment 11 on trajectory 2 in kilometers.
Segment numbers are required because the special functions (max, min, first and last)
are not used, and trajectory numbers are given with the trajectory keyword to illus-
trate this style.

4. Problem Files
4.4. Problem Data Blocks
4.4.11. *Survey Data Block

4.4.11. *Survey Data Block

The purpose of a survey is to change the value of one or more input parameters and
determine the effect on the trajectories. This is called a tradeoff study or sensitivity
study. Trajectories are computed for all values of the survey variable.

Asnoted in Section 4.1, any numerical value in the problem file can be systematically
varied by defining a survey. For example,

*initial alt=surv-1l 1lat=0 1long=0 wt=1200

has the variable alt set to the value of survey one. The keyword sur1 is a placehold-
er for the actual value that will be used when the problem is run. The actual value is
determined from the corresponding *survey data block. The survey numbers are
used to relate the survey keywords to the survey data blocks, so surv—I corresponds
to the *survey 1 data block, surv—2 corresponds to the *survey 2 data block, and so
on.

The surv--1, surv-2, etc., keywords control which variables in the problem file are
modified by the survey. The *survey data blocks control the values assigned to these
variables. In the above example, the variable alt in the *initial data block is set to
surv-1, so there must be a corresponding *survey 1 data block in the problem that
assigns values for the initial altitude.

For example,
*survey 1 alt0 10=40000 hi=80000 inc=20000

says to run three cases with the initial altitude set to 40,000, 60,000, and 80,000 ft.
TAOS substitutes the survey value everywhere the surv—n keyword is found in the
problem file. So more than one variable in the problem file can be set to the survey
value.

Survey Numbers and Names

The survey data block begins with the *survey data block name and the survey num-
ber. Survey numbers are normally assigned in sequence beginning with one. Any
number of survey loops can be defined. The surveys form nested loops with the low-
est-numbered survey the inner most and the highest-numbered survey the outer
most.

A survey variable name follows the survey number. This name must be unique from
other output variable names. Itis used in the EGS database files for plotting the re-
sults of a survey.4 In the example above, the EGS database would contain one or more
trajectories associated with alt0=40000, another set of trajectories associated with
alt0=60000, and so on.

Lo, Hi, and Increment Survey Values

There are two ways that survey values can be assigned. The example above shows
one method where the values take on incremental values. A starting value is given,

4. Problem Files
4.4. Problem Data Blocks
4.4.11. *Survey Data Block

called the low or lo value. A set of trajectories is always run first with survey variables
set to their starting values. After trajectories are computed for the low value, the low
value isincremented by the value of inc. If the incremental value is zero, the trajecto-
ries are only run for the low value.

After the survey value is incremented, it is compared to the high or ki value. If it ex-
ceeds the high value, then it is set equal to the high value and a flag is set indicating
that this is the last case. Then another set of trajectories is computed. This process
continues until the last case, or high value, is reached.

Specific Survey Values
Another way of specifying the survey values is to enter them directly. For example,
*survey 1 alt0 vals=30000,60000,75000

runs three cases with the initial altitude setto 30,000, 60,000, and 75,000 ft. This type
of input is used when the desired values do not fit the pattern of the first method (lo,
hi, and inc).

The two methods can be combined as follows:

*survey 1 alt0 1lo=40000, hi=80000, inc=20000
vals=35000,45000

This survey defines five values: 35000, 40000, 45000, 60000, and 80000. The val-
ues defined by the lo, hi, and inc variables are run along with the specific values given
by the vals variable. The extra values given by the vals variable are inserted in the
survey in order from lowest to highest value, so the first set of trajectories is run for
alt0=35000, the next set is run for alt0=40000, etc.

4. Problem Files
4.4. Problem Data Blocks
4.4.12. *Title Data Block

4.4,12. *Title Data Block

A problem title, consisting of one or more lines of text, is optional. If a title is sup-
plied, itis printed at the top of each page of printout and at the beginning of EGS data-
base files. A title can be used to help identify or document a problem. There is no
limit on the number of lines in a title; although the printout begins to look cluttered
with more than 5 or 6 title lines.

Titles are input as follows:

*title This is the first line of the title
this is the second line of the title
and so on, until a data block name is hit

*atmos standard

The title begins with the first nonblank character following the *title keyword, and
extends to the next valid data block keyword. In the example above, the title extends
from the word This to just before the *atmos keyword; thus, a title can contain any
text except for data block keywords. All data block keywords begin with an asterisk,
so difficulties can be avoided by not putting asterisks in front of a word in the title.

4. Problem Files
4.4. Problem Data Blocks
4.4.13. *Units/Fmt Data Block

4.4.13. *Units/Fmt Data Block

All output variables in TAOS have default units and printout formats given in the ap-
pendix. These can be changed with the *units/fmt data block. When the units of a
variable are changed, they are changed everywhere, that s, both on input and output.
For example, if the units of altitude are changed from ft to km, then everywhere alti-
tude is referenced in the table, problem, and printout files, it will be given in km
instead of fz.

Units

Units are changed by giving the variable name and its new unit. Allowable units are
given in Table 4-24. Units must be consistent; in other words, if the variable has a
distance unit such as f#, then it can only be changed to other distance units such as

nm, m, or km.
Table 4-24. Allowable Units.

Units Description Units Description
ft Feet m/sec2 Meters/second?
in Inches m/min2 | Meters/minute?
mi Statute miles m/hr2 Meters/hour?
nm Nautical miles km/sec2 | Kilometers/second?
m Meters km/min2 | Kilometers/minute?
km Kilometers km/hr2 Kilometers/hour2
sec Seconds deg/sec2 | Degrees/second?
min Minutes deg/min2 | Degrees/minute?
hr Hours deg/hr2 Degrees/hour?
deg Degrees rad/sec2 |Radians/second?
rad Radians rad/min2 | Radians/minute?
ft/sec Feet/second rad/hr2 Radians/hour?
ft/min Feet/minute rev/sec2 Revolutions/second?
ft/hr Feet/hour rev/min2 | Revolutions/minute?
in/sec Inches/sec b Pounds mass
in/min Inches/min slugs Slugs
in/hr Inches/hour gm Grams
mi/sec Statute miles/second kg Kilograms
mi/min Statute miles/second Ib/sec Pounds mass/second
mi/hr Stature miles/hour Ib/min Pounds mass/minute
knots Nautical miles/hour Ib/hr Pounds mass/hour
m/sec Meters/second slugs/sec | Slugs/second
m/min Meters/minute slugs/min | Slugs/minute

4. Problem Files
4.4. Problem Data Blocks
4.4.13. *Units/Fmt Data Block

m/hr Meters/hour slugs/hr Slugs/hour

km/sec Kilometers/second glsec Grams/second
km/min Kilometers/minute g/min Grams/minute
km/hr Kilometers/hour g/br Grams/hour
deg/sec Degrees/second kg/sec Kilograms/second
deg/min Degrees/minute kg/min Kilograms/minute
deg/hr Degrees/hour kg/hr Kilograms/hour
rad/sec Radians/second Ibf Pounds force
rad/min Radians/minute n Newtons

rad/hr Radians/hour kn Kilonewtons
rev/sec Revolutions/sec 1bf/f2 Pounds force/inch?
pm Revolutions/minute psi Pounds force/inch?
g G’s pascal Pascals

f/sec2 Feet/second? kpascal Kilopascals
ft/min2 Feet/minute? 1/in Per inch

ft/hr2 Feet/hour? Ut Per foot

in/sec2 Inches/sec? l/m Per meter

imin2 | Inches/min? ft2/sec Feet?/second
in/hr2 Inches/hour? m2/sec Meter?/second
mi/sec2 Statute miles/second? | 1b/ft3 Pounds mass/feet>
mi/min2 | Statute miles/minute? |1b/m3 Pounds mass/meter®
mi/hr2 Statute miles/hour? g/cm3 Grams/centimeter3
nm/hr2 Nautical miles/hour? kg/m3 Kilograms/meter3

The aerodynamic reference area Syris not a standard output variable, but its units can
be changed with the *units/fmt data block. Its default units are fz (ft2), but these units
can be changed by giving a different distance unit. For example,

*units/fmt sref in

changes the units of Sy to in?.

Output Format

Printout format only affects output files, but it affects all output files including plot
files and EGS database files. It is given by the letter e or f, followed by a period, fol-
lowed by a number. The letter tells whether the variable is printed in e~format or f—
format. E-format is commonly used in computers for scientific notation; for exam-
ple, the number 250 is printed as 2.50e02 where €02 means x102. F-format prints
numbers the standard way, that is, 250 is printed as 250. The number following the
period tells how many digits are printed following the decimal point.

4. Problem Files
4.4. Problem Data Blocks
4.4.13. *Units/Fmt Data Block

The data block

*units/fmt alt km £.
vel m/s f£.
range km
mach e.5

3
2

changes the units or output format for four variables. The units of altitude are
changed to km and it is printed with three decimal places. Velocity is changed to m/s
and is printed with two decimal places. The units of range are changed to km, and the
default format is used. The units of Mach number are not changed (it is nondimen-
sional), but it is printed with five decimal places in scientific notation.

Any number of variables can be changed within the data block. The variable’s units
can be changed, its output format can be changed, or both can be changed. If both
the units and the output format are changed, the new units must be given first, fol-
lowed by the new output format as shown in the example above.

The output format of user—defined variables can be controlled with the *units/fint
data block as shown above. But the units for a user—defined variable cannot be
changed because TAOS does not know the original units of the variable. User—de-
fined variables must be computed with the desired units in the *define data block.

4. Problem Files
4.4. Problem Data Blocks
4.4.14. *Wind Data Block

4.4.14. *Wind Data Block

Atmospheric winds with respect to the earth’s surface can be defined with a *wind
data block. If a *wind data block is not input, then all wind velocities are set to zero.
Winds are divided into a vertical component and a horizontal component which can
be defined as a wind velocity and heading or as east and north components. Winds
can be defined in either the local geocentric or geodetic horizon coordinate system.

Wind heading is the direction the wind is from measured clockwise from north as
shown in Figure 4-13. For example, a heading of 180° means the wind is from the
south, thatis, it moves from south to north. Similarly, the wind east component is pos-
itive when the wind is from the east or moving from east to west. The wind vertical
component is positive when the air movement is towards the ground or downward.

North 4

Wind
Vector

East

Figure 4-13. Wind Horizontal Component Direction.

The wind data block begins with the keyword *wind followed by the keyword geo-
centric or geodetic giving the coordinate system. Three variables and their values
from Table 4-25 are given next. The three variables in the first column can be given,
or the ones in the second column can be given, but not both.

Table 4-25. Wind Data Block Variables.

Variable {Description Variable |Description

windv Total horizontal wind velocity winde East wind velocity component

windh Horizontal wind heading windn North wind velocity component

windd Wind velocity component windd Wind velocity component
towards earth center towards earth center

Wind values can be constants or they can be table identification names enclosed in
parentheses. TAOS keys on the parentheses to decide whether a table identification
name or a constant has been input. Winds that are a function of a state variable, such
as altitude or time, can be input with tables.

The following wind data block

*wind geodetic windv=(winds) windh=90 windd=0

4. Problem Files
4.4. Problem Data Blocks
4.4.14. *Wind Data Block

says the wind horizontal velocity is interpolated from a table named winds, the wind
is from the east (it moves east to west) and there is no vertical wind component. The
winds are defined in the local geodetic horizon coordinate system.

4. Problem Files
4.5. Examples

4.5. Examples

The previous sections have given detailed descriptions of each data block that can
be used in a problem file, but it is not obvious how to put the data blocks together to
calculate trajectories. So this section presents four example problems showing how
to set up a complete trajectory problem. It also illustrates some of the capabilities in
TAOS. '

The first example calculates a set of simple ballistic reentry trajectories and it shows
how surveys and summary variables can be used for tradeoff studies. Although this
is a simple problem, it shows the overall structure of a problem file. Problems for
more complex trajectories follow the same structure.

The second example calculates the trajectory of a rail-launched ballistic missile and
uses optimization to solve for trajectory constraints. This problem illustrates multi-
ple trajectories, multiple segments, and simple use of optimization.

The third example computes an intercept of a ballistic missile from long range with
optimization. This is a more complex problem where optimization is used to shape
the trajectory to hit the target.

The last example is also an intercept, but one of the intercept guidance algorithms
is used instead of optimization to calculate the intercept trajectory.

The processing time or run time required for each problem is given for a Silicon
Graphics Indigo—2 workstation with an 200Mhz R4400 processor.

4. Problem Files
4.5. Examples
4.5.1. Ballistic Reentry

4.5.1. Ballistic Reentry

One of the simplest problems for TAOS is a ballistic reentry. Ballistic flight occurs
when all of the control variables (angle of attack, angle of sideslip, bank angle, and
power setting) are zero so no guidance rules are required. If the vehicle’s configura-
tion is assumed to remain the same throughout reentry, its trajectory can be modeled
with one segment that starts from the entry point and continues to impact.

Table File

The only forces acting on the vehicle are from aerodynamic drag and gravity so only
a drag table is required. For conceptual design drag is often assumed to be only a
function of Mach number because altitude effects are usually small. The following
simple table file contains the axial force coefficient as a function of Mach number:

(ca_ex_1)

table ca (mach) sref=2.1817

mach = 6.000, 8.000, 10.000, 12.000, 14.000,
16.000, 18.000, 20.000
ca = 0.0950, 0.0742, 0.0643, 0.0587, 0.0553,

0.0528, 0.0513, 0.0503

Problem File

The following problem file is used to calculate a set of ballistic reentry trajectories:
(ballistic)
*title Ballistic reentry trajectories

*atmos standard
*earth wgs—-84 omega=0

*trajectory 1 RV start on 1

*initial geodetic
long=0.0 lat=0.0 psi=90.0 time=0.0
alt=300000 vel=surv-2 gama=surv-1 wt=550.0

*print time alt range vel dynprs nx

*segment 1 Ballistic
*integ dtprnt=0.50 dt=0.10
*aero ca=(ca_ex_1)
*when alt<0 stop

*survey 1 gentry vals=-20,-25,-30,-35
*survey 2 ventry 1o=15000 hi=18000 inc=1000

4. Problem Files
4.5. Examples
4.5.1. Ballistic Reentry

*summarize max_g
add max(dynprs[11)

*summarize max_g
add min(nx[1])
neg

*egs exl.dbf time alt range vel dynprs nx
*end

Like all problems, it begins with a name enclosed in parentheses. This is followed
by data blocks that provide a title, an atmosphere model, and an earth model.

This problem involves only one vehicle so a single trajectory has been defined that
starts with segment number 1. The trajectory definition extends from the *trajectory
keyword to the first *survey keyword. Data blocks within the trajectory definition
have been indented to show the problem structure.

Trajectory Definition and Surveys

Trajectories require initial conditions and at least one segment definition. Since this
problem has only one trajectory, specific initial conditions must be given. It cannot
be initialized from another trajectory because no other trajectories exist.

This set of trajectories is generic in that the location of the trajectory on the earth’s
surface and the direction of the trajectories is not important. Thus, the initial latitude
and longitude can be set to zero and an initial heading angle of 90° (east) can be cho-
sen. This is typical of trajectories calculated during conceptual design.

Two of the initial conditions, velocity and flight path angle, are set to survey vari-
ables. The *survey data blocks near the end of the problem provide values for these
variables. Survey number 1, which varies the initial flight path angle, is the inner loop
and has a set of specific values. Survey number 2, which varies the initial velocity,
is the outer loop. Its values have been given in the “lo, hi, inc” form so initial velocity
takes on the values 15,000, 16,000, 17,000, and 18,000 ft/sec.

In general, trajectories must have a *print data block giving a list of variables that
will be written to the printout file. Often this is the same list of variables written to
the EGS database file.

This trajectory only requires one segment. The *integ data block is used to enter an
integration step size and a print interval, and an *aero data block is used to provide
the name of the drag table. The segment final condition ends the trajectory when the
altitude becomes less than zero.

Summary variables have been defined for the maximum dynamic pressure, max_g,
and the maximum axial g loading, max_g. Even though there is only one trajectory,
trajectory numbers are still required in the summary variable definitions. In this case,
the trajectory numbers are given as subscripts enclosed in brackets. The vehicle is

4. Problem Files

4.5. Examples
4.5.1. Ballistic Reentry

decelerating giving negative axial g’s so the min function is used to select the most
negative value and then the neg operation is used to convert this to a positive number.

The *egs data block is used to create an EGS database file so the trajectory informa-
tion can be plotted. The names given in the *survey data block, gentry and ventry,
appear in the EGS database file and are used for plotting.

Results

This problem calculates 16 trajectories, one for each combination of survey values.
On a Silicon Graphics workstation, the problem runs in about 9 seconds so it takes
a little over 0.5 seconds to compute each trajectory.

The following listing is typical of the trajectory printout for this problem:

Sandia National Trajectory Analysis & Optimization Software
Laboratories {TAOS ~ Version 96.0)

Ballistic reentry trajectories
Problem (ballistic) / 1976 US Standard Atmosphere / Non-rotating WGS-84 BEarth

Trajectory for vehicle: rv

ventry = 15000 gentry = ~35
Time Alt Range Vel Dynprs Nx
0.000 300000.0 0.000 15000.00 0.575 -0.0001
0.500 295695.2 1.011 15008.98 0.729 -0.0002
1.000 291384.3 2.023 15017.97 0.922 -0.0002
1.500 287067.3 3.034 15026.96 1.167 -0.0002
2.000 282744.3 4.046 15035.97 1.478 -0.0003
2.500 278415.3 5.058 15044.99% 1.847 -0.0004
3.000 274080.2 6.070 15054.02 2.298 ~0.0005
3.500 269739.0 7.083 15063.06 2.852 -0.0006
4.000 265391.8 8.096 15072.10 3.532 -0.0007
4.500 261038.6 9.108 15081.16 4.362 -0.0009
5.000 256679.2 10.121 15090.22 5.375 -0.0011
5.500 252313.8 11.135 15099.29 6.609 -0.0014
6.000 247942.4 12.148 15108.36 8.107 -0.0017
6.500 243564.9 13.162 15117.44 9.924 -0.0021
7.000 239181.3 14.176 15126.53 12.122 -0.0026
7.500 234791.7 15.190 15135.61 14.763 -0.0031
8.000 230396.0 16.204 15144.70 17.860 -0.0038
8.500 225994.2 17.219 15153.79 21.547 -0.0046
9.000 221586.4 18.234 15162.87 25.925 ~0.0055
9.500 217172.5 19.248 15171.95 31.109 -0.0066
10.000 212752.5 20.264 15181.02 37.234 -0.0080
10.500 208326.6 21.279 15190.08 44.454 -0.0095
11.000 203894.5 22.294 15199.12 52.946 ~0.0114
11.500 199456.4 23.310 15208.14 62.912 ~0.0136
12.000 195012.3 24.326 15217.14 74.584 -0.0161
12.500 190562.2 25.342 15226.10 88.224 -0.0191
13.000 186106.1 26.359 15235.01 104.134 -0.0226
13.500 181644.0 27.375 15243.88 122.654 -0.0267
14.000 177175.9 28.392 15252.69 144.171 -0.0314
14.500 172701.8 29.409 15261.43 169.124 -0.0369
15.000 168221.8 30.426 15270.08 198.292 -0.0434
15.500 163735.9 31.443 15278.63 235.270 -0.0515
16.000 159244.1 32.461 15287.04 279.221 -0.0611
16.500 154746.5 33.478 15295.30 332.102 -0.0726
17.000 150243.2 34.496 15303.36 400.575 -0.0874

This page corresponds to the first trajectory computed by TAOS which is for an initial
velocity of 15,000 ft/sec and an initial flight path angle of —35°.

The summary variables are tabulated as a function of the survey variables on the last
printout page as follows:

4. Problem Files
4.5. Examples
4.5.1. Ballistic Reentry

Sandia National Trajectory Analysis & Optimization Software
Laboratories {(TAOS — Version 96.0)

Ballistic reentry trajectories
Problem (ballistic) / 1976 US Standard Atmosphere / Non-rotating WGS-84 Earth

Summary Variables:

ventry gentry max_g max_q
15000 ~35.000 34.481 129020
15000 ~30.000 31.951 117570
15000 -25.000 28.690 105508
15000 ~-20.000 25.567 93019
16000 -35.000 37.581 147262
16000 -30.000 34.986 133858
16000 -25.000 31.498 119649
16000 -20.000 27.428 104853
17000 =-35.000 41.352 166764
17000 -30.000 37.914 151231
17000 -25.000 34.284 134723
17000 ~20.000 29.700 117416
18000 -35.000 45.204 187562
18000 =-30.000 41.533 169742
18000 ~25.000 36.976 150720
18000 -20.000 31.966 130690

The trajectory data is plotted with EGS in Figures 4-14 through 4-17. The first two
figures show four trajectories for different initial flight path angles and a constant ini-
tial velocity. The last two figures show the summary variables plotted as a function
of the survey variables.

300000

TR
NN
. \\\\\\\

100000 702857 N NN
' A
50000 AN N

INANANAN

0 20 40 60 80 100 120 140
Range (nm)

Initial Velocity
16,000 ft/sec

Figure 4-14. Altitude versus Range for Example Ballistic Trajectories.

4. Problem Files
4.5. Examples
4.5.1. Ballistic Reentry

18000 :
Initial Velocity

16,000 ft/sec
16000 T NN e~

Wy \\\ N\
| A

BRI

10000

~25°

-20°

0 10 20 30 40 50 60
Time (sec)

Figure 4-15. Velocity versus Time for Example Ballistic Trajectories.

200000 : s
Maximum Initial Velocity
Dynamic \ (ft/sec)
~
Pressure 18,000
S
(psf) 150000 e
\ 17,000
~— ™
16,000
\ \\
15,000 \\
\
100000
<z
50000 . .
—40 -35 -30 -25 —20 -15

initial Flight Path Angle (deg)

Figure 4-16. Maximum Dynamic Pressure for Example Ballistic Trajectories.

4. Problem Files
4.5. Examples
4.5.1. Ballistic Reentry

50

45 Initial Velocity
\ (ﬂ/sec)
\ g

Maximum 40 S 18
Axial] _ \17000\\
G % 16 ooo T

\\ ' \\\

3 15,000 SN .

\\\
25
-40.0 -35.0 -30.0 -25.0 —-20.0 -15.0

Initial Flight Path Angle (deg)

Figure 4-17. Maximum Axial G's for Example Ballistic Trajectories.

4. Problem Files

4.5. Examples
4.5.2. Ballistic Rocket

4.5.2. Ballistic Rocket

This example problem simulates a two—stage ballistic rocket trajectory which maxi-
mizes impact velocity. The rocket is rail launched, but the best launch-rail elevation
angle is unknown. The second stage is fired downward after apogee to increase im-
pact velocity, but the time of firing and the vehicle orientation at firing are unknown.
Payload separation needs to occur above the atmosphere and second stage burnout
needs to occur before this. A final constraint is that the range of the trajectory must
be 60 nm. Optimization is used to solve for these unknown values to meet the
constraints. The trajectory of the first—stage booster after separation is calculated in
addition to the basic vehicle to illustrate multiple—vehicle calculations.

The first stage of the rocket has a Castor main motor with two smaller Recruit motors.
The Recruits are jettisoned after they burnout at 3 seconds. The Castor motor contin-
ues to burn for about 40 seconds. The first stage has fins for aerodynamic spin stabil-
ity so it is not separated until the vehicle is above the atmosphere which is assumed
to be 300,000 ft. After first stage separation, the second stage is pointed with an atti-
tude control system to its firing orientation. The vehicle coasts past apogee and then
fires the second stage motor. Some time is allowed after second stage burnout to
make sure the motor is no longer thrusting. Then, the payload separates and reenters
the atmosphere. :

Table files required for this problem are not given because they are too large. Tables
are required for the thrust and mass flow of the first and second stage motors. Sepa-
rate drag tables are required for all of the vehicle’s configurations. Drag is different
depending on whether a motor is firing or not, so separate tables are also required for
boosting and coasting.

Problem File
The problem file appears as follows:
(rocket)

*title Trajectory for a Ballistic Sounding Rocket
2nd Stage Fires Down to Maximize Velocity

*atmos standard
*earth wgs-84 omega=0

*trajectory 1 Rocket start on 1
*initial geodetic
long=0.0 lat=0.0 psi=90.0 time=0.0
alt=0.0 vel=0.0 gama=opta-1 wt=12000.0

*print time alt vel range gamgd pitchgd wt

*segment 1 1st stage ignition to first movement
*integ dtprnt=0.1 dt=0.001

4. Problem Files
4.5. Examples
4.5.2. Ballistic Rocket

*aero ca=(ca_lst_recruits)

*prop thrust={(castor_thr) mdot=(castor_mdt)
*prop thrust=(recruits_thr) mdot=(recruits_mdt)
*rail launch cfstat=0.15 <¢fslid=0.01

*when vel>0.001 goto 2

*segment 2 Rail launch
*integ dtprnt=0.1 dt=0.01
*aero ca={ca_lst_recruits)
*prop thrust={castor_thr) mdot=(castor_mdt)
*prop thrust=(recruits_thr) mdot=(recruits_mdt)
*rail launch cfstat=0.15 c¢fslid=0.01
*when plength>25.0 goto 3

*segment 3 Recruits & 1lst stage burn
*integ dtprnt=0.5 dt=.05
*aero ca=(ca_lst_recruits)
*prop thrust=(castor_thr) mdot=(castor_mdt)
*prop thrust={recruits_thr) mdot=(recruits_mdt)
*when time>3.0 goto 4

*segment 4 Jetison recruits, continue 1lst stage burn
*integ dtprnt=0.5 dt=.10
*increment wt=-350.0
*aero ca={ca_lst_stage)
*prop thrust=(castor_thr) mdot={(castor_mdt)
*when time>40.0 goto 5

*segment 5 Coast
*integ dtprnt=1.0 dt=0.20
*aero ca={(ca_lst_off)
*when alt>300000 goto 6
*when gamgd<0 goto 6

*segment 6 Stage and coast, allow time for orientation
*integ dtprnt=1.0 d4t=0.20
*reset wt=1650.0
*aero ca=(ca_2nd_off)
*when tseg>30.0 goto 7

*segment 7 Orientation correct, coast until ready to fire
*integ dtprnt=1.0 dt=0.20
*aero ca={(ca_2nd_off)
*fly pitchgd = opta-2
*fly vyawgd =
*fly rollgd = *
*when tseg>opta-3 goto 8

* 1

*segment 8 Fire 2nd stage
*integ dtprnt=1.0 4t=0.10
*reset tmark=0
*aero ca=(ca_2nd_stage)
*prop thrust=(orbus_thr) mdot=(orbus_mdt)
fly pitchi=~
fly yawi=

4. Problem Files

4.5. Examples
4.5.2. Ballistic Rocket

fly rolli=
*when tseg=41.5 goto 9

*segment 9 Coast to payload separation
*integ dtprnt=0.5 dt=0.20
*aero ca=(ca_2nd_off)
*when alt<300000 goto 10

*segment 10 Release payload & fly to impact
*integ dtprnt=0.5 dt=0.10
*reset wt=350
*aero ca={(rv)
*when alt<0 stop

*trajectory 2 Booster start on 1

*initial from trajectory 1, segment 6
*print time alt vel range gamgd pitchgd wt thrust nx dynprs

*segment 1 Ballistic
*reset wt=2100.0
*integ dtprnt=0.5 dt=0.20
*aero ca=(ca_lst_tumble)
*when alt<0 stop

*optimize a for vel=max on segment 10, trajectory 1

constrain alt=450000 on segment 8
constrain range=60 on segment 10

fref=10000 maxitr=30 tol=5.0e-7

par-1 = 85.0 lo-1 = 80.0 hi-1 = 86.0
par-2 = -90.0 lo-2 = -120.0 hi-2 = -70.0
par-3 = 200.0 lo-3 = 150.0 hi-3 = 500.0

*egs ex2.dbf
time alt vel range gamgd pitchgd wt thrust nx dynprs

*end

The problem file begins, like all problems, with a name, title, atmosphere model, and
earth model. The first trajectory simulates the entire flight and the second trajectory
simulates the first stage booster as it falls to earth after separation.

Rail Launch

The initial conditions for the first trajectory position the vehicle at a zero longitude
and latitude and start the vehicle heading east because a specific launch site has not
been selected yet. The launch elevation angle has been set to an optimization parame-
ter because the best value is unknown.

The first trajectory is divided into 10 segments. The first two segments simulate a rail
launch. Two segments are used because the coefficient of friction changes instanta-

4. Problem Files
4.5. Examples
4.5.2. Ballistic Rocket

neously when the vehicle begins moving. The first segment simulates the time from
ignition until the thrust overcomes the static friction force and gravity. The vehicle
has just started to move at the end of the first segment. The second segment continues
the rail launch to the end of the rail given by the plengrh final condition.

1st Stage Burn

The third segment computes the trajectory from the end of the launch rail to the time
when the Recruit motors are jettisoned. During the first three segments, the Castor
and Recruits are burning. The motor thrust and mass flow data for the Castor and the
Recruits are in separate table files so two *prop data blocks are used to interpolate
data for both motors and add them together to get the total thrust.

The Recruits are jettisoned at the beginning of the fourth segment; the *increment
data block is used to account for the weight change. Since the vehicle’s configuration
changes, different drag tables must be used for this segment. The Recruit thrust and
mass flow tables are no longer included because the motors have been jettisoned.

The vehicle coasts up to an altitude of 300,000 ft to get above the atmosphere in seg-
ment 5. No propulsion tables are given and the drag table has been changed for the
power—off condition. An extra final condition, gamgd<0, has been included so the
segment will terminate if the vehicle does not reach an altitude of 300,000 ft. This
is a safeguard to prevent a possible infinite segment.

The first stage is separated from the vehicle at the beginning of segment 6. Segment
6 provides a margin of 30 seconds for the attitude control system to orient the vehicle
in preparation for the second stage firing.

2nd Stage Burn

In segment 7 the vehicle is assumed to be oriented correctly for second stage firing.
Although 30 seconds has been allowed for orientation in segment 6, this example as-
sumes it occurs instantaneously between segments 6 and 7. In segment 6 the body
is aligned with the velocity vector, whereas in segment 7 it is oriented at some angle
relative to the inertial platform. This angle is unknown so it becomes an optimization
parameter that will be varied. Furthermore, the vehicle must coast for an unknown
amount of time before firing the second stage motor so the segment final time be-
comes another optimization parameter.

The second stage motor is fired in segment 8. The vehicle’s inertial attitude is held
constant in this segment with the pitchi, yawi, and rolli guidance rules. The asterisk
values pick up the values of pitchi, yawi, and rolli from the end of the previous seg-
ment and use them in this segment.

Segment 9 accounts for the time between second stage burnout and payload separa-
tion. The minimum altitude for payload separation is 300,000 ft. Finally, the payload
flies a ballistic trajectory to impact in segment 10.

4-101

4. Problem Files
4.5. Examples
4.5.2. Ballistic Rocket

Trajectory Number 2

The second trajectory gets its initial conditions from the vehicle’s state at the begin-
ning of segment 6 when first stage separation occurs. The second trajectory contains
only one segment because it just tracks the empty first-stage motor from separation
to impact. No significant events occur during this period.

Optimization

The *optimize data block defines the objective function to be maximum velocity, and
the trajectory is constrained to have a final range of 60 nm and a final altitude at the
end of the second stage burnout (segment 8) of 450,000 ft. The objective function is
normalized by a reference factor of 10,000 with the variable fref and a maximum of
30 iterations is specified. This problem only has three optimization parameters so it
should not require many iterations to converge.

Initial estimates and upper and lower limits are given for each optimization parame-
ter. Some preliminary runs were made with optimization turned off (maxitr=0) to de-
termine initial estimates for the optimization parameters. These estimates do not
have to be that accurate; they just need to result in a reasonable trajectory.

Results

The problem requires 12 iterations to converge and takes 5 minutes and 30 seconds
to run on a Silicon Graphics workstation. The following listing shows the printout
for the first part of the trajectory:

sandia National Trajectory Analysis & Optimization Software
Laboratories (TAOS - Version 96.0)

Trajectory for a strypi Sounding Rocket
2nd Stage Fires Down to Maximize Velocity

Problem (rocket) / 1976 US sStandard Atmosphere / Non-rotating WGS-84 Earth

Trajectory for vehicle: rocket

Time Alt Vel Range Gamgd Pitchgd we
0.000 0.0 0.00 0.000 86.000 86.000 12000.00
0.003 0.0 0.00 0.000 86.000 86.000 11999.88
0.003 0.0 0.00 0.000 86.000 86.000 11999.88
0.100 0.9 24.03 0.000 86.000 86.000 11955.09
0.200 5.0 58.78 0.000 86.000 86.000 11892.52
0.300 12.6 93.20 0.000 86.000 86.000 11830.77
0.400 23.6 127.64 0.000 86.000 86.000 11769.26
0.410 24.9 131.12 0.000 86.000 86.000 11763.05
0.410 24.9 131.12 0.000 86.000 86.000 11763.05
0.500 38.1 162.51 0.000 85.920 85.920 11707.29
1.000 163.6 340.29 0.002 85.638 85.638 11395.82
1.500 374.7 504.53 0.005 85.467 85.467 11111.35
2.000 654.4 603.99 0.008 85.335 85.335 10930.61
2.500 971.3 666.74 0.013 85.216 85.216 10806.96
3.000 1318.5 726.75 0.018 85.104 85.104 10687.55
3.000 1318.5 726.75 0.018 85.104 85.104 10337.55
3.500 1696.2 789.54 0.023 84.999 84.999 10219.84

4-102 ..

4. Problem Files
4.5. Examples
4.5.2. Ballistic Rocket

4.000 2105.0 852.23 0.029 84.5900 84.900 10102.67
4.500 2545.0 914.74 0.035 84.807 84.807 9986.03
5.000 3015.9 976.72 0.042 84.718 84.718 9869.69
5.500 3517.4 1037.38 0.050 84.633 84.633 9753.27
6.000 4048.3 1095.48 0.058 84.552 84.552 9636.77
6.500 4607.4 1151.07 0.067 84.473 84.473 9520.20
7.000 5194.1 1206.79 0.077 84.397 84.397 9403.54
7.500 5808.5 1263.11 0.087 84.324 84.324 9286.81
8.000 6451.1 1320.11 0.097 84.253 84.253 9170.00
8.500 7122.1 1377.80 0.108 84.185 84.185 9053.11
9.000 7822.0 1436.31 0.120 84.118 84.118 8936.14
9.500 8551.0 1495.79 0.133 84.054 84.054 8819.09%
10.000 9309.5 1556.42 0.146 83.991 83.991 8701.97
10.500 10099.1 1618.37 0.159 83.930 83.930 8584.76
11.000 10919.4 1681.57 0.174 83.871 83.871 8467.48
11.500 11771.3 1745.98 0.189 83.813 83.813 8350.12

Figures 4-18 and 419 show plots of the two trajectories created from the EGS data-
base file. The solid line represents the trajectory of the main vehicle and the dotted
line represents the trajectory of the first—stage booster.

800000
600000 / \ - 1ststage ..,
Altitude
() "
400000 / Main -
vehicle \

200000 \

o 10 20 30 40 50 60
Range (nm)

Figure 4-18. Altitude versus Range for Example Ballistic Rocket.

4-103

4. Problem Files

4.5. Examples
4.5.2. Ballistic Rocket
12000
A Main
10000 / vehicle 1
8000
Velocity ;
(ft/sec) .
6000 /A\ / e
o) [
/ \ / .~ 1ststage
2000 K \/ booster
0 v v v v v
(] 100 200 300 400 500

Time (sec)

Figure 4-19. Velocity versus Time for Example Ballistic Rocket.

4. Problem Files
4.5. Examples
4.5.3. Air-Launched Intercept

4.5.3. Air-Launched Intercept

This example simulates an air-launched interceptor flying against a single-stage
ballistic missile target. The interceptor is a two—stage missile with a kill vehicle de-
signed to hit the target just after its boost phase. In this simulation, all interceptor ma-
neuvers are made while the two stages are firing; the kill vehicle coasts ballistically
to intercept the target. The terminal guidance system on the kill vehicle is not simu-
lated. The goals are to determine the interceptor standoff range or launch point and
the velocity at intercept.

The targetis launched at time zero. It is rail-launched for simplicity and flies ballisti-
cally. The interceptor is launched 25 seconds later and intercept is assumed to occur
90 seconds after target launch; thus, the interceptor flies 65 seconds. Angle of attack
is used to steer the interceptor towards the target and it is assumed that a control sys-
tem, such as thrust vector control, is capable of generating these angles of attack.

The table files are not listed because they are lengthy and do not help to understand
the problem. Thrust and mass flow data for both stages of the interceptor and for the
target are included in the tables. The interceptor requires drag and lift tables because
it maneuvers with angle of attack. The target only requires drag tables because it flies
ballistically.

Problem File
A listing of the problem file follows:
(intercept)

*title Ballistic Missile Intercept

*atmos standard
*earth wgs-84 omega=0

fommm Interceptor Trajectory
*trajectory 1 Interceptor start on 1
*define alt_km

alt_km = alt/3280.84;
*define rng_km

rng_km = range*1.852;
*dwn/crs long=0.0 1latgd=0.0 azm=90.0

*initial geodetic

long=opta-13 lat=0.0 psi=-90.0
time=25.0 range=0.0 gama=0.0
alt=35000.0 vel=730.0 wt=1965.0

*print time east alt vel gamgd alpha dynprs

4-105

4. Problem Files
4.5. Examples
4.5.3. Air-Launched Intercept

*segment 1 Drop for 2 sec
*integ dtprnt=0.50 4dt=0.10
*cg cg=134.0
*aero ca={(stagel_ca_off) c¢n=(stagel_cn)
*when tseg=2 goto 2

*segment 2 1st stage burn
*integ dtprnt=0.5 dt=0.10
*cg cg=119.8
*aero ca=(stagel_ca_on) cn=(stagel_cn)
*prop thrust=(thrustl) mdot (mdotl)
*fly alpha vrs tseg
opta-1 0.0
opta-2 1.25
opta-3 2.50
opta-4 3.75
opta-5 5.00
*when tseg=5.0 goto 3
*when alt<0 goto 8

*segment 3 Coast
*integ dtprnt=0.5 dt=0.10
*cg cg=105.7
*aero ca=(stagel_ca_off) cn=(stagel_cn)
*when tseg=0.25 goto 4
*when alt<0 goto 8

*segment 4 Stage and coast
*integ dtprnt=0.5 d4t=0.10
*reset wt=368.0
*cg cg=61.6
*aero ca=(stage2_ca_off) cn=(stage2_cn)
*when tseg=0.25 goto 5
*when alt<0 goto 8

*segment 5 2nd stage burn
*integ dtprnt=0.5 dt=0.10
*cg cg=57.2
*aero ca=(stage2_ca_on) cn=(stage2_cn)
*prop thrust=(thrust2) mdot (mdot2)
*fly alpha vrs tseg
opta-6 0
opta-7 2
opta-8 4
opta-9 6
8
1

C O OO0

opta-10 .
opta-11 0.0
opta-12 13.1

*when tseg=13.1 goto 6
*when alt<0 goto 8

*segment 6 Coast and stage
*integ dtprnt=0.5 dt=0.10
*cg cg=52.8

4. Problem Files
4.5. Examples
4.5.3. Air-Launched Intercept

*aero ca=(stage2_ca_off) cn=(stageZ_cn)
*when tseg=0.50 goto 7
*when alt<0 goto 8

*segment 7 Separate kill vehicle and coast
*integ dtprnt=0.5 dt=0.10
*reset wt=80.0
*cg cg=32.3
*aero ca=(payload_ca) cn={(payload_cn)
*when time=80 goto 8
*when alt<0 goto 8

*segment 8 Remove shroud and coast
*integ dtprnt=0.5 dt=0.10
*reset wt=70.0
*cg cg=18.0
*aero ca=(kkv_ca) cn=(kkv_cn)
*when time=90 stop
*when alt<0 stop

o Target Trajectory
*trajectory 2 Target start on 21

*define alt_km
alt_km = alt/3280.84;
*define rng_km

rng_km = range*1.852;
*dwn/crs long=0.0 latgd=0.0 azm=90.0

*initial geodetic

long=0.0 lat=0.0 psi=%0.0
time=0.0 range=0.0 gama=79.0
alt=0.0 vel=0.0 wt=13000.0

*print time east alt vel gamgd alpha dynprs

*segment 21 Launch
*integ dtprnt=1.0 dt=0.01
*aero ca=(target_ca_on) cn=(target_cn)
*prop thrust=(target_thrust) mdot=(target_mdot)
*rail launch cfstat=0.15 <c£s1id=0.01
*when plength > 1000.0 goto 22

*segment 22 1st stage burn
*integ dtprnt=1.0 dt=0.10
*aero ca=(target_ca_on) cn=(target_cn)
*prop thrust=(target_thrust) ' mdot=(target_mdot)
*when time>75.0 goto 23

*segment 23 Coast to intercept time
*integ dtprnt=2.0 dt=0.10
*aero ca=(target_ca) cn=(target_cn)
*when time>%0.0 goto 24

4-107

4. Problem Files
4.5. Examples
4.5.3. Air-Launched Intercept

*segment 24 Coast to impact
*integ dtprnt=2.0 dt=0.10
*aero ca=(target_ca) cn=(target_cn)
*when alt<0 stop

Optimization
*optimize a for vel=max on segment 8, trajectory 1

constrain alt[l] on segment 8 = alt[2] on segment 23
constrain long[l] on segment 8 = long[2] on segment 23

fref=10000 maxitr=60 integ=0
par-1=9.9 lo-1=-10.0 hi-1=10.0
par-2=9.9 lo-2=-10.0 hi-2=10.0
par-3=9.9 lo-3=-10.0 hi-3=10.0
par-4=8.4 lo—-4=-10.0 hi-4=10.0
par-5=3.7 lo-5=-10.0 hi-5=10.0
par-6=3.7 lo-6=-10.0 hi-6=10.0
par-7=-0.5 lo-7=-10.0 hi-7=10.0
par-8=-2.0 lo-8=-10.0 hi-8=10.0
par-9=-4.2 lo-9=-10.0 hi-9=10.0
par-10=-5.0 1o0-10=-10.0 hi-10=10.0
par-11=-6.5 lo-11=-10.0 hi-11=10.0
par-12=-8.3 lo-12=-10.0 hi-12=10.0
par-13=3.50 lo-13=1.0 hi-13=6.0

*egs ex3.dbf time alt east alt_km rng_km vel
*end

Trajectory number 1 simulates the interceptor with 8 segments and trajectory number
2 simulates the target with 4 segments. This problem is set up similarly to previous
examples so only the differences are discussed.

Optimization

The main feature of this problem is the use of optimization to calculate the shape of
the intercept trajectory. Segments 2 and 5 in the first trajectory, representing the burn
times of the first and second stages, have guidance rules with angle—of-attack time
histories. All of the angle—of-attack values are optimization parameters. The opti-
mization procedure varies these angle—of-attack values to achieve maximum veloc-
ity at impact. Maximum velocity is used instead of maximum range because it con-
verges faster and gives similar results.

The other optimization parameter is the initial longitude of the interceptor. The target
is launched from a zero longitude and latitude heading east. The interceptor is
launched from zero latitude heading west, but its initial longitude is unknown. Its ini-
tial longitude needs to be as far east as possible and still intercept the target 90 se-
conds after launch.

4-108

4. Problem Files
4.5. Examples
4.5.3. Air-Launched Intercept

The two constraints in the *optimize data block force the intercept. These constraints
force the longitude and altitude of the two vehicles to be the same at the intercept time
of 90 seconds. The two segments referenced in the constraints have the same final
condition of time<90 seconds. Latitude is not constrained because both vehicles are
traveling along the equator. The example has been set up as a two—dimensional prob-
lem so latitude is, by definition, the same for both vehicles.

The initial values for the optimization parameters are determined by using trial and
error from some preliminary runs with optimization turned off. This is not too diffi-
cult because the starting trajectory does not have to be close to the final one; it just
needs to have similar characteristics.

The optimization control variable integ can be set to zero in this problem to reduce
the run time because the target trajectory is always the same. The intercept occurs at
afixed time of 90 seconds so the target trajectory only needs to be computed one time.
It never changes so there is no need to recompute it each iteration during optimiza-
tion.

Other Features

Two user—defined variables are defined, alt_km and rng_km, that calculate the alti-
tude and range in kilometers instead of nautical miles. User—defined output variables
are used to change the units of these two variables because use of the *units/fmt data
block changes the units for all references of altitude. The aerodynamic tables are a
function of altitude and assume that altitude is given in feet. The initial altitude for
trajectory 1is also given in feet. If the *units/fmt data block is used to change altitude
to kilometers, these values would have to be changed to kilometers. The easiest solu-
tion is to calculate a user—defined variable and use it for the printout and plot files.

A common feature of multiple-trajectory problems is a *dwn/crs data block in each
trajectory that sets the reference point of the east/north coordinate system. For multi-
ple-trajectory problems, the east/north coordinate system is ideal for showing the
relationships between trajectories, but the same coordinate system must be used for
all trajectories. The default location of this coordinate system is different for each tra-
jectory (at the beginning of each trajectory) so this is changed with a *dwn/crs data
block to the same point.

Results

This problem converges after 50 iterations and requires 11 minutes and 30 seconds
to run on a Silicon Graphics workstation. The following printout shows the first part
of the interceptor trajectory:

Sandia National Trajectory Analysis & Optimization Software
Laboratories {TAOS -~ Version 96.0)

Ballistic Missile Intercept

Problem (intercept) / 1976 US Standard Atmosphere / Non-rotating WGS-84 Earth

4. Problem Files
4.5. Examples
4.5.3. Air-Launched Intercept

Trajectory for vehicle: interceptor

Time Bast Alt Vel Gamgd Alpha Dynprs
25.000 159.002 35000.0 730.00 0.000 0.000 196.695
25.500 158.943 34996.0 729.41 -1.259 0.000 196.406
26.000 158.883 34984.0 729.17 -2.518 0.000 196.368
26.500 158.823 34964.0 729.28 -3.776 0.000 196.580
27.000 158.763 34936.0 729.74 ~5.031 0.000 197.041
27.000 158.763 34936.0 729.74 -5.031 10.000 197.041
27.500 158.681 34917.3 1268.67 -0.035 10.000 595.968
28.000 158.554 34944.8 1842.92 3.752 10.000 1256.261
28.500 158.378 35049.1 2456.79 7.246 10.000 2223.641
29.000 158.153 35269.8 3114.68 10.914 10.000 3543.810
30.000 157.545 36269.4 4600.80 18.829 8.671 7431.352
30.500 157.159 37159.4 5470.27 22.496 7.343 10067.147
31.000 156.713 38380.8 6461.27 25.766 5.651 13247.085
31.500 156.199 39980.3 7619.95 28.215 3.596 17065.785
32.000 155.604 41995.9 9003.70 29.762 1.541 21634.940
32.000 155.604 41995.9 9003.70 29.762 0.000 21634.940
32.250 155.284 43109.6 8955.59 29.723 0.000 20293,170
32.250 155.284 43109.6 8955.59 29.723 0.000 20293.170
32.500 154.966 44215.9 8904.93 29.684 0.000 19029.550
32.500 154.966 44215.9 8904.93 29.684 0.000 19029.550
33.000 154.327 46429.8 9001.47 29.605 0.000 17489.631
33.500 153.680 48663.5 9107.63 29.528 0.000 16089.808
34.000 153.025 50919.2 9223.24 29.451 0.000 14813.096
35.000 151.688 55503.8 9481.16 29.231 ~0.483 12571.639
35.500 151.003 §7826.4 9620.92 28.956 -0.966 11584.664
36.000 150.306 60159.2 9767.44 28.569 ~1.449 10680.508
37.000 148.869 64826.9 10080.34 27.495 -2.573 9101.865
37.500 148.127 67146.0 10245.75 26.800 -3.213 8402.093
38.000 147.369 69443.7 10417.14 26.013 -3.854 7761.076
39.000 145.795 73943.9 10780.37 24.246 -4.625 6674.944
39.500 144.979 76139.1 10976.73 23.368 -4.756 6221.524
40.000 144.143 78297.8 11183.90 22.505 -4.886 5818.652
41.000 142.405 82505.7 11632.88 20.827 ~5.003 5141.478

Figure 4-20 shows a plot of the intercept trajectory. The interceptor can be launched
approximately 300 km from the target launch point and still make the intercept. This
distance is reduced if the target is not heading directly towards the interceptor or if
the intercept must occur at an earlier time. The velocity at intercept is 13,450 ft/sec.

100
80
Altitude
(km)
60
40
20

0

4. Problem Files
4.5. Examples

4.5.3. Air-Launched Intercept

T~ Target /7

T

nterceptor 1
\\

DN

/

AN

0

10 150 200
East Position (km)

250 300

Figure 4-20. Altitude versus East Position for an Intercept Trajectory.

4-111

4. Problem Files
4.5. Examples
4.5.4. Ground-Launched Intercept

4.5.4. Ground-Launched Intercept

This problem simulates a ground-launched interceptor flying against a tactical bal-
listic missile target using the predictive guidance algorithm (Section 2.5). The target
trajectory is computed from an altitude of 200,000 ft to impact. The interceptor is
launched 30 seconds after the beginning of the target trajectory. This time is chosen
so the targetis within the interceptor’s envelope. A listing of the problem file follows:

(intercept)
*title Example intercept trajectory

*atmos standard
*earth wgs-84 omega=0

*trajectory 1 missile start on 1

*initial geodetic
long=0.0 lat=0.0 psi=90.0 time=30.0
alt=0.0 vel=0.0 gama=75.0 wt=2000.0

*dwn/crs long=0.0 latgd=0.0 azm=90.0
*print time alt east vel gamgd alpha relrng[2] relvel[2]

*segment 1 Rail launch
*integ dtprnt=0.5 dt=0.05
*aero ca=(missile_on) cn=(missile_cn)
*prop thrust=25000 mdot=3.0
*rail launch cfstat=0.12 <¢£s1id=0.01
*when plength>30 goto 2

*segment 2 Ballistic to get up to speed
*integ dtprnt=0.5 dt=0.10
*aero ca={missile_on) cn=(missile_cn)
*prop thrust=25000 mdot=3.0
*when vel>2500 goto 3

*segment 3 1st stage burn, intercept
*integ dtprnt=0.5 dt=0.10 dtguid=l
*limits alphat<15
*aero ca=(missile_on) cn=(missile_cn)
*prop thrust=25000 mdot=3.0
*fly intercept=2
*when time>42.0 goto 4
*when relvel[2]>0 stop

*segment 4 coast & continue intercept
*integ dtprnt=0.5 dt=0.10 dtguid=1
*limits alphat<l15
*aero ca=(missile_off) cn=(missile_cn)
*fly intercept=2
*when relvel[2]>0 stop

4-112

4. Problem Files
4.5. Examples
4.5.4. Ground-Launched Intercept

*trajectory 2 target start on 10

*initial geodetic
long=0.35 lat=0.0 psi=-90.0 time=0.0
alt=200000 vel=4000 gama=-50.0 wt=1000.0

*dwn/crs long=0.0 latgd=0.0 azm=90.0
*print time alt east vel

*segment 10 Ballistic reentry
*integ dtprnt=0.5 dt=0.10
*aero ca=(rv)

*when alt<0 stop

*egs ex4.dbf time alt east vel
*end

Trajectory number 1 is the interceptor missile and trajectory number 2 is the target
missile. The interceptor is heading east and the target is heading west as in the pre-
vious problem. The *dwn/crs data blocks are required in both trajectories to set the
reference point for the east and north output variables.

The interceptor is rail launched and allowed to accelerate to a velocity of 2500 ft/sec
before trying to intercept the target. The launch angle of 75° is an estimated value
used to get the missile in the air.

The problem assumes constant thrust and mass flow for the interceptor missile so the
values are entered directly in the *prop data block rather than using table values. This
illustrates that any table value can be replaced with a constant number for simple
problems.

The intercept guidance rule is used in segments 3 and 4 to maneuver the missile to
hit the target. The velocity of trajectory 2, the target, relative to trajectory 1, the inter-
ceptor, is the closing velocity given by the output variable relvelf2] within trajectory
1. The subscript indicates the relative velocity of trajectory number 2. When this ve-
locity changes sign (when it is zero), the interceptor has reached its closest distance
to the target so it is used as a final condition for segments 3 and 4.

Segment 3 also has a final condition of time>42 which represents the burn time of
the motor. The time value of 42 seconds does not look correct, but the missile is
launched at a time of 30 seconds so the burn time is really 42 — 30 = 12 seconds.

Results

This problem requires 1.5 seconds to run on a Silicon Graphics workstation. The
printout for the interceptor trajectory follows:

4-113

4. Problem Files

4.5. Examples
4.5.4. Ground-Launched Intercept

Sandia National Trajectory Analysis & Optimization Software
Laboratories {(TAOS - Version 96.0)

Example intercept trajectory
Problem (intercept) / 1976 Us Standard Atmosphere / Non-rotating WGS-84 Earth

Trajectory for vehicle: missile

Time Alt Bast Vel Gamgd Alpha Relrng{2]) Relvel{2]
30.000 0.0 0.000 0.00 75.000 0.000 107129.87 -4731.568
30.402 29.0 0.000 149.21 75.000 0.000 105196.07 ~4885.690
30.402 29.0 0.000 149.21 75.000 0.000 105196.07 -4885.690
30.500 44.8 0.000 185.52 74.717 0.000 104716.17 -4923.407
31.000 178.6 0.008 370.96 73.782 0.000 102206.22 ~5116.459
31.500 400.8 0.019 556.02 73.209 0.000 99599.71 -5309.504
32.000 710.8 0.035 740.45 72.791 0.000 96896.79 -5502.083
32.500 1107.9 0.055 924.08 72.459 0.000 94097.76 -5693,880
33.000 1591.5 0.081 1106.04 72.183 0.000 91203.20 -5883.948
33.500 2160.4 0.111 1285.29 71.945 0.000 88214.29 -6071.168
34.000 2813.0 0.146 1461.56 71.736 0.000 85132.59 -6255.191
34.500 3548.0 0.186 1635.96 71.549 0.000 81959.45 -6437.020
35.000 4364.5 0.231 1808.51 71.380 0.000 78695.95 -6616.610
35.500 5261.5 0.281 1979.14 71.224 0.000 75343.25 -6793.784
36.000 6238.0 0.336 2147.95 71.081 0.000 71902.56 -6968.562
36.500 7293.2 0.396 2315.09 70.947 0.000 68375.08 -7140.967
37.000 8426.0 0.460 2480.66 70.823 0.000 64761.99 -7311.005
37.059 8564.1 0.468 2500.00 70.808 0.000 64332.43 ~7330.807
37.059 8564.1 0.468 2500.00 70.808 -7.684 64332.43 ~7330.807
37.500 9628.8 0.532 2638.96 69.181 -4.479 61063.55 =7482.917
38.000 10894.5 0.614 2799.91 68.069 -2.893 57279.49 -7652.839
38.500 12226.8 0.704 2961.40 67.313 -2.132 53411.14 -7820.130
39.000 13627.0 0.802 3122.75 66.731 -1.753 49459.73 ~7985.181
39.500 15095.5 0.907 3283.89 66.246 -1.542 45426.29 -8148.241
40.000 16632.6 1.019 3444.74 65.822 ~1.415 41311.82 -8309.294
40.500 18238.0 1.139 3605.49 65.441 -1.339 37117.30 -8468.458
41.000 19911.8 1.266 3766.34 65.093 -1.301 32843.65 -8625.841
41.500 21654.0 1.400 3927.52 64.772 -1.297 28491.74 -8781.529
42.000 23464.7 1.541 4089.26 64.470 -1.331 24062.39 -8935.589
42.000 23464.7 1.541 4089.26 64.470 -1.323 24062.39 ~8935.589
42.500 25297.3 1.686 4043.67 64.224 -1.268 19608.49 -8880.050
43.000 27106.7 1.830 4000.70 64.042 -1.221 15182.36 -8824.381
43.500 28894.8 1.974 3960.05 63.881 -1.531 10784.19 -8768.221
44.000 30662.6 2.117 3921.46 63.712 -2.479 6414.29 -8711.190
44.500 32410.5 2.259 3884.53 63.487 -6.877 2073.19 ~8653.038
44.740 33242.0 2.328 3865.29 63.249 15.000 3.51 0.000

The interceptor guidance begins at segment 3 at a time of 37.059 seconds. The guid-
ance immediately commands a pitchover with negative angle of attack and then stays
on anear straight-line path. When the interceptor nears the target, it must make more
rapid corrections. At the end of the trajectory, the interceptor is at a maximum angle
of attack of 15°. Figure 4-21 shows the east position and altitude of the two trajecto-
ries as they intercept.

4. Problem Files

4.5. Examples

4.5.4. Ground-Launched Intercept

100000 -
Target ‘
80000 /,/
Altitude e
(ft)
60000
40000~ Interceptor
7, N
/ Impact

20000

0

0.0 2.0 4.0 6.0 100

Figure 4-21. Ground-Launched Intercept Example.

East Position (nm)

4-115

4. Problem Files

Intentionally Left Blank

4-116

Variable
Name

accebx

acceby

accebz

accelx

accely

accelz

accibx

acciby

accibz

alpha

alpha_l/d

alt

altdt

ar/p

h

Appendix

Description

component of acceleration with respect to

the earth’s surface in x direction of body
coordinate system (Section 2.1.7).

component of acceleration with respect to

the earth’s surface in y direction of body
coordinate system (Section 2.1.7).

component of acceleration with respect to

the earth’s surface in z direction of body
coordinate system (Section 2.1.7).

x component of inertial acceleration in
ECFC coordinates (Section 2.1.1).

y component of inertial acceleration in
ECFC coordinates (Section 2.1.1).

z component of inertial acceleration in
ECFC coordinates (Section 2.1.1).

component of inertial acceleration in
X direction of body coordinate system
(Section 2.1.7).

component of inertial acceleration in

y direction of body coordinate system
(Section 2.1.7).

component of inertial acceleration in
z direction of body coordinate system
(Section 2.1.7).

angle of attack (Section 2.1.9)

angle of attack at maximum lift-to—drag
ratio (Section 2.4.5)

geodetic altitude (Section 2.1.6).

geodetic altitude rate (Section 2.2.3).

A-1

Default
Units

ft/sec?

ft/sec2

ft/sec?

ft/sec?
ft/sec?
ft/sec?

ft/sec2

ft/sec2

ft/sec?

deg
deg

ft

ft/sec

Decimal

Places

4

Variable Default Decimal

Name Symbol Description Units Places
alphat ar total angle of attack (Section 2.1.9). deg 3
ballistic Be ballistic coefficient (Section 2.4.5). Ibg/ft2 3
bankgc Hec geocentric bank angle (Section 2.1.9). deg 3
bankgd Hed geodetic bank angle (Section 2.1.9). deg 3
beta B sideslip angle (Section 2.1.9). deg 3
betae Be Euler sideslip angle (Section 2.1.9). deg 3
ca Ca axial-force coefficient (Section 2.3.2). 6
cd Cp drag—force coefficient (Section 2.3.2). 6
cg vehicle’s center of mass. 3
cl C lift-force coefficient (Section 2.3.2). 6
cn CN normal—force coefficient (Section 2.3.2). 6
crsmg Ars crossrange (Section 2.4.1). nm 3
cs Cs side—force coefficient (Section 2.3.2). 6
cx Cx x component of body force coefficient 6
(Section 2.3.2).
cy Cy y component of body force coefficient 6
(Section 2.3.2).
cz Cz z component of body force coefficient 6
(Section 2.3.2).
dwnrng Ars downrange (Section 2.4.1). nm 3
dynprs q dynamic pressure (Section 2.3.2). 1bg/ft2 3
east Arg- east position (Section 2.4.1). nm 3
epl] thrust vector angle between thrust vector 3
and body x axis (Section 2.3.3).
ep2 & thrust vector meridional angle in body y—z 3
plane (Section 2.3.3).
fuel Am fuel used (Section 2.2.1). Ibm 2
gamgce Yec geocentric vertical flight path angle deg 3
(Section 2.1.4).
gamgcdt 4 gc geocentric vertical flight path angle rate deg/sec 3
(Section 2.2.5).

Variable
Name

gamgd

gamgddt

" grmark

grseg

iip_azm

iip_latgd

iip_long

iip_rng

iip_time
latge
latgcdt
latgd

latgddt
Vd
long

longdt
mach
mass
mdt

north

Symbol

Yed
Ved
rs

rs

Qiip
Oiip
Aiip

Tiip

Default

Description Units
geodetic vertical flight path angle deg
(Section 2.1.6).

geodetic vertical flight path angle rate deg/sec
(Section 2.2.5).

ground range since last “mark” nm
(Section 2.2.4).

segment ground range (Section 2.2.4). nm
azimuth from origin of tangent plane deg
coordinate system to the initial impact

point (Section 2.4.4).

geodetic latitude of initial impact deg
point (Section 2.4.4).

geodetic latitude of initial impact deg
point (Section 2.4.4).

range from origin of tangent plane nm
coordinate system to the initial impact

point (Section 2.4.4).

time to initial impact point (Section 2.4.4). sec

geocentric latitude (Section 2.1.4). deg
geocentric latitude rate (Section 2.2.3). deg/sec
geodetic Jatitude (Section 2.1.6). deg
geodetic latitude rate (Section 2.2.3). deg/sec

lift~to—drag ratio (Section 2.4.5).
longitude (Section 2.1.4). deg

longitude rate (Section 2.2.3). deg/sec

Mach number (Section 2.3.2).

vehicle mass (Section 2.2.1). by,
mass rate (Section 2.2.1). Ib/sec
north position (Section 2.4.1). nm

A-3

Decimal
Places

3

Lh

W kA A AW

Variable

ntotal

nu

ny
nz

phi
pitchge
pitchgd
pitchi
plength
plmark
plseg
power

pres

psige

psigcdt

psigd

psigddt

radaspli]

Default
Descrinti Uni
magnitude of specific load factor
(Section 2.2.6).
kinematic viscosity (Section 2.3.1). ft2/sec
specific load factor in body x direction
(Section 2.2.6).
specific load factor in body y direction
(Section 2.2.6).
specific load factor in body z direction
(Section 2.2.6).
windward meridian angle (Section 2.1.9). deg
geocentric pitch angle (Section 2.1.7). deg
geodetic pitch angle (Section 2.1.7). deg

inertial platform pitch angle (Section 2.1.10). deg
path length (Section 2.2.1). ft

path length since last “mark” (Section 2.2.1). ft

segment path length (Section 2.2.1). ft
power setting (Section 2.5).

pressure (Section 2.3.1). 1bf/ft2
geocentric horizontal flight path angle deg

(Section 2.1.4).

geocentric horizontal flight path angle rate deg/sec
(Section 2.2.5).

geodetic horizontal flight path angle deg
(Section 2.1.6).

geodetic horizontal flight path angle rate ~ deg/sec
(Section 2.2.5).

aspect angle of vehicle with respect to ith deg
radar station (Section 2.4.2).

Decimal
Places

4

W H W W W W W W W W

Variable

Name

radaz[i]

radazdt[i]

radazdt2[i]

radelvfi]

radelvdt[i]

radelvdt2[i]

radmerfi]

radrng[i]}

radrngdt[i]

radrngdt2[i]

range
rcm

rcmdt

relazfi]

relelv(i]

relrng(i]

relvelfi]

Symbol

ar
ar

Gr

|47

|47

Default .
Descrinti Uni
azimuth angle relative to ith radar station deg
(Section 2.4.2).
azimuth angle rate relative to it? radar deg/sec
station (Section 2.4.2).

azimuth angle acceleration relative to it deg/sec?
radar station (Section 2.4.2).

elevation angle relative to i radar station deg
(Section 2.4.2).

elevation angle rate relative to it radar deg/sec
station (Section 2.4.2).

elevation angle acceleration relative to deg/sec?
it radar station (Section 2.4.2).

meridional angle of vehicle with respectto deg
ith radar station (Section 2.4.2).

range relative to it® radar station ft
(Section 2.4.2).

range rate relative to i radar station ft/sec
(Section 2.4.2).

range acceleration relative to i radar fi/sec?
station (Section 2.4.2).

ground range (Section 2.2.4). nm

distance from center of earth (Section 2.1.4). ft

rate of change of the distance from the center ft
of the earth (Section 4.5.5).

ith vehicle’s azimuth angle relative to the deg
body coordinate system (Section 2.4.3).

ith vehicle’s elevation angle relative to the deg
body coordinate system (Section 2.4.3).

ith vehicle’s relative range (Section 2.4.3). ft

closure velocity of it vehicle (Section 2.4.3). ft/sec

Decimal

Variable
Name

relxbli]

relybl[i]

relzbli]

reypft
tho
roligc
rollgd
rolli
segment
sndspd
temp
thrust
time
tmark

tseg

uxbx

uxby

uxbz

T

| Fprop |
t
t

t

A A
*b " *o
A A

Xp " Yo

A A
xb'z$

Default
Descripti \ Uni
component of the ith vehicle’s position ft

relative to the body in the x direction
of the body coordinate system (Section 2.4.3).

component of the ith vehicle’s position ft
relative to the body in the y direction
of the body coordinate system (Section 2.4.3).

component of the i vehicle’s position ft
relative to the body in the z direction
of the body coordinate system (Section 2.4.3).

Reynold’s number per foot (Section 2.3.2). ft}

density (Section 2.3.1). 1b/ft3
geocentric roll angle (Section 2.1.7). deg
geodetic roll angle (Section 2.1.7). deg

inertial platform roll angle (Section 2.1.10). deg

segment number
speed of sound (Section 2.3.1). ft/sec
temperature (Section 2.3.1). °R

magnitude of thrust vector (Section 2.3.3). 1bg

mission time. sec
time since last “mark”. sec
segment time. sec

component of body x axis unit vector in
x direction of ECFC coordinate system
(Section 2.1.7).

component of body x axis unit vector in

y direction of ECFC coordinate system
(Section 2.1.7).

component of body x axis unit vector in
z direction of ECFC coordinate system
(Section 2.1.7).

Decimal
Places

2

W LW O W W W I ©

A W W W N

Variable

uybx

uyby

uybz

uzbx

uzby

uzbz

vair

vel

veldt

velebx

veleby

velebz

Symbol

A A

Yp ' Xa

Default
Descripti Uni
component of body y axis unit vector in

x direction of ECFC coordinate system
(Section 2.1.7).

component of body y axis unit vector in

y direction of ECFC coordinate systcm
(Section 2.1.7).

component of body y axis unit vector in

z direction of ECFC coordinate system
(Section 2.1.7).

component of body z axis unit vector in
x direction of ECFC coordinate system
(Section 2.1.7).

component of body z axis unit vector in

y direction of ECFC coordinate system
(Section 2.1.7).

component of body z axis unit vector in
z direction of ECFC coordinate system
(Section 2.1.7).

airspeed (Section 2.1.8). ft/sec

velocity with respect to the earth’s surface ft/sec
(Section 2.1.6).

acceleration with respect to the earth’s ft/sec?
surface (Sections 2.1.1 and 2.2).

component of velocity with respect to the ft/sec
earth’s surface in x direction of body
coordinate system (Section 2.1.7).

component of velocity with respect to the ft/sec

earth’s surface in y direction of body
coordinate system (Section 2.1.7).

component of velocity with respect to the ft/sec
earth’s surface in z direction of body
coordinate system (Section 2.1.7).

Decimal

Variable Default Decimal.

Name Symbol Description Units Places

velibx V, - X component of inertial velocity in x direction ft/sec 3
of body coordinate system (Section 2.1.7).

veliby ff'l Yy component of inertial velocity in y direction ft/sec 3
of body coordinate system (Section 2.1.7).

velibz V, -z, component of inertial velocity in z direction ft/sec 3
of body coordinate system (Section 2.1.7).

vgr I Vsl ground speed (Section 2.2.4). ft/sec 2

windd a4 Vwe . Egd wind component in the geodetic z direction ft/sec 2
(Section 2.1.8).

winde 4 VWQ .)“’g 4 Wind component in the geodetic y direction ft/sec 2
(Section 2.1.8).

windn a4 Vwe . J'Egd wind component in the geodetic x direction ft/sec 2
(Section 2.1.8).

wt m-g weight (Section 2.2.1). Ibg 2

wtdt m-g weight rate or fuel flow (Section 2.2.1). Ibg/sec 3

xecfc 7 32@ component of position vector in x direction ft 2
of ECFC coordinate system (Section 2.1.1).

xecfedt Ve . ;’Ee component of velocity vector with respect ft/sec 3
to the earth’s surface in x direction of ECFC
coordinate system (Section 2.1.1).

xecfcdt2 dg - ;’é@ component of acceleration vector with ft/sec? 4
respect to the earth’s surface in x direction
of ECFC coordinate system (Section 2.1.1).

xecic 7% component of position vector in x direction ft 2
of ECIC coordinate system (Section 2.1.2).

xecicdt V-3 component of inertial velocity vector ft/sec 3

I°Xr) o, -

in x direction of ECIC coordinate system
(Section 2.1.2).

xecicdt2 d; - % component of inertial acceleration vector ft/sec2 4

in x direction of ECIC coordinate system
(Section 2.1.2).

Variable
Name
xip
xipdt

xipdt2

xtp

xtpdt

Xtpdt2

yawgc

yawgd

yawi

yecfc

yecfcdt

yecfcdt2

yecic

yecicdt

yecicdt2

Symbol

(?_?p) ° ip

—

Vl'xp
— A
a]'xp

(?_?tp) ‘ £1p

-

VI'ti

i d A

ar: Xp

Zie‘yea

~
NG
~

—

Viy;

— A

ar°yr

Default
D tion Uni

component of position relative to the inertial ft
platform x direction (Section 2.1.10).

component of inertial velocity in the inertial ft/sec
platform x direction (Section 2.1.10).

component of inertial acceleration in the ft/sec?
inertial platform x direction (Section 2.1.10).

component of position relative to the tangent ft
plane coordinate system x direction
(Section 2.1.11).

component of inertial velocity in the tangent ft/sec
plane coordinate system x direction
(Section 2.1.11).

component of inertial acceleration in the ft/sec?
tangent plane coordinate system x direction
(Section 2.1.11).

geocentric yaw angle (Section 2.1.7). deg
geodetic yaw angle (Section 2.1.7). deg
inertial platform yaw angle (Section 2.1.10). deg

component of position vector in y direction ft
of ECFC coordinate system (Section 2.1.1).

component of velocity vector with respect ft/sec

to the earth’s surface in x direction of ECFC
coordinate system (Section 2.1.1).

component of acceleration vector with ft/sec?

respect to the earth’s surface in y direction
of ECFC coordinate system (Section 2.1.1).

component of position vector in y direction ft
of ECIC coordinate system (Section 2.1.2).

component of inertial velocity vector ft/sec

in y direction of ECIC coordinate system
(Section 2.1.2).

component of inertial acceleration vector ft/sec?

in y direction of ECIC coordinate system
(Section 2.1.2).

Decimal

Places
2

N W W W

Variable

yip

yipdt

yipdt2

ytpdt

ytpdt2

zecfc

zecfcdt

zecfcdt2

zecic

zecicdt

zecicdt2

Symbol

F-7) 3,
Vi3,
dr- ¥,
(;"_?tp) ' }’Ayp

— A

V1'y,p

- A

a]'y,p

- A

ar- zy

Default

component of position relative to the inertial ft
platform y direction (Section 2.1.10).

component of inertial velocity in the inertial ft/sec
platform y direction (Section 2.1.10).

component of inertial acceleration in the ft/sec?
inertial platform y direction (Section 2.1.10).

component of position relative to the tangent ft

plane coordinate system y direction
(Section 2.1.11).

component of inertial velocity in the tangent ft/sec

plane coordinate system y direction
(Section 2.1.11).

component of inertial acceleration in the ft/sec?

tangent plane coordinate system y direction
(Section 2.1.11).

component of position vector in z direction ft
of ECFC coordinate system (Section 2.1.1).

component of velocity vector with respect ft/sec

to the earth’s surface in x direction of ECFC
coordinate system (Section 2.1.1).

component of acceleration vector with ft/sec?

respect to the earth’s surface in z direction
of ECFC coordinate system (Section 2.1.1).

component of position vector in z direction ft
of ECIC coordinate system (Section 2.1.2).

component of inertial velocity vector ft/sec

in z direction of ECIC coordinate system
(Section 2.1.2).

component of inertial acceleration vector ft/sec2

in z direction of ECIC coordinate system
(Section 2.1.2).

Decimal
Places

2

Variable
Name
zip
zipdt

zipdt2

ztp

Ztpdt

ztpdt2

Symbol

- A
F—7p) 2
V-2
— A
al'Zp
(?— ?tp) ¢ étp

— A

V[‘ Zp

- A

a;* Zp

Default
L . . Uni

component of position relative to the inertial ft
platform z direction (Section 2.1.10).

component of inertial velocity in the inertial ft/sec
platform z direction (Section 2.1.10).

component of inertial acceleration in the ft/sec?
inertial platform z direction (Section 2.1.10).

component of position relative to the tangent ft

plane coordinate system z direction
(Section 2.1.11).

component of inertial velocity in the tangent ft/sec

plane coordinate system z direction
(Section 2.1.11).

component of inertial accelération in the fi/sec?
tangent plane coordinate system z direction
(Section 2.1.11).

Decimal

Intentionally Left Blank

A-12

References

1. D. E. Salguero, Point-Mass Simulation Tool (PMAST) User’s Manual,
SAND85-2039, Sandia National Laboratories, Albuquerque, NM, March 1986.

2.D. E. Outka, User s Manual for the Trajectory Simulation and Analysis Pro-
gram (TSAP), SAND88-3158, Sandia National Laboratories, Albuquerque, NM,
July 1990.

3. M. J. D. Powell, A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations, Proceedings of the Biennial Conference on Numerical Analysis, 28
June — 1 July 1977, G. A. Watson, ed., Springer—Verlag, Berlin, Germany, pp.
144-57, 1978.

4. D. E. Salguero, Engineering Graphics System (EGS) User’s Manual,
SAND89-0156, Sandia National Laboratories, Albuquerque, NM, January 1989.

5. T. O. Seppelin, The Department of Defense World Geodetic System 1972,
World Geodetic System Committee, International Symposium on Problems Re-
lated to the Redefinition of North American Geodetic Networks, Frederiction,
New Brunswick, Canada, May 1974.

6. Department of Defense World Geodetic System 1984, DMA TR 8350.2, De-
fense Mapping Agency WGS 84 Development Committee, Washington, DC, Sep-
tember 30, 1987.

7.J. L. McDowell, B. E. Schutz, R. E. McKenzie, and B. D. Tapley, Trajectory
Analysis Program Mathematical Specifications (Version 770701), TR 77-1, Cen-
ter for Advanced Study in Orbital Mechanics, Department of Aerospace Engi-
neering and Engineering Mechanics, The University of Texas at Austin, 1977.

8. L. W. Johnson and R. D. Riess, Numerical Analysis, 2nd ed., Addison-Wesley,
Reading, MA, 1982.

9. W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Brooks/
Cole, Monmrey, CA, 1980.

10. G. W. Rosborough, Gravitational Effects on Low~Earth Orbiters, Advances in
the Astronautical Sciences, Vol. 74, pp. 587-610, 1991.

11. J. G. Marsh, E J. Lerch, B. H. Putney, D. C. Christodoulidis, D. E. Smith, T.
L. Felsentreger, B. V. Sanchez, S. M. Klosko, E. C. Pavlis, T. V. Martin, J. W,
Robbins, R. G. Williamson, O. L. Colombo, D. D. Rowlands, W. F. Eddy, N. L.
Chandler, K. E. Rachlin, G. B. Patel, S. Bhati, and D. S. Chinn, A New Gravita-
tional Model for the Earth from Satellite Tracking Data: GEM-T1, Journal of
Geophysical Research, Vol. 93, pp. 6169-6215, June 1988.

12. D. B. Landrum, Standard Atmosphere Subroutine, Internal Memorandum
RS1555/87/010, Sandia National Laboratories, Albuquerque, NM, January 1987.

Ref-1

13. U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric Admin-
istration, National Aeronautics and Space Administration, and the United States
Air Force, U.S. Government Printing Office, Washington, DC, 1976.

14, U.S. Standard Atmosphere Supplements, 1966, Environmental Science Ser-
vices Administration, National Aeronautics and Space Administration, and the
United States Air Force, U.S. Government Printing Office, Washington, DC,
1966.

15. Kwajelein Reference Atmosphere 1979, 1966, AFGL-TR-79-0241, Air Force
Geophysical Laboratory, September 1979.

16. E. M. Sodano and T. A. Robinson, Direct and Inverse Solutions of Geodesics,
Technical Report 7 (Revised), U.S. Army Map Service, Washington, DC, pp.
15-27, 1963.

17. P. Zarchan, Tactical and Strategic Missile Guidance, 2nd ed., vol. 157, Prog-
ress in Astronautics and Aeronautics, American Institute of Aeronautics and As-
tronautics, Washington, DC, 1994.

18. K. D. Bruns, M. E. Moore, S. L. Stoy, and S. R. Vukelich, Missile Datcom
User’s Manual — Rev 4/91, WL-TR-91-3039, Wright Laboratory, Wright Patter-
son Air Force Base, Ohio, April 1991.

19. R. W. Noack and A. R. Lopez, Inviscid Flow Field Analysis of Complex Reen-
try Vehicles, vol. 1and II, SAND87-0776, Sandia National Laboratories, Albu-
querque, NM, October 1988.

20. K. V. Chavez and D. E. Salguero, A User’s Manual for the Aerodynamic Pre-
diction Software (AERO), SAND93-0479, Sandia National Laboratories, Albu-
querque, NM, April 1993.

21. D. E. Salguero, Solid Rocket Motor Performance for Conceptual Design Stud-
ies, SAND89-1181, Sandia National Laboratories, Albuquerque, NM, May 1989.

22, Jia-Yih Chang, Recursive Quadratic Programming with Best Feasible Point,
PhD Dissertation, The University of Texas at Austin, May 1989.

23. R. W. Stineman, A Consistently Well-Behaved Method of Interpolation, Cre-
ative Computing, pp. 54-57, July 1980.

Ref-2

A

accebx, 2 -~ 22
acceby,2 — 22
accebz,2 — 22

Acceleration, 2 — 51
body, 2 - 22
earth—fixed, 2 — 37
gravity, 2 — 62
inertial, 2 — 36
accibx,2 - 22
acciby, 2 = 22
accibz,2 ~ 22
Aerodynamic angles, 2 — 26, 2 — 29,
4-13

Aerodynamic coefficients, 3 — 3
axial and normal, 2 — 56
body axes, 2 — 57
center of gravity, 4 — 12
lift, drag, and sideforce, 2 — 56
multiple, 2 — 57
problem file, 4 — 9
reference area,3 — 10,4 — 9
tables,3 -3

Airspeed, 2 — 24
alpha, 2 - 31
alpha_l/d,2 — 65
alphat, 2 — 31

alt,2 - 15

aldt, 2 — 42
Altitude rate, 2 — 44

Angle of attack, 2 — 26,2 — 27,2 — 29,
2-31,4-14

Atmosphere
assumptions, 2 — 52
density, 2 — 54
geopotential altitude, 2 — 53
high altitude, 2 ~ 55
input data, 4 — 50
models, 2 — 52
molecular weight, 2 — 53

Index

pressure, 2 — 54

speed of sound, 2 - 55
temperature, 2 — 54
user—defined, 4 — 50,4 — 51
viscosity, 2 — 55

B

ballistic,2 — 65

Ballistic coefficient, 2 — 77
Bank angles, 2 — 26,2 — 31
bankge,2 — 31

bankgd, 2 — 31

beta,2 — 31

betae, 2 - 31

Body
accelerations, 2 — 22
attitude,1-2,2 - 78,4 — 13

coordinate system, 2 — 19,2 — 74

Euler angles, 2 — 30,4 — 13
unit vectors, 2 — 20, 2 — 27
velocities, 2 —~ 22

C

ca,2 — 57
cd,2 - 57
Center of gravity, 4 — 12
c,2-57
cn,2 —57

Code
data structure, 2 — 92
execution,1 -9
flowchart, 2 — 91
memory requirements, 1 — 9
modules, 2 — 2
portability,1 — 5

Coefficients of friction, 2 — 41
Comments,3 — 6,4 -5

Coordinate systems
body—fixed,2 — 19,2 — 74

Index -1

earth—fixed,2 - 5 *summarize, 4 — 80

ECFC,2-5 *survey, 4 — 83
ECIC,2 - 7 *tangent, 4 ~ 42,4 — 47
geocentric,2 — 9 *title, 4 — 85
geodetic, 2 — 14 *trajectory, 4 — 33
inertial, 2 — 7 *units/fmt, 4 — 86
inertial platform, 2 — 32 *when, 4 — 31
local geocentric horizon,2 — 8 *wind, 4 — 89
local geodetic horizon, 2 — 12 : definition, 4 — 3
overview, 2 — 4 Distances
radar, 2 — 71 downrange/crossrange, 2 — 68,4 — 39
tangent plane, 2 — 33 east/north, 2 — 66, 4 — 39
transforms, 2 — 35 ’
unit vectors, 2 — 35 Downrange, 2 — 68,4 — 39
ve.locity, 2-24,2-47 dwnmg, 2 — 64,2 — 68
wind, 2 — 26 Dynamic pressure, 2 — 44, 2 — 56
Crossrange, 2 — 68,4 — 39 dynprs, 2 — 56
crsmg,2 — 64,2 — 68
cs, 2-57 E
cx,2 - 57
5,2 - 57 Earth
2.2 — 57 azimuths, 2 — 66,2 — 69
d distances, 2 — 66,2 ~ 69
ellipsoidal, 2 — 60, 4 — 54
D geometry,2 - 12,2 — 14,2 - 53,4 - 74
gravity, 2 — 53
gravity coefficients, 2 — 61
Dita blocks gravity model, 2 — 60
~aero, 4-9 gravity vector, 2 — 62
*atmos, 4-50 initial rotation, 2 — 7
vcg, 4~ 12 input data, 4 — 54
*constants, 4-11 rotation rate, 2 — 7
define, 4 — 35,4 — 52 spherical, 2 — 60, 4 — 54
*dwn/crs, 4 — 39 TSAP, 4 — 55
*earth, 4 — 54 WGS,2-12,4-54
*egs,4 — 58
*file, 4 — 40, 4 — 60 east,2 — 64,2 — 66
“fly,4-13 . epl,2 - 59
*iip, 4 — 42 -
*increment, 4 — 20 2,2 =59
*inertial, 4 — 23 Equations of motion, 2 — 36,2 — 38,2 — 41,
*initial, 4 — 43 2-75,2-9
*integ, 4 — 25 Euler sideslip angle, 2 — 26,2 — 31,4 — 14
*limits, 4 — 26
*optimize, 4 — 62
*print, 4 — 46,4 — 72 F
*prop, 4 — 27
:rzgar, 4-174 Final conditions, 2 — 94
*;esé: B Flight path angles, 2 — 17, 2 — 47
*search, 4 — 76 Forces
*segment, 4 — 7 _ aerodynamic, 2 — 51,2 - 56,3 — 1

Index -2

aerodynamic vector, 2 — 56,2 — 57
propulsive, 2 — 51,2 —= 59,3 - 1,4 — 27
thrust vector, 2 — 59

Friction coefficients, 2 — 41
fuel,2 — 39

G

G loading, 2 — 50
gamge,2 ~ 10
gamgedt, 2 — 47
gamgd, 2 — 17
gamgddt, 2 — 47

Geocentric
bank angle, 2 — 26
coordinates, 2 - 9
Euler angles,2 — 19,2 — 21
flight path angle, 2 ~ 10,2 — 25
flight path angle rate, 2 — 47
heading angle, 2 — 10
heading rate, 2 — 47
latitude, 2 —~ 9
latitude rate, 2 — 42
local horizon, 2 — 8
longitude, 2 — 9
pitch angle, 2 - 22
roll angle, 2 — 22
unit vectors, 2 — 8
velocity vector, 2 — 10
yaw angle, 2 — 22

Geodetic
altitude, 2 — 15
altitude acceleration, 2 — 44
altitude rate,2 — 42,2 — 44
bank angle, 2 — 26
Euler angles,2 —~ 19,2 — 21
flight path angle, 2 — 17,2 — 25
flight path angle rate, 2 — 47
heading angle, 2 — 17
heading rate, 2 — 47
latitude, 2 — 15
latitude rate, 2 — 42,2 — 43
local horizon, 2 — 12
longitude, 2 — 15
pitch angle, 2 — 22
roll angle, 2 — 22
unit vectors, 2 ~ 13
velocity, 2 — 17
velocity vector, 2 — 17

yaw angle, 2 — 22
Geopotential, 2 — 60
Geopotential altitude, 2 —~ 53
Gravity,2 - 51,2 - 60
grmark, 2 — 46
Ground range, 2 — 39,2 — 46
Ground speed, 2 — 39,2 — 46
grseg,2 — 46

Guidance

control variables,2 — 78,2 — 81,2 — 90

cubic transition, 2 — 83

intercept, 4 — 112

intercepts, 2 — 85,4 — 17

limits, 2 — 90

method, 2 — 81,2 — 84

Newton—Raphson, 2 —- 84

parabolic transition, 2 — 82

proportional navigation, 2 — 85,4 — 17

range insensitive axis, 2 — 89,4 — 17

rules,1 ~6,2— 78,2 — 79,4 — 13,
4-17,4-18

tables, 4 — 18

time constant, 4 — 25

Guidance rules, 4 — 15

H

Heading angles, 2 — 47

IIp2-175

iip_azm,2 — 65

iip_latgd,2 ~ 64

iip_long,2 — 65

iip_mg,2 — 65

iip_time,2 —~ 65

Inertial platform
acceleration, 2 — 32
alignment, 2 ~ 32,4 — 23
coordinate system, 2 — 32
Euler angles, 2 - 19,2 — 21
pitch angle, 2 — 22
position, 2 — 32
roll angle, 2 — 22
velocity, 2 — 32

Index -3

yaw angle, 2 — 22
Initial conditions, 4 — 43
Initial impact point
ballistic coefficient, 2 — 75,4 — 42
input data, 4 — 42
methods, 2 — 75

Intercepts, 2 — 85

L

ld,2 - 65

latgec,2 -9

latgedt, 2 — 42

latgd, 2 — 15

latgddt, 2 — 42

Legendre functions, 2 — 61
Lift—to—drag ratio, 2 — 77
Load factors, 2 — 50
long,2 -9,2-15

longdt, 2 — 42

Longitude rate, 2 — 42

M

mach,2 — 56

Mach number, 2 - 44,2 — 56
mass, 2 — 39

Mass flow,3 — 3

Math operations, 3 — 13,3 — 15
mdt,2 — 39

Methods
atmosphere, 2 — 52
coordinate systems, 2 — 4
equations of motion, 2 — 36
forces,2 — 51,2 — 56,2 — 59
gravity, 2 — 60
guidance, 2 — 78
initial impact point, 2 — 75
multi—vehicle, 2 — 74
Newton—Raphson, 2 — 69
notation, 2 — 1
optimization, 2 — 102
overview,1 — 2

radar,2 - 71

range and distance, 2 — 66

searches, 2 — 98

trajectories, 2 — 91
Multi—vehicle

calculations, 2 — 74

constraints, 4 — 64

examples, 4 — 102

initial conditions, 4 — 22,4 — 45

intercept, 2 — 85

object deployment, 4 — 22

trajectories, 2 — 94

N

Newton—Raphson, 2 — 84,2 — 98

Nomenclature, x,2 ~ 1

north,2 — 64,2 — 66

Notation, x,2 — 1

ntotal, 2 — 50

nu,2—52

Numerical integration, 2 — 38, 2 — 39,
2-752-93,4-25

nx,2 — 50

ny,2—50

nz,2-50

o

Object deployment, 4 — 22

Optimization,1 — 7,2 - 94,2 — 102
constraints, 4 — 63,4 — 64
derivatives, 4 — 67,4 — 70
example, 4 — 68
examples, 4 — 102, 4 — 108
guidance, 4 — 18
input data, 4 — 62
loops, 4 — 62
objective function, 4 — 63
parameters, 4 — 62
problem file,4 — 5
reference values, 4 — 65
restarts, 4 — 66
starting trajectory, 4 — 68,4 — 70
surveys,4 — 67,4 - 71
troubleshooting, 4 — 69

Output files, 1 — 10,4 — 40,4 — 60

Index -4

Output variables

accebx, 2 — 22
acceby, 2 — 22
accebz, 2 — 22
accibx, 2 — 22
acciby, 2 — 22
accibz, 2 — 22
alpha, 2 - 31
alpha 1/d, 2 — 65
alphat, 2 — 31
alt,2-15
altdt, 2 — 42
ballistic, 2 — 65
bankgc, 2 - 31
bankgd, 2 — 31
beta, 2 — 31
betae, 2 — 31
ca,2-57

cd, 2 —-57
cl,2-57

cn,2 - 57
crsrng, 2 — 64
cs,2 — 57

cx,2 — 57
cy,2—57

cz,2 - 57
density, 2 — 52
dwnrng, 2 — 64
dynprs, 2 — 56
east,2 — 64
epl,2—-59
ep2,2—59
fuel, 2 — 39
gamgc, 2 — 10
gamgcedt, 2 — 47
gamgd,2 — 17
gamgddt, 2 — 47
grmark, 2 — 46
grseg, 2 — 46
iip_azm, 2 — 65
iip_latgd, 2 — 64
iip_long, 2 — 65
iip rng,2 — 65
iip_time, 2 — 65
d,2 - 65
latge,2 -9
latgedt, 2 — 42
latgd,2 — 15

latgddt,2 — 42
long,2~-9,2~15
longdt, 2 — 42
mach, 2 — 56
mass, 2 — 39

mdt, 2 — 39
north, 2 — 64
nu,2 - 52

nx, 2 — 50
phi,2 — 31
pitchge, 2 — 22
pitchgd, 2 — 22
pitchi, 2 — 22
plength, 2 — 39
plmark, 2 — 39
plseg,2 -39
pres,2 — 52

printout format, 4 — 86

psige, 2 — 10
psigedt, 2 — 47
psigd, 2 - 17
psigddt, 2 — 47
radasp, 2 — 64
radaz, 2 — 64
radazdt, 2 — 64
radazdt2, 2 - 64
radelv,2 — 64
radelvdt, 2 — 64
radelvdt2, 2 — 64
radmer, 2 — 64
radrng, 2 — 64
radrngdt, 2 — 64
radrngdt2, 2 — 64
range, 2 — 46
rcm,2 -9

relaz, 2 — 64
relelv, 2 - 64
relmg, 2 — 64
relvel, 2 - 64
relxb, 2 — 64
relyb, 2 — 64
relzb, 2 — 64
reypft, 2 — 56
rollge, 2 ~ 22
rollgd, 2 — 22
rolli,2 — 22
sndspd, 2 - 52
temp, 2 — 52
thrust,2 — 59
units, 2 — 3,4 — 86
vair, 2 - 24
vel,2 -10,2-17
velebx, 2 — 22
veleby, 2 — 22
velebz, 2 — 23
velibx, 2 — 23
veliby, 2 — 23
velibz, 2 — 23
vgr,2 — 46

Index-5

wt,2 — 39
xecfc,2 -5
xecfcdt,2 — 6
xecfcdt2,2 — 6
xecic,2 — 7
xecicdt, 2 - 7
xecicdt2,2 — 7
xip, 2 — 32
xipdt, 2 — 32
xipdt2, 2 — 32
xtp,2 — 33
xtpdt, 2 — 33
xtpdt2,2 — 34
yawgc, 2 — 22
yawgd, 2 — 22
yawi, 2 — 22
yecfc,2 —5
yecfcdt,2 ~ 6
yecfcdt2,2 — 6
yecic,2 =7
yecicdt,2 — 7
yecicdt2, 2 —~ 7
YiP, 2-32
yipdt, 2 — 32
yipdt2,2 — 32
ytp, 2 — 33
ytpdt, 2 — 33
ytpdt2,2 — 34
zecfc,2 -5
zecfcdt,2 — 6
zecfcdt2,2 — 6
zecic,2 =7
zecicdt, 2 — 7
zecicdt2,2 — 7
zip,2 — 32
zipdt,2 — 32
zipdt2,2 — 32
ztp,2 — 33
ztpdt,2 — 33
ztpdt2,2 — 34 -

P

Path length, 2 — 39

phi,2 - 31
pitchge,2 — 22
Dpitchgd, 2 — 22
Dpitchi, 2 — 22
plength,2 — 39
plmark,2 — 39

Plotting, 1 — 10,4 — 58,4 — 95
plseg,2 — 39

PMAST 1-4,4~-55

Power setting, 4 — 15

pres,2—152

Printout file,4 — 72,4 — 80,4 — 86
Printout files, 1 — 10,4 — 25,4 — 46

Problem file
data blocks, 4 — 3,4 — 49
examples, 4 — 2
format, 4 — 4
organization, 4 — 2,4 — 48
overview, 4 — 1
values, 4 — 4

Problems
comments, 4 — 5
data blocks, 4 — 3
examples, 4 — 91,4 — 92,4 — 98,4 — 105,
4-112
filenames, 1 — 8
optimization, 4 — 5
searches,4 - 5
surveys,4 — 5
table names,3 — 5
title,4 — 5,4 — 85
Program
data structure, 2 — 92
execution,1 -9
flowchart, 2 — 91
memory requirements, 1 - 9
modules, 2 - 2
portability, 1 - 5
Proportional navigation, 2 — 85
psige,2 - 10
psigedt, 2 - 47
psigd, 2 ~ 17
psigddt,2 — 47

R :

Radar
accelerations, 2 — 72
aspect angle, 2 — 73
azimuth, 2 - 71
coordinate system, 2 — 71
elevation, 2 — 71
input data, 4 — 74
meridional angle, 2 — 73

Index-6

observations, 2 — 71
range,2 —71
rates,2 — 72

unit vectors, 2 — 71

radasp, 2 — 64
radaz, 2 - 64
radazdt,2 — 64
radazdt2,2 — 64
radely, 2 — 64
radelvdt, 2 — 64
radelvdt2,2 — 64
radmer, 2 - 64
radmg, 2 — 64
radrngdt, 2 — 64
radmgdt2, 2 — 64
Rail launch, 2 — 41,4 — 29, 4 — 100

Range
downrange/crossrange, 2 — 68, 4 — 39
east/north, 2 —- 66, 4 — 39
ground, 2 — 46

range,2 — 46

Range insensitive axis, 2 — 89
Range safety, 2 — 75,4 — 42
rem,2 -9

Relative vehicle
azimuth, 2 — 74
calculations, 2 — 74
elevation, 2 — 74
range,2 — 74

relaz,2 — 64
relelv, 2 — 64
relmg,2 — 64
relvel, 2 — 64
relxb,2 — 64
relyb, 2 — 64
relzb, 2 — 64
Reynold’s number, 2 - 56
reypft,2 — 56
rho,2 — 52
rollge, 2 — 22

rollgd,2 — 22

rolli,2 — 22

Runge-Kutta,2 — 39,2 - 75
Running TAQS,1 -9
Searches

golden section, 2 — 100
input data, 4 — 76
loops, 4 — 78
methods, 2 — 98
Newton—Raphson, 2 — 69, 2 — 84,2 — 98
objective function, 4 — 76
optimization, 2 - 102
parabolic, 2 — 99
parabolic minimum, 2 — 101
problem file, 4 - 5
secant,2 — 94,2 — 99
trajectory, 2 — 94

Segments
data blocks, 4 — 7
definition, 1 - 6,4 - 1
description, 4 ~ 7
final conditions, 2 — 94, 4 — 31
number, 4 - 2,4 -7

Sideslip angle, 2 — 27,2 - 31,4 — 14
Sled tracks,2 — 41,4 — 29
sndspd, 2 — 52
Sodano’s method
direct,2 — 69
inverse, 2 — 66

Specific load factors, 2 — 50

Summary variables
definition, 4 — 80
examples, 4 — 82
math operations, 4 — 81

Surveys,1 -7
definition, 4 — 83
examples, 4 — 93
name, 4 — 83
number, 4 — 83
problem file,4 - 5
summary variables, 4 — 80
values, 4 — 83,4 — 84

T

Table files
organization, 3 — 2

Index -7

overview,3 — 1

Tables
aerodynamic coefficients, 2 ~ 57
aerodynamic reference area, 3 — 10
comments,3 — 6
dependent values, 3 — 11,3 — 17,3 — 22
examples,3 - 10,3 —-12,3-25,4-92
extrapolation, 3 — 9
filenames, 1 — 8
full format, 3 — 13
function definition,3 - 9
goto operation, 3 — 21
idname,3-2,3-5,3-9
if~then operation, 3 — 20
independent variables, 3 — 11,3 — 17,
3-22
labels,3 — 21
mass flow units, 3 — 10
math operations, 3 — 13,3 - 15
parameters, 3 — 10
propulsion, 2 — 59
simple format,3 — 9
skewed tabulated data, 3 — 22
state variables,3 — 7,3 — 16
storage variables, 3 — 18
table type,3 — 3
temporary variables, 3 — 18
thrust units, 3 — 10
user—defined variables,3 — 8,3 — 19
values,3 — 6,3 — 16
Tangent Plane, definition, 4 — 47
Tangent plane
acceleration, 2 — 34
coordinate system, 2 — 33
initial impact point, 4 — 42
position, 2 — 33
unit vectors, 2 — 33
velocity, 2 ~ 33,
TAOS, execution,1 — 9
temp,2 — 52
thrust,2 - 59,3 -3
Thrust vector angles, 2 — 59,4 — 27,4 — 28
Titles, 4 — 85
Total angle of attack,2 — 29,4 — 15
Trajectories
calculations, 2 — 92
constraints, 2 — 104

definition, 4 — 33
derivative calculation, 2 — 96

flowchart,2 — 93,2 — 96

initial conditions, 4 — 43

limits, 2 — 90

multiple, 1 — 6,2 — 94

name,4 —2,4 - 33

number,4 - 2,4 — 33

optimization,1 - 7,2 — 94,2 - 102,4 —
62

rail launch, 2 — 41,4 - 29

searches, 2 — 94

segments, 4 — 1

shaping, 2 — 103

surveys,1 —7

TSAP1-4,2-1,4-55

U

Unit vectors
body, 2 — 20,2 — 27
coordinate system transforms, 2 — 35
geocentric, 2 — 8
geodetic, 2 — 13
radar,2 — 71
tangent plane, 2 — 33
velocity, 2 — 24,2 — 25
wind, 2 - 26

Units
changing, 4 — 86
conversion, 2 — 3
thrust and mass flow, 4 — 27

User—defined variables
examples, 4 - 109
if—then statements, 4 — 37
integral, 4 — 38
math operations, 4 — 36
output tables, 3 — 3,4 — 37
problem, 4 ~ 52
tables,3 - 19,4 - 10,4 — 11,4 - 28
trajectory, 4 — 35

\'}

vair,2 - 24

vel,2 - 10,2 - 17
velebx, 2 — 22
veleby, 2 — 22
velebz,2 — 23
velibx,2 — 23
veliby, 2 — 23

Index - 8

velibz,2 — 23

Velocity
coordinate system, 2 — 24, 2 — 47
unit vectors, 2 — 24,2 — 25

vgr,2 — 46

W

WGS,2 -12
Wind
coordinate system, 2 — 26
unit vectors, 2 — 26
Winds
definition, 2 — 24
input data, 4 — 89
tables,3 — 4,4 — 89

Windward meridian, 2 — 29,2 — 31,4 — 15

wt,2 -39

X

xecfe,2 — 5
xecfedt,2 — 6
xecfedt2,2 — 6
xecic,2 —~ 7
xecicdt, 2 — 7
xecicdt2,2 — 7
xip,2 - 32
xipdt,2 — 32
xipdt2,2 — 32
xtp,2 — 33
xtpdt,2 — 33
xtpde2,2 — 34

Y

yawge,2 — 22
yawgd,2 — 22
yawi,2 —~ 22
yecfc,2 -5
yecfedt,2 — 6
yecfedt2,2 — 6
yecic,2 — 7
yecicdt,2 - 7
yecicdt2,2 - 7
yip,2 — 32
yipdt, 2 — 32
yipdt2,2 — 32
yip,2—-33
ytpdt, 2 — 33
yipdi2,2 - 34

y4

zecfc,2 — 5
zecfedt,2 — 6
zecfedt2,2 —~ 6
zecic,2 — 7
zecicdt,2 — 7
zecicdt2,2 — 7
zip,2 - 32
Zipdt,2 — 32
zZipdt2,2 — 32
zp,2 - 33
zipdt,2 — 33
ztpdt2, 2 — 34

Index -9

Intentionally Left Blank

Pt ek posed ek ek

pomd jumd ekl pemd pond femd b

N

Pmd ped et ped ek ek ek ek e b ek ped ek ek md powd jeed

oy

B ket N

MS 0826
MS 0826
MS 0826
MS 0826
MS 0826

MS 0825
MS 0825
MS 0825
MS 0825
MS 0825
MS 0825
MS 0825
MS 0825

MS 0303
MS 0303
MS 0303
MS 0303
MS 0303
MS 0303
MS 0313
MS 0309
MS 0312
MS 0312
MS 0303
MS 0313
MS 0307
MS 0309
MS 0658
MS 0659
MS 0105

MS 1174

MS 9018
MS 0899
MS 0619
MS 0100

Distribution

J.K. Cole, 9114
D. W. Kuntz, 9114
D. L. Potter, 9114
T. M. Sterk, 9114
L. W. Young, 9114

K. V. Chavez, 9115

T. M. Jordan—Culler, 9115
M. W. Kniskern, 9115
A.R. Lopez, 9115

W. A. Millard, 9115

J. L. Payne, 9115

L. R. Rollstin, 9115

W. H. Rutledge, 9115

D. J. Rigali, 2400

D. L. Davidson, 2411
S. A. Kerr, 2411

J. L. McDowell, 2411
D. E. Salguero, 2411
B. R. Sturgis, 2411
D. L. Keese, 2412

J. J. Hochrein, 2413
W. Greene, 2414

E. Williamson, 2414
W. Sterk, 2415

C. Bustamante, 2416
W. Reese, 2417

K. Miller, 2418

G. Hay, 2419

E. J. Schindwolf, 2425
B. B. Asher, 2435

R.
Ww.
M.
A.
E.
A.
R.

D. E. Outka, 2526

Central Technical Files, 8523-2
Technical Library, 13414

Print Media, 12615

Document Processing, 7613-2
For DOE/OSTI

Dist-1

Intentionally Left Blank

Dist-2

